target: Fix LUN_RESET active TMR descriptor handling
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blob3881504b40d839fb2ac9173733863f7b98cd153f
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
74 int init_se_kmem_caches(void)
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
157 return 0;
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
200 * Allocate a new row index for the entry type specified
202 u32 scsi_get_new_index(scsi_index_t type)
204 u32 new_index;
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
212 return new_index;
215 void transport_subsystem_check_init(void)
217 int ret;
218 static int sub_api_initialized;
220 if (sub_api_initialized)
221 return;
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
235 ret = request_module("target_core_user");
236 if (ret != 0)
237 pr_err("Unable to load target_core_user\n");
239 sub_api_initialized = 1;
242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
244 struct se_session *se_sess;
246 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247 if (!se_sess) {
248 pr_err("Unable to allocate struct se_session from"
249 " se_sess_cache\n");
250 return ERR_PTR(-ENOMEM);
252 INIT_LIST_HEAD(&se_sess->sess_list);
253 INIT_LIST_HEAD(&se_sess->sess_acl_list);
254 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255 INIT_LIST_HEAD(&se_sess->sess_wait_list);
256 spin_lock_init(&se_sess->sess_cmd_lock);
257 kref_init(&se_sess->sess_kref);
258 se_sess->sup_prot_ops = sup_prot_ops;
260 return se_sess;
262 EXPORT_SYMBOL(transport_init_session);
264 int transport_alloc_session_tags(struct se_session *se_sess,
265 unsigned int tag_num, unsigned int tag_size)
267 int rc;
269 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271 if (!se_sess->sess_cmd_map) {
272 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273 if (!se_sess->sess_cmd_map) {
274 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 return -ENOMEM;
279 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280 if (rc < 0) {
281 pr_err("Unable to init se_sess->sess_tag_pool,"
282 " tag_num: %u\n", tag_num);
283 if (is_vmalloc_addr(se_sess->sess_cmd_map))
284 vfree(se_sess->sess_cmd_map);
285 else
286 kfree(se_sess->sess_cmd_map);
287 se_sess->sess_cmd_map = NULL;
288 return -ENOMEM;
291 return 0;
293 EXPORT_SYMBOL(transport_alloc_session_tags);
295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296 unsigned int tag_size,
297 enum target_prot_op sup_prot_ops)
299 struct se_session *se_sess;
300 int rc;
302 se_sess = transport_init_session(sup_prot_ops);
303 if (IS_ERR(se_sess))
304 return se_sess;
306 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307 if (rc < 0) {
308 transport_free_session(se_sess);
309 return ERR_PTR(-ENOMEM);
312 return se_sess;
314 EXPORT_SYMBOL(transport_init_session_tags);
317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
319 void __transport_register_session(
320 struct se_portal_group *se_tpg,
321 struct se_node_acl *se_nacl,
322 struct se_session *se_sess,
323 void *fabric_sess_ptr)
325 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
326 unsigned char buf[PR_REG_ISID_LEN];
328 se_sess->se_tpg = se_tpg;
329 se_sess->fabric_sess_ptr = fabric_sess_ptr;
331 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
333 * Only set for struct se_session's that will actually be moving I/O.
334 * eg: *NOT* discovery sessions.
336 if (se_nacl) {
339 * Determine if fabric allows for T10-PI feature bits exposed to
340 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
342 * If so, then always save prot_type on a per se_node_acl node
343 * basis and re-instate the previous sess_prot_type to avoid
344 * disabling PI from below any previously initiator side
345 * registered LUNs.
347 if (se_nacl->saved_prot_type)
348 se_sess->sess_prot_type = se_nacl->saved_prot_type;
349 else if (tfo->tpg_check_prot_fabric_only)
350 se_sess->sess_prot_type = se_nacl->saved_prot_type =
351 tfo->tpg_check_prot_fabric_only(se_tpg);
353 * If the fabric module supports an ISID based TransportID,
354 * save this value in binary from the fabric I_T Nexus now.
356 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
357 memset(&buf[0], 0, PR_REG_ISID_LEN);
358 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
359 &buf[0], PR_REG_ISID_LEN);
360 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
362 kref_get(&se_nacl->acl_kref);
364 spin_lock_irq(&se_nacl->nacl_sess_lock);
366 * The se_nacl->nacl_sess pointer will be set to the
367 * last active I_T Nexus for each struct se_node_acl.
369 se_nacl->nacl_sess = se_sess;
371 list_add_tail(&se_sess->sess_acl_list,
372 &se_nacl->acl_sess_list);
373 spin_unlock_irq(&se_nacl->nacl_sess_lock);
375 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
377 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
378 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
380 EXPORT_SYMBOL(__transport_register_session);
382 void transport_register_session(
383 struct se_portal_group *se_tpg,
384 struct se_node_acl *se_nacl,
385 struct se_session *se_sess,
386 void *fabric_sess_ptr)
388 unsigned long flags;
390 spin_lock_irqsave(&se_tpg->session_lock, flags);
391 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
392 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
394 EXPORT_SYMBOL(transport_register_session);
396 static void target_release_session(struct kref *kref)
398 struct se_session *se_sess = container_of(kref,
399 struct se_session, sess_kref);
400 struct se_portal_group *se_tpg = se_sess->se_tpg;
402 se_tpg->se_tpg_tfo->close_session(se_sess);
405 void target_get_session(struct se_session *se_sess)
407 kref_get(&se_sess->sess_kref);
409 EXPORT_SYMBOL(target_get_session);
411 void target_put_session(struct se_session *se_sess)
413 struct se_portal_group *tpg = se_sess->se_tpg;
415 if (tpg->se_tpg_tfo->put_session != NULL) {
416 tpg->se_tpg_tfo->put_session(se_sess);
417 return;
419 kref_put(&se_sess->sess_kref, target_release_session);
421 EXPORT_SYMBOL(target_put_session);
423 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
425 struct se_session *se_sess;
426 ssize_t len = 0;
428 spin_lock_bh(&se_tpg->session_lock);
429 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
430 if (!se_sess->se_node_acl)
431 continue;
432 if (!se_sess->se_node_acl->dynamic_node_acl)
433 continue;
434 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
435 break;
437 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
438 se_sess->se_node_acl->initiatorname);
439 len += 1; /* Include NULL terminator */
441 spin_unlock_bh(&se_tpg->session_lock);
443 return len;
445 EXPORT_SYMBOL(target_show_dynamic_sessions);
447 static void target_complete_nacl(struct kref *kref)
449 struct se_node_acl *nacl = container_of(kref,
450 struct se_node_acl, acl_kref);
452 complete(&nacl->acl_free_comp);
455 void target_put_nacl(struct se_node_acl *nacl)
457 kref_put(&nacl->acl_kref, target_complete_nacl);
460 void transport_deregister_session_configfs(struct se_session *se_sess)
462 struct se_node_acl *se_nacl;
463 unsigned long flags;
465 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
467 se_nacl = se_sess->se_node_acl;
468 if (se_nacl) {
469 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
470 if (se_nacl->acl_stop == 0)
471 list_del(&se_sess->sess_acl_list);
473 * If the session list is empty, then clear the pointer.
474 * Otherwise, set the struct se_session pointer from the tail
475 * element of the per struct se_node_acl active session list.
477 if (list_empty(&se_nacl->acl_sess_list))
478 se_nacl->nacl_sess = NULL;
479 else {
480 se_nacl->nacl_sess = container_of(
481 se_nacl->acl_sess_list.prev,
482 struct se_session, sess_acl_list);
484 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
487 EXPORT_SYMBOL(transport_deregister_session_configfs);
489 void transport_free_session(struct se_session *se_sess)
491 if (se_sess->sess_cmd_map) {
492 percpu_ida_destroy(&se_sess->sess_tag_pool);
493 if (is_vmalloc_addr(se_sess->sess_cmd_map))
494 vfree(se_sess->sess_cmd_map);
495 else
496 kfree(se_sess->sess_cmd_map);
498 kmem_cache_free(se_sess_cache, se_sess);
500 EXPORT_SYMBOL(transport_free_session);
502 void transport_deregister_session(struct se_session *se_sess)
504 struct se_portal_group *se_tpg = se_sess->se_tpg;
505 const struct target_core_fabric_ops *se_tfo;
506 struct se_node_acl *se_nacl;
507 unsigned long flags;
508 bool comp_nacl = true;
510 if (!se_tpg) {
511 transport_free_session(se_sess);
512 return;
514 se_tfo = se_tpg->se_tpg_tfo;
516 spin_lock_irqsave(&se_tpg->session_lock, flags);
517 list_del(&se_sess->sess_list);
518 se_sess->se_tpg = NULL;
519 se_sess->fabric_sess_ptr = NULL;
520 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
523 * Determine if we need to do extra work for this initiator node's
524 * struct se_node_acl if it had been previously dynamically generated.
526 se_nacl = se_sess->se_node_acl;
528 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
529 if (se_nacl && se_nacl->dynamic_node_acl) {
530 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
531 list_del(&se_nacl->acl_list);
532 se_tpg->num_node_acls--;
533 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
534 core_tpg_wait_for_nacl_pr_ref(se_nacl);
535 core_free_device_list_for_node(se_nacl, se_tpg);
536 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
538 comp_nacl = false;
539 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
542 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
544 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
545 se_tpg->se_tpg_tfo->get_fabric_name());
547 * If last kref is dropping now for an explicit NodeACL, awake sleeping
548 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
549 * removal context.
551 if (se_nacl && comp_nacl)
552 target_put_nacl(se_nacl);
554 transport_free_session(se_sess);
556 EXPORT_SYMBOL(transport_deregister_session);
559 * Called with cmd->t_state_lock held.
561 static void target_remove_from_state_list(struct se_cmd *cmd)
563 struct se_device *dev = cmd->se_dev;
564 unsigned long flags;
566 if (!dev)
567 return;
569 if (cmd->transport_state & CMD_T_BUSY)
570 return;
572 spin_lock_irqsave(&dev->execute_task_lock, flags);
573 if (cmd->state_active) {
574 list_del(&cmd->state_list);
575 cmd->state_active = false;
577 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
580 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
581 bool write_pending)
583 unsigned long flags;
585 spin_lock_irqsave(&cmd->t_state_lock, flags);
586 if (write_pending)
587 cmd->t_state = TRANSPORT_WRITE_PENDING;
589 if (remove_from_lists) {
590 target_remove_from_state_list(cmd);
593 * Clear struct se_cmd->se_lun before the handoff to FE.
595 cmd->se_lun = NULL;
599 * Determine if frontend context caller is requesting the stopping of
600 * this command for frontend exceptions.
602 if (cmd->transport_state & CMD_T_STOP) {
603 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
604 __func__, __LINE__,
605 cmd->se_tfo->get_task_tag(cmd));
607 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
609 complete_all(&cmd->t_transport_stop_comp);
610 return 1;
613 cmd->transport_state &= ~CMD_T_ACTIVE;
614 if (remove_from_lists) {
616 * Some fabric modules like tcm_loop can release
617 * their internally allocated I/O reference now and
618 * struct se_cmd now.
620 * Fabric modules are expected to return '1' here if the
621 * se_cmd being passed is released at this point,
622 * or zero if not being released.
624 if (cmd->se_tfo->check_stop_free != NULL) {
625 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626 return cmd->se_tfo->check_stop_free(cmd);
630 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631 return 0;
634 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
636 return transport_cmd_check_stop(cmd, true, false);
639 static void transport_lun_remove_cmd(struct se_cmd *cmd)
641 struct se_lun *lun = cmd->se_lun;
643 if (!lun)
644 return;
646 if (cmpxchg(&cmd->lun_ref_active, true, false))
647 percpu_ref_put(&lun->lun_ref);
650 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
652 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
653 transport_lun_remove_cmd(cmd);
655 * Allow the fabric driver to unmap any resources before
656 * releasing the descriptor via TFO->release_cmd()
658 if (remove)
659 cmd->se_tfo->aborted_task(cmd);
661 if (transport_cmd_check_stop_to_fabric(cmd))
662 return;
663 if (remove)
664 transport_put_cmd(cmd);
667 static void target_complete_failure_work(struct work_struct *work)
669 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
671 transport_generic_request_failure(cmd,
672 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
676 * Used when asking transport to copy Sense Data from the underlying
677 * Linux/SCSI struct scsi_cmnd
679 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
681 struct se_device *dev = cmd->se_dev;
683 WARN_ON(!cmd->se_lun);
685 if (!dev)
686 return NULL;
688 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
689 return NULL;
691 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
693 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
694 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
695 return cmd->sense_buffer;
698 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
700 struct se_device *dev = cmd->se_dev;
701 int success = scsi_status == GOOD;
702 unsigned long flags;
704 cmd->scsi_status = scsi_status;
707 spin_lock_irqsave(&cmd->t_state_lock, flags);
708 cmd->transport_state &= ~CMD_T_BUSY;
710 if (dev && dev->transport->transport_complete) {
711 dev->transport->transport_complete(cmd,
712 cmd->t_data_sg,
713 transport_get_sense_buffer(cmd));
714 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
715 success = 1;
719 * See if we are waiting to complete for an exception condition.
721 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 complete(&cmd->task_stop_comp);
724 return;
728 * Check for case where an explicit ABORT_TASK has been received
729 * and transport_wait_for_tasks() will be waiting for completion..
731 if (cmd->transport_state & CMD_T_ABORTED &&
732 cmd->transport_state & CMD_T_STOP) {
733 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
734 complete_all(&cmd->t_transport_stop_comp);
735 return;
736 } else if (!success) {
737 INIT_WORK(&cmd->work, target_complete_failure_work);
738 } else {
739 INIT_WORK(&cmd->work, target_complete_ok_work);
742 cmd->t_state = TRANSPORT_COMPLETE;
743 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
746 queue_work(target_completion_wq, &cmd->work);
748 EXPORT_SYMBOL(target_complete_cmd);
750 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
752 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
753 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
754 cmd->residual_count += cmd->data_length - length;
755 } else {
756 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
757 cmd->residual_count = cmd->data_length - length;
760 cmd->data_length = length;
763 target_complete_cmd(cmd, scsi_status);
765 EXPORT_SYMBOL(target_complete_cmd_with_length);
767 static void target_add_to_state_list(struct se_cmd *cmd)
769 struct se_device *dev = cmd->se_dev;
770 unsigned long flags;
772 spin_lock_irqsave(&dev->execute_task_lock, flags);
773 if (!cmd->state_active) {
774 list_add_tail(&cmd->state_list, &dev->state_list);
775 cmd->state_active = true;
777 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
781 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
783 static void transport_write_pending_qf(struct se_cmd *cmd);
784 static void transport_complete_qf(struct se_cmd *cmd);
786 void target_qf_do_work(struct work_struct *work)
788 struct se_device *dev = container_of(work, struct se_device,
789 qf_work_queue);
790 LIST_HEAD(qf_cmd_list);
791 struct se_cmd *cmd, *cmd_tmp;
793 spin_lock_irq(&dev->qf_cmd_lock);
794 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
795 spin_unlock_irq(&dev->qf_cmd_lock);
797 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
798 list_del(&cmd->se_qf_node);
799 atomic_dec_mb(&dev->dev_qf_count);
801 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
802 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
803 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
804 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
805 : "UNKNOWN");
807 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
808 transport_write_pending_qf(cmd);
809 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
810 transport_complete_qf(cmd);
814 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
816 switch (cmd->data_direction) {
817 case DMA_NONE:
818 return "NONE";
819 case DMA_FROM_DEVICE:
820 return "READ";
821 case DMA_TO_DEVICE:
822 return "WRITE";
823 case DMA_BIDIRECTIONAL:
824 return "BIDI";
825 default:
826 break;
829 return "UNKNOWN";
832 void transport_dump_dev_state(
833 struct se_device *dev,
834 char *b,
835 int *bl)
837 *bl += sprintf(b + *bl, "Status: ");
838 if (dev->export_count)
839 *bl += sprintf(b + *bl, "ACTIVATED");
840 else
841 *bl += sprintf(b + *bl, "DEACTIVATED");
843 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
844 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
845 dev->dev_attrib.block_size,
846 dev->dev_attrib.hw_max_sectors);
847 *bl += sprintf(b + *bl, " ");
850 void transport_dump_vpd_proto_id(
851 struct t10_vpd *vpd,
852 unsigned char *p_buf,
853 int p_buf_len)
855 unsigned char buf[VPD_TMP_BUF_SIZE];
856 int len;
858 memset(buf, 0, VPD_TMP_BUF_SIZE);
859 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
861 switch (vpd->protocol_identifier) {
862 case 0x00:
863 sprintf(buf+len, "Fibre Channel\n");
864 break;
865 case 0x10:
866 sprintf(buf+len, "Parallel SCSI\n");
867 break;
868 case 0x20:
869 sprintf(buf+len, "SSA\n");
870 break;
871 case 0x30:
872 sprintf(buf+len, "IEEE 1394\n");
873 break;
874 case 0x40:
875 sprintf(buf+len, "SCSI Remote Direct Memory Access"
876 " Protocol\n");
877 break;
878 case 0x50:
879 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
880 break;
881 case 0x60:
882 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
883 break;
884 case 0x70:
885 sprintf(buf+len, "Automation/Drive Interface Transport"
886 " Protocol\n");
887 break;
888 case 0x80:
889 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
890 break;
891 default:
892 sprintf(buf+len, "Unknown 0x%02x\n",
893 vpd->protocol_identifier);
894 break;
897 if (p_buf)
898 strncpy(p_buf, buf, p_buf_len);
899 else
900 pr_debug("%s", buf);
903 void
904 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
907 * Check if the Protocol Identifier Valid (PIV) bit is set..
909 * from spc3r23.pdf section 7.5.1
911 if (page_83[1] & 0x80) {
912 vpd->protocol_identifier = (page_83[0] & 0xf0);
913 vpd->protocol_identifier_set = 1;
914 transport_dump_vpd_proto_id(vpd, NULL, 0);
917 EXPORT_SYMBOL(transport_set_vpd_proto_id);
919 int transport_dump_vpd_assoc(
920 struct t10_vpd *vpd,
921 unsigned char *p_buf,
922 int p_buf_len)
924 unsigned char buf[VPD_TMP_BUF_SIZE];
925 int ret = 0;
926 int len;
928 memset(buf, 0, VPD_TMP_BUF_SIZE);
929 len = sprintf(buf, "T10 VPD Identifier Association: ");
931 switch (vpd->association) {
932 case 0x00:
933 sprintf(buf+len, "addressed logical unit\n");
934 break;
935 case 0x10:
936 sprintf(buf+len, "target port\n");
937 break;
938 case 0x20:
939 sprintf(buf+len, "SCSI target device\n");
940 break;
941 default:
942 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
943 ret = -EINVAL;
944 break;
947 if (p_buf)
948 strncpy(p_buf, buf, p_buf_len);
949 else
950 pr_debug("%s", buf);
952 return ret;
955 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
958 * The VPD identification association..
960 * from spc3r23.pdf Section 7.6.3.1 Table 297
962 vpd->association = (page_83[1] & 0x30);
963 return transport_dump_vpd_assoc(vpd, NULL, 0);
965 EXPORT_SYMBOL(transport_set_vpd_assoc);
967 int transport_dump_vpd_ident_type(
968 struct t10_vpd *vpd,
969 unsigned char *p_buf,
970 int p_buf_len)
972 unsigned char buf[VPD_TMP_BUF_SIZE];
973 int ret = 0;
974 int len;
976 memset(buf, 0, VPD_TMP_BUF_SIZE);
977 len = sprintf(buf, "T10 VPD Identifier Type: ");
979 switch (vpd->device_identifier_type) {
980 case 0x00:
981 sprintf(buf+len, "Vendor specific\n");
982 break;
983 case 0x01:
984 sprintf(buf+len, "T10 Vendor ID based\n");
985 break;
986 case 0x02:
987 sprintf(buf+len, "EUI-64 based\n");
988 break;
989 case 0x03:
990 sprintf(buf+len, "NAA\n");
991 break;
992 case 0x04:
993 sprintf(buf+len, "Relative target port identifier\n");
994 break;
995 case 0x08:
996 sprintf(buf+len, "SCSI name string\n");
997 break;
998 default:
999 sprintf(buf+len, "Unsupported: 0x%02x\n",
1000 vpd->device_identifier_type);
1001 ret = -EINVAL;
1002 break;
1005 if (p_buf) {
1006 if (p_buf_len < strlen(buf)+1)
1007 return -EINVAL;
1008 strncpy(p_buf, buf, p_buf_len);
1009 } else {
1010 pr_debug("%s", buf);
1013 return ret;
1016 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1019 * The VPD identifier type..
1021 * from spc3r23.pdf Section 7.6.3.1 Table 298
1023 vpd->device_identifier_type = (page_83[1] & 0x0f);
1024 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1026 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1028 int transport_dump_vpd_ident(
1029 struct t10_vpd *vpd,
1030 unsigned char *p_buf,
1031 int p_buf_len)
1033 unsigned char buf[VPD_TMP_BUF_SIZE];
1034 int ret = 0;
1036 memset(buf, 0, VPD_TMP_BUF_SIZE);
1038 switch (vpd->device_identifier_code_set) {
1039 case 0x01: /* Binary */
1040 snprintf(buf, sizeof(buf),
1041 "T10 VPD Binary Device Identifier: %s\n",
1042 &vpd->device_identifier[0]);
1043 break;
1044 case 0x02: /* ASCII */
1045 snprintf(buf, sizeof(buf),
1046 "T10 VPD ASCII Device Identifier: %s\n",
1047 &vpd->device_identifier[0]);
1048 break;
1049 case 0x03: /* UTF-8 */
1050 snprintf(buf, sizeof(buf),
1051 "T10 VPD UTF-8 Device Identifier: %s\n",
1052 &vpd->device_identifier[0]);
1053 break;
1054 default:
1055 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1056 " 0x%02x", vpd->device_identifier_code_set);
1057 ret = -EINVAL;
1058 break;
1061 if (p_buf)
1062 strncpy(p_buf, buf, p_buf_len);
1063 else
1064 pr_debug("%s", buf);
1066 return ret;
1070 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1072 static const char hex_str[] = "0123456789abcdef";
1073 int j = 0, i = 4; /* offset to start of the identifier */
1076 * The VPD Code Set (encoding)
1078 * from spc3r23.pdf Section 7.6.3.1 Table 296
1080 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1081 switch (vpd->device_identifier_code_set) {
1082 case 0x01: /* Binary */
1083 vpd->device_identifier[j++] =
1084 hex_str[vpd->device_identifier_type];
1085 while (i < (4 + page_83[3])) {
1086 vpd->device_identifier[j++] =
1087 hex_str[(page_83[i] & 0xf0) >> 4];
1088 vpd->device_identifier[j++] =
1089 hex_str[page_83[i] & 0x0f];
1090 i++;
1092 break;
1093 case 0x02: /* ASCII */
1094 case 0x03: /* UTF-8 */
1095 while (i < (4 + page_83[3]))
1096 vpd->device_identifier[j++] = page_83[i++];
1097 break;
1098 default:
1099 break;
1102 return transport_dump_vpd_ident(vpd, NULL, 0);
1104 EXPORT_SYMBOL(transport_set_vpd_ident);
1106 sense_reason_t
1107 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1109 struct se_device *dev = cmd->se_dev;
1111 if (cmd->unknown_data_length) {
1112 cmd->data_length = size;
1113 } else if (size != cmd->data_length) {
1114 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1115 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1116 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1117 cmd->data_length, size, cmd->t_task_cdb[0]);
1119 if (cmd->data_direction == DMA_TO_DEVICE) {
1120 pr_err("Rejecting underflow/overflow"
1121 " WRITE data\n");
1122 return TCM_INVALID_CDB_FIELD;
1125 * Reject READ_* or WRITE_* with overflow/underflow for
1126 * type SCF_SCSI_DATA_CDB.
1128 if (dev->dev_attrib.block_size != 512) {
1129 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1130 " CDB on non 512-byte sector setup subsystem"
1131 " plugin: %s\n", dev->transport->name);
1132 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1133 return TCM_INVALID_CDB_FIELD;
1136 * For the overflow case keep the existing fabric provided
1137 * ->data_length. Otherwise for the underflow case, reset
1138 * ->data_length to the smaller SCSI expected data transfer
1139 * length.
1141 if (size > cmd->data_length) {
1142 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1143 cmd->residual_count = (size - cmd->data_length);
1144 } else {
1145 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1146 cmd->residual_count = (cmd->data_length - size);
1147 cmd->data_length = size;
1151 return 0;
1156 * Used by fabric modules containing a local struct se_cmd within their
1157 * fabric dependent per I/O descriptor.
1159 void transport_init_se_cmd(
1160 struct se_cmd *cmd,
1161 const struct target_core_fabric_ops *tfo,
1162 struct se_session *se_sess,
1163 u32 data_length,
1164 int data_direction,
1165 int task_attr,
1166 unsigned char *sense_buffer)
1168 INIT_LIST_HEAD(&cmd->se_delayed_node);
1169 INIT_LIST_HEAD(&cmd->se_qf_node);
1170 INIT_LIST_HEAD(&cmd->se_cmd_list);
1171 INIT_LIST_HEAD(&cmd->state_list);
1172 init_completion(&cmd->t_transport_stop_comp);
1173 init_completion(&cmd->cmd_wait_comp);
1174 init_completion(&cmd->task_stop_comp);
1175 spin_lock_init(&cmd->t_state_lock);
1176 kref_init(&cmd->cmd_kref);
1177 cmd->transport_state = CMD_T_DEV_ACTIVE;
1179 cmd->se_tfo = tfo;
1180 cmd->se_sess = se_sess;
1181 cmd->data_length = data_length;
1182 cmd->data_direction = data_direction;
1183 cmd->sam_task_attr = task_attr;
1184 cmd->sense_buffer = sense_buffer;
1186 cmd->state_active = false;
1188 EXPORT_SYMBOL(transport_init_se_cmd);
1190 static sense_reason_t
1191 transport_check_alloc_task_attr(struct se_cmd *cmd)
1193 struct se_device *dev = cmd->se_dev;
1196 * Check if SAM Task Attribute emulation is enabled for this
1197 * struct se_device storage object
1199 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1200 return 0;
1202 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1203 pr_debug("SAM Task Attribute ACA"
1204 " emulation is not supported\n");
1205 return TCM_INVALID_CDB_FIELD;
1208 * Used to determine when ORDERED commands should go from
1209 * Dormant to Active status.
1211 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1212 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1213 cmd->se_ordered_id, cmd->sam_task_attr,
1214 dev->transport->name);
1215 return 0;
1218 sense_reason_t
1219 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1221 struct se_device *dev = cmd->se_dev;
1222 sense_reason_t ret;
1225 * Ensure that the received CDB is less than the max (252 + 8) bytes
1226 * for VARIABLE_LENGTH_CMD
1228 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1229 pr_err("Received SCSI CDB with command_size: %d that"
1230 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1231 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1232 return TCM_INVALID_CDB_FIELD;
1235 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1236 * allocate the additional extended CDB buffer now.. Otherwise
1237 * setup the pointer from __t_task_cdb to t_task_cdb.
1239 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1240 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1241 GFP_KERNEL);
1242 if (!cmd->t_task_cdb) {
1243 pr_err("Unable to allocate cmd->t_task_cdb"
1244 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1245 scsi_command_size(cdb),
1246 (unsigned long)sizeof(cmd->__t_task_cdb));
1247 return TCM_OUT_OF_RESOURCES;
1249 } else
1250 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1252 * Copy the original CDB into cmd->
1254 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1256 trace_target_sequencer_start(cmd);
1259 * Check for an existing UNIT ATTENTION condition
1261 ret = target_scsi3_ua_check(cmd);
1262 if (ret)
1263 return ret;
1265 ret = target_alua_state_check(cmd);
1266 if (ret)
1267 return ret;
1269 ret = target_check_reservation(cmd);
1270 if (ret) {
1271 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1272 return ret;
1275 ret = dev->transport->parse_cdb(cmd);
1276 if (ret)
1277 return ret;
1279 ret = transport_check_alloc_task_attr(cmd);
1280 if (ret)
1281 return ret;
1283 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1285 spin_lock(&cmd->se_lun->lun_sep_lock);
1286 if (cmd->se_lun->lun_sep)
1287 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1288 spin_unlock(&cmd->se_lun->lun_sep_lock);
1289 return 0;
1291 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1294 * Used by fabric module frontends to queue tasks directly.
1295 * Many only be used from process context only
1297 int transport_handle_cdb_direct(
1298 struct se_cmd *cmd)
1300 sense_reason_t ret;
1302 if (!cmd->se_lun) {
1303 dump_stack();
1304 pr_err("cmd->se_lun is NULL\n");
1305 return -EINVAL;
1307 if (in_interrupt()) {
1308 dump_stack();
1309 pr_err("transport_generic_handle_cdb cannot be called"
1310 " from interrupt context\n");
1311 return -EINVAL;
1314 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1315 * outstanding descriptors are handled correctly during shutdown via
1316 * transport_wait_for_tasks()
1318 * Also, we don't take cmd->t_state_lock here as we only expect
1319 * this to be called for initial descriptor submission.
1321 cmd->t_state = TRANSPORT_NEW_CMD;
1322 cmd->transport_state |= CMD_T_ACTIVE;
1325 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1326 * so follow TRANSPORT_NEW_CMD processing thread context usage
1327 * and call transport_generic_request_failure() if necessary..
1329 ret = transport_generic_new_cmd(cmd);
1330 if (ret)
1331 transport_generic_request_failure(cmd, ret);
1332 return 0;
1334 EXPORT_SYMBOL(transport_handle_cdb_direct);
1336 sense_reason_t
1337 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1338 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1340 if (!sgl || !sgl_count)
1341 return 0;
1344 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1345 * scatterlists already have been set to follow what the fabric
1346 * passes for the original expected data transfer length.
1348 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1349 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1350 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1351 return TCM_INVALID_CDB_FIELD;
1354 cmd->t_data_sg = sgl;
1355 cmd->t_data_nents = sgl_count;
1357 if (sgl_bidi && sgl_bidi_count) {
1358 cmd->t_bidi_data_sg = sgl_bidi;
1359 cmd->t_bidi_data_nents = sgl_bidi_count;
1361 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1362 return 0;
1366 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1367 * se_cmd + use pre-allocated SGL memory.
1369 * @se_cmd: command descriptor to submit
1370 * @se_sess: associated se_sess for endpoint
1371 * @cdb: pointer to SCSI CDB
1372 * @sense: pointer to SCSI sense buffer
1373 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1374 * @data_length: fabric expected data transfer length
1375 * @task_addr: SAM task attribute
1376 * @data_dir: DMA data direction
1377 * @flags: flags for command submission from target_sc_flags_tables
1378 * @sgl: struct scatterlist memory for unidirectional mapping
1379 * @sgl_count: scatterlist count for unidirectional mapping
1380 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1381 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1382 * @sgl_prot: struct scatterlist memory protection information
1383 * @sgl_prot_count: scatterlist count for protection information
1385 * Returns non zero to signal active I/O shutdown failure. All other
1386 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1387 * but still return zero here.
1389 * This may only be called from process context, and also currently
1390 * assumes internal allocation of fabric payload buffer by target-core.
1392 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1393 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1394 u32 data_length, int task_attr, int data_dir, int flags,
1395 struct scatterlist *sgl, u32 sgl_count,
1396 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1397 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1399 struct se_portal_group *se_tpg;
1400 sense_reason_t rc;
1401 int ret;
1403 se_tpg = se_sess->se_tpg;
1404 BUG_ON(!se_tpg);
1405 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1406 BUG_ON(in_interrupt());
1408 * Initialize se_cmd for target operation. From this point
1409 * exceptions are handled by sending exception status via
1410 * target_core_fabric_ops->queue_status() callback
1412 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1413 data_length, data_dir, task_attr, sense);
1414 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1415 se_cmd->unknown_data_length = 1;
1417 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1418 * se_sess->sess_cmd_list. A second kref_get here is necessary
1419 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1420 * kref_put() to happen during fabric packet acknowledgement.
1422 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1423 if (ret)
1424 return ret;
1426 * Signal bidirectional data payloads to target-core
1428 if (flags & TARGET_SCF_BIDI_OP)
1429 se_cmd->se_cmd_flags |= SCF_BIDI;
1431 * Locate se_lun pointer and attach it to struct se_cmd
1433 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1434 if (rc) {
1435 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1436 target_put_sess_cmd(se_cmd);
1437 return 0;
1440 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1441 if (rc != 0) {
1442 transport_generic_request_failure(se_cmd, rc);
1443 return 0;
1447 * Save pointers for SGLs containing protection information,
1448 * if present.
1450 if (sgl_prot_count) {
1451 se_cmd->t_prot_sg = sgl_prot;
1452 se_cmd->t_prot_nents = sgl_prot_count;
1456 * When a non zero sgl_count has been passed perform SGL passthrough
1457 * mapping for pre-allocated fabric memory instead of having target
1458 * core perform an internal SGL allocation..
1460 if (sgl_count != 0) {
1461 BUG_ON(!sgl);
1464 * A work-around for tcm_loop as some userspace code via
1465 * scsi-generic do not memset their associated read buffers,
1466 * so go ahead and do that here for type non-data CDBs. Also
1467 * note that this is currently guaranteed to be a single SGL
1468 * for this case by target core in target_setup_cmd_from_cdb()
1469 * -> transport_generic_cmd_sequencer().
1471 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1472 se_cmd->data_direction == DMA_FROM_DEVICE) {
1473 unsigned char *buf = NULL;
1475 if (sgl)
1476 buf = kmap(sg_page(sgl)) + sgl->offset;
1478 if (buf) {
1479 memset(buf, 0, sgl->length);
1480 kunmap(sg_page(sgl));
1484 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1485 sgl_bidi, sgl_bidi_count);
1486 if (rc != 0) {
1487 transport_generic_request_failure(se_cmd, rc);
1488 return 0;
1493 * Check if we need to delay processing because of ALUA
1494 * Active/NonOptimized primary access state..
1496 core_alua_check_nonop_delay(se_cmd);
1498 transport_handle_cdb_direct(se_cmd);
1499 return 0;
1501 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1504 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1506 * @se_cmd: command descriptor to submit
1507 * @se_sess: associated se_sess for endpoint
1508 * @cdb: pointer to SCSI CDB
1509 * @sense: pointer to SCSI sense buffer
1510 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1511 * @data_length: fabric expected data transfer length
1512 * @task_addr: SAM task attribute
1513 * @data_dir: DMA data direction
1514 * @flags: flags for command submission from target_sc_flags_tables
1516 * Returns non zero to signal active I/O shutdown failure. All other
1517 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1518 * but still return zero here.
1520 * This may only be called from process context, and also currently
1521 * assumes internal allocation of fabric payload buffer by target-core.
1523 * It also assumes interal target core SGL memory allocation.
1525 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1526 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1527 u32 data_length, int task_attr, int data_dir, int flags)
1529 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1530 unpacked_lun, data_length, task_attr, data_dir,
1531 flags, NULL, 0, NULL, 0, NULL, 0);
1533 EXPORT_SYMBOL(target_submit_cmd);
1535 static void target_complete_tmr_failure(struct work_struct *work)
1537 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1539 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1540 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1542 transport_cmd_check_stop_to_fabric(se_cmd);
1546 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1547 * for TMR CDBs
1549 * @se_cmd: command descriptor to submit
1550 * @se_sess: associated se_sess for endpoint
1551 * @sense: pointer to SCSI sense buffer
1552 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1553 * @fabric_context: fabric context for TMR req
1554 * @tm_type: Type of TM request
1555 * @gfp: gfp type for caller
1556 * @tag: referenced task tag for TMR_ABORT_TASK
1557 * @flags: submit cmd flags
1559 * Callable from all contexts.
1562 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1563 unsigned char *sense, u32 unpacked_lun,
1564 void *fabric_tmr_ptr, unsigned char tm_type,
1565 gfp_t gfp, unsigned int tag, int flags)
1567 struct se_portal_group *se_tpg;
1568 int ret;
1570 se_tpg = se_sess->se_tpg;
1571 BUG_ON(!se_tpg);
1573 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1574 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1576 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1577 * allocation failure.
1579 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1580 if (ret < 0)
1581 return -ENOMEM;
1583 if (tm_type == TMR_ABORT_TASK)
1584 se_cmd->se_tmr_req->ref_task_tag = tag;
1586 /* See target_submit_cmd for commentary */
1587 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1588 if (ret) {
1589 core_tmr_release_req(se_cmd->se_tmr_req);
1590 return ret;
1593 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1594 if (ret) {
1596 * For callback during failure handling, push this work off
1597 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1599 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1600 schedule_work(&se_cmd->work);
1601 return 0;
1603 transport_generic_handle_tmr(se_cmd);
1604 return 0;
1606 EXPORT_SYMBOL(target_submit_tmr);
1609 * If the cmd is active, request it to be stopped and sleep until it
1610 * has completed.
1612 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1613 __releases(&cmd->t_state_lock)
1614 __acquires(&cmd->t_state_lock)
1616 bool was_active = false;
1618 if (cmd->transport_state & CMD_T_BUSY) {
1619 cmd->transport_state |= CMD_T_REQUEST_STOP;
1620 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1622 pr_debug("cmd %p waiting to complete\n", cmd);
1623 wait_for_completion(&cmd->task_stop_comp);
1624 pr_debug("cmd %p stopped successfully\n", cmd);
1626 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1627 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1628 cmd->transport_state &= ~CMD_T_BUSY;
1629 was_active = true;
1632 return was_active;
1636 * Handle SAM-esque emulation for generic transport request failures.
1638 void transport_generic_request_failure(struct se_cmd *cmd,
1639 sense_reason_t sense_reason)
1641 int ret = 0;
1643 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1644 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1645 cmd->t_task_cdb[0]);
1646 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1647 cmd->se_tfo->get_cmd_state(cmd),
1648 cmd->t_state, sense_reason);
1649 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1650 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1651 (cmd->transport_state & CMD_T_STOP) != 0,
1652 (cmd->transport_state & CMD_T_SENT) != 0);
1655 * For SAM Task Attribute emulation for failed struct se_cmd
1657 transport_complete_task_attr(cmd);
1659 * Handle special case for COMPARE_AND_WRITE failure, where the
1660 * callback is expected to drop the per device ->caw_sem.
1662 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1663 cmd->transport_complete_callback)
1664 cmd->transport_complete_callback(cmd, false);
1666 switch (sense_reason) {
1667 case TCM_NON_EXISTENT_LUN:
1668 case TCM_UNSUPPORTED_SCSI_OPCODE:
1669 case TCM_INVALID_CDB_FIELD:
1670 case TCM_INVALID_PARAMETER_LIST:
1671 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1672 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1673 case TCM_UNKNOWN_MODE_PAGE:
1674 case TCM_WRITE_PROTECTED:
1675 case TCM_ADDRESS_OUT_OF_RANGE:
1676 case TCM_CHECK_CONDITION_ABORT_CMD:
1677 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1678 case TCM_CHECK_CONDITION_NOT_READY:
1679 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1680 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1681 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1682 break;
1683 case TCM_OUT_OF_RESOURCES:
1684 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1685 break;
1686 case TCM_RESERVATION_CONFLICT:
1688 * No SENSE Data payload for this case, set SCSI Status
1689 * and queue the response to $FABRIC_MOD.
1691 * Uses linux/include/scsi/scsi.h SAM status codes defs
1693 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1695 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1696 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1697 * CONFLICT STATUS.
1699 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1701 if (cmd->se_sess &&
1702 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1703 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1704 cmd->orig_fe_lun, 0x2C,
1705 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1707 trace_target_cmd_complete(cmd);
1708 ret = cmd->se_tfo-> queue_status(cmd);
1709 if (ret == -EAGAIN || ret == -ENOMEM)
1710 goto queue_full;
1711 goto check_stop;
1712 default:
1713 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1714 cmd->t_task_cdb[0], sense_reason);
1715 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1716 break;
1719 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1720 if (ret == -EAGAIN || ret == -ENOMEM)
1721 goto queue_full;
1723 check_stop:
1724 transport_lun_remove_cmd(cmd);
1725 if (!transport_cmd_check_stop_to_fabric(cmd))
1727 return;
1729 queue_full:
1730 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1731 transport_handle_queue_full(cmd, cmd->se_dev);
1733 EXPORT_SYMBOL(transport_generic_request_failure);
1735 void __target_execute_cmd(struct se_cmd *cmd)
1737 sense_reason_t ret;
1739 if (cmd->execute_cmd) {
1740 ret = cmd->execute_cmd(cmd);
1741 if (ret) {
1742 spin_lock_irq(&cmd->t_state_lock);
1743 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1744 spin_unlock_irq(&cmd->t_state_lock);
1746 transport_generic_request_failure(cmd, ret);
1751 static int target_write_prot_action(struct se_cmd *cmd)
1753 u32 sectors;
1755 * Perform WRITE_INSERT of PI using software emulation when backend
1756 * device has PI enabled, if the transport has not already generated
1757 * PI using hardware WRITE_INSERT offload.
1759 switch (cmd->prot_op) {
1760 case TARGET_PROT_DOUT_INSERT:
1761 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1762 sbc_dif_generate(cmd);
1763 break;
1764 case TARGET_PROT_DOUT_STRIP:
1765 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1766 break;
1768 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1769 cmd->pi_err = sbc_dif_verify_write(cmd, cmd->t_task_lba,
1770 sectors, 0, NULL, 0);
1771 if (unlikely(cmd->pi_err)) {
1772 spin_lock_irq(&cmd->t_state_lock);
1773 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1774 spin_unlock_irq(&cmd->t_state_lock);
1775 transport_generic_request_failure(cmd, cmd->pi_err);
1776 return -1;
1778 break;
1779 default:
1780 break;
1783 return 0;
1786 static bool target_handle_task_attr(struct se_cmd *cmd)
1788 struct se_device *dev = cmd->se_dev;
1790 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1791 return false;
1794 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1795 * to allow the passed struct se_cmd list of tasks to the front of the list.
1797 switch (cmd->sam_task_attr) {
1798 case TCM_HEAD_TAG:
1799 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1800 "se_ordered_id: %u\n",
1801 cmd->t_task_cdb[0], cmd->se_ordered_id);
1802 return false;
1803 case TCM_ORDERED_TAG:
1804 atomic_inc_mb(&dev->dev_ordered_sync);
1806 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1807 " se_ordered_id: %u\n",
1808 cmd->t_task_cdb[0], cmd->se_ordered_id);
1811 * Execute an ORDERED command if no other older commands
1812 * exist that need to be completed first.
1814 if (!atomic_read(&dev->simple_cmds))
1815 return false;
1816 break;
1817 default:
1819 * For SIMPLE and UNTAGGED Task Attribute commands
1821 atomic_inc_mb(&dev->simple_cmds);
1822 break;
1825 if (atomic_read(&dev->dev_ordered_sync) == 0)
1826 return false;
1828 spin_lock(&dev->delayed_cmd_lock);
1829 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1830 spin_unlock(&dev->delayed_cmd_lock);
1832 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1833 " delayed CMD list, se_ordered_id: %u\n",
1834 cmd->t_task_cdb[0], cmd->sam_task_attr,
1835 cmd->se_ordered_id);
1836 return true;
1839 void target_execute_cmd(struct se_cmd *cmd)
1842 * If the received CDB has aleady been aborted stop processing it here.
1844 if (transport_check_aborted_status(cmd, 1))
1845 return;
1848 * Determine if frontend context caller is requesting the stopping of
1849 * this command for frontend exceptions.
1851 spin_lock_irq(&cmd->t_state_lock);
1852 if (cmd->transport_state & CMD_T_STOP) {
1853 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1854 __func__, __LINE__,
1855 cmd->se_tfo->get_task_tag(cmd));
1857 spin_unlock_irq(&cmd->t_state_lock);
1858 complete_all(&cmd->t_transport_stop_comp);
1859 return;
1862 cmd->t_state = TRANSPORT_PROCESSING;
1863 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1864 spin_unlock_irq(&cmd->t_state_lock);
1866 if (target_write_prot_action(cmd))
1867 return;
1869 if (target_handle_task_attr(cmd)) {
1870 spin_lock_irq(&cmd->t_state_lock);
1871 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1872 spin_unlock_irq(&cmd->t_state_lock);
1873 return;
1876 __target_execute_cmd(cmd);
1878 EXPORT_SYMBOL(target_execute_cmd);
1881 * Process all commands up to the last received ORDERED task attribute which
1882 * requires another blocking boundary
1884 static void target_restart_delayed_cmds(struct se_device *dev)
1886 for (;;) {
1887 struct se_cmd *cmd;
1889 spin_lock(&dev->delayed_cmd_lock);
1890 if (list_empty(&dev->delayed_cmd_list)) {
1891 spin_unlock(&dev->delayed_cmd_lock);
1892 break;
1895 cmd = list_entry(dev->delayed_cmd_list.next,
1896 struct se_cmd, se_delayed_node);
1897 list_del(&cmd->se_delayed_node);
1898 spin_unlock(&dev->delayed_cmd_lock);
1900 __target_execute_cmd(cmd);
1902 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1903 break;
1908 * Called from I/O completion to determine which dormant/delayed
1909 * and ordered cmds need to have their tasks added to the execution queue.
1911 static void transport_complete_task_attr(struct se_cmd *cmd)
1913 struct se_device *dev = cmd->se_dev;
1915 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1916 return;
1918 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1919 atomic_dec_mb(&dev->simple_cmds);
1920 dev->dev_cur_ordered_id++;
1921 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1922 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1923 cmd->se_ordered_id);
1924 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1925 dev->dev_cur_ordered_id++;
1926 pr_debug("Incremented dev_cur_ordered_id: %u for"
1927 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1928 cmd->se_ordered_id);
1929 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1930 atomic_dec_mb(&dev->dev_ordered_sync);
1932 dev->dev_cur_ordered_id++;
1933 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1934 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1937 target_restart_delayed_cmds(dev);
1940 static void transport_complete_qf(struct se_cmd *cmd)
1942 int ret = 0;
1944 transport_complete_task_attr(cmd);
1946 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1947 trace_target_cmd_complete(cmd);
1948 ret = cmd->se_tfo->queue_status(cmd);
1949 goto out;
1952 switch (cmd->data_direction) {
1953 case DMA_FROM_DEVICE:
1954 trace_target_cmd_complete(cmd);
1955 ret = cmd->se_tfo->queue_data_in(cmd);
1956 break;
1957 case DMA_TO_DEVICE:
1958 if (cmd->se_cmd_flags & SCF_BIDI) {
1959 ret = cmd->se_tfo->queue_data_in(cmd);
1960 break;
1962 /* Fall through for DMA_TO_DEVICE */
1963 case DMA_NONE:
1964 trace_target_cmd_complete(cmd);
1965 ret = cmd->se_tfo->queue_status(cmd);
1966 break;
1967 default:
1968 break;
1971 out:
1972 if (ret < 0) {
1973 transport_handle_queue_full(cmd, cmd->se_dev);
1974 return;
1976 transport_lun_remove_cmd(cmd);
1977 transport_cmd_check_stop_to_fabric(cmd);
1980 static void transport_handle_queue_full(
1981 struct se_cmd *cmd,
1982 struct se_device *dev)
1984 spin_lock_irq(&dev->qf_cmd_lock);
1985 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1986 atomic_inc_mb(&dev->dev_qf_count);
1987 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1989 schedule_work(&cmd->se_dev->qf_work_queue);
1992 static bool target_read_prot_action(struct se_cmd *cmd)
1994 sense_reason_t rc;
1996 switch (cmd->prot_op) {
1997 case TARGET_PROT_DIN_STRIP:
1998 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1999 rc = sbc_dif_read_strip(cmd);
2000 if (rc) {
2001 cmd->pi_err = rc;
2002 return true;
2005 break;
2006 case TARGET_PROT_DIN_INSERT:
2007 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2008 break;
2010 sbc_dif_generate(cmd);
2011 break;
2012 default:
2013 break;
2016 return false;
2019 static void target_complete_ok_work(struct work_struct *work)
2021 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2022 int ret;
2025 * Check if we need to move delayed/dormant tasks from cmds on the
2026 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2027 * Attribute.
2029 transport_complete_task_attr(cmd);
2032 * Check to schedule QUEUE_FULL work, or execute an existing
2033 * cmd->transport_qf_callback()
2035 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2036 schedule_work(&cmd->se_dev->qf_work_queue);
2039 * Check if we need to send a sense buffer from
2040 * the struct se_cmd in question.
2042 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2043 WARN_ON(!cmd->scsi_status);
2044 ret = transport_send_check_condition_and_sense(
2045 cmd, 0, 1);
2046 if (ret == -EAGAIN || ret == -ENOMEM)
2047 goto queue_full;
2049 transport_lun_remove_cmd(cmd);
2050 transport_cmd_check_stop_to_fabric(cmd);
2051 return;
2054 * Check for a callback, used by amongst other things
2055 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2057 if (cmd->transport_complete_callback) {
2058 sense_reason_t rc;
2060 rc = cmd->transport_complete_callback(cmd, true);
2061 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
2062 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2063 !cmd->data_length)
2064 goto queue_rsp;
2066 return;
2067 } else if (rc) {
2068 ret = transport_send_check_condition_and_sense(cmd,
2069 rc, 0);
2070 if (ret == -EAGAIN || ret == -ENOMEM)
2071 goto queue_full;
2073 transport_lun_remove_cmd(cmd);
2074 transport_cmd_check_stop_to_fabric(cmd);
2075 return;
2079 queue_rsp:
2080 switch (cmd->data_direction) {
2081 case DMA_FROM_DEVICE:
2082 spin_lock(&cmd->se_lun->lun_sep_lock);
2083 if (cmd->se_lun->lun_sep) {
2084 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2085 cmd->data_length;
2087 spin_unlock(&cmd->se_lun->lun_sep_lock);
2089 * Perform READ_STRIP of PI using software emulation when
2090 * backend had PI enabled, if the transport will not be
2091 * performing hardware READ_STRIP offload.
2093 if (target_read_prot_action(cmd)) {
2094 ret = transport_send_check_condition_and_sense(cmd,
2095 cmd->pi_err, 0);
2096 if (ret == -EAGAIN || ret == -ENOMEM)
2097 goto queue_full;
2099 transport_lun_remove_cmd(cmd);
2100 transport_cmd_check_stop_to_fabric(cmd);
2101 return;
2104 trace_target_cmd_complete(cmd);
2105 ret = cmd->se_tfo->queue_data_in(cmd);
2106 if (ret == -EAGAIN || ret == -ENOMEM)
2107 goto queue_full;
2108 break;
2109 case DMA_TO_DEVICE:
2110 spin_lock(&cmd->se_lun->lun_sep_lock);
2111 if (cmd->se_lun->lun_sep) {
2112 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2113 cmd->data_length;
2115 spin_unlock(&cmd->se_lun->lun_sep_lock);
2117 * Check if we need to send READ payload for BIDI-COMMAND
2119 if (cmd->se_cmd_flags & SCF_BIDI) {
2120 spin_lock(&cmd->se_lun->lun_sep_lock);
2121 if (cmd->se_lun->lun_sep) {
2122 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2123 cmd->data_length;
2125 spin_unlock(&cmd->se_lun->lun_sep_lock);
2126 ret = cmd->se_tfo->queue_data_in(cmd);
2127 if (ret == -EAGAIN || ret == -ENOMEM)
2128 goto queue_full;
2129 break;
2131 /* Fall through for DMA_TO_DEVICE */
2132 case DMA_NONE:
2133 trace_target_cmd_complete(cmd);
2134 ret = cmd->se_tfo->queue_status(cmd);
2135 if (ret == -EAGAIN || ret == -ENOMEM)
2136 goto queue_full;
2137 break;
2138 default:
2139 break;
2142 transport_lun_remove_cmd(cmd);
2143 transport_cmd_check_stop_to_fabric(cmd);
2144 return;
2146 queue_full:
2147 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2148 " data_direction: %d\n", cmd, cmd->data_direction);
2149 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2150 transport_handle_queue_full(cmd, cmd->se_dev);
2153 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2155 struct scatterlist *sg;
2156 int count;
2158 for_each_sg(sgl, sg, nents, count)
2159 __free_page(sg_page(sg));
2161 kfree(sgl);
2164 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2167 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2168 * emulation, and free + reset pointers if necessary..
2170 if (!cmd->t_data_sg_orig)
2171 return;
2173 kfree(cmd->t_data_sg);
2174 cmd->t_data_sg = cmd->t_data_sg_orig;
2175 cmd->t_data_sg_orig = NULL;
2176 cmd->t_data_nents = cmd->t_data_nents_orig;
2177 cmd->t_data_nents_orig = 0;
2180 static inline void transport_free_pages(struct se_cmd *cmd)
2182 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2184 * Release special case READ buffer payload required for
2185 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2187 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2188 transport_free_sgl(cmd->t_bidi_data_sg,
2189 cmd->t_bidi_data_nents);
2190 cmd->t_bidi_data_sg = NULL;
2191 cmd->t_bidi_data_nents = 0;
2193 transport_reset_sgl_orig(cmd);
2194 return;
2196 transport_reset_sgl_orig(cmd);
2198 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2199 cmd->t_data_sg = NULL;
2200 cmd->t_data_nents = 0;
2202 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2203 cmd->t_bidi_data_sg = NULL;
2204 cmd->t_bidi_data_nents = 0;
2206 transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2207 cmd->t_prot_sg = NULL;
2208 cmd->t_prot_nents = 0;
2212 * transport_release_cmd - free a command
2213 * @cmd: command to free
2215 * This routine unconditionally frees a command, and reference counting
2216 * or list removal must be done in the caller.
2218 static int transport_release_cmd(struct se_cmd *cmd)
2220 BUG_ON(!cmd->se_tfo);
2222 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2223 core_tmr_release_req(cmd->se_tmr_req);
2224 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2225 kfree(cmd->t_task_cdb);
2227 * If this cmd has been setup with target_get_sess_cmd(), drop
2228 * the kref and call ->release_cmd() in kref callback.
2230 return target_put_sess_cmd(cmd);
2234 * transport_put_cmd - release a reference to a command
2235 * @cmd: command to release
2237 * This routine releases our reference to the command and frees it if possible.
2239 static int transport_put_cmd(struct se_cmd *cmd)
2241 transport_free_pages(cmd);
2242 return transport_release_cmd(cmd);
2245 void *transport_kmap_data_sg(struct se_cmd *cmd)
2247 struct scatterlist *sg = cmd->t_data_sg;
2248 struct page **pages;
2249 int i;
2252 * We need to take into account a possible offset here for fabrics like
2253 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2254 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2256 if (!cmd->t_data_nents)
2257 return NULL;
2259 BUG_ON(!sg);
2260 if (cmd->t_data_nents == 1)
2261 return kmap(sg_page(sg)) + sg->offset;
2263 /* >1 page. use vmap */
2264 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2265 if (!pages)
2266 return NULL;
2268 /* convert sg[] to pages[] */
2269 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2270 pages[i] = sg_page(sg);
2273 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2274 kfree(pages);
2275 if (!cmd->t_data_vmap)
2276 return NULL;
2278 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2280 EXPORT_SYMBOL(transport_kmap_data_sg);
2282 void transport_kunmap_data_sg(struct se_cmd *cmd)
2284 if (!cmd->t_data_nents) {
2285 return;
2286 } else if (cmd->t_data_nents == 1) {
2287 kunmap(sg_page(cmd->t_data_sg));
2288 return;
2291 vunmap(cmd->t_data_vmap);
2292 cmd->t_data_vmap = NULL;
2294 EXPORT_SYMBOL(transport_kunmap_data_sg);
2297 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2298 bool zero_page)
2300 struct scatterlist *sg;
2301 struct page *page;
2302 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2303 unsigned int nent;
2304 int i = 0;
2306 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2307 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2308 if (!sg)
2309 return -ENOMEM;
2311 sg_init_table(sg, nent);
2313 while (length) {
2314 u32 page_len = min_t(u32, length, PAGE_SIZE);
2315 page = alloc_page(GFP_KERNEL | zero_flag);
2316 if (!page)
2317 goto out;
2319 sg_set_page(&sg[i], page, page_len, 0);
2320 length -= page_len;
2321 i++;
2323 *sgl = sg;
2324 *nents = nent;
2325 return 0;
2327 out:
2328 while (i > 0) {
2329 i--;
2330 __free_page(sg_page(&sg[i]));
2332 kfree(sg);
2333 return -ENOMEM;
2337 * Allocate any required resources to execute the command. For writes we
2338 * might not have the payload yet, so notify the fabric via a call to
2339 * ->write_pending instead. Otherwise place it on the execution queue.
2341 sense_reason_t
2342 transport_generic_new_cmd(struct se_cmd *cmd)
2344 int ret = 0;
2345 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2348 * Determine is the TCM fabric module has already allocated physical
2349 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2350 * beforehand.
2352 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2353 cmd->data_length) {
2355 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2356 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2357 u32 bidi_length;
2359 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2360 bidi_length = cmd->t_task_nolb *
2361 cmd->se_dev->dev_attrib.block_size;
2362 else
2363 bidi_length = cmd->data_length;
2365 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2366 &cmd->t_bidi_data_nents,
2367 bidi_length, zero_flag);
2368 if (ret < 0)
2369 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2372 if (cmd->prot_op != TARGET_PROT_NORMAL) {
2373 ret = target_alloc_sgl(&cmd->t_prot_sg,
2374 &cmd->t_prot_nents,
2375 cmd->prot_length, true);
2376 if (ret < 0)
2377 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2380 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2381 cmd->data_length, zero_flag);
2382 if (ret < 0)
2383 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2384 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2385 cmd->data_length) {
2387 * Special case for COMPARE_AND_WRITE with fabrics
2388 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2390 u32 caw_length = cmd->t_task_nolb *
2391 cmd->se_dev->dev_attrib.block_size;
2393 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2394 &cmd->t_bidi_data_nents,
2395 caw_length, zero_flag);
2396 if (ret < 0)
2397 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2400 * If this command is not a write we can execute it right here,
2401 * for write buffers we need to notify the fabric driver first
2402 * and let it call back once the write buffers are ready.
2404 target_add_to_state_list(cmd);
2405 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2406 target_execute_cmd(cmd);
2407 return 0;
2409 transport_cmd_check_stop(cmd, false, true);
2411 ret = cmd->se_tfo->write_pending(cmd);
2412 if (ret == -EAGAIN || ret == -ENOMEM)
2413 goto queue_full;
2415 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2416 WARN_ON(ret);
2418 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2420 queue_full:
2421 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2422 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2423 transport_handle_queue_full(cmd, cmd->se_dev);
2424 return 0;
2426 EXPORT_SYMBOL(transport_generic_new_cmd);
2428 static void transport_write_pending_qf(struct se_cmd *cmd)
2430 int ret;
2432 ret = cmd->se_tfo->write_pending(cmd);
2433 if (ret == -EAGAIN || ret == -ENOMEM) {
2434 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2435 cmd);
2436 transport_handle_queue_full(cmd, cmd->se_dev);
2440 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2442 unsigned long flags;
2443 int ret = 0;
2445 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2446 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2447 transport_wait_for_tasks(cmd);
2449 ret = transport_release_cmd(cmd);
2450 } else {
2451 if (wait_for_tasks)
2452 transport_wait_for_tasks(cmd);
2454 * Handle WRITE failure case where transport_generic_new_cmd()
2455 * has already added se_cmd to state_list, but fabric has
2456 * failed command before I/O submission.
2458 if (cmd->state_active) {
2459 spin_lock_irqsave(&cmd->t_state_lock, flags);
2460 target_remove_from_state_list(cmd);
2461 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2464 if (cmd->se_lun)
2465 transport_lun_remove_cmd(cmd);
2467 ret = transport_put_cmd(cmd);
2469 return ret;
2471 EXPORT_SYMBOL(transport_generic_free_cmd);
2473 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2474 * @se_cmd: command descriptor to add
2475 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2477 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2479 struct se_session *se_sess = se_cmd->se_sess;
2480 unsigned long flags;
2481 int ret = 0;
2484 * Add a second kref if the fabric caller is expecting to handle
2485 * fabric acknowledgement that requires two target_put_sess_cmd()
2486 * invocations before se_cmd descriptor release.
2488 if (ack_kref)
2489 kref_get(&se_cmd->cmd_kref);
2491 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2492 if (se_sess->sess_tearing_down) {
2493 ret = -ESHUTDOWN;
2494 goto out;
2496 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2497 out:
2498 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2500 if (ret && ack_kref)
2501 target_put_sess_cmd(se_cmd);
2503 return ret;
2505 EXPORT_SYMBOL(target_get_sess_cmd);
2507 static void target_release_cmd_kref(struct kref *kref)
2508 __releases(&se_cmd->se_sess->sess_cmd_lock)
2510 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2511 struct se_session *se_sess = se_cmd->se_sess;
2513 if (list_empty(&se_cmd->se_cmd_list)) {
2514 spin_unlock(&se_sess->sess_cmd_lock);
2515 se_cmd->se_tfo->release_cmd(se_cmd);
2516 return;
2518 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2519 spin_unlock(&se_sess->sess_cmd_lock);
2520 complete(&se_cmd->cmd_wait_comp);
2521 return;
2523 list_del(&se_cmd->se_cmd_list);
2524 spin_unlock(&se_sess->sess_cmd_lock);
2526 se_cmd->se_tfo->release_cmd(se_cmd);
2529 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2530 * @se_cmd: command descriptor to drop
2532 int target_put_sess_cmd(struct se_cmd *se_cmd)
2534 struct se_session *se_sess = se_cmd->se_sess;
2536 if (!se_sess) {
2537 se_cmd->se_tfo->release_cmd(se_cmd);
2538 return 1;
2540 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2541 &se_sess->sess_cmd_lock);
2543 EXPORT_SYMBOL(target_put_sess_cmd);
2545 /* target_sess_cmd_list_set_waiting - Flag all commands in
2546 * sess_cmd_list to complete cmd_wait_comp. Set
2547 * sess_tearing_down so no more commands are queued.
2548 * @se_sess: session to flag
2550 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2552 struct se_cmd *se_cmd;
2553 unsigned long flags;
2555 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2556 if (se_sess->sess_tearing_down) {
2557 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2558 return;
2560 se_sess->sess_tearing_down = 1;
2561 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2563 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2564 se_cmd->cmd_wait_set = 1;
2566 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2568 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2570 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2571 * @se_sess: session to wait for active I/O
2573 void target_wait_for_sess_cmds(struct se_session *se_sess)
2575 struct se_cmd *se_cmd, *tmp_cmd;
2576 unsigned long flags;
2578 list_for_each_entry_safe(se_cmd, tmp_cmd,
2579 &se_sess->sess_wait_list, se_cmd_list) {
2580 list_del(&se_cmd->se_cmd_list);
2582 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2583 " %d\n", se_cmd, se_cmd->t_state,
2584 se_cmd->se_tfo->get_cmd_state(se_cmd));
2586 wait_for_completion(&se_cmd->cmd_wait_comp);
2587 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2588 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2589 se_cmd->se_tfo->get_cmd_state(se_cmd));
2591 se_cmd->se_tfo->release_cmd(se_cmd);
2594 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2595 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2596 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2599 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2601 static int transport_clear_lun_ref_thread(void *p)
2603 struct se_lun *lun = p;
2605 percpu_ref_kill(&lun->lun_ref);
2607 wait_for_completion(&lun->lun_ref_comp);
2608 complete(&lun->lun_shutdown_comp);
2610 return 0;
2613 int transport_clear_lun_ref(struct se_lun *lun)
2615 struct task_struct *kt;
2617 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2618 "tcm_cl_%u", lun->unpacked_lun);
2619 if (IS_ERR(kt)) {
2620 pr_err("Unable to start clear_lun thread\n");
2621 return PTR_ERR(kt);
2623 wait_for_completion(&lun->lun_shutdown_comp);
2625 return 0;
2629 * transport_wait_for_tasks - wait for completion to occur
2630 * @cmd: command to wait
2632 * Called from frontend fabric context to wait for storage engine
2633 * to pause and/or release frontend generated struct se_cmd.
2635 bool transport_wait_for_tasks(struct se_cmd *cmd)
2637 unsigned long flags;
2639 spin_lock_irqsave(&cmd->t_state_lock, flags);
2640 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2641 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2642 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2643 return false;
2646 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2647 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2648 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2649 return false;
2652 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2653 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2654 return false;
2657 cmd->transport_state |= CMD_T_STOP;
2659 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2660 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2661 cmd, cmd->se_tfo->get_task_tag(cmd),
2662 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2664 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2666 wait_for_completion(&cmd->t_transport_stop_comp);
2668 spin_lock_irqsave(&cmd->t_state_lock, flags);
2669 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2671 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2672 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2673 cmd->se_tfo->get_task_tag(cmd));
2675 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2677 return true;
2679 EXPORT_SYMBOL(transport_wait_for_tasks);
2681 static int transport_get_sense_codes(
2682 struct se_cmd *cmd,
2683 u8 *asc,
2684 u8 *ascq)
2686 *asc = cmd->scsi_asc;
2687 *ascq = cmd->scsi_ascq;
2689 return 0;
2692 static
2693 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2695 /* Place failed LBA in sense data information descriptor 0. */
2696 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2697 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2698 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2699 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2701 /* Descriptor Information: failing sector */
2702 put_unaligned_be64(bad_sector, &buffer[12]);
2706 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2707 sense_reason_t reason, int from_transport)
2709 unsigned char *buffer = cmd->sense_buffer;
2710 unsigned long flags;
2711 u8 asc = 0, ascq = 0;
2713 spin_lock_irqsave(&cmd->t_state_lock, flags);
2714 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2715 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2716 return 0;
2718 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2719 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2721 if (!reason && from_transport)
2722 goto after_reason;
2724 if (!from_transport)
2725 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2728 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2729 * SENSE KEY values from include/scsi/scsi.h
2731 switch (reason) {
2732 case TCM_NO_SENSE:
2733 /* CURRENT ERROR */
2734 buffer[0] = 0x70;
2735 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2736 /* Not Ready */
2737 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2738 /* NO ADDITIONAL SENSE INFORMATION */
2739 buffer[SPC_ASC_KEY_OFFSET] = 0;
2740 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2741 break;
2742 case TCM_NON_EXISTENT_LUN:
2743 /* CURRENT ERROR */
2744 buffer[0] = 0x70;
2745 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2746 /* ILLEGAL REQUEST */
2747 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2748 /* LOGICAL UNIT NOT SUPPORTED */
2749 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2750 break;
2751 case TCM_UNSUPPORTED_SCSI_OPCODE:
2752 case TCM_SECTOR_COUNT_TOO_MANY:
2753 /* CURRENT ERROR */
2754 buffer[0] = 0x70;
2755 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2756 /* ILLEGAL REQUEST */
2757 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2758 /* INVALID COMMAND OPERATION CODE */
2759 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2760 break;
2761 case TCM_UNKNOWN_MODE_PAGE:
2762 /* CURRENT ERROR */
2763 buffer[0] = 0x70;
2764 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2765 /* ILLEGAL REQUEST */
2766 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2767 /* INVALID FIELD IN CDB */
2768 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2769 break;
2770 case TCM_CHECK_CONDITION_ABORT_CMD:
2771 /* CURRENT ERROR */
2772 buffer[0] = 0x70;
2773 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2774 /* ABORTED COMMAND */
2775 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2776 /* BUS DEVICE RESET FUNCTION OCCURRED */
2777 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2778 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2779 break;
2780 case TCM_INCORRECT_AMOUNT_OF_DATA:
2781 /* CURRENT ERROR */
2782 buffer[0] = 0x70;
2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784 /* ABORTED COMMAND */
2785 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2786 /* WRITE ERROR */
2787 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2788 /* NOT ENOUGH UNSOLICITED DATA */
2789 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2790 break;
2791 case TCM_INVALID_CDB_FIELD:
2792 /* CURRENT ERROR */
2793 buffer[0] = 0x70;
2794 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2795 /* ILLEGAL REQUEST */
2796 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2797 /* INVALID FIELD IN CDB */
2798 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2799 break;
2800 case TCM_INVALID_PARAMETER_LIST:
2801 /* CURRENT ERROR */
2802 buffer[0] = 0x70;
2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804 /* ILLEGAL REQUEST */
2805 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2806 /* INVALID FIELD IN PARAMETER LIST */
2807 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2808 break;
2809 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2810 /* CURRENT ERROR */
2811 buffer[0] = 0x70;
2812 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2813 /* ILLEGAL REQUEST */
2814 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2815 /* PARAMETER LIST LENGTH ERROR */
2816 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2817 break;
2818 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2819 /* CURRENT ERROR */
2820 buffer[0] = 0x70;
2821 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2822 /* ABORTED COMMAND */
2823 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2824 /* WRITE ERROR */
2825 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2826 /* UNEXPECTED_UNSOLICITED_DATA */
2827 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2828 break;
2829 case TCM_SERVICE_CRC_ERROR:
2830 /* CURRENT ERROR */
2831 buffer[0] = 0x70;
2832 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2833 /* ABORTED COMMAND */
2834 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2835 /* PROTOCOL SERVICE CRC ERROR */
2836 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2837 /* N/A */
2838 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2839 break;
2840 case TCM_SNACK_REJECTED:
2841 /* CURRENT ERROR */
2842 buffer[0] = 0x70;
2843 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2844 /* ABORTED COMMAND */
2845 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2846 /* READ ERROR */
2847 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2848 /* FAILED RETRANSMISSION REQUEST */
2849 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2850 break;
2851 case TCM_WRITE_PROTECTED:
2852 /* CURRENT ERROR */
2853 buffer[0] = 0x70;
2854 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2855 /* DATA PROTECT */
2856 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2857 /* WRITE PROTECTED */
2858 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2859 break;
2860 case TCM_ADDRESS_OUT_OF_RANGE:
2861 /* CURRENT ERROR */
2862 buffer[0] = 0x70;
2863 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2864 /* ILLEGAL REQUEST */
2865 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2866 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2867 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2868 break;
2869 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2870 /* CURRENT ERROR */
2871 buffer[0] = 0x70;
2872 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2873 /* UNIT ATTENTION */
2874 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2875 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2876 buffer[SPC_ASC_KEY_OFFSET] = asc;
2877 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2878 break;
2879 case TCM_CHECK_CONDITION_NOT_READY:
2880 /* CURRENT ERROR */
2881 buffer[0] = 0x70;
2882 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2883 /* Not Ready */
2884 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2885 transport_get_sense_codes(cmd, &asc, &ascq);
2886 buffer[SPC_ASC_KEY_OFFSET] = asc;
2887 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2888 break;
2889 case TCM_MISCOMPARE_VERIFY:
2890 /* CURRENT ERROR */
2891 buffer[0] = 0x70;
2892 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2893 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2894 /* MISCOMPARE DURING VERIFY OPERATION */
2895 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2896 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2897 break;
2898 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2899 /* CURRENT ERROR */
2900 buffer[0] = 0x70;
2901 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2902 /* ILLEGAL REQUEST */
2903 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2904 /* LOGICAL BLOCK GUARD CHECK FAILED */
2905 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2906 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2907 transport_err_sector_info(buffer, cmd->bad_sector);
2908 break;
2909 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2910 /* CURRENT ERROR */
2911 buffer[0] = 0x70;
2912 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2913 /* ILLEGAL REQUEST */
2914 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2915 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2916 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2917 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2918 transport_err_sector_info(buffer, cmd->bad_sector);
2919 break;
2920 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2921 /* CURRENT ERROR */
2922 buffer[0] = 0x70;
2923 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2924 /* ILLEGAL REQUEST */
2925 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2926 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2927 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2928 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2929 transport_err_sector_info(buffer, cmd->bad_sector);
2930 break;
2931 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2932 default:
2933 /* CURRENT ERROR */
2934 buffer[0] = 0x70;
2935 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2937 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2938 * Solaris initiators. Returning NOT READY instead means the
2939 * operations will be retried a finite number of times and we
2940 * can survive intermittent errors.
2942 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2943 /* LOGICAL UNIT COMMUNICATION FAILURE */
2944 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2945 break;
2948 * This code uses linux/include/scsi/scsi.h SAM status codes!
2950 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2952 * Automatically padded, this value is encoded in the fabric's
2953 * data_length response PDU containing the SCSI defined sense data.
2955 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2957 after_reason:
2958 trace_target_cmd_complete(cmd);
2959 return cmd->se_tfo->queue_status(cmd);
2961 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2963 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2965 if (!(cmd->transport_state & CMD_T_ABORTED))
2966 return 0;
2969 * If cmd has been aborted but either no status is to be sent or it has
2970 * already been sent, just return
2972 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2973 return 1;
2975 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2976 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2978 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2979 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2980 trace_target_cmd_complete(cmd);
2981 cmd->se_tfo->queue_status(cmd);
2983 return 1;
2985 EXPORT_SYMBOL(transport_check_aborted_status);
2987 void transport_send_task_abort(struct se_cmd *cmd)
2989 unsigned long flags;
2991 spin_lock_irqsave(&cmd->t_state_lock, flags);
2992 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2993 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2994 return;
2996 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2999 * If there are still expected incoming fabric WRITEs, we wait
3000 * until until they have completed before sending a TASK_ABORTED
3001 * response. This response with TASK_ABORTED status will be
3002 * queued back to fabric module by transport_check_aborted_status().
3004 if (cmd->data_direction == DMA_TO_DEVICE) {
3005 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3006 cmd->transport_state |= CMD_T_ABORTED;
3007 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3008 return;
3011 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3013 transport_lun_remove_cmd(cmd);
3015 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3016 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
3017 cmd->se_tfo->get_task_tag(cmd));
3019 trace_target_cmd_complete(cmd);
3020 cmd->se_tfo->queue_status(cmd);
3023 static void target_tmr_work(struct work_struct *work)
3025 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3026 struct se_device *dev = cmd->se_dev;
3027 struct se_tmr_req *tmr = cmd->se_tmr_req;
3028 unsigned long flags;
3029 int ret;
3031 spin_lock_irqsave(&cmd->t_state_lock, flags);
3032 if (cmd->transport_state & CMD_T_ABORTED) {
3033 tmr->response = TMR_FUNCTION_REJECTED;
3034 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3035 goto check_stop;
3037 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3039 switch (tmr->function) {
3040 case TMR_ABORT_TASK:
3041 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3042 break;
3043 case TMR_ABORT_TASK_SET:
3044 case TMR_CLEAR_ACA:
3045 case TMR_CLEAR_TASK_SET:
3046 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3047 break;
3048 case TMR_LUN_RESET:
3049 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3050 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3051 TMR_FUNCTION_REJECTED;
3052 break;
3053 case TMR_TARGET_WARM_RESET:
3054 tmr->response = TMR_FUNCTION_REJECTED;
3055 break;
3056 case TMR_TARGET_COLD_RESET:
3057 tmr->response = TMR_FUNCTION_REJECTED;
3058 break;
3059 default:
3060 pr_err("Uknown TMR function: 0x%02x.\n",
3061 tmr->function);
3062 tmr->response = TMR_FUNCTION_REJECTED;
3063 break;
3066 spin_lock_irqsave(&cmd->t_state_lock, flags);
3067 if (cmd->transport_state & CMD_T_ABORTED) {
3068 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3069 goto check_stop;
3071 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3072 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3074 cmd->se_tfo->queue_tm_rsp(cmd);
3076 check_stop:
3077 transport_cmd_check_stop_to_fabric(cmd);
3080 int transport_generic_handle_tmr(
3081 struct se_cmd *cmd)
3083 unsigned long flags;
3085 spin_lock_irqsave(&cmd->t_state_lock, flags);
3086 cmd->transport_state |= CMD_T_ACTIVE;
3087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3089 INIT_WORK(&cmd->work, target_tmr_work);
3090 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3091 return 0;
3093 EXPORT_SYMBOL(transport_generic_handle_tmr);