2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
51 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly
= 131072;
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
60 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
62 int sysctl_tcp_mtu_probing __read_mostly
= 0;
63 int sysctl_tcp_base_mss __read_mostly
= TCP_BASE_MSS
;
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly
= UINT_MAX
;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat
);
71 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
72 int push_one
, gfp_t gfp
);
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock
*sk
, const struct sk_buff
*skb
)
77 struct inet_connection_sock
*icsk
= inet_csk(sk
);
78 struct tcp_sock
*tp
= tcp_sk(sk
);
79 unsigned int prior_packets
= tp
->packets_out
;
81 tcp_advance_send_head(sk
, skb
);
82 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
84 tp
->packets_out
+= tcp_skb_pcount(skb
);
85 if (!prior_packets
|| icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
||
86 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
90 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
,
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
100 static inline __u32
tcp_acceptable_seq(const struct sock
*sk
)
102 const struct tcp_sock
*tp
= tcp_sk(sk
);
104 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
107 return tcp_wnd_end(tp
);
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
124 static __u16
tcp_advertise_mss(struct sock
*sk
)
126 struct tcp_sock
*tp
= tcp_sk(sk
);
127 const struct dst_entry
*dst
= __sk_dst_get(sk
);
128 int mss
= tp
->advmss
;
131 unsigned int metric
= dst_metric_advmss(dst
);
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock
*sk
, const struct dst_entry
*dst
)
146 struct tcp_sock
*tp
= tcp_sk(sk
);
147 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
148 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
149 u32 cwnd
= tp
->snd_cwnd
;
151 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
153 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
154 restart_cwnd
= min(restart_cwnd
, cwnd
);
156 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
158 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
159 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
160 tp
->snd_cwnd_used
= 0;
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock
*tp
,
167 struct inet_connection_sock
*icsk
= inet_csk(sk
);
168 const u32 now
= tcp_time_stamp
;
169 const struct dst_entry
*dst
= __sk_dst_get(sk
);
171 if (sysctl_tcp_slow_start_after_idle
&&
172 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
173 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
180 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
&&
181 (!dst
|| !dst_metric(dst
, RTAX_QUICKACK
)))
182 icsk
->icsk_ack
.pingpong
= 1;
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
188 tcp_dec_quickack_mode(sk
, pkts
);
189 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
193 u32
tcp_default_init_rwnd(u32 mss
)
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
200 u32 init_rwnd
= TCP_INIT_CWND
* 2;
203 init_rwnd
= max((1460 * init_rwnd
) / mss
, 2U);
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
214 void tcp_select_initial_window(int __space
, __u32 mss
,
215 __u32
*rcv_wnd
, __u32
*window_clamp
,
216 int wscale_ok
, __u8
*rcv_wscale
,
219 unsigned int space
= (__space
< 0 ? 0 : __space
);
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp
== 0)
223 (*window_clamp
) = (65535 << 14);
224 space
= min(*window_clamp
, space
);
226 /* Quantize space offering to a multiple of mss if possible. */
228 space
= (space
/ mss
) * mss
;
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
238 if (sysctl_tcp_workaround_signed_windows
)
239 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
248 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
249 space
= min_t(u32
, space
, *window_clamp
);
250 while (space
> 65535 && (*rcv_wscale
) < 14) {
256 if (mss
> (1 << *rcv_wscale
)) {
257 if (!init_rcv_wnd
) /* Use default unless specified otherwise */
258 init_rcv_wnd
= tcp_default_init_rwnd(mss
);
259 *rcv_wnd
= min(*rcv_wnd
, init_rcv_wnd
* mss
);
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
265 EXPORT_SYMBOL(tcp_select_initial_window
);
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
272 static u16
tcp_select_window(struct sock
*sk
)
274 struct tcp_sock
*tp
= tcp_sk(sk
);
275 u32 old_win
= tp
->rcv_wnd
;
276 u32 cur_win
= tcp_receive_window(tp
);
277 u32 new_win
= __tcp_select_window(sk
);
279 /* Never shrink the offered window */
280 if (new_win
< cur_win
) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
286 * Relax Will Robinson.
289 NET_INC_STATS(sock_net(sk
),
290 LINUX_MIB_TCPWANTZEROWINDOWADV
);
291 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
293 tp
->rcv_wnd
= new_win
;
294 tp
->rcv_wup
= tp
->rcv_nxt
;
296 /* Make sure we do not exceed the maximum possible
299 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
300 new_win
= min(new_win
, MAX_TCP_WINDOW
);
302 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
304 /* RFC1323 scaling applied */
305 new_win
>>= tp
->rx_opt
.rcv_wscale
;
307 /* If we advertise zero window, disable fast path. */
311 NET_INC_STATS(sock_net(sk
),
312 LINUX_MIB_TCPTOZEROWINDOWADV
);
313 } else if (old_win
== 0) {
314 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPFROMZEROWINDOWADV
);
320 /* Packet ECN state for a SYN-ACK */
321 static void tcp_ecn_send_synack(struct sock
*sk
, struct sk_buff
*skb
)
323 const struct tcp_sock
*tp
= tcp_sk(sk
);
325 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_CWR
;
326 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
327 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_ECE
;
328 else if (tcp_ca_needs_ecn(sk
))
332 /* Packet ECN state for a SYN. */
333 static void tcp_ecn_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
335 struct tcp_sock
*tp
= tcp_sk(sk
);
336 bool use_ecn
= sock_net(sk
)->ipv4
.sysctl_tcp_ecn
== 1 ||
337 tcp_ca_needs_ecn(sk
);
340 const struct dst_entry
*dst
= __sk_dst_get(sk
);
342 if (dst
&& dst_feature(dst
, RTAX_FEATURE_ECN
))
349 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ECE
| TCPHDR_CWR
;
350 tp
->ecn_flags
= TCP_ECN_OK
;
351 if (tcp_ca_needs_ecn(sk
))
357 tcp_ecn_make_synack(const struct request_sock
*req
, struct tcphdr
*th
,
360 if (inet_rsk(req
)->ecn_ok
) {
362 if (tcp_ca_needs_ecn(sk
))
367 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370 static void tcp_ecn_send(struct sock
*sk
, struct sk_buff
*skb
,
373 struct tcp_sock
*tp
= tcp_sk(sk
);
375 if (tp
->ecn_flags
& TCP_ECN_OK
) {
376 /* Not-retransmitted data segment: set ECT and inject CWR. */
377 if (skb
->len
!= tcp_header_len
&&
378 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
380 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
381 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
382 tcp_hdr(skb
)->cwr
= 1;
383 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
385 } else if (!tcp_ca_needs_ecn(sk
)) {
386 /* ACK or retransmitted segment: clear ECT|CE */
387 INET_ECN_dontxmit(sk
);
389 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
390 tcp_hdr(skb
)->ece
= 1;
394 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
395 * auto increment end seqno.
397 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
399 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
401 skb
->ip_summed
= CHECKSUM_PARTIAL
;
404 TCP_SKB_CB(skb
)->tcp_flags
= flags
;
405 TCP_SKB_CB(skb
)->sacked
= 0;
407 tcp_skb_pcount_set(skb
, 1);
408 shinfo
->gso_size
= 0;
409 shinfo
->gso_type
= 0;
411 TCP_SKB_CB(skb
)->seq
= seq
;
412 if (flags
& (TCPHDR_SYN
| TCPHDR_FIN
))
414 TCP_SKB_CB(skb
)->end_seq
= seq
;
417 static inline bool tcp_urg_mode(const struct tcp_sock
*tp
)
419 return tp
->snd_una
!= tp
->snd_up
;
422 #define OPTION_SACK_ADVERTISE (1 << 0)
423 #define OPTION_TS (1 << 1)
424 #define OPTION_MD5 (1 << 2)
425 #define OPTION_WSCALE (1 << 3)
426 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
428 struct tcp_out_options
{
429 u16 options
; /* bit field of OPTION_* */
430 u16 mss
; /* 0 to disable */
431 u8 ws
; /* window scale, 0 to disable */
432 u8 num_sack_blocks
; /* number of SACK blocks to include */
433 u8 hash_size
; /* bytes in hash_location */
434 __u8
*hash_location
; /* temporary pointer, overloaded */
435 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
436 struct tcp_fastopen_cookie
*fastopen_cookie
; /* Fast open cookie */
439 /* Write previously computed TCP options to the packet.
441 * Beware: Something in the Internet is very sensitive to the ordering of
442 * TCP options, we learned this through the hard way, so be careful here.
443 * Luckily we can at least blame others for their non-compliance but from
444 * inter-operability perspective it seems that we're somewhat stuck with
445 * the ordering which we have been using if we want to keep working with
446 * those broken things (not that it currently hurts anybody as there isn't
447 * particular reason why the ordering would need to be changed).
449 * At least SACK_PERM as the first option is known to lead to a disaster
450 * (but it may well be that other scenarios fail similarly).
452 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
453 struct tcp_out_options
*opts
)
455 u16 options
= opts
->options
; /* mungable copy */
457 if (unlikely(OPTION_MD5
& options
)) {
458 *ptr
++ = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
459 (TCPOPT_MD5SIG
<< 8) | TCPOLEN_MD5SIG
);
460 /* overload cookie hash location */
461 opts
->hash_location
= (__u8
*)ptr
;
465 if (unlikely(opts
->mss
)) {
466 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
467 (TCPOLEN_MSS
<< 16) |
471 if (likely(OPTION_TS
& options
)) {
472 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
473 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
474 (TCPOLEN_SACK_PERM
<< 16) |
475 (TCPOPT_TIMESTAMP
<< 8) |
477 options
&= ~OPTION_SACK_ADVERTISE
;
479 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
481 (TCPOPT_TIMESTAMP
<< 8) |
484 *ptr
++ = htonl(opts
->tsval
);
485 *ptr
++ = htonl(opts
->tsecr
);
488 if (unlikely(OPTION_SACK_ADVERTISE
& options
)) {
489 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
491 (TCPOPT_SACK_PERM
<< 8) |
495 if (unlikely(OPTION_WSCALE
& options
)) {
496 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
497 (TCPOPT_WINDOW
<< 16) |
498 (TCPOLEN_WINDOW
<< 8) |
502 if (unlikely(opts
->num_sack_blocks
)) {
503 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
504 tp
->duplicate_sack
: tp
->selective_acks
;
507 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
510 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
511 TCPOLEN_SACK_PERBLOCK
)));
513 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
515 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
516 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
519 tp
->rx_opt
.dsack
= 0;
522 if (unlikely(OPTION_FAST_OPEN_COOKIE
& options
)) {
523 struct tcp_fastopen_cookie
*foc
= opts
->fastopen_cookie
;
525 *ptr
++ = htonl((TCPOPT_EXP
<< 24) |
526 ((TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
) << 16) |
527 TCPOPT_FASTOPEN_MAGIC
);
529 memcpy(ptr
, foc
->val
, foc
->len
);
530 if ((foc
->len
& 3) == 2) {
531 u8
*align
= ((u8
*)ptr
) + foc
->len
;
532 align
[0] = align
[1] = TCPOPT_NOP
;
534 ptr
+= (foc
->len
+ 3) >> 2;
538 /* Compute TCP options for SYN packets. This is not the final
539 * network wire format yet.
541 static unsigned int tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
542 struct tcp_out_options
*opts
,
543 struct tcp_md5sig_key
**md5
)
545 struct tcp_sock
*tp
= tcp_sk(sk
);
546 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
547 struct tcp_fastopen_request
*fastopen
= tp
->fastopen_req
;
549 #ifdef CONFIG_TCP_MD5SIG
550 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
552 opts
->options
|= OPTION_MD5
;
553 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
559 /* We always get an MSS option. The option bytes which will be seen in
560 * normal data packets should timestamps be used, must be in the MSS
561 * advertised. But we subtract them from tp->mss_cache so that
562 * calculations in tcp_sendmsg are simpler etc. So account for this
563 * fact here if necessary. If we don't do this correctly, as a
564 * receiver we won't recognize data packets as being full sized when we
565 * should, and thus we won't abide by the delayed ACK rules correctly.
566 * SACKs don't matter, we never delay an ACK when we have any of those
568 opts
->mss
= tcp_advertise_mss(sk
);
569 remaining
-= TCPOLEN_MSS_ALIGNED
;
571 if (likely(sysctl_tcp_timestamps
&& *md5
== NULL
)) {
572 opts
->options
|= OPTION_TS
;
573 opts
->tsval
= tcp_skb_timestamp(skb
) + tp
->tsoffset
;
574 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
575 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
577 if (likely(sysctl_tcp_window_scaling
)) {
578 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
579 opts
->options
|= OPTION_WSCALE
;
580 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
582 if (likely(sysctl_tcp_sack
)) {
583 opts
->options
|= OPTION_SACK_ADVERTISE
;
584 if (unlikely(!(OPTION_TS
& opts
->options
)))
585 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
588 if (fastopen
&& fastopen
->cookie
.len
>= 0) {
589 u32 need
= TCPOLEN_EXP_FASTOPEN_BASE
+ fastopen
->cookie
.len
;
590 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
591 if (remaining
>= need
) {
592 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
593 opts
->fastopen_cookie
= &fastopen
->cookie
;
595 tp
->syn_fastopen
= 1;
599 return MAX_TCP_OPTION_SPACE
- remaining
;
602 /* Set up TCP options for SYN-ACKs. */
603 static unsigned int tcp_synack_options(struct sock
*sk
,
604 struct request_sock
*req
,
605 unsigned int mss
, struct sk_buff
*skb
,
606 struct tcp_out_options
*opts
,
607 struct tcp_md5sig_key
**md5
,
608 struct tcp_fastopen_cookie
*foc
)
610 struct inet_request_sock
*ireq
= inet_rsk(req
);
611 unsigned int remaining
= MAX_TCP_OPTION_SPACE
;
613 #ifdef CONFIG_TCP_MD5SIG
614 *md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
616 opts
->options
|= OPTION_MD5
;
617 remaining
-= TCPOLEN_MD5SIG_ALIGNED
;
619 /* We can't fit any SACK blocks in a packet with MD5 + TS
620 * options. There was discussion about disabling SACK
621 * rather than TS in order to fit in better with old,
622 * buggy kernels, but that was deemed to be unnecessary.
624 ireq
->tstamp_ok
&= !ireq
->sack_ok
;
630 /* We always send an MSS option. */
632 remaining
-= TCPOLEN_MSS_ALIGNED
;
634 if (likely(ireq
->wscale_ok
)) {
635 opts
->ws
= ireq
->rcv_wscale
;
636 opts
->options
|= OPTION_WSCALE
;
637 remaining
-= TCPOLEN_WSCALE_ALIGNED
;
639 if (likely(ireq
->tstamp_ok
)) {
640 opts
->options
|= OPTION_TS
;
641 opts
->tsval
= tcp_skb_timestamp(skb
);
642 opts
->tsecr
= req
->ts_recent
;
643 remaining
-= TCPOLEN_TSTAMP_ALIGNED
;
645 if (likely(ireq
->sack_ok
)) {
646 opts
->options
|= OPTION_SACK_ADVERTISE
;
647 if (unlikely(!ireq
->tstamp_ok
))
648 remaining
-= TCPOLEN_SACKPERM_ALIGNED
;
650 if (foc
!= NULL
&& foc
->len
>= 0) {
651 u32 need
= TCPOLEN_EXP_FASTOPEN_BASE
+ foc
->len
;
652 need
= (need
+ 3) & ~3U; /* Align to 32 bits */
653 if (remaining
>= need
) {
654 opts
->options
|= OPTION_FAST_OPEN_COOKIE
;
655 opts
->fastopen_cookie
= foc
;
660 return MAX_TCP_OPTION_SPACE
- remaining
;
663 /* Compute TCP options for ESTABLISHED sockets. This is not the
664 * final wire format yet.
666 static unsigned int tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
667 struct tcp_out_options
*opts
,
668 struct tcp_md5sig_key
**md5
)
670 struct tcp_sock
*tp
= tcp_sk(sk
);
671 unsigned int size
= 0;
672 unsigned int eff_sacks
;
676 #ifdef CONFIG_TCP_MD5SIG
677 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
678 if (unlikely(*md5
)) {
679 opts
->options
|= OPTION_MD5
;
680 size
+= TCPOLEN_MD5SIG_ALIGNED
;
686 if (likely(tp
->rx_opt
.tstamp_ok
)) {
687 opts
->options
|= OPTION_TS
;
688 opts
->tsval
= skb
? tcp_skb_timestamp(skb
) + tp
->tsoffset
: 0;
689 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
690 size
+= TCPOLEN_TSTAMP_ALIGNED
;
693 eff_sacks
= tp
->rx_opt
.num_sacks
+ tp
->rx_opt
.dsack
;
694 if (unlikely(eff_sacks
)) {
695 const unsigned int remaining
= MAX_TCP_OPTION_SPACE
- size
;
696 opts
->num_sack_blocks
=
697 min_t(unsigned int, eff_sacks
,
698 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
699 TCPOLEN_SACK_PERBLOCK
);
700 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
701 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
708 /* TCP SMALL QUEUES (TSQ)
710 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
711 * to reduce RTT and bufferbloat.
712 * We do this using a special skb destructor (tcp_wfree).
714 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
715 * needs to be reallocated in a driver.
716 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
718 * Since transmit from skb destructor is forbidden, we use a tasklet
719 * to process all sockets that eventually need to send more skbs.
720 * We use one tasklet per cpu, with its own queue of sockets.
723 struct tasklet_struct tasklet
;
724 struct list_head head
; /* queue of tcp sockets */
726 static DEFINE_PER_CPU(struct tsq_tasklet
, tsq_tasklet
);
728 static void tcp_tsq_handler(struct sock
*sk
)
730 if ((1 << sk
->sk_state
) &
731 (TCPF_ESTABLISHED
| TCPF_FIN_WAIT1
| TCPF_CLOSING
|
732 TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
))
733 tcp_write_xmit(sk
, tcp_current_mss(sk
), tcp_sk(sk
)->nonagle
,
737 * One tasklet per cpu tries to send more skbs.
738 * We run in tasklet context but need to disable irqs when
739 * transferring tsq->head because tcp_wfree() might
740 * interrupt us (non NAPI drivers)
742 static void tcp_tasklet_func(unsigned long data
)
744 struct tsq_tasklet
*tsq
= (struct tsq_tasklet
*)data
;
747 struct list_head
*q
, *n
;
751 local_irq_save(flags
);
752 list_splice_init(&tsq
->head
, &list
);
753 local_irq_restore(flags
);
755 list_for_each_safe(q
, n
, &list
) {
756 tp
= list_entry(q
, struct tcp_sock
, tsq_node
);
757 list_del(&tp
->tsq_node
);
759 sk
= (struct sock
*)tp
;
762 if (!sock_owned_by_user(sk
)) {
765 /* defer the work to tcp_release_cb() */
766 set_bit(TCP_TSQ_DEFERRED
, &tp
->tsq_flags
);
770 clear_bit(TSQ_QUEUED
, &tp
->tsq_flags
);
775 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
776 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
777 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
778 (1UL << TCP_MTU_REDUCED_DEFERRED))
780 * tcp_release_cb - tcp release_sock() callback
783 * called from release_sock() to perform protocol dependent
784 * actions before socket release.
786 void tcp_release_cb(struct sock
*sk
)
788 struct tcp_sock
*tp
= tcp_sk(sk
);
789 unsigned long flags
, nflags
;
791 /* perform an atomic operation only if at least one flag is set */
793 flags
= tp
->tsq_flags
;
794 if (!(flags
& TCP_DEFERRED_ALL
))
796 nflags
= flags
& ~TCP_DEFERRED_ALL
;
797 } while (cmpxchg(&tp
->tsq_flags
, flags
, nflags
) != flags
);
799 if (flags
& (1UL << TCP_TSQ_DEFERRED
))
802 /* Here begins the tricky part :
803 * We are called from release_sock() with :
805 * 2) sk_lock.slock spinlock held
806 * 3) socket owned by us (sk->sk_lock.owned == 1)
808 * But following code is meant to be called from BH handlers,
809 * so we should keep BH disabled, but early release socket ownership
811 sock_release_ownership(sk
);
813 if (flags
& (1UL << TCP_WRITE_TIMER_DEFERRED
)) {
814 tcp_write_timer_handler(sk
);
817 if (flags
& (1UL << TCP_DELACK_TIMER_DEFERRED
)) {
818 tcp_delack_timer_handler(sk
);
821 if (flags
& (1UL << TCP_MTU_REDUCED_DEFERRED
)) {
822 inet_csk(sk
)->icsk_af_ops
->mtu_reduced(sk
);
826 EXPORT_SYMBOL(tcp_release_cb
);
828 void __init
tcp_tasklet_init(void)
832 for_each_possible_cpu(i
) {
833 struct tsq_tasklet
*tsq
= &per_cpu(tsq_tasklet
, i
);
835 INIT_LIST_HEAD(&tsq
->head
);
836 tasklet_init(&tsq
->tasklet
,
843 * Write buffer destructor automatically called from kfree_skb.
844 * We can't xmit new skbs from this context, as we might already
847 void tcp_wfree(struct sk_buff
*skb
)
849 struct sock
*sk
= skb
->sk
;
850 struct tcp_sock
*tp
= tcp_sk(sk
);
853 /* Keep one reference on sk_wmem_alloc.
854 * Will be released by sk_free() from here or tcp_tasklet_func()
856 wmem
= atomic_sub_return(skb
->truesize
- 1, &sk
->sk_wmem_alloc
);
858 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
859 * Wait until our queues (qdisc + devices) are drained.
861 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
862 * - chance for incoming ACK (processed by another cpu maybe)
863 * to migrate this flow (skb->ooo_okay will be eventually set)
865 if (wmem
>= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current
)
868 if (test_and_clear_bit(TSQ_THROTTLED
, &tp
->tsq_flags
) &&
869 !test_and_set_bit(TSQ_QUEUED
, &tp
->tsq_flags
)) {
871 struct tsq_tasklet
*tsq
;
873 /* queue this socket to tasklet queue */
874 local_irq_save(flags
);
875 tsq
= this_cpu_ptr(&tsq_tasklet
);
876 list_add(&tp
->tsq_node
, &tsq
->head
);
877 tasklet_schedule(&tsq
->tasklet
);
878 local_irq_restore(flags
);
885 /* This routine actually transmits TCP packets queued in by
886 * tcp_do_sendmsg(). This is used by both the initial
887 * transmission and possible later retransmissions.
888 * All SKB's seen here are completely headerless. It is our
889 * job to build the TCP header, and pass the packet down to
890 * IP so it can do the same plus pass the packet off to the
893 * We are working here with either a clone of the original
894 * SKB, or a fresh unique copy made by the retransmit engine.
896 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
899 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
900 struct inet_sock
*inet
;
902 struct tcp_skb_cb
*tcb
;
903 struct tcp_out_options opts
;
904 unsigned int tcp_options_size
, tcp_header_size
;
905 struct tcp_md5sig_key
*md5
;
909 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
912 skb_mstamp_get(&skb
->skb_mstamp
);
914 if (unlikely(skb_cloned(skb
)))
915 skb
= pskb_copy(skb
, gfp_mask
);
917 skb
= skb_clone(skb
, gfp_mask
);
924 tcb
= TCP_SKB_CB(skb
);
925 memset(&opts
, 0, sizeof(opts
));
927 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
))
928 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
930 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
932 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
934 if (tcp_packets_in_flight(tp
) == 0)
935 tcp_ca_event(sk
, CA_EVENT_TX_START
);
937 /* if no packet is in qdisc/device queue, then allow XPS to select
938 * another queue. We can be called from tcp_tsq_handler()
939 * which holds one reference to sk_wmem_alloc.
941 * TODO: Ideally, in-flight pure ACK packets should not matter here.
942 * One way to get this would be to set skb->truesize = 2 on them.
944 skb
->ooo_okay
= sk_wmem_alloc_get(sk
) < SKB_TRUESIZE(1);
946 skb_push(skb
, tcp_header_size
);
947 skb_reset_transport_header(skb
);
951 skb
->destructor
= tcp_wfree
;
952 skb_set_hash_from_sk(skb
, sk
);
953 atomic_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
955 /* Build TCP header and checksum it. */
957 th
->source
= inet
->inet_sport
;
958 th
->dest
= inet
->inet_dport
;
959 th
->seq
= htonl(tcb
->seq
);
960 th
->ack_seq
= htonl(tp
->rcv_nxt
);
961 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
964 if (unlikely(tcb
->tcp_flags
& TCPHDR_SYN
)) {
965 /* RFC1323: The window in SYN & SYN/ACK segments
968 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
970 th
->window
= htons(tcp_select_window(sk
));
975 /* The urg_mode check is necessary during a below snd_una win probe */
976 if (unlikely(tcp_urg_mode(tp
) && before(tcb
->seq
, tp
->snd_up
))) {
977 if (before(tp
->snd_up
, tcb
->seq
+ 0x10000)) {
978 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
980 } else if (after(tcb
->seq
+ 0xFFFF, tp
->snd_nxt
)) {
981 th
->urg_ptr
= htons(0xFFFF);
986 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
987 if (likely((tcb
->tcp_flags
& TCPHDR_SYN
) == 0))
988 tcp_ecn_send(sk
, skb
, tcp_header_size
);
990 #ifdef CONFIG_TCP_MD5SIG
991 /* Calculate the MD5 hash, as we have all we need now */
993 sk_nocaps_add(sk
, NETIF_F_GSO_MASK
);
994 tp
->af_specific
->calc_md5_hash(opts
.hash_location
,
999 icsk
->icsk_af_ops
->send_check(sk
, skb
);
1001 if (likely(tcb
->tcp_flags
& TCPHDR_ACK
))
1002 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
1004 if (skb
->len
!= tcp_header_size
)
1005 tcp_event_data_sent(tp
, sk
);
1007 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
1008 TCP_ADD_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
,
1009 tcp_skb_pcount(skb
));
1011 /* OK, its time to fill skb_shinfo(skb)->gso_segs */
1012 skb_shinfo(skb
)->gso_segs
= tcp_skb_pcount(skb
);
1014 /* Our usage of tstamp should remain private */
1015 skb
->tstamp
.tv64
= 0;
1017 /* Cleanup our debris for IP stacks */
1018 memset(skb
->cb
, 0, max(sizeof(struct inet_skb_parm
),
1019 sizeof(struct inet6_skb_parm
)));
1021 err
= icsk
->icsk_af_ops
->queue_xmit(sk
, skb
, &inet
->cork
.fl
);
1023 if (likely(err
<= 0))
1028 return net_xmit_eval(err
);
1031 /* This routine just queues the buffer for sending.
1033 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1034 * otherwise socket can stall.
1036 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
1038 struct tcp_sock
*tp
= tcp_sk(sk
);
1040 /* Advance write_seq and place onto the write_queue. */
1041 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
1042 __skb_header_release(skb
);
1043 tcp_add_write_queue_tail(sk
, skb
);
1044 sk
->sk_wmem_queued
+= skb
->truesize
;
1045 sk_mem_charge(sk
, skb
->truesize
);
1048 /* Initialize TSO segments for a packet. */
1049 static void tcp_set_skb_tso_segs(const struct sock
*sk
, struct sk_buff
*skb
,
1050 unsigned int mss_now
)
1052 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1054 /* Make sure we own this skb before messing gso_size/gso_segs */
1055 WARN_ON_ONCE(skb_cloned(skb
));
1057 if (skb
->len
<= mss_now
|| skb
->ip_summed
== CHECKSUM_NONE
) {
1058 /* Avoid the costly divide in the normal
1061 tcp_skb_pcount_set(skb
, 1);
1062 shinfo
->gso_size
= 0;
1063 shinfo
->gso_type
= 0;
1065 tcp_skb_pcount_set(skb
, DIV_ROUND_UP(skb
->len
, mss_now
));
1066 shinfo
->gso_size
= mss_now
;
1067 shinfo
->gso_type
= sk
->sk_gso_type
;
1071 /* When a modification to fackets out becomes necessary, we need to check
1072 * skb is counted to fackets_out or not.
1074 static void tcp_adjust_fackets_out(struct sock
*sk
, const struct sk_buff
*skb
,
1077 struct tcp_sock
*tp
= tcp_sk(sk
);
1079 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
1082 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
1083 tp
->fackets_out
-= decr
;
1086 /* Pcount in the middle of the write queue got changed, we need to do various
1087 * tweaks to fix counters
1089 static void tcp_adjust_pcount(struct sock
*sk
, const struct sk_buff
*skb
, int decr
)
1091 struct tcp_sock
*tp
= tcp_sk(sk
);
1093 tp
->packets_out
-= decr
;
1095 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1096 tp
->sacked_out
-= decr
;
1097 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1098 tp
->retrans_out
-= decr
;
1099 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
1100 tp
->lost_out
-= decr
;
1102 /* Reno case is special. Sigh... */
1103 if (tcp_is_reno(tp
) && decr
> 0)
1104 tp
->sacked_out
-= min_t(u32
, tp
->sacked_out
, decr
);
1106 tcp_adjust_fackets_out(sk
, skb
, decr
);
1108 if (tp
->lost_skb_hint
&&
1109 before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
) &&
1110 (tcp_is_fack(tp
) || (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)))
1111 tp
->lost_cnt_hint
-= decr
;
1113 tcp_verify_left_out(tp
);
1116 static void tcp_fragment_tstamp(struct sk_buff
*skb
, struct sk_buff
*skb2
)
1118 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
1120 if (unlikely(shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
) &&
1121 !before(shinfo
->tskey
, TCP_SKB_CB(skb2
)->seq
)) {
1122 struct skb_shared_info
*shinfo2
= skb_shinfo(skb2
);
1123 u8 tsflags
= shinfo
->tx_flags
& SKBTX_ANY_TSTAMP
;
1125 shinfo
->tx_flags
&= ~tsflags
;
1126 shinfo2
->tx_flags
|= tsflags
;
1127 swap(shinfo
->tskey
, shinfo2
->tskey
);
1131 /* Function to create two new TCP segments. Shrinks the given segment
1132 * to the specified size and appends a new segment with the rest of the
1133 * packet to the list. This won't be called frequently, I hope.
1134 * Remember, these are still headerless SKBs at this point.
1136 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
1137 unsigned int mss_now
, gfp_t gfp
)
1139 struct tcp_sock
*tp
= tcp_sk(sk
);
1140 struct sk_buff
*buff
;
1141 int nsize
, old_factor
;
1145 if (WARN_ON(len
> skb
->len
))
1148 nsize
= skb_headlen(skb
) - len
;
1152 if (skb_unclone(skb
, gfp
))
1155 /* Get a new skb... force flag on. */
1156 buff
= sk_stream_alloc_skb(sk
, nsize
, gfp
);
1158 return -ENOMEM
; /* We'll just try again later. */
1160 sk
->sk_wmem_queued
+= buff
->truesize
;
1161 sk_mem_charge(sk
, buff
->truesize
);
1162 nlen
= skb
->len
- len
- nsize
;
1163 buff
->truesize
+= nlen
;
1164 skb
->truesize
-= nlen
;
1166 /* Correct the sequence numbers. */
1167 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1168 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1169 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1171 /* PSH and FIN should only be set in the second packet. */
1172 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1173 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1174 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1175 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
1177 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
1178 /* Copy and checksum data tail into the new buffer. */
1179 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
1180 skb_put(buff
, nsize
),
1185 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
1187 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1188 skb_split(skb
, buff
, len
);
1191 buff
->ip_summed
= skb
->ip_summed
;
1193 buff
->tstamp
= skb
->tstamp
;
1194 tcp_fragment_tstamp(skb
, buff
);
1196 old_factor
= tcp_skb_pcount(skb
);
1198 /* Fix up tso_factor for both original and new SKB. */
1199 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1200 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1202 /* If this packet has been sent out already, we must
1203 * adjust the various packet counters.
1205 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
1206 int diff
= old_factor
- tcp_skb_pcount(skb
) -
1207 tcp_skb_pcount(buff
);
1210 tcp_adjust_pcount(sk
, skb
, diff
);
1213 /* Link BUFF into the send queue. */
1214 __skb_header_release(buff
);
1215 tcp_insert_write_queue_after(skb
, buff
, sk
);
1220 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1221 * eventually). The difference is that pulled data not copied, but
1222 * immediately discarded.
1224 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
1226 struct skb_shared_info
*shinfo
;
1229 eat
= min_t(int, len
, skb_headlen(skb
));
1231 __skb_pull(skb
, eat
);
1238 shinfo
= skb_shinfo(skb
);
1239 for (i
= 0; i
< shinfo
->nr_frags
; i
++) {
1240 int size
= skb_frag_size(&shinfo
->frags
[i
]);
1243 skb_frag_unref(skb
, i
);
1246 shinfo
->frags
[k
] = shinfo
->frags
[i
];
1248 shinfo
->frags
[k
].page_offset
+= eat
;
1249 skb_frag_size_sub(&shinfo
->frags
[k
], eat
);
1255 shinfo
->nr_frags
= k
;
1257 skb_reset_tail_pointer(skb
);
1258 skb
->data_len
-= len
;
1259 skb
->len
= skb
->data_len
;
1262 /* Remove acked data from a packet in the transmit queue. */
1263 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
1265 if (skb_unclone(skb
, GFP_ATOMIC
))
1268 __pskb_trim_head(skb
, len
);
1270 TCP_SKB_CB(skb
)->seq
+= len
;
1271 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1273 skb
->truesize
-= len
;
1274 sk
->sk_wmem_queued
-= len
;
1275 sk_mem_uncharge(sk
, len
);
1276 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
1278 /* Any change of skb->len requires recalculation of tso factor. */
1279 if (tcp_skb_pcount(skb
) > 1)
1280 tcp_set_skb_tso_segs(sk
, skb
, tcp_skb_mss(skb
));
1285 /* Calculate MSS not accounting any TCP options. */
1286 static inline int __tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1288 const struct tcp_sock
*tp
= tcp_sk(sk
);
1289 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1292 /* Calculate base mss without TCP options:
1293 It is MMS_S - sizeof(tcphdr) of rfc1122
1295 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
1297 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1298 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1299 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1301 if (dst
&& dst_allfrag(dst
))
1302 mss_now
-= icsk
->icsk_af_ops
->net_frag_header_len
;
1305 /* Clamp it (mss_clamp does not include tcp options) */
1306 if (mss_now
> tp
->rx_opt
.mss_clamp
)
1307 mss_now
= tp
->rx_opt
.mss_clamp
;
1309 /* Now subtract optional transport overhead */
1310 mss_now
-= icsk
->icsk_ext_hdr_len
;
1312 /* Then reserve room for full set of TCP options and 8 bytes of data */
1318 /* Calculate MSS. Not accounting for SACKs here. */
1319 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
1321 /* Subtract TCP options size, not including SACKs */
1322 return __tcp_mtu_to_mss(sk
, pmtu
) -
1323 (tcp_sk(sk
)->tcp_header_len
- sizeof(struct tcphdr
));
1326 /* Inverse of above */
1327 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
1329 const struct tcp_sock
*tp
= tcp_sk(sk
);
1330 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1334 tp
->tcp_header_len
+
1335 icsk
->icsk_ext_hdr_len
+
1336 icsk
->icsk_af_ops
->net_header_len
;
1338 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1339 if (icsk
->icsk_af_ops
->net_frag_header_len
) {
1340 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1342 if (dst
&& dst_allfrag(dst
))
1343 mtu
+= icsk
->icsk_af_ops
->net_frag_header_len
;
1348 /* MTU probing init per socket */
1349 void tcp_mtup_init(struct sock
*sk
)
1351 struct tcp_sock
*tp
= tcp_sk(sk
);
1352 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1354 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
1355 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
1356 icsk
->icsk_af_ops
->net_header_len
;
1357 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
1358 icsk
->icsk_mtup
.probe_size
= 0;
1360 EXPORT_SYMBOL(tcp_mtup_init
);
1362 /* This function synchronize snd mss to current pmtu/exthdr set.
1364 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1365 for TCP options, but includes only bare TCP header.
1367 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1368 It is minimum of user_mss and mss received with SYN.
1369 It also does not include TCP options.
1371 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1373 tp->mss_cache is current effective sending mss, including
1374 all tcp options except for SACKs. It is evaluated,
1375 taking into account current pmtu, but never exceeds
1376 tp->rx_opt.mss_clamp.
1378 NOTE1. rfc1122 clearly states that advertised MSS
1379 DOES NOT include either tcp or ip options.
1381 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1382 are READ ONLY outside this function. --ANK (980731)
1384 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1386 struct tcp_sock
*tp
= tcp_sk(sk
);
1387 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1390 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1391 icsk
->icsk_mtup
.search_high
= pmtu
;
1393 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1394 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1396 /* And store cached results */
1397 icsk
->icsk_pmtu_cookie
= pmtu
;
1398 if (icsk
->icsk_mtup
.enabled
)
1399 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1400 tp
->mss_cache
= mss_now
;
1404 EXPORT_SYMBOL(tcp_sync_mss
);
1406 /* Compute the current effective MSS, taking SACKs and IP options,
1407 * and even PMTU discovery events into account.
1409 unsigned int tcp_current_mss(struct sock
*sk
)
1411 const struct tcp_sock
*tp
= tcp_sk(sk
);
1412 const struct dst_entry
*dst
= __sk_dst_get(sk
);
1414 unsigned int header_len
;
1415 struct tcp_out_options opts
;
1416 struct tcp_md5sig_key
*md5
;
1418 mss_now
= tp
->mss_cache
;
1421 u32 mtu
= dst_mtu(dst
);
1422 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1423 mss_now
= tcp_sync_mss(sk
, mtu
);
1426 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1427 sizeof(struct tcphdr
);
1428 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1429 * some common options. If this is an odd packet (because we have SACK
1430 * blocks etc) then our calculated header_len will be different, and
1431 * we have to adjust mss_now correspondingly */
1432 if (header_len
!= tp
->tcp_header_len
) {
1433 int delta
= (int) header_len
- tp
->tcp_header_len
;
1440 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1441 * As additional protections, we do not touch cwnd in retransmission phases,
1442 * and if application hit its sndbuf limit recently.
1444 static void tcp_cwnd_application_limited(struct sock
*sk
)
1446 struct tcp_sock
*tp
= tcp_sk(sk
);
1448 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Open
&&
1449 sk
->sk_socket
&& !test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
1450 /* Limited by application or receiver window. */
1451 u32 init_win
= tcp_init_cwnd(tp
, __sk_dst_get(sk
));
1452 u32 win_used
= max(tp
->snd_cwnd_used
, init_win
);
1453 if (win_used
< tp
->snd_cwnd
) {
1454 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1455 tp
->snd_cwnd
= (tp
->snd_cwnd
+ win_used
) >> 1;
1457 tp
->snd_cwnd_used
= 0;
1459 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1462 static void tcp_cwnd_validate(struct sock
*sk
, bool is_cwnd_limited
)
1464 struct tcp_sock
*tp
= tcp_sk(sk
);
1466 /* Track the maximum number of outstanding packets in each
1467 * window, and remember whether we were cwnd-limited then.
1469 if (!before(tp
->snd_una
, tp
->max_packets_seq
) ||
1470 tp
->packets_out
> tp
->max_packets_out
) {
1471 tp
->max_packets_out
= tp
->packets_out
;
1472 tp
->max_packets_seq
= tp
->snd_nxt
;
1473 tp
->is_cwnd_limited
= is_cwnd_limited
;
1476 if (tcp_is_cwnd_limited(sk
)) {
1477 /* Network is feed fully. */
1478 tp
->snd_cwnd_used
= 0;
1479 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1481 /* Network starves. */
1482 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1483 tp
->snd_cwnd_used
= tp
->packets_out
;
1485 if (sysctl_tcp_slow_start_after_idle
&&
1486 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1487 tcp_cwnd_application_limited(sk
);
1491 /* Minshall's variant of the Nagle send check. */
1492 static bool tcp_minshall_check(const struct tcp_sock
*tp
)
1494 return after(tp
->snd_sml
, tp
->snd_una
) &&
1495 !after(tp
->snd_sml
, tp
->snd_nxt
);
1498 /* Update snd_sml if this skb is under mss
1499 * Note that a TSO packet might end with a sub-mss segment
1500 * The test is really :
1501 * if ((skb->len % mss) != 0)
1502 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1503 * But we can avoid doing the divide again given we already have
1504 * skb_pcount = skb->len / mss_now
1506 static void tcp_minshall_update(struct tcp_sock
*tp
, unsigned int mss_now
,
1507 const struct sk_buff
*skb
)
1509 if (skb
->len
< tcp_skb_pcount(skb
) * mss_now
)
1510 tp
->snd_sml
= TCP_SKB_CB(skb
)->end_seq
;
1513 /* Return false, if packet can be sent now without violation Nagle's rules:
1514 * 1. It is full sized. (provided by caller in %partial bool)
1515 * 2. Or it contains FIN. (already checked by caller)
1516 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1517 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1518 * With Minshall's modification: all sent small packets are ACKed.
1520 static bool tcp_nagle_check(bool partial
, const struct tcp_sock
*tp
,
1524 ((nonagle
& TCP_NAGLE_CORK
) ||
1525 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
)));
1528 /* Return how many segs we'd like on a TSO packet,
1529 * to send one TSO packet per ms
1531 static u32
tcp_tso_autosize(const struct sock
*sk
, unsigned int mss_now
)
1535 bytes
= min(sk
->sk_pacing_rate
>> 10,
1536 sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
);
1538 /* Goal is to send at least one packet per ms,
1539 * not one big TSO packet every 100 ms.
1540 * This preserves ACK clocking and is consistent
1541 * with tcp_tso_should_defer() heuristic.
1543 segs
= max_t(u32
, bytes
/ mss_now
, sysctl_tcp_min_tso_segs
);
1545 return min_t(u32
, segs
, sk
->sk_gso_max_segs
);
1548 /* Returns the portion of skb which can be sent right away */
1549 static unsigned int tcp_mss_split_point(const struct sock
*sk
,
1550 const struct sk_buff
*skb
,
1551 unsigned int mss_now
,
1552 unsigned int max_segs
,
1555 const struct tcp_sock
*tp
= tcp_sk(sk
);
1556 u32 partial
, needed
, window
, max_len
;
1558 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1559 max_len
= mss_now
* max_segs
;
1561 if (likely(max_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1564 needed
= min(skb
->len
, window
);
1566 if (max_len
<= needed
)
1569 partial
= needed
% mss_now
;
1570 /* If last segment is not a full MSS, check if Nagle rules allow us
1571 * to include this last segment in this skb.
1572 * Otherwise, we'll split the skb at last MSS boundary
1574 if (tcp_nagle_check(partial
!= 0, tp
, nonagle
))
1575 return needed
- partial
;
1580 /* Can at least one segment of SKB be sent right now, according to the
1581 * congestion window rules? If so, return how many segments are allowed.
1583 static inline unsigned int tcp_cwnd_test(const struct tcp_sock
*tp
,
1584 const struct sk_buff
*skb
)
1586 u32 in_flight
, cwnd
, halfcwnd
;
1588 /* Don't be strict about the congestion window for the final FIN. */
1589 if ((TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) &&
1590 tcp_skb_pcount(skb
) == 1)
1593 in_flight
= tcp_packets_in_flight(tp
);
1594 cwnd
= tp
->snd_cwnd
;
1595 if (in_flight
>= cwnd
)
1598 /* For better scheduling, ensure we have at least
1599 * 2 GSO packets in flight.
1601 halfcwnd
= max(cwnd
>> 1, 1U);
1602 return min(halfcwnd
, cwnd
- in_flight
);
1605 /* Initialize TSO state of a skb.
1606 * This must be invoked the first time we consider transmitting
1607 * SKB onto the wire.
1609 static int tcp_init_tso_segs(const struct sock
*sk
, struct sk_buff
*skb
,
1610 unsigned int mss_now
)
1612 int tso_segs
= tcp_skb_pcount(skb
);
1614 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1615 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1616 tso_segs
= tcp_skb_pcount(skb
);
1622 /* Return true if the Nagle test allows this packet to be
1625 static inline bool tcp_nagle_test(const struct tcp_sock
*tp
, const struct sk_buff
*skb
,
1626 unsigned int cur_mss
, int nonagle
)
1628 /* Nagle rule does not apply to frames, which sit in the middle of the
1629 * write_queue (they have no chances to get new data).
1631 * This is implemented in the callers, where they modify the 'nonagle'
1632 * argument based upon the location of SKB in the send queue.
1634 if (nonagle
& TCP_NAGLE_PUSH
)
1637 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1638 if (tcp_urg_mode(tp
) || (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
))
1641 if (!tcp_nagle_check(skb
->len
< cur_mss
, tp
, nonagle
))
1647 /* Does at least the first segment of SKB fit into the send window? */
1648 static bool tcp_snd_wnd_test(const struct tcp_sock
*tp
,
1649 const struct sk_buff
*skb
,
1650 unsigned int cur_mss
)
1652 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1654 if (skb
->len
> cur_mss
)
1655 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1657 return !after(end_seq
, tcp_wnd_end(tp
));
1660 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now. If so, it returns the number of
1662 * packets allowed by the congestion window.
1664 static unsigned int tcp_snd_test(const struct sock
*sk
, struct sk_buff
*skb
,
1665 unsigned int cur_mss
, int nonagle
)
1667 const struct tcp_sock
*tp
= tcp_sk(sk
);
1668 unsigned int cwnd_quota
;
1670 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1672 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1675 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1676 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1682 /* Test if sending is allowed right now. */
1683 bool tcp_may_send_now(struct sock
*sk
)
1685 const struct tcp_sock
*tp
= tcp_sk(sk
);
1686 struct sk_buff
*skb
= tcp_send_head(sk
);
1689 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
),
1690 (tcp_skb_is_last(sk
, skb
) ?
1691 tp
->nonagle
: TCP_NAGLE_PUSH
));
1694 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list. It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation. In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1701 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1702 unsigned int mss_now
, gfp_t gfp
)
1704 struct sk_buff
*buff
;
1705 int nlen
= skb
->len
- len
;
1708 /* All of a TSO frame must be composed of paged data. */
1709 if (skb
->len
!= skb
->data_len
)
1710 return tcp_fragment(sk
, skb
, len
, mss_now
, gfp
);
1712 buff
= sk_stream_alloc_skb(sk
, 0, gfp
);
1713 if (unlikely(buff
== NULL
))
1716 sk
->sk_wmem_queued
+= buff
->truesize
;
1717 sk_mem_charge(sk
, buff
->truesize
);
1718 buff
->truesize
+= nlen
;
1719 skb
->truesize
-= nlen
;
1721 /* Correct the sequence numbers. */
1722 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1723 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1724 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1726 /* PSH and FIN should only be set in the second packet. */
1727 flags
= TCP_SKB_CB(skb
)->tcp_flags
;
1728 TCP_SKB_CB(skb
)->tcp_flags
= flags
& ~(TCPHDR_FIN
| TCPHDR_PSH
);
1729 TCP_SKB_CB(buff
)->tcp_flags
= flags
;
1731 /* This packet was never sent out yet, so no SACK bits. */
1732 TCP_SKB_CB(buff
)->sacked
= 0;
1734 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1735 skb_split(skb
, buff
, len
);
1736 tcp_fragment_tstamp(skb
, buff
);
1738 /* Fix up tso_factor for both original and new SKB. */
1739 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1740 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1742 /* Link BUFF into the send queue. */
1743 __skb_header_release(buff
);
1744 tcp_insert_write_queue_after(skb
, buff
, sk
);
1749 /* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1752 * This algorithm is from John Heffner.
1754 static bool tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
,
1755 bool *is_cwnd_limited
, u32 max_segs
)
1757 struct tcp_sock
*tp
= tcp_sk(sk
);
1758 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1759 u32 send_win
, cong_win
, limit
, in_flight
;
1762 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1765 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1768 /* Defer for less than two clock ticks. */
1769 if (tp
->tso_deferred
&&
1770 (((u32
)jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1773 in_flight
= tcp_packets_in_flight(tp
);
1775 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1777 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1779 /* From in_flight test above, we know that cwnd > in_flight. */
1780 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1782 limit
= min(send_win
, cong_win
);
1784 /* If a full-sized TSO skb can be sent, do it. */
1785 if (limit
>= max_segs
* tp
->mss_cache
)
1788 /* Middle in queue won't get any more data, full sendable already? */
1789 if ((skb
!= tcp_write_queue_tail(sk
)) && (limit
>= skb
->len
))
1792 win_divisor
= ACCESS_ONCE(sysctl_tcp_tso_win_divisor
);
1794 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1796 /* If at least some fraction of a window is available,
1799 chunk
/= win_divisor
;
1803 /* Different approach, try not to defer past a single
1804 * ACK. Receiver should ACK every other full sized
1805 * frame, so if we have space for more than 3 frames
1808 if (limit
> tcp_max_tso_deferred_mss(tp
) * tp
->mss_cache
)
1812 /* Ok, it looks like it is advisable to defer.
1813 * Do not rearm the timer if already set to not break TCP ACK clocking.
1815 if (!tp
->tso_deferred
)
1816 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1818 if (cong_win
< send_win
&& cong_win
< skb
->len
)
1819 *is_cwnd_limited
= true;
1824 tp
->tso_deferred
= 0;
1828 /* Create a new MTU probe if we are ready.
1829 * MTU probe is regularly attempting to increase the path MTU by
1830 * deliberately sending larger packets. This discovers routing
1831 * changes resulting in larger path MTUs.
1833 * Returns 0 if we should wait to probe (no cwnd available),
1834 * 1 if a probe was sent,
1837 static int tcp_mtu_probe(struct sock
*sk
)
1839 struct tcp_sock
*tp
= tcp_sk(sk
);
1840 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1841 struct sk_buff
*skb
, *nskb
, *next
;
1848 /* Not currently probing/verifying,
1850 * have enough cwnd, and
1851 * not SACKing (the variable headers throw things off) */
1852 if (!icsk
->icsk_mtup
.enabled
||
1853 icsk
->icsk_mtup
.probe_size
||
1854 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1855 tp
->snd_cwnd
< 11 ||
1856 tp
->rx_opt
.num_sacks
|| tp
->rx_opt
.dsack
)
1859 /* Very simple search strategy: just double the MSS. */
1860 mss_now
= tcp_current_mss(sk
);
1861 probe_size
= 2 * tp
->mss_cache
;
1862 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1863 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1864 /* TODO: set timer for probe_converge_event */
1868 /* Have enough data in the send queue to probe? */
1869 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1872 if (tp
->snd_wnd
< size_needed
)
1874 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1877 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1878 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1879 if (!tcp_packets_in_flight(tp
))
1885 /* We're allowed to probe. Build it now. */
1886 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1888 sk
->sk_wmem_queued
+= nskb
->truesize
;
1889 sk_mem_charge(sk
, nskb
->truesize
);
1891 skb
= tcp_send_head(sk
);
1893 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1894 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1895 TCP_SKB_CB(nskb
)->tcp_flags
= TCPHDR_ACK
;
1896 TCP_SKB_CB(nskb
)->sacked
= 0;
1898 nskb
->ip_summed
= skb
->ip_summed
;
1900 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1903 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1904 copy
= min_t(int, skb
->len
, probe_size
- len
);
1905 if (nskb
->ip_summed
)
1906 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1908 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1909 skb_put(nskb
, copy
),
1912 if (skb
->len
<= copy
) {
1913 /* We've eaten all the data from this skb.
1915 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1916 tcp_unlink_write_queue(skb
, sk
);
1917 sk_wmem_free_skb(sk
, skb
);
1919 TCP_SKB_CB(nskb
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
&
1920 ~(TCPHDR_FIN
|TCPHDR_PSH
);
1921 if (!skb_shinfo(skb
)->nr_frags
) {
1922 skb_pull(skb
, copy
);
1923 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1924 skb
->csum
= csum_partial(skb
->data
,
1927 __pskb_trim_head(skb
, copy
);
1928 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1930 TCP_SKB_CB(skb
)->seq
+= copy
;
1935 if (len
>= probe_size
)
1938 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1940 /* We're ready to send. If this fails, the probe will
1941 * be resegmented into mss-sized pieces by tcp_write_xmit().
1943 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1944 /* Decrement cwnd here because we are sending
1945 * effectively two packets. */
1947 tcp_event_new_data_sent(sk
, nskb
);
1949 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1950 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1951 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1959 /* This routine writes packets to the network. It advances the
1960 * send_head. This happens as incoming acks open up the remote
1963 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1964 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1965 * account rare use of URG, this is not a big flaw.
1967 * Send at most one packet when push_one > 0. Temporarily ignore
1968 * cwnd limit to force at most one packet out when push_one == 2.
1970 * Returns true, if no segments are in flight and we have queued segments,
1971 * but cannot send anything now because of SWS or another problem.
1973 static bool tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
1974 int push_one
, gfp_t gfp
)
1976 struct tcp_sock
*tp
= tcp_sk(sk
);
1977 struct sk_buff
*skb
;
1978 unsigned int tso_segs
, sent_pkts
;
1981 bool is_cwnd_limited
= false;
1987 /* Do MTU probing. */
1988 result
= tcp_mtu_probe(sk
);
1991 } else if (result
> 0) {
1996 max_segs
= tcp_tso_autosize(sk
, mss_now
);
1997 while ((skb
= tcp_send_head(sk
))) {
2000 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
2003 if (unlikely(tp
->repair
) && tp
->repair_queue
== TCP_SEND_QUEUE
) {
2004 /* "skb_mstamp" is used as a start point for the retransmit timer */
2005 skb_mstamp_get(&skb
->skb_mstamp
);
2006 goto repair
; /* Skip network transmission */
2009 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
2011 is_cwnd_limited
= true;
2013 /* Force out a loss probe pkt. */
2019 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
2022 if (tso_segs
== 1 || !max_segs
) {
2023 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
2024 (tcp_skb_is_last(sk
, skb
) ?
2025 nonagle
: TCP_NAGLE_PUSH
))))
2029 tcp_tso_should_defer(sk
, skb
, &is_cwnd_limited
,
2035 if (tso_segs
> 1 && max_segs
&& !tcp_urg_mode(tp
))
2036 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
2042 if (skb
->len
> limit
&&
2043 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
, gfp
)))
2046 /* TCP Small Queues :
2047 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2049 * - better RTT estimation and ACK scheduling
2052 * Alas, some drivers / subsystems require a fair amount
2053 * of queued bytes to ensure line rate.
2054 * One example is wifi aggregation (802.11 AMPDU)
2056 limit
= max(2 * skb
->truesize
, sk
->sk_pacing_rate
>> 10);
2057 limit
= min_t(u32
, limit
, sysctl_tcp_limit_output_bytes
);
2059 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
) {
2060 set_bit(TSQ_THROTTLED
, &tp
->tsq_flags
);
2061 /* It is possible TX completion already happened
2062 * before we set TSQ_THROTTLED, so we must
2063 * test again the condition.
2065 smp_mb__after_atomic();
2066 if (atomic_read(&sk
->sk_wmem_alloc
) > limit
)
2070 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
2074 /* Advance the send_head. This one is sent out.
2075 * This call will increment packets_out.
2077 tcp_event_new_data_sent(sk
, skb
);
2079 tcp_minshall_update(tp
, mss_now
, skb
);
2080 sent_pkts
+= tcp_skb_pcount(skb
);
2086 if (likely(sent_pkts
)) {
2087 if (tcp_in_cwnd_reduction(sk
))
2088 tp
->prr_out
+= sent_pkts
;
2090 /* Send one loss probe per tail loss episode. */
2092 tcp_schedule_loss_probe(sk
);
2093 tcp_cwnd_validate(sk
, is_cwnd_limited
);
2096 return (push_one
== 2) || (!tp
->packets_out
&& tcp_send_head(sk
));
2099 bool tcp_schedule_loss_probe(struct sock
*sk
)
2101 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2102 struct tcp_sock
*tp
= tcp_sk(sk
);
2103 u32 timeout
, tlp_time_stamp
, rto_time_stamp
;
2104 u32 rtt
= usecs_to_jiffies(tp
->srtt_us
>> 3);
2106 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_EARLY_RETRANS
))
2108 /* No consecutive loss probes. */
2109 if (WARN_ON(icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
)) {
2113 /* Don't do any loss probe on a Fast Open connection before 3WHS
2116 if (sk
->sk_state
== TCP_SYN_RECV
)
2119 /* TLP is only scheduled when next timer event is RTO. */
2120 if (icsk
->icsk_pending
!= ICSK_TIME_RETRANS
)
2123 /* Schedule a loss probe in 2*RTT for SACK capable connections
2124 * in Open state, that are either limited by cwnd or application.
2126 if (sysctl_tcp_early_retrans
< 3 || !tp
->srtt_us
|| !tp
->packets_out
||
2127 !tcp_is_sack(tp
) || inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
)
2130 if ((tp
->snd_cwnd
> tcp_packets_in_flight(tp
)) &&
2134 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2135 * for delayed ack when there's one outstanding packet.
2138 if (tp
->packets_out
== 1)
2139 timeout
= max_t(u32
, timeout
,
2140 (rtt
+ (rtt
>> 1) + TCP_DELACK_MAX
));
2141 timeout
= max_t(u32
, timeout
, msecs_to_jiffies(10));
2143 /* If RTO is shorter, just schedule TLP in its place. */
2144 tlp_time_stamp
= tcp_time_stamp
+ timeout
;
2145 rto_time_stamp
= (u32
)inet_csk(sk
)->icsk_timeout
;
2146 if ((s32
)(tlp_time_stamp
- rto_time_stamp
) > 0) {
2147 s32 delta
= rto_time_stamp
- tcp_time_stamp
;
2152 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_LOSS_PROBE
, timeout
,
2157 /* Thanks to skb fast clones, we can detect if a prior transmit of
2158 * a packet is still in a qdisc or driver queue.
2159 * In this case, there is very little point doing a retransmit !
2160 * Note: This is called from BH context only.
2162 static bool skb_still_in_host_queue(const struct sock
*sk
,
2163 const struct sk_buff
*skb
)
2165 if (unlikely(skb_fclone_busy(sk
, skb
))) {
2166 NET_INC_STATS_BH(sock_net(sk
),
2167 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES
);
2173 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2174 * retransmit the last segment.
2176 void tcp_send_loss_probe(struct sock
*sk
)
2178 struct tcp_sock
*tp
= tcp_sk(sk
);
2179 struct sk_buff
*skb
;
2181 int mss
= tcp_current_mss(sk
);
2184 if (tcp_send_head(sk
) != NULL
) {
2185 err
= tcp_write_xmit(sk
, mss
, TCP_NAGLE_OFF
, 2, GFP_ATOMIC
);
2189 /* At most one outstanding TLP retransmission. */
2190 if (tp
->tlp_high_seq
)
2193 /* Retransmit last segment. */
2194 skb
= tcp_write_queue_tail(sk
);
2198 if (skb_still_in_host_queue(sk
, skb
))
2201 pcount
= tcp_skb_pcount(skb
);
2202 if (WARN_ON(!pcount
))
2205 if ((pcount
> 1) && (skb
->len
> (pcount
- 1) * mss
)) {
2206 if (unlikely(tcp_fragment(sk
, skb
, (pcount
- 1) * mss
, mss
,
2209 skb
= tcp_write_queue_tail(sk
);
2212 if (WARN_ON(!skb
|| !tcp_skb_pcount(skb
)))
2215 err
= __tcp_retransmit_skb(sk
, skb
);
2217 /* Record snd_nxt for loss detection. */
2219 tp
->tlp_high_seq
= tp
->snd_nxt
;
2222 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2223 inet_csk(sk
)->icsk_rto
,
2227 NET_INC_STATS_BH(sock_net(sk
),
2228 LINUX_MIB_TCPLOSSPROBES
);
2231 /* Push out any pending frames which were held back due to
2232 * TCP_CORK or attempt at coalescing tiny packets.
2233 * The socket must be locked by the caller.
2235 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
2238 /* If we are closed, the bytes will have to remain here.
2239 * In time closedown will finish, we empty the write queue and
2240 * all will be happy.
2242 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
2245 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0,
2246 sk_gfp_atomic(sk
, GFP_ATOMIC
)))
2247 tcp_check_probe_timer(sk
);
2250 /* Send _single_ skb sitting at the send head. This function requires
2251 * true push pending frames to setup probe timer etc.
2253 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
2255 struct sk_buff
*skb
= tcp_send_head(sk
);
2257 BUG_ON(!skb
|| skb
->len
< mss_now
);
2259 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
2262 /* This function returns the amount that we can raise the
2263 * usable window based on the following constraints
2265 * 1. The window can never be shrunk once it is offered (RFC 793)
2266 * 2. We limit memory per socket
2269 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2270 * RECV.NEXT + RCV.WIN fixed until:
2271 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2273 * i.e. don't raise the right edge of the window until you can raise
2274 * it at least MSS bytes.
2276 * Unfortunately, the recommended algorithm breaks header prediction,
2277 * since header prediction assumes th->window stays fixed.
2279 * Strictly speaking, keeping th->window fixed violates the receiver
2280 * side SWS prevention criteria. The problem is that under this rule
2281 * a stream of single byte packets will cause the right side of the
2282 * window to always advance by a single byte.
2284 * Of course, if the sender implements sender side SWS prevention
2285 * then this will not be a problem.
2287 * BSD seems to make the following compromise:
2289 * If the free space is less than the 1/4 of the maximum
2290 * space available and the free space is less than 1/2 mss,
2291 * then set the window to 0.
2292 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2293 * Otherwise, just prevent the window from shrinking
2294 * and from being larger than the largest representable value.
2296 * This prevents incremental opening of the window in the regime
2297 * where TCP is limited by the speed of the reader side taking
2298 * data out of the TCP receive queue. It does nothing about
2299 * those cases where the window is constrained on the sender side
2300 * because the pipeline is full.
2302 * BSD also seems to "accidentally" limit itself to windows that are a
2303 * multiple of MSS, at least until the free space gets quite small.
2304 * This would appear to be a side effect of the mbuf implementation.
2305 * Combining these two algorithms results in the observed behavior
2306 * of having a fixed window size at almost all times.
2308 * Below we obtain similar behavior by forcing the offered window to
2309 * a multiple of the mss when it is feasible to do so.
2311 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2312 * Regular options like TIMESTAMP are taken into account.
2314 u32
__tcp_select_window(struct sock
*sk
)
2316 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2317 struct tcp_sock
*tp
= tcp_sk(sk
);
2318 /* MSS for the peer's data. Previous versions used mss_clamp
2319 * here. I don't know if the value based on our guesses
2320 * of peer's MSS is better for the performance. It's more correct
2321 * but may be worse for the performance because of rcv_mss
2322 * fluctuations. --SAW 1998/11/1
2324 int mss
= icsk
->icsk_ack
.rcv_mss
;
2325 int free_space
= tcp_space(sk
);
2326 int allowed_space
= tcp_full_space(sk
);
2327 int full_space
= min_t(int, tp
->window_clamp
, allowed_space
);
2330 if (mss
> full_space
)
2333 if (free_space
< (full_space
>> 1)) {
2334 icsk
->icsk_ack
.quick
= 0;
2336 if (sk_under_memory_pressure(sk
))
2337 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
2340 /* free_space might become our new window, make sure we don't
2341 * increase it due to wscale.
2343 free_space
= round_down(free_space
, 1 << tp
->rx_opt
.rcv_wscale
);
2345 /* if free space is less than mss estimate, or is below 1/16th
2346 * of the maximum allowed, try to move to zero-window, else
2347 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2348 * new incoming data is dropped due to memory limits.
2349 * With large window, mss test triggers way too late in order
2350 * to announce zero window in time before rmem limit kicks in.
2352 if (free_space
< (allowed_space
>> 4) || free_space
< mss
)
2356 if (free_space
> tp
->rcv_ssthresh
)
2357 free_space
= tp
->rcv_ssthresh
;
2359 /* Don't do rounding if we are using window scaling, since the
2360 * scaled window will not line up with the MSS boundary anyway.
2362 window
= tp
->rcv_wnd
;
2363 if (tp
->rx_opt
.rcv_wscale
) {
2364 window
= free_space
;
2366 /* Advertise enough space so that it won't get scaled away.
2367 * Import case: prevent zero window announcement if
2368 * 1<<rcv_wscale > mss.
2370 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
2371 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
2372 << tp
->rx_opt
.rcv_wscale
);
2374 /* Get the largest window that is a nice multiple of mss.
2375 * Window clamp already applied above.
2376 * If our current window offering is within 1 mss of the
2377 * free space we just keep it. This prevents the divide
2378 * and multiply from happening most of the time.
2379 * We also don't do any window rounding when the free space
2382 if (window
<= free_space
- mss
|| window
> free_space
)
2383 window
= (free_space
/ mss
) * mss
;
2384 else if (mss
== full_space
&&
2385 free_space
> window
+ (full_space
>> 1))
2386 window
= free_space
;
2392 /* Collapses two adjacent SKB's during retransmission. */
2393 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
2395 struct tcp_sock
*tp
= tcp_sk(sk
);
2396 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
2397 int skb_size
, next_skb_size
;
2399 skb_size
= skb
->len
;
2400 next_skb_size
= next_skb
->len
;
2402 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
2404 tcp_highest_sack_combine(sk
, next_skb
, skb
);
2406 tcp_unlink_write_queue(next_skb
, sk
);
2408 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
2411 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
2412 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2414 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2415 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
2417 /* Update sequence range on original skb. */
2418 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
2420 /* Merge over control information. This moves PSH/FIN etc. over */
2421 TCP_SKB_CB(skb
)->tcp_flags
|= TCP_SKB_CB(next_skb
)->tcp_flags
;
2423 /* All done, get rid of second SKB and account for it so
2424 * packet counting does not break.
2426 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
2428 /* changed transmit queue under us so clear hints */
2429 tcp_clear_retrans_hints_partial(tp
);
2430 if (next_skb
== tp
->retransmit_skb_hint
)
2431 tp
->retransmit_skb_hint
= skb
;
2433 tcp_adjust_pcount(sk
, next_skb
, tcp_skb_pcount(next_skb
));
2435 sk_wmem_free_skb(sk
, next_skb
);
2438 /* Check if coalescing SKBs is legal. */
2439 static bool tcp_can_collapse(const struct sock
*sk
, const struct sk_buff
*skb
)
2441 if (tcp_skb_pcount(skb
) > 1)
2443 /* TODO: SACK collapsing could be used to remove this condition */
2444 if (skb_shinfo(skb
)->nr_frags
!= 0)
2446 if (skb_cloned(skb
))
2448 if (skb
== tcp_send_head(sk
))
2450 /* Some heurestics for collapsing over SACK'd could be invented */
2451 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
2457 /* Collapse packets in the retransmit queue to make to create
2458 * less packets on the wire. This is only done on retransmission.
2460 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
2463 struct tcp_sock
*tp
= tcp_sk(sk
);
2464 struct sk_buff
*skb
= to
, *tmp
;
2467 if (!sysctl_tcp_retrans_collapse
)
2469 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2472 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
2473 if (!tcp_can_collapse(sk
, skb
))
2485 /* Punt if not enough space exists in the first SKB for
2486 * the data in the second
2488 if (skb
->len
> skb_availroom(to
))
2491 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
2494 tcp_collapse_retrans(sk
, to
);
2498 /* This retransmits one SKB. Policy decisions and retransmit queue
2499 * state updates are done by the caller. Returns non-zero if an
2500 * error occurred which prevented the send.
2502 int __tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2504 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2506 unsigned int cur_mss
;
2509 /* Inconslusive MTU probe */
2510 if (icsk
->icsk_mtup
.probe_size
) {
2511 icsk
->icsk_mtup
.probe_size
= 0;
2514 /* Do not sent more than we queued. 1/4 is reserved for possible
2515 * copying overhead: fragmentation, tunneling, mangling etc.
2517 if (atomic_read(&sk
->sk_wmem_alloc
) >
2518 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
2521 if (skb_still_in_host_queue(sk
, skb
))
2524 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
2525 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
2527 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2531 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
2532 return -EHOSTUNREACH
; /* Routing failure or similar. */
2534 cur_mss
= tcp_current_mss(sk
);
2536 /* If receiver has shrunk his window, and skb is out of
2537 * new window, do not retransmit it. The exception is the
2538 * case, when window is shrunk to zero. In this case
2539 * our retransmit serves as a zero window probe.
2541 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
)) &&
2542 TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
2545 if (skb
->len
> cur_mss
) {
2546 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
, GFP_ATOMIC
))
2547 return -ENOMEM
; /* We'll try again later. */
2549 int oldpcount
= tcp_skb_pcount(skb
);
2551 if (unlikely(oldpcount
> 1)) {
2552 if (skb_unclone(skb
, GFP_ATOMIC
))
2554 tcp_init_tso_segs(sk
, skb
, cur_mss
);
2555 tcp_adjust_pcount(sk
, skb
, oldpcount
- tcp_skb_pcount(skb
));
2559 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
2561 /* Make a copy, if the first transmission SKB clone we made
2562 * is still in somebody's hands, else make a clone.
2565 /* make sure skb->data is aligned on arches that require it
2566 * and check if ack-trimming & collapsing extended the headroom
2567 * beyond what csum_start can cover.
2569 if (unlikely((NET_IP_ALIGN
&& ((unsigned long)skb
->data
& 3)) ||
2570 skb_headroom(skb
) >= 0xFFFF)) {
2571 struct sk_buff
*nskb
= __pskb_copy(skb
, MAX_TCP_HEADER
,
2573 err
= nskb
? tcp_transmit_skb(sk
, nskb
, 0, GFP_ATOMIC
) :
2576 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2580 TCP_SKB_CB(skb
)->sacked
|= TCPCB_EVER_RETRANS
;
2581 /* Update global TCP statistics. */
2582 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
2583 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)
2584 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
2585 tp
->total_retrans
++;
2590 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
2592 struct tcp_sock
*tp
= tcp_sk(sk
);
2593 int err
= __tcp_retransmit_skb(sk
, skb
);
2596 #if FASTRETRANS_DEBUG > 0
2597 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2598 net_dbg_ratelimited("retrans_out leaked\n");
2601 if (!tp
->retrans_out
)
2602 tp
->lost_retrans_low
= tp
->snd_nxt
;
2603 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
2604 tp
->retrans_out
+= tcp_skb_pcount(skb
);
2606 /* Save stamp of the first retransmit. */
2607 if (!tp
->retrans_stamp
)
2608 tp
->retrans_stamp
= tcp_skb_timestamp(skb
);
2610 /* snd_nxt is stored to detect loss of retransmitted segment,
2611 * see tcp_input.c tcp_sacktag_write_queue().
2613 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
2614 } else if (err
!= -EBUSY
) {
2615 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPRETRANSFAIL
);
2618 if (tp
->undo_retrans
< 0)
2619 tp
->undo_retrans
= 0;
2620 tp
->undo_retrans
+= tcp_skb_pcount(skb
);
2624 /* Check if we forward retransmits are possible in the current
2625 * window/congestion state.
2627 static bool tcp_can_forward_retransmit(struct sock
*sk
)
2629 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2630 const struct tcp_sock
*tp
= tcp_sk(sk
);
2632 /* Forward retransmissions are possible only during Recovery. */
2633 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2636 /* No forward retransmissions in Reno are possible. */
2637 if (tcp_is_reno(tp
))
2640 /* Yeah, we have to make difficult choice between forward transmission
2641 * and retransmission... Both ways have their merits...
2643 * For now we do not retransmit anything, while we have some new
2644 * segments to send. In the other cases, follow rule 3 for
2645 * NextSeg() specified in RFC3517.
2648 if (tcp_may_send_now(sk
))
2654 /* This gets called after a retransmit timeout, and the initially
2655 * retransmitted data is acknowledged. It tries to continue
2656 * resending the rest of the retransmit queue, until either
2657 * we've sent it all or the congestion window limit is reached.
2658 * If doing SACK, the first ACK which comes back for a timeout
2659 * based retransmit packet might feed us FACK information again.
2660 * If so, we use it to avoid unnecessarily retransmissions.
2662 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2664 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2665 struct tcp_sock
*tp
= tcp_sk(sk
);
2666 struct sk_buff
*skb
;
2667 struct sk_buff
*hole
= NULL
;
2670 int fwd_rexmitting
= 0;
2672 if (!tp
->packets_out
)
2676 tp
->retransmit_high
= tp
->snd_una
;
2678 if (tp
->retransmit_skb_hint
) {
2679 skb
= tp
->retransmit_skb_hint
;
2680 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2681 if (after(last_lost
, tp
->retransmit_high
))
2682 last_lost
= tp
->retransmit_high
;
2684 skb
= tcp_write_queue_head(sk
);
2685 last_lost
= tp
->snd_una
;
2688 tcp_for_write_queue_from(skb
, sk
) {
2689 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2691 if (skb
== tcp_send_head(sk
))
2693 /* we could do better than to assign each time */
2695 tp
->retransmit_skb_hint
= skb
;
2697 /* Assume this retransmit will generate
2698 * only one packet for congestion window
2699 * calculation purposes. This works because
2700 * tcp_retransmit_skb() will chop up the
2701 * packet to be MSS sized and all the
2702 * packet counting works out.
2704 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2707 if (fwd_rexmitting
) {
2709 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2711 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2713 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2714 tp
->retransmit_high
= last_lost
;
2715 if (!tcp_can_forward_retransmit(sk
))
2717 /* Backtrack if necessary to non-L'ed skb */
2725 } else if (!(sacked
& TCPCB_LOST
)) {
2726 if (hole
== NULL
&& !(sacked
& (TCPCB_SACKED_RETRANS
|TCPCB_SACKED_ACKED
)))
2731 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2732 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2733 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2735 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2738 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2741 if (tcp_retransmit_skb(sk
, skb
))
2744 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2746 if (tcp_in_cwnd_reduction(sk
))
2747 tp
->prr_out
+= tcp_skb_pcount(skb
);
2749 if (skb
== tcp_write_queue_head(sk
))
2750 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2751 inet_csk(sk
)->icsk_rto
,
2756 /* Send a fin. The caller locks the socket for us. This cannot be
2757 * allowed to fail queueing a FIN frame under any circumstances.
2759 void tcp_send_fin(struct sock
*sk
)
2761 struct tcp_sock
*tp
= tcp_sk(sk
);
2762 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2765 /* Optimization, tack on the FIN if we have a queue of
2766 * unsent frames. But be careful about outgoing SACKS
2769 mss_now
= tcp_current_mss(sk
);
2771 if (tcp_send_head(sk
) != NULL
) {
2772 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_FIN
;
2773 TCP_SKB_CB(skb
)->end_seq
++;
2776 /* Socket is locked, keep trying until memory is available. */
2778 skb
= alloc_skb_fclone(MAX_TCP_HEADER
,
2785 /* Reserve space for headers and prepare control bits. */
2786 skb_reserve(skb
, MAX_TCP_HEADER
);
2787 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2788 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2789 TCPHDR_ACK
| TCPHDR_FIN
);
2790 tcp_queue_skb(sk
, skb
);
2792 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2795 /* We get here when a process closes a file descriptor (either due to
2796 * an explicit close() or as a byproduct of exit()'ing) and there
2797 * was unread data in the receive queue. This behavior is recommended
2798 * by RFC 2525, section 2.17. -DaveM
2800 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2802 struct sk_buff
*skb
;
2804 /* NOTE: No TCP options attached and we never retransmit this. */
2805 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2807 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2811 /* Reserve space for headers and prepare control bits. */
2812 skb_reserve(skb
, MAX_TCP_HEADER
);
2813 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2814 TCPHDR_ACK
| TCPHDR_RST
);
2816 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2817 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2819 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2822 /* Send a crossed SYN-ACK during socket establishment.
2823 * WARNING: This routine must only be called when we have already sent
2824 * a SYN packet that crossed the incoming SYN that caused this routine
2825 * to get called. If this assumption fails then the initial rcv_wnd
2826 * and rcv_wscale values will not be correct.
2828 int tcp_send_synack(struct sock
*sk
)
2830 struct sk_buff
*skb
;
2832 skb
= tcp_write_queue_head(sk
);
2833 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
2834 pr_debug("%s: wrong queue state\n", __func__
);
2837 if (!(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_ACK
)) {
2838 if (skb_cloned(skb
)) {
2839 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2842 tcp_unlink_write_queue(skb
, sk
);
2843 __skb_header_release(nskb
);
2844 __tcp_add_write_queue_head(sk
, nskb
);
2845 sk_wmem_free_skb(sk
, skb
);
2846 sk
->sk_wmem_queued
+= nskb
->truesize
;
2847 sk_mem_charge(sk
, nskb
->truesize
);
2851 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_ACK
;
2852 tcp_ecn_send_synack(sk
, skb
);
2854 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2858 * tcp_make_synack - Prepare a SYN-ACK.
2859 * sk: listener socket
2860 * dst: dst entry attached to the SYNACK
2861 * req: request_sock pointer
2863 * Allocate one skb and build a SYNACK packet.
2864 * @dst is consumed : Caller should not use it again.
2866 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2867 struct request_sock
*req
,
2868 struct tcp_fastopen_cookie
*foc
)
2870 struct tcp_out_options opts
;
2871 struct inet_request_sock
*ireq
= inet_rsk(req
);
2872 struct tcp_sock
*tp
= tcp_sk(sk
);
2874 struct sk_buff
*skb
;
2875 struct tcp_md5sig_key
*md5
;
2876 int tcp_header_size
;
2879 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
, 1, GFP_ATOMIC
);
2880 if (unlikely(!skb
)) {
2884 /* Reserve space for headers. */
2885 skb_reserve(skb
, MAX_TCP_HEADER
);
2887 skb_dst_set(skb
, dst
);
2888 security_skb_owned_by(skb
, sk
);
2890 mss
= dst_metric_advmss(dst
);
2891 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2892 mss
= tp
->rx_opt
.user_mss
;
2894 memset(&opts
, 0, sizeof(opts
));
2895 #ifdef CONFIG_SYN_COOKIES
2896 if (unlikely(req
->cookie_ts
))
2897 skb
->skb_mstamp
.stamp_jiffies
= cookie_init_timestamp(req
);
2900 skb_mstamp_get(&skb
->skb_mstamp
);
2901 tcp_header_size
= tcp_synack_options(sk
, req
, mss
, skb
, &opts
, &md5
,
2904 skb_push(skb
, tcp_header_size
);
2905 skb_reset_transport_header(skb
);
2908 memset(th
, 0, sizeof(struct tcphdr
));
2911 tcp_ecn_make_synack(req
, th
, sk
);
2912 th
->source
= htons(ireq
->ir_num
);
2913 th
->dest
= ireq
->ir_rmt_port
;
2914 /* Setting of flags are superfluous here for callers (and ECE is
2915 * not even correctly set)
2917 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2918 TCPHDR_SYN
| TCPHDR_ACK
);
2920 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2921 /* XXX data is queued and acked as is. No buffer/window check */
2922 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_nxt
);
2924 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2925 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2926 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
);
2927 th
->doff
= (tcp_header_size
>> 2);
2928 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_OUTSEGS
);
2930 #ifdef CONFIG_TCP_MD5SIG
2931 /* Okay, we have all we need - do the md5 hash if needed */
2933 tcp_rsk(req
)->af_specific
->calc_md5_hash(opts
.hash_location
,
2934 md5
, NULL
, req
, skb
);
2940 EXPORT_SYMBOL(tcp_make_synack
);
2942 /* Do all connect socket setups that can be done AF independent. */
2943 static void tcp_connect_init(struct sock
*sk
)
2945 const struct dst_entry
*dst
= __sk_dst_get(sk
);
2946 struct tcp_sock
*tp
= tcp_sk(sk
);
2949 /* We'll fix this up when we get a response from the other end.
2950 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2952 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2953 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2955 #ifdef CONFIG_TCP_MD5SIG
2956 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2957 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2960 /* If user gave his TCP_MAXSEG, record it to clamp */
2961 if (tp
->rx_opt
.user_mss
)
2962 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2965 tcp_sync_mss(sk
, dst_mtu(dst
));
2967 if (!tp
->window_clamp
)
2968 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2969 tp
->advmss
= dst_metric_advmss(dst
);
2970 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
2971 tp
->advmss
= tp
->rx_opt
.user_mss
;
2973 tcp_initialize_rcv_mss(sk
);
2975 /* limit the window selection if the user enforce a smaller rx buffer */
2976 if (sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
2977 (tp
->window_clamp
> tcp_full_space(sk
) || tp
->window_clamp
== 0))
2978 tp
->window_clamp
= tcp_full_space(sk
);
2980 tcp_select_initial_window(tcp_full_space(sk
),
2981 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2984 sysctl_tcp_window_scaling
,
2986 dst_metric(dst
, RTAX_INITRWND
));
2988 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2989 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2992 sock_reset_flag(sk
, SOCK_DONE
);
2995 tp
->snd_una
= tp
->write_seq
;
2996 tp
->snd_sml
= tp
->write_seq
;
2997 tp
->snd_up
= tp
->write_seq
;
2998 tp
->snd_nxt
= tp
->write_seq
;
3000 if (likely(!tp
->repair
))
3003 tp
->rcv_tstamp
= tcp_time_stamp
;
3004 tp
->rcv_wup
= tp
->rcv_nxt
;
3005 tp
->copied_seq
= tp
->rcv_nxt
;
3007 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
3008 inet_csk(sk
)->icsk_retransmits
= 0;
3009 tcp_clear_retrans(tp
);
3012 static void tcp_connect_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
3014 struct tcp_sock
*tp
= tcp_sk(sk
);
3015 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
3017 tcb
->end_seq
+= skb
->len
;
3018 __skb_header_release(skb
);
3019 __tcp_add_write_queue_tail(sk
, skb
);
3020 sk
->sk_wmem_queued
+= skb
->truesize
;
3021 sk_mem_charge(sk
, skb
->truesize
);
3022 tp
->write_seq
= tcb
->end_seq
;
3023 tp
->packets_out
+= tcp_skb_pcount(skb
);
3026 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3027 * queue a data-only packet after the regular SYN, such that regular SYNs
3028 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3029 * only the SYN sequence, the data are retransmitted in the first ACK.
3030 * If cookie is not cached or other error occurs, falls back to send a
3031 * regular SYN with Fast Open cookie request option.
3033 static int tcp_send_syn_data(struct sock
*sk
, struct sk_buff
*syn
)
3035 struct tcp_sock
*tp
= tcp_sk(sk
);
3036 struct tcp_fastopen_request
*fo
= tp
->fastopen_req
;
3037 int syn_loss
= 0, space
, err
= 0;
3038 unsigned long last_syn_loss
= 0;
3039 struct sk_buff
*syn_data
;
3041 tp
->rx_opt
.mss_clamp
= tp
->advmss
; /* If MSS is not cached */
3042 tcp_fastopen_cache_get(sk
, &tp
->rx_opt
.mss_clamp
, &fo
->cookie
,
3043 &syn_loss
, &last_syn_loss
);
3044 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3046 time_before(jiffies
, last_syn_loss
+ (60*HZ
<< syn_loss
))) {
3047 fo
->cookie
.len
= -1;
3051 if (sysctl_tcp_fastopen
& TFO_CLIENT_NO_COOKIE
)
3052 fo
->cookie
.len
= -1;
3053 else if (fo
->cookie
.len
<= 0)
3056 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3057 * user-MSS. Reserve maximum option space for middleboxes that add
3058 * private TCP options. The cost is reduced data space in SYN :(
3060 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->rx_opt
.mss_clamp
)
3061 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
3062 space
= __tcp_mtu_to_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
) -
3063 MAX_TCP_OPTION_SPACE
;
3065 space
= min_t(size_t, space
, fo
->size
);
3067 /* limit to order-0 allocations */
3068 space
= min_t(size_t, space
, SKB_MAX_HEAD(MAX_TCP_HEADER
));
3070 syn_data
= sk_stream_alloc_skb(sk
, space
, sk
->sk_allocation
);
3073 syn_data
->ip_summed
= CHECKSUM_PARTIAL
;
3074 memcpy(syn_data
->cb
, syn
->cb
, sizeof(syn
->cb
));
3075 if (unlikely(memcpy_fromiovecend(skb_put(syn_data
, space
),
3076 fo
->data
->msg_iter
.iov
, 0, space
))) {
3077 kfree_skb(syn_data
);
3081 /* No more data pending in inet_wait_for_connect() */
3082 if (space
== fo
->size
)
3086 tcp_connect_queue_skb(sk
, syn_data
);
3088 err
= tcp_transmit_skb(sk
, syn_data
, 1, sk
->sk_allocation
);
3090 syn
->skb_mstamp
= syn_data
->skb_mstamp
;
3092 /* Now full SYN+DATA was cloned and sent (or not),
3093 * remove the SYN from the original skb (syn_data)
3094 * we keep in write queue in case of a retransmit, as we
3095 * also have the SYN packet (with no data) in the same queue.
3097 TCP_SKB_CB(syn_data
)->seq
++;
3098 TCP_SKB_CB(syn_data
)->tcp_flags
= TCPHDR_ACK
| TCPHDR_PSH
;
3100 tp
->syn_data
= (fo
->copied
> 0);
3101 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPORIGDATASENT
);
3106 /* Send a regular SYN with Fast Open cookie request option */
3107 if (fo
->cookie
.len
> 0)
3109 err
= tcp_transmit_skb(sk
, syn
, 1, sk
->sk_allocation
);
3111 tp
->syn_fastopen
= 0;
3113 fo
->cookie
.len
= -1; /* Exclude Fast Open option for SYN retries */
3117 /* Build a SYN and send it off. */
3118 int tcp_connect(struct sock
*sk
)
3120 struct tcp_sock
*tp
= tcp_sk(sk
);
3121 struct sk_buff
*buff
;
3124 tcp_connect_init(sk
);
3126 if (unlikely(tp
->repair
)) {
3127 tcp_finish_connect(sk
, NULL
);
3131 buff
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
);
3132 if (unlikely(!buff
))
3135 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPHDR_SYN
);
3136 tp
->retrans_stamp
= tcp_time_stamp
;
3137 tcp_connect_queue_skb(sk
, buff
);
3138 tcp_ecn_send_syn(sk
, buff
);
3140 /* Send off SYN; include data in Fast Open. */
3141 err
= tp
->fastopen_req
? tcp_send_syn_data(sk
, buff
) :
3142 tcp_transmit_skb(sk
, buff
, 1, sk
->sk_allocation
);
3143 if (err
== -ECONNREFUSED
)
3146 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3147 * in order to make this packet get counted in tcpOutSegs.
3149 tp
->snd_nxt
= tp
->write_seq
;
3150 tp
->pushed_seq
= tp
->write_seq
;
3151 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
3153 /* Timer for repeating the SYN until an answer. */
3154 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
3155 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
3158 EXPORT_SYMBOL(tcp_connect
);
3160 /* Send out a delayed ack, the caller does the policy checking
3161 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3164 void tcp_send_delayed_ack(struct sock
*sk
)
3166 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3167 int ato
= icsk
->icsk_ack
.ato
;
3168 unsigned long timeout
;
3170 tcp_ca_event(sk
, CA_EVENT_DELAYED_ACK
);
3172 if (ato
> TCP_DELACK_MIN
) {
3173 const struct tcp_sock
*tp
= tcp_sk(sk
);
3174 int max_ato
= HZ
/ 2;
3176 if (icsk
->icsk_ack
.pingpong
||
3177 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
3178 max_ato
= TCP_DELACK_MAX
;
3180 /* Slow path, intersegment interval is "high". */
3182 /* If some rtt estimate is known, use it to bound delayed ack.
3183 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3187 int rtt
= max_t(int, usecs_to_jiffies(tp
->srtt_us
>> 3),
3194 ato
= min(ato
, max_ato
);
3197 /* Stay within the limit we were given */
3198 timeout
= jiffies
+ ato
;
3200 /* Use new timeout only if there wasn't a older one earlier. */
3201 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
3202 /* If delack timer was blocked or is about to expire,
3205 if (icsk
->icsk_ack
.blocked
||
3206 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
3211 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
3212 timeout
= icsk
->icsk_ack
.timeout
;
3214 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
3215 icsk
->icsk_ack
.timeout
= timeout
;
3216 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
3219 /* This routine sends an ack and also updates the window. */
3220 void tcp_send_ack(struct sock
*sk
)
3222 struct sk_buff
*buff
;
3224 /* If we have been reset, we may not send again. */
3225 if (sk
->sk_state
== TCP_CLOSE
)
3228 tcp_ca_event(sk
, CA_EVENT_NON_DELAYED_ACK
);
3230 /* We are not putting this on the write queue, so
3231 * tcp_transmit_skb() will set the ownership to this
3234 buff
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3236 inet_csk_schedule_ack(sk
);
3237 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
3238 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
3239 TCP_DELACK_MAX
, TCP_RTO_MAX
);
3243 /* Reserve space for headers and prepare control bits. */
3244 skb_reserve(buff
, MAX_TCP_HEADER
);
3245 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPHDR_ACK
);
3247 /* Send it off, this clears delayed acks for us. */
3248 skb_mstamp_get(&buff
->skb_mstamp
);
3249 tcp_transmit_skb(sk
, buff
, 0, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3251 EXPORT_SYMBOL_GPL(tcp_send_ack
);
3253 /* This routine sends a packet with an out of date sequence
3254 * number. It assumes the other end will try to ack it.
3256 * Question: what should we make while urgent mode?
3257 * 4.4BSD forces sending single byte of data. We cannot send
3258 * out of window data, because we have SND.NXT==SND.MAX...
3260 * Current solution: to send TWO zero-length segments in urgent mode:
3261 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3262 * out-of-date with SND.UNA-1 to probe window.
3264 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
3266 struct tcp_sock
*tp
= tcp_sk(sk
);
3267 struct sk_buff
*skb
;
3269 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3270 skb
= alloc_skb(MAX_TCP_HEADER
, sk_gfp_atomic(sk
, GFP_ATOMIC
));
3274 /* Reserve space for headers and set control bits. */
3275 skb_reserve(skb
, MAX_TCP_HEADER
);
3276 /* Use a previous sequence. This should cause the other
3277 * end to send an ack. Don't queue or clone SKB, just
3280 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPHDR_ACK
);
3281 skb_mstamp_get(&skb
->skb_mstamp
);
3282 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
3285 void tcp_send_window_probe(struct sock
*sk
)
3287 if (sk
->sk_state
== TCP_ESTABLISHED
) {
3288 tcp_sk(sk
)->snd_wl1
= tcp_sk(sk
)->rcv_nxt
- 1;
3289 tcp_xmit_probe_skb(sk
, 0);
3293 /* Initiate keepalive or window probe from timer. */
3294 int tcp_write_wakeup(struct sock
*sk
)
3296 struct tcp_sock
*tp
= tcp_sk(sk
);
3297 struct sk_buff
*skb
;
3299 if (sk
->sk_state
== TCP_CLOSE
)
3302 if ((skb
= tcp_send_head(sk
)) != NULL
&&
3303 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
3305 unsigned int mss
= tcp_current_mss(sk
);
3306 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
3308 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
3309 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
3311 /* We are probing the opening of a window
3312 * but the window size is != 0
3313 * must have been a result SWS avoidance ( sender )
3315 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
3317 seg_size
= min(seg_size
, mss
);
3318 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3319 if (tcp_fragment(sk
, skb
, seg_size
, mss
, GFP_ATOMIC
))
3321 } else if (!tcp_skb_pcount(skb
))
3322 tcp_set_skb_tso_segs(sk
, skb
, mss
);
3324 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
3325 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
3327 tcp_event_new_data_sent(sk
, skb
);
3330 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
3331 tcp_xmit_probe_skb(sk
, 1);
3332 return tcp_xmit_probe_skb(sk
, 0);
3336 /* A window probe timeout has occurred. If window is not closed send
3337 * a partial packet else a zero probe.
3339 void tcp_send_probe0(struct sock
*sk
)
3341 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3342 struct tcp_sock
*tp
= tcp_sk(sk
);
3343 unsigned long probe_max
;
3346 err
= tcp_write_wakeup(sk
);
3348 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
3349 /* Cancel probe timer, if it is not required. */
3350 icsk
->icsk_probes_out
= 0;
3351 icsk
->icsk_backoff
= 0;
3356 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
3357 icsk
->icsk_backoff
++;
3358 icsk
->icsk_probes_out
++;
3359 probe_max
= TCP_RTO_MAX
;
3361 /* If packet was not sent due to local congestion,
3362 * do not backoff and do not remember icsk_probes_out.
3363 * Let local senders to fight for local resources.
3365 * Use accumulated backoff yet.
3367 if (!icsk
->icsk_probes_out
)
3368 icsk
->icsk_probes_out
= 1;
3369 probe_max
= TCP_RESOURCE_PROBE_INTERVAL
;
3371 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3372 inet_csk_rto_backoff(icsk
, probe_max
),
3376 int tcp_rtx_synack(struct sock
*sk
, struct request_sock
*req
)
3378 const struct tcp_request_sock_ops
*af_ops
= tcp_rsk(req
)->af_specific
;
3382 res
= af_ops
->send_synack(sk
, NULL
, &fl
, req
, 0, NULL
);
3384 TCP_INC_STATS_BH(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
3385 NET_INC_STATS_BH(sock_net(sk
), LINUX_MIB_TCPSYNRETRANS
);
3389 EXPORT_SYMBOL(tcp_rtx_synack
);