1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct
*target_completion_wq
;
58 static struct kmem_cache
*se_sess_cache
;
59 struct kmem_cache
*se_ua_cache
;
60 struct kmem_cache
*t10_pr_reg_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_cache
;
62 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
63 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
64 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
65 struct kmem_cache
*t10_alua_lba_map_cache
;
66 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
68 static void transport_complete_task_attr(struct se_cmd
*cmd
);
69 static void transport_handle_queue_full(struct se_cmd
*cmd
,
70 struct se_device
*dev
);
71 static int transport_put_cmd(struct se_cmd
*cmd
);
72 static void target_complete_ok_work(struct work_struct
*work
);
74 int init_se_kmem_caches(void)
76 se_sess_cache
= kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session
), __alignof__(struct se_session
),
80 pr_err("kmem_cache_create() for struct se_session"
84 se_ua_cache
= kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua
), __alignof__(struct se_ua
),
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache
;
91 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration
),
93 __alignof__(struct t10_pr_registration
), 0, NULL
);
94 if (!t10_pr_reg_cache
) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
97 goto out_free_ua_cache
;
99 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
102 if (!t10_alua_lu_gp_cache
) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
105 goto out_free_pr_reg_cache
;
107 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member
),
109 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
110 if (!t10_alua_lu_gp_mem_cache
) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
113 goto out_free_lu_gp_cache
;
115 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp
),
117 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
118 if (!t10_alua_tg_pt_gp_cache
) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
121 goto out_free_lu_gp_mem_cache
;
123 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member
),
126 __alignof__(struct t10_alua_tg_pt_gp_member
),
128 if (!t10_alua_tg_pt_gp_mem_cache
) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
131 goto out_free_tg_pt_gp_cache
;
133 t10_alua_lba_map_cache
= kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map
),
136 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
137 if (!t10_alua_lba_map_cache
) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
140 goto out_free_tg_pt_gp_mem_cache
;
142 t10_alua_lba_map_mem_cache
= kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member
),
145 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
146 if (!t10_alua_lba_map_mem_cache
) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
149 goto out_free_lba_map_cache
;
152 target_completion_wq
= alloc_workqueue("target_completion",
154 if (!target_completion_wq
)
155 goto out_free_lba_map_mem_cache
;
159 out_free_lba_map_mem_cache
:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
161 out_free_lba_map_cache
:
162 kmem_cache_destroy(t10_alua_lba_map_cache
);
163 out_free_tg_pt_gp_mem_cache
:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
165 out_free_tg_pt_gp_cache
:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
167 out_free_lu_gp_mem_cache
:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
169 out_free_lu_gp_cache
:
170 kmem_cache_destroy(t10_alua_lu_gp_cache
);
171 out_free_pr_reg_cache
:
172 kmem_cache_destroy(t10_pr_reg_cache
);
174 kmem_cache_destroy(se_ua_cache
);
176 kmem_cache_destroy(se_sess_cache
);
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq
);
184 kmem_cache_destroy(se_sess_cache
);
185 kmem_cache_destroy(se_ua_cache
);
186 kmem_cache_destroy(t10_pr_reg_cache
);
187 kmem_cache_destroy(t10_alua_lu_gp_cache
);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
191 kmem_cache_destroy(t10_alua_lba_map_cache
);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
197 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
200 * Allocate a new row index for the entry type specified
202 u32
scsi_get_new_index(scsi_index_t type
)
206 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
208 spin_lock(&scsi_mib_index_lock
);
209 new_index
= ++scsi_mib_index
[type
];
210 spin_unlock(&scsi_mib_index_lock
);
215 void transport_subsystem_check_init(void)
218 static int sub_api_initialized
;
220 if (sub_api_initialized
)
223 ret
= request_module("target_core_iblock");
225 pr_err("Unable to load target_core_iblock\n");
227 ret
= request_module("target_core_file");
229 pr_err("Unable to load target_core_file\n");
231 ret
= request_module("target_core_pscsi");
233 pr_err("Unable to load target_core_pscsi\n");
235 ret
= request_module("target_core_user");
237 pr_err("Unable to load target_core_user\n");
239 sub_api_initialized
= 1;
242 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
244 struct se_session
*se_sess
;
246 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
248 pr_err("Unable to allocate struct se_session from"
250 return ERR_PTR(-ENOMEM
);
252 INIT_LIST_HEAD(&se_sess
->sess_list
);
253 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
254 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
255 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
256 spin_lock_init(&se_sess
->sess_cmd_lock
);
257 kref_init(&se_sess
->sess_kref
);
258 se_sess
->sup_prot_ops
= sup_prot_ops
;
262 EXPORT_SYMBOL(transport_init_session
);
264 int transport_alloc_session_tags(struct se_session
*se_sess
,
265 unsigned int tag_num
, unsigned int tag_size
)
269 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
270 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
271 if (!se_sess
->sess_cmd_map
) {
272 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
273 if (!se_sess
->sess_cmd_map
) {
274 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
279 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
281 pr_err("Unable to init se_sess->sess_tag_pool,"
282 " tag_num: %u\n", tag_num
);
283 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
284 vfree(se_sess
->sess_cmd_map
);
286 kfree(se_sess
->sess_cmd_map
);
287 se_sess
->sess_cmd_map
= NULL
;
293 EXPORT_SYMBOL(transport_alloc_session_tags
);
295 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
296 unsigned int tag_size
,
297 enum target_prot_op sup_prot_ops
)
299 struct se_session
*se_sess
;
302 se_sess
= transport_init_session(sup_prot_ops
);
306 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
308 transport_free_session(se_sess
);
309 return ERR_PTR(-ENOMEM
);
314 EXPORT_SYMBOL(transport_init_session_tags
);
317 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
319 void __transport_register_session(
320 struct se_portal_group
*se_tpg
,
321 struct se_node_acl
*se_nacl
,
322 struct se_session
*se_sess
,
323 void *fabric_sess_ptr
)
325 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
326 unsigned char buf
[PR_REG_ISID_LEN
];
328 se_sess
->se_tpg
= se_tpg
;
329 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
331 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
333 * Only set for struct se_session's that will actually be moving I/O.
334 * eg: *NOT* discovery sessions.
339 * Determine if fabric allows for T10-PI feature bits exposed to
340 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
342 * If so, then always save prot_type on a per se_node_acl node
343 * basis and re-instate the previous sess_prot_type to avoid
344 * disabling PI from below any previously initiator side
347 if (se_nacl
->saved_prot_type
)
348 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
349 else if (tfo
->tpg_check_prot_fabric_only
)
350 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
351 tfo
->tpg_check_prot_fabric_only(se_tpg
);
353 * If the fabric module supports an ISID based TransportID,
354 * save this value in binary from the fabric I_T Nexus now.
356 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
357 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
358 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
359 &buf
[0], PR_REG_ISID_LEN
);
360 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
362 kref_get(&se_nacl
->acl_kref
);
364 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
366 * The se_nacl->nacl_sess pointer will be set to the
367 * last active I_T Nexus for each struct se_node_acl.
369 se_nacl
->nacl_sess
= se_sess
;
371 list_add_tail(&se_sess
->sess_acl_list
,
372 &se_nacl
->acl_sess_list
);
373 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
375 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
377 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
378 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
380 EXPORT_SYMBOL(__transport_register_session
);
382 void transport_register_session(
383 struct se_portal_group
*se_tpg
,
384 struct se_node_acl
*se_nacl
,
385 struct se_session
*se_sess
,
386 void *fabric_sess_ptr
)
390 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
391 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
392 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
394 EXPORT_SYMBOL(transport_register_session
);
396 static void target_release_session(struct kref
*kref
)
398 struct se_session
*se_sess
= container_of(kref
,
399 struct se_session
, sess_kref
);
400 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
402 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
405 void target_get_session(struct se_session
*se_sess
)
407 kref_get(&se_sess
->sess_kref
);
409 EXPORT_SYMBOL(target_get_session
);
411 void target_put_session(struct se_session
*se_sess
)
413 struct se_portal_group
*tpg
= se_sess
->se_tpg
;
415 if (tpg
->se_tpg_tfo
->put_session
!= NULL
) {
416 tpg
->se_tpg_tfo
->put_session(se_sess
);
419 kref_put(&se_sess
->sess_kref
, target_release_session
);
421 EXPORT_SYMBOL(target_put_session
);
423 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
425 struct se_session
*se_sess
;
428 spin_lock_bh(&se_tpg
->session_lock
);
429 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
430 if (!se_sess
->se_node_acl
)
432 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
434 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
437 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
438 se_sess
->se_node_acl
->initiatorname
);
439 len
+= 1; /* Include NULL terminator */
441 spin_unlock_bh(&se_tpg
->session_lock
);
445 EXPORT_SYMBOL(target_show_dynamic_sessions
);
447 static void target_complete_nacl(struct kref
*kref
)
449 struct se_node_acl
*nacl
= container_of(kref
,
450 struct se_node_acl
, acl_kref
);
452 complete(&nacl
->acl_free_comp
);
455 void target_put_nacl(struct se_node_acl
*nacl
)
457 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
460 void transport_deregister_session_configfs(struct se_session
*se_sess
)
462 struct se_node_acl
*se_nacl
;
465 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
467 se_nacl
= se_sess
->se_node_acl
;
469 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
470 if (se_nacl
->acl_stop
== 0)
471 list_del(&se_sess
->sess_acl_list
);
473 * If the session list is empty, then clear the pointer.
474 * Otherwise, set the struct se_session pointer from the tail
475 * element of the per struct se_node_acl active session list.
477 if (list_empty(&se_nacl
->acl_sess_list
))
478 se_nacl
->nacl_sess
= NULL
;
480 se_nacl
->nacl_sess
= container_of(
481 se_nacl
->acl_sess_list
.prev
,
482 struct se_session
, sess_acl_list
);
484 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
487 EXPORT_SYMBOL(transport_deregister_session_configfs
);
489 void transport_free_session(struct se_session
*se_sess
)
491 if (se_sess
->sess_cmd_map
) {
492 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
493 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
494 vfree(se_sess
->sess_cmd_map
);
496 kfree(se_sess
->sess_cmd_map
);
498 kmem_cache_free(se_sess_cache
, se_sess
);
500 EXPORT_SYMBOL(transport_free_session
);
502 void transport_deregister_session(struct se_session
*se_sess
)
504 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
505 const struct target_core_fabric_ops
*se_tfo
;
506 struct se_node_acl
*se_nacl
;
508 bool comp_nacl
= true;
511 transport_free_session(se_sess
);
514 se_tfo
= se_tpg
->se_tpg_tfo
;
516 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
517 list_del(&se_sess
->sess_list
);
518 se_sess
->se_tpg
= NULL
;
519 se_sess
->fabric_sess_ptr
= NULL
;
520 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
523 * Determine if we need to do extra work for this initiator node's
524 * struct se_node_acl if it had been previously dynamically generated.
526 se_nacl
= se_sess
->se_node_acl
;
528 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
529 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
530 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
531 list_del(&se_nacl
->acl_list
);
532 se_tpg
->num_node_acls
--;
533 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
534 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
535 core_free_device_list_for_node(se_nacl
, se_tpg
);
536 se_tfo
->tpg_release_fabric_acl(se_tpg
, se_nacl
);
539 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
542 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
544 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
545 se_tpg
->se_tpg_tfo
->get_fabric_name());
547 * If last kref is dropping now for an explicit NodeACL, awake sleeping
548 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
551 if (se_nacl
&& comp_nacl
)
552 target_put_nacl(se_nacl
);
554 transport_free_session(se_sess
);
556 EXPORT_SYMBOL(transport_deregister_session
);
559 * Called with cmd->t_state_lock held.
561 static void target_remove_from_state_list(struct se_cmd
*cmd
)
563 struct se_device
*dev
= cmd
->se_dev
;
569 if (cmd
->transport_state
& CMD_T_BUSY
)
572 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
573 if (cmd
->state_active
) {
574 list_del(&cmd
->state_list
);
575 cmd
->state_active
= false;
577 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
580 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
585 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
587 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
589 if (remove_from_lists
) {
590 target_remove_from_state_list(cmd
);
593 * Clear struct se_cmd->se_lun before the handoff to FE.
599 * Determine if frontend context caller is requesting the stopping of
600 * this command for frontend exceptions.
602 if (cmd
->transport_state
& CMD_T_STOP
) {
603 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
605 cmd
->se_tfo
->get_task_tag(cmd
));
607 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
609 complete_all(&cmd
->t_transport_stop_comp
);
613 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
614 if (remove_from_lists
) {
616 * Some fabric modules like tcm_loop can release
617 * their internally allocated I/O reference now and
620 * Fabric modules are expected to return '1' here if the
621 * se_cmd being passed is released at this point,
622 * or zero if not being released.
624 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
625 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
626 return cmd
->se_tfo
->check_stop_free(cmd
);
630 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
634 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
636 return transport_cmd_check_stop(cmd
, true, false);
639 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
641 struct se_lun
*lun
= cmd
->se_lun
;
646 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
647 percpu_ref_put(&lun
->lun_ref
);
650 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
652 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
653 transport_lun_remove_cmd(cmd
);
655 * Allow the fabric driver to unmap any resources before
656 * releasing the descriptor via TFO->release_cmd()
659 cmd
->se_tfo
->aborted_task(cmd
);
661 if (transport_cmd_check_stop_to_fabric(cmd
))
664 transport_put_cmd(cmd
);
667 static void target_complete_failure_work(struct work_struct
*work
)
669 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
671 transport_generic_request_failure(cmd
,
672 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
676 * Used when asking transport to copy Sense Data from the underlying
677 * Linux/SCSI struct scsi_cmnd
679 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
681 struct se_device
*dev
= cmd
->se_dev
;
683 WARN_ON(!cmd
->se_lun
);
688 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
691 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
693 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
694 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
695 return cmd
->sense_buffer
;
698 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
700 struct se_device
*dev
= cmd
->se_dev
;
701 int success
= scsi_status
== GOOD
;
704 cmd
->scsi_status
= scsi_status
;
707 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
708 cmd
->transport_state
&= ~CMD_T_BUSY
;
710 if (dev
&& dev
->transport
->transport_complete
) {
711 dev
->transport
->transport_complete(cmd
,
713 transport_get_sense_buffer(cmd
));
714 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
719 * See if we are waiting to complete for an exception condition.
721 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
722 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
723 complete(&cmd
->task_stop_comp
);
728 * Check for case where an explicit ABORT_TASK has been received
729 * and transport_wait_for_tasks() will be waiting for completion..
731 if (cmd
->transport_state
& CMD_T_ABORTED
&&
732 cmd
->transport_state
& CMD_T_STOP
) {
733 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
734 complete_all(&cmd
->t_transport_stop_comp
);
736 } else if (!success
) {
737 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
739 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
742 cmd
->t_state
= TRANSPORT_COMPLETE
;
743 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
744 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
746 queue_work(target_completion_wq
, &cmd
->work
);
748 EXPORT_SYMBOL(target_complete_cmd
);
750 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
752 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
753 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
754 cmd
->residual_count
+= cmd
->data_length
- length
;
756 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
757 cmd
->residual_count
= cmd
->data_length
- length
;
760 cmd
->data_length
= length
;
763 target_complete_cmd(cmd
, scsi_status
);
765 EXPORT_SYMBOL(target_complete_cmd_with_length
);
767 static void target_add_to_state_list(struct se_cmd
*cmd
)
769 struct se_device
*dev
= cmd
->se_dev
;
772 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
773 if (!cmd
->state_active
) {
774 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
775 cmd
->state_active
= true;
777 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
781 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
783 static void transport_write_pending_qf(struct se_cmd
*cmd
);
784 static void transport_complete_qf(struct se_cmd
*cmd
);
786 void target_qf_do_work(struct work_struct
*work
)
788 struct se_device
*dev
= container_of(work
, struct se_device
,
790 LIST_HEAD(qf_cmd_list
);
791 struct se_cmd
*cmd
, *cmd_tmp
;
793 spin_lock_irq(&dev
->qf_cmd_lock
);
794 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
795 spin_unlock_irq(&dev
->qf_cmd_lock
);
797 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
798 list_del(&cmd
->se_qf_node
);
799 atomic_dec_mb(&dev
->dev_qf_count
);
801 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
802 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
803 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
804 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
807 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
808 transport_write_pending_qf(cmd
);
809 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
810 transport_complete_qf(cmd
);
814 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
816 switch (cmd
->data_direction
) {
819 case DMA_FROM_DEVICE
:
823 case DMA_BIDIRECTIONAL
:
832 void transport_dump_dev_state(
833 struct se_device
*dev
,
837 *bl
+= sprintf(b
+ *bl
, "Status: ");
838 if (dev
->export_count
)
839 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
841 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
843 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
844 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
845 dev
->dev_attrib
.block_size
,
846 dev
->dev_attrib
.hw_max_sectors
);
847 *bl
+= sprintf(b
+ *bl
, " ");
850 void transport_dump_vpd_proto_id(
852 unsigned char *p_buf
,
855 unsigned char buf
[VPD_TMP_BUF_SIZE
];
858 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
859 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
861 switch (vpd
->protocol_identifier
) {
863 sprintf(buf
+len
, "Fibre Channel\n");
866 sprintf(buf
+len
, "Parallel SCSI\n");
869 sprintf(buf
+len
, "SSA\n");
872 sprintf(buf
+len
, "IEEE 1394\n");
875 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
879 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
882 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
885 sprintf(buf
+len
, "Automation/Drive Interface Transport"
889 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
892 sprintf(buf
+len
, "Unknown 0x%02x\n",
893 vpd
->protocol_identifier
);
898 strncpy(p_buf
, buf
, p_buf_len
);
904 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
907 * Check if the Protocol Identifier Valid (PIV) bit is set..
909 * from spc3r23.pdf section 7.5.1
911 if (page_83
[1] & 0x80) {
912 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
913 vpd
->protocol_identifier_set
= 1;
914 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
917 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
919 int transport_dump_vpd_assoc(
921 unsigned char *p_buf
,
924 unsigned char buf
[VPD_TMP_BUF_SIZE
];
928 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
929 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
931 switch (vpd
->association
) {
933 sprintf(buf
+len
, "addressed logical unit\n");
936 sprintf(buf
+len
, "target port\n");
939 sprintf(buf
+len
, "SCSI target device\n");
942 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
948 strncpy(p_buf
, buf
, p_buf_len
);
955 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
958 * The VPD identification association..
960 * from spc3r23.pdf Section 7.6.3.1 Table 297
962 vpd
->association
= (page_83
[1] & 0x30);
963 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
965 EXPORT_SYMBOL(transport_set_vpd_assoc
);
967 int transport_dump_vpd_ident_type(
969 unsigned char *p_buf
,
972 unsigned char buf
[VPD_TMP_BUF_SIZE
];
976 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
977 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
979 switch (vpd
->device_identifier_type
) {
981 sprintf(buf
+len
, "Vendor specific\n");
984 sprintf(buf
+len
, "T10 Vendor ID based\n");
987 sprintf(buf
+len
, "EUI-64 based\n");
990 sprintf(buf
+len
, "NAA\n");
993 sprintf(buf
+len
, "Relative target port identifier\n");
996 sprintf(buf
+len
, "SCSI name string\n");
999 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1000 vpd
->device_identifier_type
);
1006 if (p_buf_len
< strlen(buf
)+1)
1008 strncpy(p_buf
, buf
, p_buf_len
);
1010 pr_debug("%s", buf
);
1016 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1019 * The VPD identifier type..
1021 * from spc3r23.pdf Section 7.6.3.1 Table 298
1023 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1024 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1026 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1028 int transport_dump_vpd_ident(
1029 struct t10_vpd
*vpd
,
1030 unsigned char *p_buf
,
1033 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1036 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1038 switch (vpd
->device_identifier_code_set
) {
1039 case 0x01: /* Binary */
1040 snprintf(buf
, sizeof(buf
),
1041 "T10 VPD Binary Device Identifier: %s\n",
1042 &vpd
->device_identifier
[0]);
1044 case 0x02: /* ASCII */
1045 snprintf(buf
, sizeof(buf
),
1046 "T10 VPD ASCII Device Identifier: %s\n",
1047 &vpd
->device_identifier
[0]);
1049 case 0x03: /* UTF-8 */
1050 snprintf(buf
, sizeof(buf
),
1051 "T10 VPD UTF-8 Device Identifier: %s\n",
1052 &vpd
->device_identifier
[0]);
1055 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1056 " 0x%02x", vpd
->device_identifier_code_set
);
1062 strncpy(p_buf
, buf
, p_buf_len
);
1064 pr_debug("%s", buf
);
1070 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1072 static const char hex_str
[] = "0123456789abcdef";
1073 int j
= 0, i
= 4; /* offset to start of the identifier */
1076 * The VPD Code Set (encoding)
1078 * from spc3r23.pdf Section 7.6.3.1 Table 296
1080 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1081 switch (vpd
->device_identifier_code_set
) {
1082 case 0x01: /* Binary */
1083 vpd
->device_identifier
[j
++] =
1084 hex_str
[vpd
->device_identifier_type
];
1085 while (i
< (4 + page_83
[3])) {
1086 vpd
->device_identifier
[j
++] =
1087 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1088 vpd
->device_identifier
[j
++] =
1089 hex_str
[page_83
[i
] & 0x0f];
1093 case 0x02: /* ASCII */
1094 case 0x03: /* UTF-8 */
1095 while (i
< (4 + page_83
[3]))
1096 vpd
->device_identifier
[j
++] = page_83
[i
++];
1102 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1104 EXPORT_SYMBOL(transport_set_vpd_ident
);
1107 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1109 struct se_device
*dev
= cmd
->se_dev
;
1111 if (cmd
->unknown_data_length
) {
1112 cmd
->data_length
= size
;
1113 } else if (size
!= cmd
->data_length
) {
1114 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1115 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1116 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1117 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1119 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1120 pr_err("Rejecting underflow/overflow"
1122 return TCM_INVALID_CDB_FIELD
;
1125 * Reject READ_* or WRITE_* with overflow/underflow for
1126 * type SCF_SCSI_DATA_CDB.
1128 if (dev
->dev_attrib
.block_size
!= 512) {
1129 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1130 " CDB on non 512-byte sector setup subsystem"
1131 " plugin: %s\n", dev
->transport
->name
);
1132 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1133 return TCM_INVALID_CDB_FIELD
;
1136 * For the overflow case keep the existing fabric provided
1137 * ->data_length. Otherwise for the underflow case, reset
1138 * ->data_length to the smaller SCSI expected data transfer
1141 if (size
> cmd
->data_length
) {
1142 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1143 cmd
->residual_count
= (size
- cmd
->data_length
);
1145 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1146 cmd
->residual_count
= (cmd
->data_length
- size
);
1147 cmd
->data_length
= size
;
1156 * Used by fabric modules containing a local struct se_cmd within their
1157 * fabric dependent per I/O descriptor.
1159 void transport_init_se_cmd(
1161 const struct target_core_fabric_ops
*tfo
,
1162 struct se_session
*se_sess
,
1166 unsigned char *sense_buffer
)
1168 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1169 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1170 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1171 INIT_LIST_HEAD(&cmd
->state_list
);
1172 init_completion(&cmd
->t_transport_stop_comp
);
1173 init_completion(&cmd
->cmd_wait_comp
);
1174 init_completion(&cmd
->task_stop_comp
);
1175 spin_lock_init(&cmd
->t_state_lock
);
1176 kref_init(&cmd
->cmd_kref
);
1177 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1180 cmd
->se_sess
= se_sess
;
1181 cmd
->data_length
= data_length
;
1182 cmd
->data_direction
= data_direction
;
1183 cmd
->sam_task_attr
= task_attr
;
1184 cmd
->sense_buffer
= sense_buffer
;
1186 cmd
->state_active
= false;
1188 EXPORT_SYMBOL(transport_init_se_cmd
);
1190 static sense_reason_t
1191 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1193 struct se_device
*dev
= cmd
->se_dev
;
1196 * Check if SAM Task Attribute emulation is enabled for this
1197 * struct se_device storage object
1199 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1202 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1203 pr_debug("SAM Task Attribute ACA"
1204 " emulation is not supported\n");
1205 return TCM_INVALID_CDB_FIELD
;
1208 * Used to determine when ORDERED commands should go from
1209 * Dormant to Active status.
1211 cmd
->se_ordered_id
= atomic_inc_return(&dev
->dev_ordered_id
);
1212 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1213 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1214 dev
->transport
->name
);
1219 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1221 struct se_device
*dev
= cmd
->se_dev
;
1225 * Ensure that the received CDB is less than the max (252 + 8) bytes
1226 * for VARIABLE_LENGTH_CMD
1228 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1229 pr_err("Received SCSI CDB with command_size: %d that"
1230 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1231 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1232 return TCM_INVALID_CDB_FIELD
;
1235 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1236 * allocate the additional extended CDB buffer now.. Otherwise
1237 * setup the pointer from __t_task_cdb to t_task_cdb.
1239 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1240 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1242 if (!cmd
->t_task_cdb
) {
1243 pr_err("Unable to allocate cmd->t_task_cdb"
1244 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1245 scsi_command_size(cdb
),
1246 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1247 return TCM_OUT_OF_RESOURCES
;
1250 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1252 * Copy the original CDB into cmd->
1254 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1256 trace_target_sequencer_start(cmd
);
1259 * Check for an existing UNIT ATTENTION condition
1261 ret
= target_scsi3_ua_check(cmd
);
1265 ret
= target_alua_state_check(cmd
);
1269 ret
= target_check_reservation(cmd
);
1271 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1275 ret
= dev
->transport
->parse_cdb(cmd
);
1279 ret
= transport_check_alloc_task_attr(cmd
);
1283 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1285 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1286 if (cmd
->se_lun
->lun_sep
)
1287 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1288 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1291 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1294 * Used by fabric module frontends to queue tasks directly.
1295 * Many only be used from process context only
1297 int transport_handle_cdb_direct(
1304 pr_err("cmd->se_lun is NULL\n");
1307 if (in_interrupt()) {
1309 pr_err("transport_generic_handle_cdb cannot be called"
1310 " from interrupt context\n");
1314 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1315 * outstanding descriptors are handled correctly during shutdown via
1316 * transport_wait_for_tasks()
1318 * Also, we don't take cmd->t_state_lock here as we only expect
1319 * this to be called for initial descriptor submission.
1321 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1322 cmd
->transport_state
|= CMD_T_ACTIVE
;
1325 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1326 * so follow TRANSPORT_NEW_CMD processing thread context usage
1327 * and call transport_generic_request_failure() if necessary..
1329 ret
= transport_generic_new_cmd(cmd
);
1331 transport_generic_request_failure(cmd
, ret
);
1334 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1337 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1338 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1340 if (!sgl
|| !sgl_count
)
1344 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1345 * scatterlists already have been set to follow what the fabric
1346 * passes for the original expected data transfer length.
1348 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1349 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1350 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1351 return TCM_INVALID_CDB_FIELD
;
1354 cmd
->t_data_sg
= sgl
;
1355 cmd
->t_data_nents
= sgl_count
;
1357 if (sgl_bidi
&& sgl_bidi_count
) {
1358 cmd
->t_bidi_data_sg
= sgl_bidi
;
1359 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1361 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1366 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1367 * se_cmd + use pre-allocated SGL memory.
1369 * @se_cmd: command descriptor to submit
1370 * @se_sess: associated se_sess for endpoint
1371 * @cdb: pointer to SCSI CDB
1372 * @sense: pointer to SCSI sense buffer
1373 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1374 * @data_length: fabric expected data transfer length
1375 * @task_addr: SAM task attribute
1376 * @data_dir: DMA data direction
1377 * @flags: flags for command submission from target_sc_flags_tables
1378 * @sgl: struct scatterlist memory for unidirectional mapping
1379 * @sgl_count: scatterlist count for unidirectional mapping
1380 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1381 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1382 * @sgl_prot: struct scatterlist memory protection information
1383 * @sgl_prot_count: scatterlist count for protection information
1385 * Returns non zero to signal active I/O shutdown failure. All other
1386 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1387 * but still return zero here.
1389 * This may only be called from process context, and also currently
1390 * assumes internal allocation of fabric payload buffer by target-core.
1392 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1393 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1394 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1395 struct scatterlist
*sgl
, u32 sgl_count
,
1396 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1397 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1399 struct se_portal_group
*se_tpg
;
1403 se_tpg
= se_sess
->se_tpg
;
1405 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1406 BUG_ON(in_interrupt());
1408 * Initialize se_cmd for target operation. From this point
1409 * exceptions are handled by sending exception status via
1410 * target_core_fabric_ops->queue_status() callback
1412 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1413 data_length
, data_dir
, task_attr
, sense
);
1414 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1415 se_cmd
->unknown_data_length
= 1;
1417 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1418 * se_sess->sess_cmd_list. A second kref_get here is necessary
1419 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1420 * kref_put() to happen during fabric packet acknowledgement.
1422 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1426 * Signal bidirectional data payloads to target-core
1428 if (flags
& TARGET_SCF_BIDI_OP
)
1429 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1431 * Locate se_lun pointer and attach it to struct se_cmd
1433 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1435 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1436 target_put_sess_cmd(se_cmd
);
1440 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1442 transport_generic_request_failure(se_cmd
, rc
);
1447 * Save pointers for SGLs containing protection information,
1450 if (sgl_prot_count
) {
1451 se_cmd
->t_prot_sg
= sgl_prot
;
1452 se_cmd
->t_prot_nents
= sgl_prot_count
;
1456 * When a non zero sgl_count has been passed perform SGL passthrough
1457 * mapping for pre-allocated fabric memory instead of having target
1458 * core perform an internal SGL allocation..
1460 if (sgl_count
!= 0) {
1464 * A work-around for tcm_loop as some userspace code via
1465 * scsi-generic do not memset their associated read buffers,
1466 * so go ahead and do that here for type non-data CDBs. Also
1467 * note that this is currently guaranteed to be a single SGL
1468 * for this case by target core in target_setup_cmd_from_cdb()
1469 * -> transport_generic_cmd_sequencer().
1471 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1472 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1473 unsigned char *buf
= NULL
;
1476 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1479 memset(buf
, 0, sgl
->length
);
1480 kunmap(sg_page(sgl
));
1484 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1485 sgl_bidi
, sgl_bidi_count
);
1487 transport_generic_request_failure(se_cmd
, rc
);
1493 * Check if we need to delay processing because of ALUA
1494 * Active/NonOptimized primary access state..
1496 core_alua_check_nonop_delay(se_cmd
);
1498 transport_handle_cdb_direct(se_cmd
);
1501 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1504 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1506 * @se_cmd: command descriptor to submit
1507 * @se_sess: associated se_sess for endpoint
1508 * @cdb: pointer to SCSI CDB
1509 * @sense: pointer to SCSI sense buffer
1510 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1511 * @data_length: fabric expected data transfer length
1512 * @task_addr: SAM task attribute
1513 * @data_dir: DMA data direction
1514 * @flags: flags for command submission from target_sc_flags_tables
1516 * Returns non zero to signal active I/O shutdown failure. All other
1517 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1518 * but still return zero here.
1520 * This may only be called from process context, and also currently
1521 * assumes internal allocation of fabric payload buffer by target-core.
1523 * It also assumes interal target core SGL memory allocation.
1525 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1526 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1527 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1529 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1530 unpacked_lun
, data_length
, task_attr
, data_dir
,
1531 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1533 EXPORT_SYMBOL(target_submit_cmd
);
1535 static void target_complete_tmr_failure(struct work_struct
*work
)
1537 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1539 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1540 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1542 transport_cmd_check_stop_to_fabric(se_cmd
);
1546 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1549 * @se_cmd: command descriptor to submit
1550 * @se_sess: associated se_sess for endpoint
1551 * @sense: pointer to SCSI sense buffer
1552 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1553 * @fabric_context: fabric context for TMR req
1554 * @tm_type: Type of TM request
1555 * @gfp: gfp type for caller
1556 * @tag: referenced task tag for TMR_ABORT_TASK
1557 * @flags: submit cmd flags
1559 * Callable from all contexts.
1562 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1563 unsigned char *sense
, u32 unpacked_lun
,
1564 void *fabric_tmr_ptr
, unsigned char tm_type
,
1565 gfp_t gfp
, unsigned int tag
, int flags
)
1567 struct se_portal_group
*se_tpg
;
1570 se_tpg
= se_sess
->se_tpg
;
1573 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1574 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1576 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1577 * allocation failure.
1579 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1583 if (tm_type
== TMR_ABORT_TASK
)
1584 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1586 /* See target_submit_cmd for commentary */
1587 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1589 core_tmr_release_req(se_cmd
->se_tmr_req
);
1593 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1596 * For callback during failure handling, push this work off
1597 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1599 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1600 schedule_work(&se_cmd
->work
);
1603 transport_generic_handle_tmr(se_cmd
);
1606 EXPORT_SYMBOL(target_submit_tmr
);
1609 * If the cmd is active, request it to be stopped and sleep until it
1612 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1613 __releases(&cmd
->t_state_lock
)
1614 __acquires(&cmd
->t_state_lock
)
1616 bool was_active
= false;
1618 if (cmd
->transport_state
& CMD_T_BUSY
) {
1619 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1620 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1622 pr_debug("cmd %p waiting to complete\n", cmd
);
1623 wait_for_completion(&cmd
->task_stop_comp
);
1624 pr_debug("cmd %p stopped successfully\n", cmd
);
1626 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1627 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1628 cmd
->transport_state
&= ~CMD_T_BUSY
;
1636 * Handle SAM-esque emulation for generic transport request failures.
1638 void transport_generic_request_failure(struct se_cmd
*cmd
,
1639 sense_reason_t sense_reason
)
1643 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1644 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1645 cmd
->t_task_cdb
[0]);
1646 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1647 cmd
->se_tfo
->get_cmd_state(cmd
),
1648 cmd
->t_state
, sense_reason
);
1649 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1650 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1651 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1652 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1655 * For SAM Task Attribute emulation for failed struct se_cmd
1657 transport_complete_task_attr(cmd
);
1659 * Handle special case for COMPARE_AND_WRITE failure, where the
1660 * callback is expected to drop the per device ->caw_sem.
1662 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1663 cmd
->transport_complete_callback
)
1664 cmd
->transport_complete_callback(cmd
, false);
1666 switch (sense_reason
) {
1667 case TCM_NON_EXISTENT_LUN
:
1668 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1669 case TCM_INVALID_CDB_FIELD
:
1670 case TCM_INVALID_PARAMETER_LIST
:
1671 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1672 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1673 case TCM_UNKNOWN_MODE_PAGE
:
1674 case TCM_WRITE_PROTECTED
:
1675 case TCM_ADDRESS_OUT_OF_RANGE
:
1676 case TCM_CHECK_CONDITION_ABORT_CMD
:
1677 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1678 case TCM_CHECK_CONDITION_NOT_READY
:
1679 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1680 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1681 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1683 case TCM_OUT_OF_RESOURCES
:
1684 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1686 case TCM_RESERVATION_CONFLICT
:
1688 * No SENSE Data payload for this case, set SCSI Status
1689 * and queue the response to $FABRIC_MOD.
1691 * Uses linux/include/scsi/scsi.h SAM status codes defs
1693 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1695 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1696 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1699 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1702 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1703 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1704 cmd
->orig_fe_lun
, 0x2C,
1705 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1707 trace_target_cmd_complete(cmd
);
1708 ret
= cmd
->se_tfo
-> queue_status(cmd
);
1709 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1713 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1714 cmd
->t_task_cdb
[0], sense_reason
);
1715 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1719 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1720 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1724 transport_lun_remove_cmd(cmd
);
1725 if (!transport_cmd_check_stop_to_fabric(cmd
))
1730 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1731 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1733 EXPORT_SYMBOL(transport_generic_request_failure
);
1735 void __target_execute_cmd(struct se_cmd
*cmd
)
1739 if (cmd
->execute_cmd
) {
1740 ret
= cmd
->execute_cmd(cmd
);
1742 spin_lock_irq(&cmd
->t_state_lock
);
1743 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1744 spin_unlock_irq(&cmd
->t_state_lock
);
1746 transport_generic_request_failure(cmd
, ret
);
1751 static int target_write_prot_action(struct se_cmd
*cmd
)
1755 * Perform WRITE_INSERT of PI using software emulation when backend
1756 * device has PI enabled, if the transport has not already generated
1757 * PI using hardware WRITE_INSERT offload.
1759 switch (cmd
->prot_op
) {
1760 case TARGET_PROT_DOUT_INSERT
:
1761 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1762 sbc_dif_generate(cmd
);
1764 case TARGET_PROT_DOUT_STRIP
:
1765 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1768 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1769 cmd
->pi_err
= sbc_dif_verify_write(cmd
, cmd
->t_task_lba
,
1770 sectors
, 0, NULL
, 0);
1771 if (unlikely(cmd
->pi_err
)) {
1772 spin_lock_irq(&cmd
->t_state_lock
);
1773 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1774 spin_unlock_irq(&cmd
->t_state_lock
);
1775 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1786 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1788 struct se_device
*dev
= cmd
->se_dev
;
1790 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1794 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1795 * to allow the passed struct se_cmd list of tasks to the front of the list.
1797 switch (cmd
->sam_task_attr
) {
1799 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1800 "se_ordered_id: %u\n",
1801 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1803 case TCM_ORDERED_TAG
:
1804 atomic_inc_mb(&dev
->dev_ordered_sync
);
1806 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1807 " se_ordered_id: %u\n",
1808 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1811 * Execute an ORDERED command if no other older commands
1812 * exist that need to be completed first.
1814 if (!atomic_read(&dev
->simple_cmds
))
1819 * For SIMPLE and UNTAGGED Task Attribute commands
1821 atomic_inc_mb(&dev
->simple_cmds
);
1825 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1828 spin_lock(&dev
->delayed_cmd_lock
);
1829 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1830 spin_unlock(&dev
->delayed_cmd_lock
);
1832 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1833 " delayed CMD list, se_ordered_id: %u\n",
1834 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
1835 cmd
->se_ordered_id
);
1839 void target_execute_cmd(struct se_cmd
*cmd
)
1842 * If the received CDB has aleady been aborted stop processing it here.
1844 if (transport_check_aborted_status(cmd
, 1))
1848 * Determine if frontend context caller is requesting the stopping of
1849 * this command for frontend exceptions.
1851 spin_lock_irq(&cmd
->t_state_lock
);
1852 if (cmd
->transport_state
& CMD_T_STOP
) {
1853 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1855 cmd
->se_tfo
->get_task_tag(cmd
));
1857 spin_unlock_irq(&cmd
->t_state_lock
);
1858 complete_all(&cmd
->t_transport_stop_comp
);
1862 cmd
->t_state
= TRANSPORT_PROCESSING
;
1863 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1864 spin_unlock_irq(&cmd
->t_state_lock
);
1866 if (target_write_prot_action(cmd
))
1869 if (target_handle_task_attr(cmd
)) {
1870 spin_lock_irq(&cmd
->t_state_lock
);
1871 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1872 spin_unlock_irq(&cmd
->t_state_lock
);
1876 __target_execute_cmd(cmd
);
1878 EXPORT_SYMBOL(target_execute_cmd
);
1881 * Process all commands up to the last received ORDERED task attribute which
1882 * requires another blocking boundary
1884 static void target_restart_delayed_cmds(struct se_device
*dev
)
1889 spin_lock(&dev
->delayed_cmd_lock
);
1890 if (list_empty(&dev
->delayed_cmd_list
)) {
1891 spin_unlock(&dev
->delayed_cmd_lock
);
1895 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1896 struct se_cmd
, se_delayed_node
);
1897 list_del(&cmd
->se_delayed_node
);
1898 spin_unlock(&dev
->delayed_cmd_lock
);
1900 __target_execute_cmd(cmd
);
1902 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1908 * Called from I/O completion to determine which dormant/delayed
1909 * and ordered cmds need to have their tasks added to the execution queue.
1911 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1913 struct se_device
*dev
= cmd
->se_dev
;
1915 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1918 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1919 atomic_dec_mb(&dev
->simple_cmds
);
1920 dev
->dev_cur_ordered_id
++;
1921 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1922 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
1923 cmd
->se_ordered_id
);
1924 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1925 dev
->dev_cur_ordered_id
++;
1926 pr_debug("Incremented dev_cur_ordered_id: %u for"
1927 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
1928 cmd
->se_ordered_id
);
1929 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1930 atomic_dec_mb(&dev
->dev_ordered_sync
);
1932 dev
->dev_cur_ordered_id
++;
1933 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1934 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
1937 target_restart_delayed_cmds(dev
);
1940 static void transport_complete_qf(struct se_cmd
*cmd
)
1944 transport_complete_task_attr(cmd
);
1946 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1947 trace_target_cmd_complete(cmd
);
1948 ret
= cmd
->se_tfo
->queue_status(cmd
);
1952 switch (cmd
->data_direction
) {
1953 case DMA_FROM_DEVICE
:
1954 trace_target_cmd_complete(cmd
);
1955 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1958 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1959 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1962 /* Fall through for DMA_TO_DEVICE */
1964 trace_target_cmd_complete(cmd
);
1965 ret
= cmd
->se_tfo
->queue_status(cmd
);
1973 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1976 transport_lun_remove_cmd(cmd
);
1977 transport_cmd_check_stop_to_fabric(cmd
);
1980 static void transport_handle_queue_full(
1982 struct se_device
*dev
)
1984 spin_lock_irq(&dev
->qf_cmd_lock
);
1985 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1986 atomic_inc_mb(&dev
->dev_qf_count
);
1987 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
1989 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1992 static bool target_read_prot_action(struct se_cmd
*cmd
)
1996 switch (cmd
->prot_op
) {
1997 case TARGET_PROT_DIN_STRIP
:
1998 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
1999 rc
= sbc_dif_read_strip(cmd
);
2006 case TARGET_PROT_DIN_INSERT
:
2007 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2010 sbc_dif_generate(cmd
);
2019 static void target_complete_ok_work(struct work_struct
*work
)
2021 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2025 * Check if we need to move delayed/dormant tasks from cmds on the
2026 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2029 transport_complete_task_attr(cmd
);
2032 * Check to schedule QUEUE_FULL work, or execute an existing
2033 * cmd->transport_qf_callback()
2035 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2036 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2039 * Check if we need to send a sense buffer from
2040 * the struct se_cmd in question.
2042 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2043 WARN_ON(!cmd
->scsi_status
);
2044 ret
= transport_send_check_condition_and_sense(
2046 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2049 transport_lun_remove_cmd(cmd
);
2050 transport_cmd_check_stop_to_fabric(cmd
);
2054 * Check for a callback, used by amongst other things
2055 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2057 if (cmd
->transport_complete_callback
) {
2060 rc
= cmd
->transport_complete_callback(cmd
, true);
2061 if (!rc
&& !(cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE_POST
)) {
2062 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2068 ret
= transport_send_check_condition_and_sense(cmd
,
2070 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2073 transport_lun_remove_cmd(cmd
);
2074 transport_cmd_check_stop_to_fabric(cmd
);
2080 switch (cmd
->data_direction
) {
2081 case DMA_FROM_DEVICE
:
2082 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
2083 if (cmd
->se_lun
->lun_sep
) {
2084 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
2087 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
2089 * Perform READ_STRIP of PI using software emulation when
2090 * backend had PI enabled, if the transport will not be
2091 * performing hardware READ_STRIP offload.
2093 if (target_read_prot_action(cmd
)) {
2094 ret
= transport_send_check_condition_and_sense(cmd
,
2096 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2099 transport_lun_remove_cmd(cmd
);
2100 transport_cmd_check_stop_to_fabric(cmd
);
2104 trace_target_cmd_complete(cmd
);
2105 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2106 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2110 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
2111 if (cmd
->se_lun
->lun_sep
) {
2112 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
2115 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
2117 * Check if we need to send READ payload for BIDI-COMMAND
2119 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2120 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
2121 if (cmd
->se_lun
->lun_sep
) {
2122 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
2125 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
2126 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2127 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2131 /* Fall through for DMA_TO_DEVICE */
2133 trace_target_cmd_complete(cmd
);
2134 ret
= cmd
->se_tfo
->queue_status(cmd
);
2135 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2142 transport_lun_remove_cmd(cmd
);
2143 transport_cmd_check_stop_to_fabric(cmd
);
2147 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2148 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2149 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2150 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2153 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2155 struct scatterlist
*sg
;
2158 for_each_sg(sgl
, sg
, nents
, count
)
2159 __free_page(sg_page(sg
));
2164 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2167 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2168 * emulation, and free + reset pointers if necessary..
2170 if (!cmd
->t_data_sg_orig
)
2173 kfree(cmd
->t_data_sg
);
2174 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2175 cmd
->t_data_sg_orig
= NULL
;
2176 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2177 cmd
->t_data_nents_orig
= 0;
2180 static inline void transport_free_pages(struct se_cmd
*cmd
)
2182 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2184 * Release special case READ buffer payload required for
2185 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2187 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2188 transport_free_sgl(cmd
->t_bidi_data_sg
,
2189 cmd
->t_bidi_data_nents
);
2190 cmd
->t_bidi_data_sg
= NULL
;
2191 cmd
->t_bidi_data_nents
= 0;
2193 transport_reset_sgl_orig(cmd
);
2196 transport_reset_sgl_orig(cmd
);
2198 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2199 cmd
->t_data_sg
= NULL
;
2200 cmd
->t_data_nents
= 0;
2202 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2203 cmd
->t_bidi_data_sg
= NULL
;
2204 cmd
->t_bidi_data_nents
= 0;
2206 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2207 cmd
->t_prot_sg
= NULL
;
2208 cmd
->t_prot_nents
= 0;
2212 * transport_release_cmd - free a command
2213 * @cmd: command to free
2215 * This routine unconditionally frees a command, and reference counting
2216 * or list removal must be done in the caller.
2218 static int transport_release_cmd(struct se_cmd
*cmd
)
2220 BUG_ON(!cmd
->se_tfo
);
2222 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2223 core_tmr_release_req(cmd
->se_tmr_req
);
2224 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2225 kfree(cmd
->t_task_cdb
);
2227 * If this cmd has been setup with target_get_sess_cmd(), drop
2228 * the kref and call ->release_cmd() in kref callback.
2230 return target_put_sess_cmd(cmd
);
2234 * transport_put_cmd - release a reference to a command
2235 * @cmd: command to release
2237 * This routine releases our reference to the command and frees it if possible.
2239 static int transport_put_cmd(struct se_cmd
*cmd
)
2241 transport_free_pages(cmd
);
2242 return transport_release_cmd(cmd
);
2245 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2247 struct scatterlist
*sg
= cmd
->t_data_sg
;
2248 struct page
**pages
;
2252 * We need to take into account a possible offset here for fabrics like
2253 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2254 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2256 if (!cmd
->t_data_nents
)
2260 if (cmd
->t_data_nents
== 1)
2261 return kmap(sg_page(sg
)) + sg
->offset
;
2263 /* >1 page. use vmap */
2264 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2268 /* convert sg[] to pages[] */
2269 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2270 pages
[i
] = sg_page(sg
);
2273 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2275 if (!cmd
->t_data_vmap
)
2278 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2280 EXPORT_SYMBOL(transport_kmap_data_sg
);
2282 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2284 if (!cmd
->t_data_nents
) {
2286 } else if (cmd
->t_data_nents
== 1) {
2287 kunmap(sg_page(cmd
->t_data_sg
));
2291 vunmap(cmd
->t_data_vmap
);
2292 cmd
->t_data_vmap
= NULL
;
2294 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2297 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2300 struct scatterlist
*sg
;
2302 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2306 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2307 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2311 sg_init_table(sg
, nent
);
2314 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2315 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2319 sg_set_page(&sg
[i
], page
, page_len
, 0);
2330 __free_page(sg_page(&sg
[i
]));
2337 * Allocate any required resources to execute the command. For writes we
2338 * might not have the payload yet, so notify the fabric via a call to
2339 * ->write_pending instead. Otherwise place it on the execution queue.
2342 transport_generic_new_cmd(struct se_cmd
*cmd
)
2345 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2348 * Determine is the TCM fabric module has already allocated physical
2349 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2352 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2355 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2356 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2359 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2360 bidi_length
= cmd
->t_task_nolb
*
2361 cmd
->se_dev
->dev_attrib
.block_size
;
2363 bidi_length
= cmd
->data_length
;
2365 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2366 &cmd
->t_bidi_data_nents
,
2367 bidi_length
, zero_flag
);
2369 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2372 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
) {
2373 ret
= target_alloc_sgl(&cmd
->t_prot_sg
,
2375 cmd
->prot_length
, true);
2377 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2380 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2381 cmd
->data_length
, zero_flag
);
2383 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2384 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2387 * Special case for COMPARE_AND_WRITE with fabrics
2388 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2390 u32 caw_length
= cmd
->t_task_nolb
*
2391 cmd
->se_dev
->dev_attrib
.block_size
;
2393 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2394 &cmd
->t_bidi_data_nents
,
2395 caw_length
, zero_flag
);
2397 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2400 * If this command is not a write we can execute it right here,
2401 * for write buffers we need to notify the fabric driver first
2402 * and let it call back once the write buffers are ready.
2404 target_add_to_state_list(cmd
);
2405 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2406 target_execute_cmd(cmd
);
2409 transport_cmd_check_stop(cmd
, false, true);
2411 ret
= cmd
->se_tfo
->write_pending(cmd
);
2412 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2415 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2418 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2421 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2422 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2423 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2426 EXPORT_SYMBOL(transport_generic_new_cmd
);
2428 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2432 ret
= cmd
->se_tfo
->write_pending(cmd
);
2433 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2434 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2436 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2440 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2442 unsigned long flags
;
2445 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2446 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2447 transport_wait_for_tasks(cmd
);
2449 ret
= transport_release_cmd(cmd
);
2452 transport_wait_for_tasks(cmd
);
2454 * Handle WRITE failure case where transport_generic_new_cmd()
2455 * has already added se_cmd to state_list, but fabric has
2456 * failed command before I/O submission.
2458 if (cmd
->state_active
) {
2459 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2460 target_remove_from_state_list(cmd
);
2461 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2465 transport_lun_remove_cmd(cmd
);
2467 ret
= transport_put_cmd(cmd
);
2471 EXPORT_SYMBOL(transport_generic_free_cmd
);
2473 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2474 * @se_cmd: command descriptor to add
2475 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2477 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2479 struct se_session
*se_sess
= se_cmd
->se_sess
;
2480 unsigned long flags
;
2484 * Add a second kref if the fabric caller is expecting to handle
2485 * fabric acknowledgement that requires two target_put_sess_cmd()
2486 * invocations before se_cmd descriptor release.
2489 kref_get(&se_cmd
->cmd_kref
);
2491 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2492 if (se_sess
->sess_tearing_down
) {
2496 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2498 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2500 if (ret
&& ack_kref
)
2501 target_put_sess_cmd(se_cmd
);
2505 EXPORT_SYMBOL(target_get_sess_cmd
);
2507 static void target_release_cmd_kref(struct kref
*kref
)
2508 __releases(&se_cmd
->se_sess
->sess_cmd_lock
)
2510 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2511 struct se_session
*se_sess
= se_cmd
->se_sess
;
2513 if (list_empty(&se_cmd
->se_cmd_list
)) {
2514 spin_unlock(&se_sess
->sess_cmd_lock
);
2515 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2518 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
2519 spin_unlock(&se_sess
->sess_cmd_lock
);
2520 complete(&se_cmd
->cmd_wait_comp
);
2523 list_del(&se_cmd
->se_cmd_list
);
2524 spin_unlock(&se_sess
->sess_cmd_lock
);
2526 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2529 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2530 * @se_cmd: command descriptor to drop
2532 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2534 struct se_session
*se_sess
= se_cmd
->se_sess
;
2537 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2540 return kref_put_spinlock_irqsave(&se_cmd
->cmd_kref
, target_release_cmd_kref
,
2541 &se_sess
->sess_cmd_lock
);
2543 EXPORT_SYMBOL(target_put_sess_cmd
);
2545 /* target_sess_cmd_list_set_waiting - Flag all commands in
2546 * sess_cmd_list to complete cmd_wait_comp. Set
2547 * sess_tearing_down so no more commands are queued.
2548 * @se_sess: session to flag
2550 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2552 struct se_cmd
*se_cmd
;
2553 unsigned long flags
;
2555 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2556 if (se_sess
->sess_tearing_down
) {
2557 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2560 se_sess
->sess_tearing_down
= 1;
2561 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2563 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
2564 se_cmd
->cmd_wait_set
= 1;
2566 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2568 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2570 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2571 * @se_sess: session to wait for active I/O
2573 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2575 struct se_cmd
*se_cmd
, *tmp_cmd
;
2576 unsigned long flags
;
2578 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2579 &se_sess
->sess_wait_list
, se_cmd_list
) {
2580 list_del(&se_cmd
->se_cmd_list
);
2582 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2583 " %d\n", se_cmd
, se_cmd
->t_state
,
2584 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2586 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2587 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2588 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2589 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2591 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2594 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2595 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2596 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2599 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2601 static int transport_clear_lun_ref_thread(void *p
)
2603 struct se_lun
*lun
= p
;
2605 percpu_ref_kill(&lun
->lun_ref
);
2607 wait_for_completion(&lun
->lun_ref_comp
);
2608 complete(&lun
->lun_shutdown_comp
);
2613 int transport_clear_lun_ref(struct se_lun
*lun
)
2615 struct task_struct
*kt
;
2617 kt
= kthread_run(transport_clear_lun_ref_thread
, lun
,
2618 "tcm_cl_%u", lun
->unpacked_lun
);
2620 pr_err("Unable to start clear_lun thread\n");
2623 wait_for_completion(&lun
->lun_shutdown_comp
);
2629 * transport_wait_for_tasks - wait for completion to occur
2630 * @cmd: command to wait
2632 * Called from frontend fabric context to wait for storage engine
2633 * to pause and/or release frontend generated struct se_cmd.
2635 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2637 unsigned long flags
;
2639 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2640 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2641 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2642 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2646 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2647 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2648 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2652 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
2653 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2657 cmd
->transport_state
|= CMD_T_STOP
;
2659 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2660 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2661 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
2662 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2664 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2666 wait_for_completion(&cmd
->t_transport_stop_comp
);
2668 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2669 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2671 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2672 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2673 cmd
->se_tfo
->get_task_tag(cmd
));
2675 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2679 EXPORT_SYMBOL(transport_wait_for_tasks
);
2681 static int transport_get_sense_codes(
2686 *asc
= cmd
->scsi_asc
;
2687 *ascq
= cmd
->scsi_ascq
;
2693 void transport_err_sector_info(unsigned char *buffer
, sector_t bad_sector
)
2695 /* Place failed LBA in sense data information descriptor 0. */
2696 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 0xc;
2697 buffer
[SPC_DESC_TYPE_OFFSET
] = 0; /* Information */
2698 buffer
[SPC_ADDITIONAL_DESC_LEN_OFFSET
] = 0xa;
2699 buffer
[SPC_VALIDITY_OFFSET
] = 0x80;
2701 /* Descriptor Information: failing sector */
2702 put_unaligned_be64(bad_sector
, &buffer
[12]);
2706 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2707 sense_reason_t reason
, int from_transport
)
2709 unsigned char *buffer
= cmd
->sense_buffer
;
2710 unsigned long flags
;
2711 u8 asc
= 0, ascq
= 0;
2713 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2714 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2715 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2718 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2719 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2721 if (!reason
&& from_transport
)
2724 if (!from_transport
)
2725 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2728 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2729 * SENSE KEY values from include/scsi/scsi.h
2735 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2737 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2738 /* NO ADDITIONAL SENSE INFORMATION */
2739 buffer
[SPC_ASC_KEY_OFFSET
] = 0;
2740 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0;
2742 case TCM_NON_EXISTENT_LUN
:
2745 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2746 /* ILLEGAL REQUEST */
2747 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2748 /* LOGICAL UNIT NOT SUPPORTED */
2749 buffer
[SPC_ASC_KEY_OFFSET
] = 0x25;
2751 case TCM_UNSUPPORTED_SCSI_OPCODE
:
2752 case TCM_SECTOR_COUNT_TOO_MANY
:
2755 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2756 /* ILLEGAL REQUEST */
2757 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2758 /* INVALID COMMAND OPERATION CODE */
2759 buffer
[SPC_ASC_KEY_OFFSET
] = 0x20;
2761 case TCM_UNKNOWN_MODE_PAGE
:
2764 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2765 /* ILLEGAL REQUEST */
2766 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2767 /* INVALID FIELD IN CDB */
2768 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2770 case TCM_CHECK_CONDITION_ABORT_CMD
:
2773 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2774 /* ABORTED COMMAND */
2775 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2776 /* BUS DEVICE RESET FUNCTION OCCURRED */
2777 buffer
[SPC_ASC_KEY_OFFSET
] = 0x29;
2778 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2780 case TCM_INCORRECT_AMOUNT_OF_DATA
:
2783 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2784 /* ABORTED COMMAND */
2785 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2787 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2788 /* NOT ENOUGH UNSOLICITED DATA */
2789 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0d;
2791 case TCM_INVALID_CDB_FIELD
:
2794 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2795 /* ILLEGAL REQUEST */
2796 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2797 /* INVALID FIELD IN CDB */
2798 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2800 case TCM_INVALID_PARAMETER_LIST
:
2803 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2804 /* ILLEGAL REQUEST */
2805 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2806 /* INVALID FIELD IN PARAMETER LIST */
2807 buffer
[SPC_ASC_KEY_OFFSET
] = 0x26;
2809 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
2812 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2813 /* ILLEGAL REQUEST */
2814 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2815 /* PARAMETER LIST LENGTH ERROR */
2816 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1a;
2818 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
2821 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2822 /* ABORTED COMMAND */
2823 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2825 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2826 /* UNEXPECTED_UNSOLICITED_DATA */
2827 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0c;
2829 case TCM_SERVICE_CRC_ERROR
:
2832 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2833 /* ABORTED COMMAND */
2834 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2835 /* PROTOCOL SERVICE CRC ERROR */
2836 buffer
[SPC_ASC_KEY_OFFSET
] = 0x47;
2838 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x05;
2840 case TCM_SNACK_REJECTED
:
2843 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2844 /* ABORTED COMMAND */
2845 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2847 buffer
[SPC_ASC_KEY_OFFSET
] = 0x11;
2848 /* FAILED RETRANSMISSION REQUEST */
2849 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x13;
2851 case TCM_WRITE_PROTECTED
:
2854 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2856 buffer
[SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
2857 /* WRITE PROTECTED */
2858 buffer
[SPC_ASC_KEY_OFFSET
] = 0x27;
2860 case TCM_ADDRESS_OUT_OF_RANGE
:
2863 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2864 /* ILLEGAL REQUEST */
2865 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2866 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2867 buffer
[SPC_ASC_KEY_OFFSET
] = 0x21;
2869 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
2872 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2873 /* UNIT ATTENTION */
2874 buffer
[SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
2875 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2876 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2877 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2879 case TCM_CHECK_CONDITION_NOT_READY
:
2882 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2884 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2885 transport_get_sense_codes(cmd
, &asc
, &ascq
);
2886 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2887 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2889 case TCM_MISCOMPARE_VERIFY
:
2892 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2893 buffer
[SPC_SENSE_KEY_OFFSET
] = MISCOMPARE
;
2894 /* MISCOMPARE DURING VERIFY OPERATION */
2895 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1d;
2896 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x00;
2898 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
2901 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2902 /* ILLEGAL REQUEST */
2903 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2904 /* LOGICAL BLOCK GUARD CHECK FAILED */
2905 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2906 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x01;
2907 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2909 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
2912 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2913 /* ILLEGAL REQUEST */
2914 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2915 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2916 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2917 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x02;
2918 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2920 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
2923 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2924 /* ILLEGAL REQUEST */
2925 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2926 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2927 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2928 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2929 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2931 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
2935 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2937 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2938 * Solaris initiators. Returning NOT READY instead means the
2939 * operations will be retried a finite number of times and we
2940 * can survive intermittent errors.
2942 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2943 /* LOGICAL UNIT COMMUNICATION FAILURE */
2944 buffer
[SPC_ASC_KEY_OFFSET
] = 0x08;
2948 * This code uses linux/include/scsi/scsi.h SAM status codes!
2950 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2952 * Automatically padded, this value is encoded in the fabric's
2953 * data_length response PDU containing the SCSI defined sense data.
2955 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2958 trace_target_cmd_complete(cmd
);
2959 return cmd
->se_tfo
->queue_status(cmd
);
2961 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2963 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2965 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2969 * If cmd has been aborted but either no status is to be sent or it has
2970 * already been sent, just return
2972 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
))
2975 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2976 cmd
->t_task_cdb
[0], cmd
->se_tfo
->get_task_tag(cmd
));
2978 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2979 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2980 trace_target_cmd_complete(cmd
);
2981 cmd
->se_tfo
->queue_status(cmd
);
2985 EXPORT_SYMBOL(transport_check_aborted_status
);
2987 void transport_send_task_abort(struct se_cmd
*cmd
)
2989 unsigned long flags
;
2991 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2992 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
2993 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2996 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2999 * If there are still expected incoming fabric WRITEs, we wait
3000 * until until they have completed before sending a TASK_ABORTED
3001 * response. This response with TASK_ABORTED status will be
3002 * queued back to fabric module by transport_check_aborted_status().
3004 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3005 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
3006 cmd
->transport_state
|= CMD_T_ABORTED
;
3007 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
3011 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
3013 transport_lun_remove_cmd(cmd
);
3015 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3016 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
3017 cmd
->se_tfo
->get_task_tag(cmd
));
3019 trace_target_cmd_complete(cmd
);
3020 cmd
->se_tfo
->queue_status(cmd
);
3023 static void target_tmr_work(struct work_struct
*work
)
3025 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
3026 struct se_device
*dev
= cmd
->se_dev
;
3027 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
3028 unsigned long flags
;
3031 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3032 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3033 tmr
->response
= TMR_FUNCTION_REJECTED
;
3034 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3037 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3039 switch (tmr
->function
) {
3040 case TMR_ABORT_TASK
:
3041 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
3043 case TMR_ABORT_TASK_SET
:
3045 case TMR_CLEAR_TASK_SET
:
3046 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
3049 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
3050 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
3051 TMR_FUNCTION_REJECTED
;
3053 case TMR_TARGET_WARM_RESET
:
3054 tmr
->response
= TMR_FUNCTION_REJECTED
;
3056 case TMR_TARGET_COLD_RESET
:
3057 tmr
->response
= TMR_FUNCTION_REJECTED
;
3060 pr_err("Uknown TMR function: 0x%02x.\n",
3062 tmr
->response
= TMR_FUNCTION_REJECTED
;
3066 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3067 if (cmd
->transport_state
& CMD_T_ABORTED
) {
3068 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3071 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
3072 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3074 cmd
->se_tfo
->queue_tm_rsp(cmd
);
3077 transport_cmd_check_stop_to_fabric(cmd
);
3080 int transport_generic_handle_tmr(
3083 unsigned long flags
;
3085 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
3086 cmd
->transport_state
|= CMD_T_ACTIVE
;
3087 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
3089 INIT_WORK(&cmd
->work
, target_tmr_work
);
3090 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3093 EXPORT_SYMBOL(transport_generic_handle_tmr
);