4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/export.h>
39 #include <linux/sched/rt.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/ioport.h>
43 #include <linux/acpi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/spi.h>
48 static void spidev_release(struct device
*dev
)
50 struct spi_device
*spi
= to_spi_device(dev
);
52 /* spi masters may cleanup for released devices */
53 if (spi
->master
->cleanup
)
54 spi
->master
->cleanup(spi
);
56 spi_master_put(spi
->master
);
61 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
63 const struct spi_device
*spi
= to_spi_device(dev
);
66 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
70 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
72 static DEVICE_ATTR_RO(modalias
);
74 static struct attribute
*spi_dev_attrs
[] = {
75 &dev_attr_modalias
.attr
,
78 ATTRIBUTE_GROUPS(spi_dev
);
80 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
81 * and the sysfs version makes coldplug work too.
84 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
85 const struct spi_device
*sdev
)
88 if (!strcmp(sdev
->modalias
, id
->name
))
95 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
97 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
99 return spi_match_id(sdrv
->id_table
, sdev
);
101 EXPORT_SYMBOL_GPL(spi_get_device_id
);
103 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
105 const struct spi_device
*spi
= to_spi_device(dev
);
106 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
108 /* Attempt an OF style match */
109 if (of_driver_match_device(dev
, drv
))
113 if (acpi_driver_match_device(dev
, drv
))
117 return !!spi_match_id(sdrv
->id_table
, spi
);
119 return strcmp(spi
->modalias
, drv
->name
) == 0;
122 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
124 const struct spi_device
*spi
= to_spi_device(dev
);
127 rc
= acpi_device_uevent_modalias(dev
, env
);
131 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
135 #ifdef CONFIG_PM_SLEEP
136 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
139 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
141 /* suspend will stop irqs and dma; no more i/o */
144 value
= drv
->suspend(to_spi_device(dev
), message
);
146 dev_dbg(dev
, "... can't suspend\n");
151 static int spi_legacy_resume(struct device
*dev
)
154 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
156 /* resume may restart the i/o queue */
159 value
= drv
->resume(to_spi_device(dev
));
161 dev_dbg(dev
, "... can't resume\n");
166 static int spi_pm_suspend(struct device
*dev
)
168 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
171 return pm_generic_suspend(dev
);
173 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
176 static int spi_pm_resume(struct device
*dev
)
178 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
181 return pm_generic_resume(dev
);
183 return spi_legacy_resume(dev
);
186 static int spi_pm_freeze(struct device
*dev
)
188 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
191 return pm_generic_freeze(dev
);
193 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
196 static int spi_pm_thaw(struct device
*dev
)
198 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
201 return pm_generic_thaw(dev
);
203 return spi_legacy_resume(dev
);
206 static int spi_pm_poweroff(struct device
*dev
)
208 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
211 return pm_generic_poweroff(dev
);
213 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
216 static int spi_pm_restore(struct device
*dev
)
218 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
221 return pm_generic_restore(dev
);
223 return spi_legacy_resume(dev
);
226 #define spi_pm_suspend NULL
227 #define spi_pm_resume NULL
228 #define spi_pm_freeze NULL
229 #define spi_pm_thaw NULL
230 #define spi_pm_poweroff NULL
231 #define spi_pm_restore NULL
234 static const struct dev_pm_ops spi_pm
= {
235 .suspend
= spi_pm_suspend
,
236 .resume
= spi_pm_resume
,
237 .freeze
= spi_pm_freeze
,
239 .poweroff
= spi_pm_poweroff
,
240 .restore
= spi_pm_restore
,
242 pm_generic_runtime_suspend
,
243 pm_generic_runtime_resume
,
248 struct bus_type spi_bus_type
= {
250 .dev_groups
= spi_dev_groups
,
251 .match
= spi_match_device
,
252 .uevent
= spi_uevent
,
255 EXPORT_SYMBOL_GPL(spi_bus_type
);
258 static int spi_drv_probe(struct device
*dev
)
260 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
263 ret
= of_clk_set_defaults(dev
->of_node
, false);
267 acpi_dev_pm_attach(dev
, true);
268 ret
= sdrv
->probe(to_spi_device(dev
));
270 acpi_dev_pm_detach(dev
, true);
275 static int spi_drv_remove(struct device
*dev
)
277 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
280 ret
= sdrv
->remove(to_spi_device(dev
));
281 acpi_dev_pm_detach(dev
, true);
286 static void spi_drv_shutdown(struct device
*dev
)
288 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
290 sdrv
->shutdown(to_spi_device(dev
));
294 * spi_register_driver - register a SPI driver
295 * @sdrv: the driver to register
298 int spi_register_driver(struct spi_driver
*sdrv
)
300 sdrv
->driver
.bus
= &spi_bus_type
;
302 sdrv
->driver
.probe
= spi_drv_probe
;
304 sdrv
->driver
.remove
= spi_drv_remove
;
306 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
307 return driver_register(&sdrv
->driver
);
309 EXPORT_SYMBOL_GPL(spi_register_driver
);
311 /*-------------------------------------------------------------------------*/
313 /* SPI devices should normally not be created by SPI device drivers; that
314 * would make them board-specific. Similarly with SPI master drivers.
315 * Device registration normally goes into like arch/.../mach.../board-YYY.c
316 * with other readonly (flashable) information about mainboard devices.
320 struct list_head list
;
321 struct spi_board_info board_info
;
324 static LIST_HEAD(board_list
);
325 static LIST_HEAD(spi_master_list
);
328 * Used to protect add/del opertion for board_info list and
329 * spi_master list, and their matching process
331 static DEFINE_MUTEX(board_lock
);
334 * spi_alloc_device - Allocate a new SPI device
335 * @master: Controller to which device is connected
338 * Allows a driver to allocate and initialize a spi_device without
339 * registering it immediately. This allows a driver to directly
340 * fill the spi_device with device parameters before calling
341 * spi_add_device() on it.
343 * Caller is responsible to call spi_add_device() on the returned
344 * spi_device structure to add it to the SPI master. If the caller
345 * needs to discard the spi_device without adding it, then it should
346 * call spi_dev_put() on it.
348 * Returns a pointer to the new device, or NULL.
350 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
352 struct spi_device
*spi
;
354 if (!spi_master_get(master
))
357 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
359 spi_master_put(master
);
363 spi
->master
= master
;
364 spi
->dev
.parent
= &master
->dev
;
365 spi
->dev
.bus
= &spi_bus_type
;
366 spi
->dev
.release
= spidev_release
;
367 spi
->cs_gpio
= -ENOENT
;
368 device_initialize(&spi
->dev
);
371 EXPORT_SYMBOL_GPL(spi_alloc_device
);
373 static void spi_dev_set_name(struct spi_device
*spi
)
375 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
378 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
382 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
386 static int spi_dev_check(struct device
*dev
, void *data
)
388 struct spi_device
*spi
= to_spi_device(dev
);
389 struct spi_device
*new_spi
= data
;
391 if (spi
->master
== new_spi
->master
&&
392 spi
->chip_select
== new_spi
->chip_select
)
398 * spi_add_device - Add spi_device allocated with spi_alloc_device
399 * @spi: spi_device to register
401 * Companion function to spi_alloc_device. Devices allocated with
402 * spi_alloc_device can be added onto the spi bus with this function.
404 * Returns 0 on success; negative errno on failure
406 int spi_add_device(struct spi_device
*spi
)
408 static DEFINE_MUTEX(spi_add_lock
);
409 struct spi_master
*master
= spi
->master
;
410 struct device
*dev
= master
->dev
.parent
;
413 /* Chipselects are numbered 0..max; validate. */
414 if (spi
->chip_select
>= master
->num_chipselect
) {
415 dev_err(dev
, "cs%d >= max %d\n",
417 master
->num_chipselect
);
421 /* Set the bus ID string */
422 spi_dev_set_name(spi
);
424 /* We need to make sure there's no other device with this
425 * chipselect **BEFORE** we call setup(), else we'll trash
426 * its configuration. Lock against concurrent add() calls.
428 mutex_lock(&spi_add_lock
);
430 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
432 dev_err(dev
, "chipselect %d already in use\n",
437 if (master
->cs_gpios
)
438 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
440 /* Drivers may modify this initial i/o setup, but will
441 * normally rely on the device being setup. Devices
442 * using SPI_CS_HIGH can't coexist well otherwise...
444 status
= spi_setup(spi
);
446 dev_err(dev
, "can't setup %s, status %d\n",
447 dev_name(&spi
->dev
), status
);
451 /* Device may be bound to an active driver when this returns */
452 status
= device_add(&spi
->dev
);
454 dev_err(dev
, "can't add %s, status %d\n",
455 dev_name(&spi
->dev
), status
);
457 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
460 mutex_unlock(&spi_add_lock
);
463 EXPORT_SYMBOL_GPL(spi_add_device
);
466 * spi_new_device - instantiate one new SPI device
467 * @master: Controller to which device is connected
468 * @chip: Describes the SPI device
471 * On typical mainboards, this is purely internal; and it's not needed
472 * after board init creates the hard-wired devices. Some development
473 * platforms may not be able to use spi_register_board_info though, and
474 * this is exported so that for example a USB or parport based adapter
475 * driver could add devices (which it would learn about out-of-band).
477 * Returns the new device, or NULL.
479 struct spi_device
*spi_new_device(struct spi_master
*master
,
480 struct spi_board_info
*chip
)
482 struct spi_device
*proxy
;
485 /* NOTE: caller did any chip->bus_num checks necessary.
487 * Also, unless we change the return value convention to use
488 * error-or-pointer (not NULL-or-pointer), troubleshootability
489 * suggests syslogged diagnostics are best here (ugh).
492 proxy
= spi_alloc_device(master
);
496 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
498 proxy
->chip_select
= chip
->chip_select
;
499 proxy
->max_speed_hz
= chip
->max_speed_hz
;
500 proxy
->mode
= chip
->mode
;
501 proxy
->irq
= chip
->irq
;
502 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
503 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
504 proxy
->controller_data
= chip
->controller_data
;
505 proxy
->controller_state
= NULL
;
507 status
= spi_add_device(proxy
);
515 EXPORT_SYMBOL_GPL(spi_new_device
);
517 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
518 struct spi_board_info
*bi
)
520 struct spi_device
*dev
;
522 if (master
->bus_num
!= bi
->bus_num
)
525 dev
= spi_new_device(master
, bi
);
527 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
532 * spi_register_board_info - register SPI devices for a given board
533 * @info: array of chip descriptors
534 * @n: how many descriptors are provided
537 * Board-specific early init code calls this (probably during arch_initcall)
538 * with segments of the SPI device table. Any device nodes are created later,
539 * after the relevant parent SPI controller (bus_num) is defined. We keep
540 * this table of devices forever, so that reloading a controller driver will
541 * not make Linux forget about these hard-wired devices.
543 * Other code can also call this, e.g. a particular add-on board might provide
544 * SPI devices through its expansion connector, so code initializing that board
545 * would naturally declare its SPI devices.
547 * The board info passed can safely be __initdata ... but be careful of
548 * any embedded pointers (platform_data, etc), they're copied as-is.
550 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
552 struct boardinfo
*bi
;
555 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
559 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
560 struct spi_master
*master
;
562 memcpy(&bi
->board_info
, info
, sizeof(*info
));
563 mutex_lock(&board_lock
);
564 list_add_tail(&bi
->list
, &board_list
);
565 list_for_each_entry(master
, &spi_master_list
, list
)
566 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
567 mutex_unlock(&board_lock
);
573 /*-------------------------------------------------------------------------*/
575 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
577 if (spi
->mode
& SPI_CS_HIGH
)
580 if (spi
->cs_gpio
>= 0)
581 gpio_set_value(spi
->cs_gpio
, !enable
);
582 else if (spi
->master
->set_cs
)
583 spi
->master
->set_cs(spi
, !enable
);
586 #ifdef CONFIG_HAS_DMA
587 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
588 struct sg_table
*sgt
, void *buf
, size_t len
,
589 enum dma_data_direction dir
)
591 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
592 const int desc_len
= vmalloced_buf
? PAGE_SIZE
: master
->max_dma_len
;
593 const int sgs
= DIV_ROUND_UP(len
, desc_len
);
594 struct page
*vm_page
;
599 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
603 for (i
= 0; i
< sgs
; i
++) {
604 min
= min_t(size_t, len
, desc_len
);
607 vm_page
= vmalloc_to_page(buf
);
612 sg_buf
= page_address(vm_page
) +
613 ((size_t)buf
& ~PAGE_MASK
);
618 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
624 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
637 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
638 struct sg_table
*sgt
, enum dma_data_direction dir
)
640 if (sgt
->orig_nents
) {
641 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
646 static int __spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
648 struct device
*tx_dev
, *rx_dev
;
649 struct spi_transfer
*xfer
;
652 if (!master
->can_dma
)
655 tx_dev
= master
->dma_tx
->device
->dev
;
656 rx_dev
= master
->dma_rx
->device
->dev
;
658 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
659 if (!master
->can_dma(master
, msg
->spi
, xfer
))
662 if (xfer
->tx_buf
!= NULL
) {
663 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
664 (void *)xfer
->tx_buf
, xfer
->len
,
670 if (xfer
->rx_buf
!= NULL
) {
671 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
672 xfer
->rx_buf
, xfer
->len
,
675 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
682 master
->cur_msg_mapped
= true;
687 static int spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
689 struct spi_transfer
*xfer
;
690 struct device
*tx_dev
, *rx_dev
;
692 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
695 tx_dev
= master
->dma_tx
->device
->dev
;
696 rx_dev
= master
->dma_rx
->device
->dev
;
698 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
699 if (!master
->can_dma(master
, msg
->spi
, xfer
))
702 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
703 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
708 #else /* !CONFIG_HAS_DMA */
709 static inline int __spi_map_msg(struct spi_master
*master
,
710 struct spi_message
*msg
)
715 static inline int spi_unmap_msg(struct spi_master
*master
,
716 struct spi_message
*msg
)
720 #endif /* !CONFIG_HAS_DMA */
722 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
724 struct spi_transfer
*xfer
;
726 unsigned int max_tx
, max_rx
;
728 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
732 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
733 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
735 max_tx
= max(xfer
->len
, max_tx
);
736 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
738 max_rx
= max(xfer
->len
, max_rx
);
742 tmp
= krealloc(master
->dummy_tx
, max_tx
,
743 GFP_KERNEL
| GFP_DMA
);
746 master
->dummy_tx
= tmp
;
747 memset(tmp
, 0, max_tx
);
751 tmp
= krealloc(master
->dummy_rx
, max_rx
,
752 GFP_KERNEL
| GFP_DMA
);
755 master
->dummy_rx
= tmp
;
758 if (max_tx
|| max_rx
) {
759 list_for_each_entry(xfer
, &msg
->transfers
,
762 xfer
->tx_buf
= master
->dummy_tx
;
764 xfer
->rx_buf
= master
->dummy_rx
;
769 return __spi_map_msg(master
, msg
);
773 * spi_transfer_one_message - Default implementation of transfer_one_message()
775 * This is a standard implementation of transfer_one_message() for
776 * drivers which impelment a transfer_one() operation. It provides
777 * standard handling of delays and chip select management.
779 static int spi_transfer_one_message(struct spi_master
*master
,
780 struct spi_message
*msg
)
782 struct spi_transfer
*xfer
;
783 bool keep_cs
= false;
787 spi_set_cs(msg
->spi
, true);
789 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
790 trace_spi_transfer_start(msg
, xfer
);
792 reinit_completion(&master
->xfer_completion
);
794 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
796 dev_err(&msg
->spi
->dev
,
797 "SPI transfer failed: %d\n", ret
);
803 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
804 ms
+= ms
+ 100; /* some tolerance */
806 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
807 msecs_to_jiffies(ms
));
811 dev_err(&msg
->spi
->dev
, "SPI transfer timed out\n");
812 msg
->status
= -ETIMEDOUT
;
815 trace_spi_transfer_stop(msg
, xfer
);
817 if (msg
->status
!= -EINPROGRESS
)
820 if (xfer
->delay_usecs
)
821 udelay(xfer
->delay_usecs
);
823 if (xfer
->cs_change
) {
824 if (list_is_last(&xfer
->transfer_list
,
828 spi_set_cs(msg
->spi
, false);
830 spi_set_cs(msg
->spi
, true);
834 msg
->actual_length
+= xfer
->len
;
838 if (ret
!= 0 || !keep_cs
)
839 spi_set_cs(msg
->spi
, false);
841 if (msg
->status
== -EINPROGRESS
)
844 spi_finalize_current_message(master
);
850 * spi_finalize_current_transfer - report completion of a transfer
852 * Called by SPI drivers using the core transfer_one_message()
853 * implementation to notify it that the current interrupt driven
854 * transfer has finished and the next one may be scheduled.
856 void spi_finalize_current_transfer(struct spi_master
*master
)
858 complete(&master
->xfer_completion
);
860 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
863 * spi_pump_messages - kthread work function which processes spi message queue
864 * @work: pointer to kthread work struct contained in the master struct
866 * This function checks if there is any spi message in the queue that
867 * needs processing and if so call out to the driver to initialize hardware
868 * and transfer each message.
871 static void spi_pump_messages(struct kthread_work
*work
)
873 struct spi_master
*master
=
874 container_of(work
, struct spi_master
, pump_messages
);
876 bool was_busy
= false;
879 /* Lock queue and check for queue work */
880 spin_lock_irqsave(&master
->queue_lock
, flags
);
881 if (list_empty(&master
->queue
) || !master
->running
) {
883 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
886 master
->busy
= false;
887 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
888 kfree(master
->dummy_rx
);
889 master
->dummy_rx
= NULL
;
890 kfree(master
->dummy_tx
);
891 master
->dummy_tx
= NULL
;
892 if (master
->unprepare_transfer_hardware
&&
893 master
->unprepare_transfer_hardware(master
))
894 dev_err(&master
->dev
,
895 "failed to unprepare transfer hardware\n");
896 if (master
->auto_runtime_pm
) {
897 pm_runtime_mark_last_busy(master
->dev
.parent
);
898 pm_runtime_put_autosuspend(master
->dev
.parent
);
900 trace_spi_master_idle(master
);
904 /* Make sure we are not already running a message */
905 if (master
->cur_msg
) {
906 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
909 /* Extract head of queue */
911 list_first_entry(&master
->queue
, struct spi_message
, queue
);
913 list_del_init(&master
->cur_msg
->queue
);
918 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
920 if (!was_busy
&& master
->auto_runtime_pm
) {
921 ret
= pm_runtime_get_sync(master
->dev
.parent
);
923 dev_err(&master
->dev
, "Failed to power device: %d\n",
930 trace_spi_master_busy(master
);
932 if (!was_busy
&& master
->prepare_transfer_hardware
) {
933 ret
= master
->prepare_transfer_hardware(master
);
935 dev_err(&master
->dev
,
936 "failed to prepare transfer hardware\n");
938 if (master
->auto_runtime_pm
)
939 pm_runtime_put(master
->dev
.parent
);
944 trace_spi_message_start(master
->cur_msg
);
946 if (master
->prepare_message
) {
947 ret
= master
->prepare_message(master
, master
->cur_msg
);
949 dev_err(&master
->dev
,
950 "failed to prepare message: %d\n", ret
);
951 master
->cur_msg
->status
= ret
;
952 spi_finalize_current_message(master
);
955 master
->cur_msg_prepared
= true;
958 ret
= spi_map_msg(master
, master
->cur_msg
);
960 master
->cur_msg
->status
= ret
;
961 spi_finalize_current_message(master
);
965 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
967 dev_err(&master
->dev
,
968 "failed to transfer one message from queue\n");
973 static int spi_init_queue(struct spi_master
*master
)
975 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
977 INIT_LIST_HEAD(&master
->queue
);
978 spin_lock_init(&master
->queue_lock
);
980 master
->running
= false;
981 master
->busy
= false;
983 init_kthread_worker(&master
->kworker
);
984 master
->kworker_task
= kthread_run(kthread_worker_fn
,
985 &master
->kworker
, "%s",
986 dev_name(&master
->dev
));
987 if (IS_ERR(master
->kworker_task
)) {
988 dev_err(&master
->dev
, "failed to create message pump task\n");
991 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
994 * Master config will indicate if this controller should run the
995 * message pump with high (realtime) priority to reduce the transfer
996 * latency on the bus by minimising the delay between a transfer
997 * request and the scheduling of the message pump thread. Without this
998 * setting the message pump thread will remain at default priority.
1001 dev_info(&master
->dev
,
1002 "will run message pump with realtime priority\n");
1003 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
1010 * spi_get_next_queued_message() - called by driver to check for queued
1012 * @master: the master to check for queued messages
1014 * If there are more messages in the queue, the next message is returned from
1017 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
1019 struct spi_message
*next
;
1020 unsigned long flags
;
1022 /* get a pointer to the next message, if any */
1023 spin_lock_irqsave(&master
->queue_lock
, flags
);
1024 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1026 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1030 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1033 * spi_finalize_current_message() - the current message is complete
1034 * @master: the master to return the message to
1036 * Called by the driver to notify the core that the message in the front of the
1037 * queue is complete and can be removed from the queue.
1039 void spi_finalize_current_message(struct spi_master
*master
)
1041 struct spi_message
*mesg
;
1042 unsigned long flags
;
1045 spin_lock_irqsave(&master
->queue_lock
, flags
);
1046 mesg
= master
->cur_msg
;
1047 master
->cur_msg
= NULL
;
1049 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1050 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1052 spi_unmap_msg(master
, mesg
);
1054 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1055 ret
= master
->unprepare_message(master
, mesg
);
1057 dev_err(&master
->dev
,
1058 "failed to unprepare message: %d\n", ret
);
1061 master
->cur_msg_prepared
= false;
1065 mesg
->complete(mesg
->context
);
1067 trace_spi_message_done(mesg
);
1069 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1071 static int spi_start_queue(struct spi_master
*master
)
1073 unsigned long flags
;
1075 spin_lock_irqsave(&master
->queue_lock
, flags
);
1077 if (master
->running
|| master
->busy
) {
1078 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1082 master
->running
= true;
1083 master
->cur_msg
= NULL
;
1084 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1086 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1091 static int spi_stop_queue(struct spi_master
*master
)
1093 unsigned long flags
;
1094 unsigned limit
= 500;
1097 spin_lock_irqsave(&master
->queue_lock
, flags
);
1100 * This is a bit lame, but is optimized for the common execution path.
1101 * A wait_queue on the master->busy could be used, but then the common
1102 * execution path (pump_messages) would be required to call wake_up or
1103 * friends on every SPI message. Do this instead.
1105 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1106 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1107 usleep_range(10000, 11000);
1108 spin_lock_irqsave(&master
->queue_lock
, flags
);
1111 if (!list_empty(&master
->queue
) || master
->busy
)
1114 master
->running
= false;
1116 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1119 dev_warn(&master
->dev
,
1120 "could not stop message queue\n");
1126 static int spi_destroy_queue(struct spi_master
*master
)
1130 ret
= spi_stop_queue(master
);
1133 * flush_kthread_worker will block until all work is done.
1134 * If the reason that stop_queue timed out is that the work will never
1135 * finish, then it does no good to call flush/stop thread, so
1139 dev_err(&master
->dev
, "problem destroying queue\n");
1143 flush_kthread_worker(&master
->kworker
);
1144 kthread_stop(master
->kworker_task
);
1150 * spi_queued_transfer - transfer function for queued transfers
1151 * @spi: spi device which is requesting transfer
1152 * @msg: spi message which is to handled is queued to driver queue
1154 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1156 struct spi_master
*master
= spi
->master
;
1157 unsigned long flags
;
1159 spin_lock_irqsave(&master
->queue_lock
, flags
);
1161 if (!master
->running
) {
1162 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1165 msg
->actual_length
= 0;
1166 msg
->status
= -EINPROGRESS
;
1168 list_add_tail(&msg
->queue
, &master
->queue
);
1170 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1172 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1176 static int spi_master_initialize_queue(struct spi_master
*master
)
1180 master
->transfer
= spi_queued_transfer
;
1181 if (!master
->transfer_one_message
)
1182 master
->transfer_one_message
= spi_transfer_one_message
;
1184 /* Initialize and start queue */
1185 ret
= spi_init_queue(master
);
1187 dev_err(&master
->dev
, "problem initializing queue\n");
1188 goto err_init_queue
;
1190 master
->queued
= true;
1191 ret
= spi_start_queue(master
);
1193 dev_err(&master
->dev
, "problem starting queue\n");
1194 goto err_start_queue
;
1200 spi_destroy_queue(master
);
1205 /*-------------------------------------------------------------------------*/
1207 #if defined(CONFIG_OF)
1209 * of_register_spi_devices() - Register child devices onto the SPI bus
1210 * @master: Pointer to spi_master device
1212 * Registers an spi_device for each child node of master node which has a 'reg'
1215 static void of_register_spi_devices(struct spi_master
*master
)
1217 struct spi_device
*spi
;
1218 struct device_node
*nc
;
1222 if (!master
->dev
.of_node
)
1225 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1226 /* Alloc an spi_device */
1227 spi
= spi_alloc_device(master
);
1229 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1235 /* Select device driver */
1236 if (of_modalias_node(nc
, spi
->modalias
,
1237 sizeof(spi
->modalias
)) < 0) {
1238 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1244 /* Device address */
1245 rc
= of_property_read_u32(nc
, "reg", &value
);
1247 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1252 spi
->chip_select
= value
;
1254 /* Mode (clock phase/polarity/etc.) */
1255 if (of_find_property(nc
, "spi-cpha", NULL
))
1256 spi
->mode
|= SPI_CPHA
;
1257 if (of_find_property(nc
, "spi-cpol", NULL
))
1258 spi
->mode
|= SPI_CPOL
;
1259 if (of_find_property(nc
, "spi-cs-high", NULL
))
1260 spi
->mode
|= SPI_CS_HIGH
;
1261 if (of_find_property(nc
, "spi-3wire", NULL
))
1262 spi
->mode
|= SPI_3WIRE
;
1263 if (of_find_property(nc
, "spi-lsb-first", NULL
))
1264 spi
->mode
|= SPI_LSB_FIRST
;
1266 /* Device DUAL/QUAD mode */
1267 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1272 spi
->mode
|= SPI_TX_DUAL
;
1275 spi
->mode
|= SPI_TX_QUAD
;
1278 dev_warn(&master
->dev
,
1279 "spi-tx-bus-width %d not supported\n",
1285 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1290 spi
->mode
|= SPI_RX_DUAL
;
1293 spi
->mode
|= SPI_RX_QUAD
;
1296 dev_warn(&master
->dev
,
1297 "spi-rx-bus-width %d not supported\n",
1304 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1306 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1311 spi
->max_speed_hz
= value
;
1314 spi
->irq
= irq_of_parse_and_map(nc
, 0);
1316 /* Store a pointer to the node in the device structure */
1318 spi
->dev
.of_node
= nc
;
1320 /* Register the new device */
1321 request_module("%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
1322 rc
= spi_add_device(spi
);
1324 dev_err(&master
->dev
, "spi_device register error %s\n",
1332 static void of_register_spi_devices(struct spi_master
*master
) { }
1336 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1338 struct spi_device
*spi
= data
;
1340 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1341 struct acpi_resource_spi_serialbus
*sb
;
1343 sb
= &ares
->data
.spi_serial_bus
;
1344 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1345 spi
->chip_select
= sb
->device_selection
;
1346 spi
->max_speed_hz
= sb
->connection_speed
;
1348 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1349 spi
->mode
|= SPI_CPHA
;
1350 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1351 spi
->mode
|= SPI_CPOL
;
1352 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1353 spi
->mode
|= SPI_CS_HIGH
;
1355 } else if (spi
->irq
< 0) {
1358 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1362 /* Always tell the ACPI core to skip this resource */
1366 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1367 void *data
, void **return_value
)
1369 struct spi_master
*master
= data
;
1370 struct list_head resource_list
;
1371 struct acpi_device
*adev
;
1372 struct spi_device
*spi
;
1375 if (acpi_bus_get_device(handle
, &adev
))
1377 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1380 spi
= spi_alloc_device(master
);
1382 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1383 dev_name(&adev
->dev
));
1384 return AE_NO_MEMORY
;
1387 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1390 INIT_LIST_HEAD(&resource_list
);
1391 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1392 acpi_spi_add_resource
, spi
);
1393 acpi_dev_free_resource_list(&resource_list
);
1395 if (ret
< 0 || !spi
->max_speed_hz
) {
1400 adev
->power
.flags
.ignore_parent
= true;
1401 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1402 if (spi_add_device(spi
)) {
1403 adev
->power
.flags
.ignore_parent
= false;
1404 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1405 dev_name(&adev
->dev
));
1412 static void acpi_register_spi_devices(struct spi_master
*master
)
1417 handle
= ACPI_HANDLE(master
->dev
.parent
);
1421 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1422 acpi_spi_add_device
, NULL
,
1424 if (ACPI_FAILURE(status
))
1425 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1428 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1429 #endif /* CONFIG_ACPI */
1431 static void spi_master_release(struct device
*dev
)
1433 struct spi_master
*master
;
1435 master
= container_of(dev
, struct spi_master
, dev
);
1439 static struct class spi_master_class
= {
1440 .name
= "spi_master",
1441 .owner
= THIS_MODULE
,
1442 .dev_release
= spi_master_release
,
1448 * spi_alloc_master - allocate SPI master controller
1449 * @dev: the controller, possibly using the platform_bus
1450 * @size: how much zeroed driver-private data to allocate; the pointer to this
1451 * memory is in the driver_data field of the returned device,
1452 * accessible with spi_master_get_devdata().
1453 * Context: can sleep
1455 * This call is used only by SPI master controller drivers, which are the
1456 * only ones directly touching chip registers. It's how they allocate
1457 * an spi_master structure, prior to calling spi_register_master().
1459 * This must be called from context that can sleep. It returns the SPI
1460 * master structure on success, else NULL.
1462 * The caller is responsible for assigning the bus number and initializing
1463 * the master's methods before calling spi_register_master(); and (after errors
1464 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1467 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1469 struct spi_master
*master
;
1474 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1478 device_initialize(&master
->dev
);
1479 master
->bus_num
= -1;
1480 master
->num_chipselect
= 1;
1481 master
->dev
.class = &spi_master_class
;
1482 master
->dev
.parent
= get_device(dev
);
1483 spi_master_set_devdata(master
, &master
[1]);
1487 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1490 static int of_spi_register_master(struct spi_master
*master
)
1493 struct device_node
*np
= master
->dev
.of_node
;
1498 nb
= of_gpio_named_count(np
, "cs-gpios");
1499 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1501 /* Return error only for an incorrectly formed cs-gpios property */
1502 if (nb
== 0 || nb
== -ENOENT
)
1507 cs
= devm_kzalloc(&master
->dev
,
1508 sizeof(int) * master
->num_chipselect
,
1510 master
->cs_gpios
= cs
;
1512 if (!master
->cs_gpios
)
1515 for (i
= 0; i
< master
->num_chipselect
; i
++)
1518 for (i
= 0; i
< nb
; i
++)
1519 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1524 static int of_spi_register_master(struct spi_master
*master
)
1531 * spi_register_master - register SPI master controller
1532 * @master: initialized master, originally from spi_alloc_master()
1533 * Context: can sleep
1535 * SPI master controllers connect to their drivers using some non-SPI bus,
1536 * such as the platform bus. The final stage of probe() in that code
1537 * includes calling spi_register_master() to hook up to this SPI bus glue.
1539 * SPI controllers use board specific (often SOC specific) bus numbers,
1540 * and board-specific addressing for SPI devices combines those numbers
1541 * with chip select numbers. Since SPI does not directly support dynamic
1542 * device identification, boards need configuration tables telling which
1543 * chip is at which address.
1545 * This must be called from context that can sleep. It returns zero on
1546 * success, else a negative error code (dropping the master's refcount).
1547 * After a successful return, the caller is responsible for calling
1548 * spi_unregister_master().
1550 int spi_register_master(struct spi_master
*master
)
1552 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1553 struct device
*dev
= master
->dev
.parent
;
1554 struct boardinfo
*bi
;
1555 int status
= -ENODEV
;
1561 status
= of_spi_register_master(master
);
1565 /* even if it's just one always-selected device, there must
1566 * be at least one chipselect
1568 if (master
->num_chipselect
== 0)
1571 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1572 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1574 /* convention: dynamically assigned bus IDs count down from the max */
1575 if (master
->bus_num
< 0) {
1576 /* FIXME switch to an IDR based scheme, something like
1577 * I2C now uses, so we can't run out of "dynamic" IDs
1579 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1583 spin_lock_init(&master
->bus_lock_spinlock
);
1584 mutex_init(&master
->bus_lock_mutex
);
1585 master
->bus_lock_flag
= 0;
1586 init_completion(&master
->xfer_completion
);
1587 if (!master
->max_dma_len
)
1588 master
->max_dma_len
= INT_MAX
;
1590 /* register the device, then userspace will see it.
1591 * registration fails if the bus ID is in use.
1593 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1594 status
= device_add(&master
->dev
);
1597 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1598 dynamic
? " (dynamic)" : "");
1600 /* If we're using a queued driver, start the queue */
1601 if (master
->transfer
)
1602 dev_info(dev
, "master is unqueued, this is deprecated\n");
1604 status
= spi_master_initialize_queue(master
);
1606 device_del(&master
->dev
);
1611 mutex_lock(&board_lock
);
1612 list_add_tail(&master
->list
, &spi_master_list
);
1613 list_for_each_entry(bi
, &board_list
, list
)
1614 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1615 mutex_unlock(&board_lock
);
1617 /* Register devices from the device tree and ACPI */
1618 of_register_spi_devices(master
);
1619 acpi_register_spi_devices(master
);
1623 EXPORT_SYMBOL_GPL(spi_register_master
);
1625 static void devm_spi_unregister(struct device
*dev
, void *res
)
1627 spi_unregister_master(*(struct spi_master
**)res
);
1631 * dev_spi_register_master - register managed SPI master controller
1632 * @dev: device managing SPI master
1633 * @master: initialized master, originally from spi_alloc_master()
1634 * Context: can sleep
1636 * Register a SPI device as with spi_register_master() which will
1637 * automatically be unregister
1639 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1641 struct spi_master
**ptr
;
1644 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1648 ret
= spi_register_master(master
);
1651 devres_add(dev
, ptr
);
1658 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1660 static int __unregister(struct device
*dev
, void *null
)
1662 spi_unregister_device(to_spi_device(dev
));
1667 * spi_unregister_master - unregister SPI master controller
1668 * @master: the master being unregistered
1669 * Context: can sleep
1671 * This call is used only by SPI master controller drivers, which are the
1672 * only ones directly touching chip registers.
1674 * This must be called from context that can sleep.
1676 void spi_unregister_master(struct spi_master
*master
)
1680 if (master
->queued
) {
1681 if (spi_destroy_queue(master
))
1682 dev_err(&master
->dev
, "queue remove failed\n");
1685 mutex_lock(&board_lock
);
1686 list_del(&master
->list
);
1687 mutex_unlock(&board_lock
);
1689 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1690 device_unregister(&master
->dev
);
1692 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1694 int spi_master_suspend(struct spi_master
*master
)
1698 /* Basically no-ops for non-queued masters */
1699 if (!master
->queued
)
1702 ret
= spi_stop_queue(master
);
1704 dev_err(&master
->dev
, "queue stop failed\n");
1708 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1710 int spi_master_resume(struct spi_master
*master
)
1714 if (!master
->queued
)
1717 ret
= spi_start_queue(master
);
1719 dev_err(&master
->dev
, "queue restart failed\n");
1723 EXPORT_SYMBOL_GPL(spi_master_resume
);
1725 static int __spi_master_match(struct device
*dev
, const void *data
)
1727 struct spi_master
*m
;
1728 const u16
*bus_num
= data
;
1730 m
= container_of(dev
, struct spi_master
, dev
);
1731 return m
->bus_num
== *bus_num
;
1735 * spi_busnum_to_master - look up master associated with bus_num
1736 * @bus_num: the master's bus number
1737 * Context: can sleep
1739 * This call may be used with devices that are registered after
1740 * arch init time. It returns a refcounted pointer to the relevant
1741 * spi_master (which the caller must release), or NULL if there is
1742 * no such master registered.
1744 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1747 struct spi_master
*master
= NULL
;
1749 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1750 __spi_master_match
);
1752 master
= container_of(dev
, struct spi_master
, dev
);
1753 /* reference got in class_find_device */
1756 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1759 /*-------------------------------------------------------------------------*/
1761 /* Core methods for SPI master protocol drivers. Some of the
1762 * other core methods are currently defined as inline functions.
1766 * spi_setup - setup SPI mode and clock rate
1767 * @spi: the device whose settings are being modified
1768 * Context: can sleep, and no requests are queued to the device
1770 * SPI protocol drivers may need to update the transfer mode if the
1771 * device doesn't work with its default. They may likewise need
1772 * to update clock rates or word sizes from initial values. This function
1773 * changes those settings, and must be called from a context that can sleep.
1774 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1775 * effect the next time the device is selected and data is transferred to
1776 * or from it. When this function returns, the spi device is deselected.
1778 * Note that this call will fail if the protocol driver specifies an option
1779 * that the underlying controller or its driver does not support. For
1780 * example, not all hardware supports wire transfers using nine bit words,
1781 * LSB-first wire encoding, or active-high chipselects.
1783 int spi_setup(struct spi_device
*spi
)
1785 unsigned bad_bits
, ugly_bits
;
1788 /* check mode to prevent that DUAL and QUAD set at the same time
1790 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
1791 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
1793 "setup: can not select dual and quad at the same time\n");
1796 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1798 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
1799 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
1801 /* help drivers fail *cleanly* when they need options
1802 * that aren't supported with their current master
1804 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1805 ugly_bits
= bad_bits
&
1806 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
1809 "setup: ignoring unsupported mode bits %x\n",
1811 spi
->mode
&= ~ugly_bits
;
1812 bad_bits
&= ~ugly_bits
;
1815 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1820 if (!spi
->bits_per_word
)
1821 spi
->bits_per_word
= 8;
1823 if (!spi
->max_speed_hz
)
1824 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
1826 if (spi
->master
->setup
)
1827 status
= spi
->master
->setup(spi
);
1829 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1830 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1831 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1832 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1833 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1834 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1835 spi
->bits_per_word
, spi
->max_speed_hz
,
1840 EXPORT_SYMBOL_GPL(spi_setup
);
1842 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
1844 struct spi_master
*master
= spi
->master
;
1845 struct spi_transfer
*xfer
;
1848 if (list_empty(&message
->transfers
))
1851 /* Half-duplex links include original MicroWire, and ones with
1852 * only one data pin like SPI_3WIRE (switches direction) or where
1853 * either MOSI or MISO is missing. They can also be caused by
1854 * software limitations.
1856 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1857 || (spi
->mode
& SPI_3WIRE
)) {
1858 unsigned flags
= master
->flags
;
1860 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1861 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1863 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1865 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1871 * Set transfer bits_per_word and max speed as spi device default if
1872 * it is not set for this transfer.
1873 * Set transfer tx_nbits and rx_nbits as single transfer default
1874 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1876 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1877 message
->frame_length
+= xfer
->len
;
1878 if (!xfer
->bits_per_word
)
1879 xfer
->bits_per_word
= spi
->bits_per_word
;
1881 if (!xfer
->speed_hz
)
1882 xfer
->speed_hz
= spi
->max_speed_hz
;
1884 if (master
->max_speed_hz
&&
1885 xfer
->speed_hz
> master
->max_speed_hz
)
1886 xfer
->speed_hz
= master
->max_speed_hz
;
1888 if (master
->bits_per_word_mask
) {
1889 /* Only 32 bits fit in the mask */
1890 if (xfer
->bits_per_word
> 32)
1892 if (!(master
->bits_per_word_mask
&
1893 BIT(xfer
->bits_per_word
- 1)))
1898 * SPI transfer length should be multiple of SPI word size
1899 * where SPI word size should be power-of-two multiple
1901 if (xfer
->bits_per_word
<= 8)
1903 else if (xfer
->bits_per_word
<= 16)
1908 /* No partial transfers accepted */
1909 if (xfer
->len
% w_size
)
1912 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
1913 xfer
->speed_hz
< master
->min_speed_hz
)
1916 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
1917 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
1918 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
1919 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
1920 /* check transfer tx/rx_nbits:
1921 * 1. check the value matches one of single, dual and quad
1922 * 2. check tx/rx_nbits match the mode in spi_device
1925 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
1926 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
1927 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
1929 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
1930 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
1932 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
1933 !(spi
->mode
& SPI_TX_QUAD
))
1936 /* check transfer rx_nbits */
1938 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
1939 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
1940 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
1942 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
1943 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
1945 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
1946 !(spi
->mode
& SPI_RX_QUAD
))
1951 message
->status
= -EINPROGRESS
;
1956 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1958 struct spi_master
*master
= spi
->master
;
1962 trace_spi_message_submit(message
);
1964 return master
->transfer(spi
, message
);
1968 * spi_async - asynchronous SPI transfer
1969 * @spi: device with which data will be exchanged
1970 * @message: describes the data transfers, including completion callback
1971 * Context: any (irqs may be blocked, etc)
1973 * This call may be used in_irq and other contexts which can't sleep,
1974 * as well as from task contexts which can sleep.
1976 * The completion callback is invoked in a context which can't sleep.
1977 * Before that invocation, the value of message->status is undefined.
1978 * When the callback is issued, message->status holds either zero (to
1979 * indicate complete success) or a negative error code. After that
1980 * callback returns, the driver which issued the transfer request may
1981 * deallocate the associated memory; it's no longer in use by any SPI
1982 * core or controller driver code.
1984 * Note that although all messages to a spi_device are handled in
1985 * FIFO order, messages may go to different devices in other orders.
1986 * Some device might be higher priority, or have various "hard" access
1987 * time requirements, for example.
1989 * On detection of any fault during the transfer, processing of
1990 * the entire message is aborted, and the device is deselected.
1991 * Until returning from the associated message completion callback,
1992 * no other spi_message queued to that device will be processed.
1993 * (This rule applies equally to all the synchronous transfer calls,
1994 * which are wrappers around this core asynchronous primitive.)
1996 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1998 struct spi_master
*master
= spi
->master
;
2000 unsigned long flags
;
2002 ret
= __spi_validate(spi
, message
);
2006 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2008 if (master
->bus_lock_flag
)
2011 ret
= __spi_async(spi
, message
);
2013 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2017 EXPORT_SYMBOL_GPL(spi_async
);
2020 * spi_async_locked - version of spi_async with exclusive bus usage
2021 * @spi: device with which data will be exchanged
2022 * @message: describes the data transfers, including completion callback
2023 * Context: any (irqs may be blocked, etc)
2025 * This call may be used in_irq and other contexts which can't sleep,
2026 * as well as from task contexts which can sleep.
2028 * The completion callback is invoked in a context which can't sleep.
2029 * Before that invocation, the value of message->status is undefined.
2030 * When the callback is issued, message->status holds either zero (to
2031 * indicate complete success) or a negative error code. After that
2032 * callback returns, the driver which issued the transfer request may
2033 * deallocate the associated memory; it's no longer in use by any SPI
2034 * core or controller driver code.
2036 * Note that although all messages to a spi_device are handled in
2037 * FIFO order, messages may go to different devices in other orders.
2038 * Some device might be higher priority, or have various "hard" access
2039 * time requirements, for example.
2041 * On detection of any fault during the transfer, processing of
2042 * the entire message is aborted, and the device is deselected.
2043 * Until returning from the associated message completion callback,
2044 * no other spi_message queued to that device will be processed.
2045 * (This rule applies equally to all the synchronous transfer calls,
2046 * which are wrappers around this core asynchronous primitive.)
2048 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2050 struct spi_master
*master
= spi
->master
;
2052 unsigned long flags
;
2054 ret
= __spi_validate(spi
, message
);
2058 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2060 ret
= __spi_async(spi
, message
);
2062 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2067 EXPORT_SYMBOL_GPL(spi_async_locked
);
2070 /*-------------------------------------------------------------------------*/
2072 /* Utility methods for SPI master protocol drivers, layered on
2073 * top of the core. Some other utility methods are defined as
2077 static void spi_complete(void *arg
)
2082 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2085 DECLARE_COMPLETION_ONSTACK(done
);
2087 struct spi_master
*master
= spi
->master
;
2089 message
->complete
= spi_complete
;
2090 message
->context
= &done
;
2093 mutex_lock(&master
->bus_lock_mutex
);
2095 status
= spi_async_locked(spi
, message
);
2098 mutex_unlock(&master
->bus_lock_mutex
);
2101 wait_for_completion(&done
);
2102 status
= message
->status
;
2104 message
->context
= NULL
;
2109 * spi_sync - blocking/synchronous SPI data transfers
2110 * @spi: device with which data will be exchanged
2111 * @message: describes the data transfers
2112 * Context: can sleep
2114 * This call may only be used from a context that may sleep. The sleep
2115 * is non-interruptible, and has no timeout. Low-overhead controller
2116 * drivers may DMA directly into and out of the message buffers.
2118 * Note that the SPI device's chip select is active during the message,
2119 * and then is normally disabled between messages. Drivers for some
2120 * frequently-used devices may want to minimize costs of selecting a chip,
2121 * by leaving it selected in anticipation that the next message will go
2122 * to the same chip. (That may increase power usage.)
2124 * Also, the caller is guaranteeing that the memory associated with the
2125 * message will not be freed before this call returns.
2127 * It returns zero on success, else a negative error code.
2129 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2131 return __spi_sync(spi
, message
, 0);
2133 EXPORT_SYMBOL_GPL(spi_sync
);
2136 * spi_sync_locked - version of spi_sync with exclusive bus usage
2137 * @spi: device with which data will be exchanged
2138 * @message: describes the data transfers
2139 * Context: can sleep
2141 * This call may only be used from a context that may sleep. The sleep
2142 * is non-interruptible, and has no timeout. Low-overhead controller
2143 * drivers may DMA directly into and out of the message buffers.
2145 * This call should be used by drivers that require exclusive access to the
2146 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2147 * be released by a spi_bus_unlock call when the exclusive access is over.
2149 * It returns zero on success, else a negative error code.
2151 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2153 return __spi_sync(spi
, message
, 1);
2155 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2158 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2159 * @master: SPI bus master that should be locked for exclusive bus access
2160 * Context: can sleep
2162 * This call may only be used from a context that may sleep. The sleep
2163 * is non-interruptible, and has no timeout.
2165 * This call should be used by drivers that require exclusive access to the
2166 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2167 * exclusive access is over. Data transfer must be done by spi_sync_locked
2168 * and spi_async_locked calls when the SPI bus lock is held.
2170 * It returns zero on success, else a negative error code.
2172 int spi_bus_lock(struct spi_master
*master
)
2174 unsigned long flags
;
2176 mutex_lock(&master
->bus_lock_mutex
);
2178 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2179 master
->bus_lock_flag
= 1;
2180 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2182 /* mutex remains locked until spi_bus_unlock is called */
2186 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2189 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2190 * @master: SPI bus master that was locked for exclusive bus access
2191 * Context: can sleep
2193 * This call may only be used from a context that may sleep. The sleep
2194 * is non-interruptible, and has no timeout.
2196 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2199 * It returns zero on success, else a negative error code.
2201 int spi_bus_unlock(struct spi_master
*master
)
2203 master
->bus_lock_flag
= 0;
2205 mutex_unlock(&master
->bus_lock_mutex
);
2209 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2211 /* portable code must never pass more than 32 bytes */
2212 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2217 * spi_write_then_read - SPI synchronous write followed by read
2218 * @spi: device with which data will be exchanged
2219 * @txbuf: data to be written (need not be dma-safe)
2220 * @n_tx: size of txbuf, in bytes
2221 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2222 * @n_rx: size of rxbuf, in bytes
2223 * Context: can sleep
2225 * This performs a half duplex MicroWire style transaction with the
2226 * device, sending txbuf and then reading rxbuf. The return value
2227 * is zero for success, else a negative errno status code.
2228 * This call may only be used from a context that may sleep.
2230 * Parameters to this routine are always copied using a small buffer;
2231 * portable code should never use this for more than 32 bytes.
2232 * Performance-sensitive or bulk transfer code should instead use
2233 * spi_{async,sync}() calls with dma-safe buffers.
2235 int spi_write_then_read(struct spi_device
*spi
,
2236 const void *txbuf
, unsigned n_tx
,
2237 void *rxbuf
, unsigned n_rx
)
2239 static DEFINE_MUTEX(lock
);
2242 struct spi_message message
;
2243 struct spi_transfer x
[2];
2246 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2247 * copying here, (as a pure convenience thing), but we can
2248 * keep heap costs out of the hot path unless someone else is
2249 * using the pre-allocated buffer or the transfer is too large.
2251 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2252 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2253 GFP_KERNEL
| GFP_DMA
);
2260 spi_message_init(&message
);
2261 memset(x
, 0, sizeof(x
));
2264 spi_message_add_tail(&x
[0], &message
);
2268 spi_message_add_tail(&x
[1], &message
);
2271 memcpy(local_buf
, txbuf
, n_tx
);
2272 x
[0].tx_buf
= local_buf
;
2273 x
[1].rx_buf
= local_buf
+ n_tx
;
2276 status
= spi_sync(spi
, &message
);
2278 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2280 if (x
[0].tx_buf
== buf
)
2281 mutex_unlock(&lock
);
2287 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2289 /*-------------------------------------------------------------------------*/
2291 static int __init
spi_init(void)
2295 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2301 status
= bus_register(&spi_bus_type
);
2305 status
= class_register(&spi_master_class
);
2311 bus_unregister(&spi_bus_type
);
2319 /* board_info is normally registered in arch_initcall(),
2320 * but even essential drivers wait till later
2322 * REVISIT only boardinfo really needs static linking. the rest (device and
2323 * driver registration) _could_ be dynamically linked (modular) ... costs
2324 * include needing to have boardinfo data structures be much more public.
2326 postcore_initcall(spi_init
);