1 /* SPDX-License-Identifier: GPL-2.0
3 * IO cost model based controller.
5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org>
6 * Copyright (C) 2019 Andy Newell <newella@fb.com>
7 * Copyright (C) 2019 Facebook
9 * One challenge of controlling IO resources is the lack of trivially
10 * observable cost metric. This is distinguished from CPU and memory where
11 * wallclock time and the number of bytes can serve as accurate enough
14 * Bandwidth and iops are the most commonly used metrics for IO devices but
15 * depending on the type and specifics of the device, different IO patterns
16 * easily lead to multiple orders of magnitude variations rendering them
17 * useless for the purpose of IO capacity distribution. While on-device
18 * time, with a lot of clutches, could serve as a useful approximation for
19 * non-queued rotational devices, this is no longer viable with modern
20 * devices, even the rotational ones.
22 * While there is no cost metric we can trivially observe, it isn't a
23 * complete mystery. For example, on a rotational device, seek cost
24 * dominates while a contiguous transfer contributes a smaller amount
25 * proportional to the size. If we can characterize at least the relative
26 * costs of these different types of IOs, it should be possible to
27 * implement a reasonable work-conserving proportional IO resource
32 * IO cost model estimates the cost of an IO given its basic parameters and
33 * history (e.g. the end sector of the last IO). The cost is measured in
34 * device time. If a given IO is estimated to cost 10ms, the device should
35 * be able to process ~100 of those IOs in a second.
37 * Currently, there's only one builtin cost model - linear. Each IO is
38 * classified as sequential or random and given a base cost accordingly.
39 * On top of that, a size cost proportional to the length of the IO is
40 * added. While simple, this model captures the operational
41 * characteristics of a wide varienty of devices well enough. Default
42 * paramters for several different classes of devices are provided and the
43 * parameters can be configured from userspace via
44 * /sys/fs/cgroup/io.cost.model.
46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate
47 * device-specific coefficients.
51 * The device virtual time (vtime) is used as the primary control metric.
52 * The control strategy is composed of the following three parts.
54 * 2-1. Vtime Distribution
56 * When a cgroup becomes active in terms of IOs, its hierarchical share is
57 * calculated. Please consider the following hierarchy where the numbers
58 * inside parentheses denote the configured weights.
64 * A0 (w:100) A1 (w:100)
66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are
67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B
68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest,
69 * 12.5% each. The distribution mechanism only cares about these flattened
70 * shares. They're called hweights (hierarchical weights) and always add
71 * upto 1 (HWEIGHT_WHOLE).
73 * A given cgroup's vtime runs slower in inverse proportion to its hweight.
74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5)
75 * against the device vtime - an IO which takes 10ms on the underlying
76 * device is considered to take 80ms on A0.
78 * This constitutes the basis of IO capacity distribution. Each cgroup's
79 * vtime is running at a rate determined by its hweight. A cgroup tracks
80 * the vtime consumed by past IOs and can issue a new IO iff doing so
81 * wouldn't outrun the current device vtime. Otherwise, the IO is
82 * suspended until the vtime has progressed enough to cover it.
84 * 2-2. Vrate Adjustment
86 * It's unrealistic to expect the cost model to be perfect. There are too
87 * many devices and even on the same device the overall performance
88 * fluctuates depending on numerous factors such as IO mixture and device
89 * internal garbage collection. The controller needs to adapt dynamically.
91 * This is achieved by adjusting the overall IO rate according to how busy
92 * the device is. If the device becomes overloaded, we're sending down too
93 * many IOs and should generally slow down. If there are waiting issuers
94 * but the device isn't saturated, we're issuing too few and should
97 * To slow down, we lower the vrate - the rate at which the device vtime
98 * passes compared to the wall clock. For example, if the vtime is running
99 * at the vrate of 75%, all cgroups added up would only be able to issue
100 * 750ms worth of IOs per second, and vice-versa for speeding up.
102 * Device business is determined using two criteria - rq wait and
103 * completion latencies.
105 * When a device gets saturated, the on-device and then the request queues
106 * fill up and a bio which is ready to be issued has to wait for a request
107 * to become available. When this delay becomes noticeable, it's a clear
108 * indication that the device is saturated and we lower the vrate. This
109 * saturation signal is fairly conservative as it only triggers when both
110 * hardware and software queues are filled up, and is used as the default
113 * As devices can have deep queues and be unfair in how the queued commands
114 * are executed, soley depending on rq wait may not result in satisfactory
115 * control quality. For a better control quality, completion latency QoS
116 * parameters can be configured so that the device is considered saturated
117 * if N'th percentile completion latency rises above the set point.
119 * The completion latency requirements are a function of both the
120 * underlying device characteristics and the desired IO latency quality of
121 * service. There is an inherent trade-off - the tighter the latency QoS,
122 * the higher the bandwidth lossage. Latency QoS is disabled by default
123 * and can be set through /sys/fs/cgroup/io.cost.qos.
125 * 2-3. Work Conservation
127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO
128 * periodically while B is sending out enough parallel IOs to saturate the
129 * device on its own. Let's say A's usage amounts to 100ms worth of IO
130 * cost per second, i.e., 10% of the device capacity. The naive
131 * distribution of half and half would lead to 60% utilization of the
132 * device, a significant reduction in the total amount of work done
133 * compared to free-for-all competition. This is too high a cost to pay
136 * To conserve the total amount of work done, we keep track of how much
137 * each active cgroup is actually using and yield part of its weight if
138 * there are other cgroups which can make use of it. In the above case,
139 * A's weight will be lowered so that it hovers above the actual usage and
140 * B would be able to use the rest.
142 * As we don't want to penalize a cgroup for donating its weight, the
143 * surplus weight adjustment factors in a margin and has an immediate
144 * snapback mechanism in case the cgroup needs more IO vtime for itself.
146 * Note that adjusting down surplus weights has the same effects as
147 * accelerating vtime for other cgroups and work conservation can also be
148 * implemented by adjusting vrate dynamically. However, squaring who can
149 * donate and should take back how much requires hweight propagations
150 * anyway making it easier to implement and understand as a separate
155 * Instead of debugfs or other clumsy monitoring mechanisms, this
156 * controller uses a drgn based monitoring script -
157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see
158 * https://github.com/osandov/drgn. The ouput looks like the following.
160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12%
161 * active weight hweight% inflt% dbt delay usages%
162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033
163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077
165 * - per : Timer period
166 * - cur_per : Internal wall and device vtime clock
167 * - vrate : Device virtual time rate against wall clock
168 * - weight : Surplus-adjusted and configured weights
169 * - hweight : Surplus-adjusted and configured hierarchical weights
170 * - inflt : The percentage of in-flight IO cost at the end of last period
171 * - del_ms : Deferred issuer delay induction level and duration
172 * - usages : Usage history
175 #include <linux/kernel.h>
176 #include <linux/module.h>
177 #include <linux/timer.h>
178 #include <linux/time64.h>
179 #include <linux/parser.h>
180 #include <linux/sched/signal.h>
181 #include <linux/blk-cgroup.h>
182 #include "blk-rq-qos.h"
183 #include "blk-stat.h"
186 #ifdef CONFIG_TRACEPOINTS
188 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */
189 #define TRACE_IOCG_PATH_LEN 1024
190 static DEFINE_SPINLOCK(trace_iocg_path_lock
);
191 static char trace_iocg_path
[TRACE_IOCG_PATH_LEN
];
193 #define TRACE_IOCG_PATH(type, iocg, ...) \
195 unsigned long flags; \
196 if (trace_iocost_##type##_enabled()) { \
197 spin_lock_irqsave(&trace_iocg_path_lock, flags); \
198 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \
199 trace_iocg_path, TRACE_IOCG_PATH_LEN); \
200 trace_iocost_##type(iocg, trace_iocg_path, \
202 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \
206 #else /* CONFIG_TRACE_POINTS */
207 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0)
208 #endif /* CONFIG_TRACE_POINTS */
213 /* timer period is calculated from latency requirements, bound it */
214 MIN_PERIOD
= USEC_PER_MSEC
,
215 MAX_PERIOD
= USEC_PER_SEC
,
218 * A cgroup's vtime can run 50% behind the device vtime, which
219 * serves as its IO credit buffer. Surplus weight adjustment is
220 * immediately canceled if the vtime margin runs below 10%.
223 INUSE_MARGIN_PCT
= 10,
225 /* Have some play in waitq timer operations */
226 WAITQ_TIMER_MARGIN_PCT
= 5,
229 * vtime can wrap well within a reasonable uptime when vrate is
230 * consistently raised. Don't trust recorded cgroup vtime if the
231 * period counter indicates that it's older than 5mins.
233 VTIME_VALID_DUR
= 300 * USEC_PER_SEC
,
236 * Remember the past three non-zero usages and use the max for
237 * surplus calculation. Three slots guarantee that we remember one
238 * full period usage from the last active stretch even after
239 * partial deactivation and re-activation periods. Don't start
240 * giving away weight before collecting two data points to prevent
241 * hweight adjustments based on one partial activation period.
244 MIN_VALID_USAGES
= 2,
246 /* 1/64k is granular enough and can easily be handled w/ u32 */
247 HWEIGHT_WHOLE
= 1 << 16,
250 * As vtime is used to calculate the cost of each IO, it needs to
251 * be fairly high precision. For example, it should be able to
252 * represent the cost of a single page worth of discard with
253 * suffificient accuracy. At the same time, it should be able to
254 * represent reasonably long enough durations to be useful and
255 * convenient during operation.
257 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond
258 * granularity and days of wrap-around time even at extreme vrates.
260 VTIME_PER_SEC_SHIFT
= 37,
261 VTIME_PER_SEC
= 1LLU << VTIME_PER_SEC_SHIFT
,
262 VTIME_PER_USEC
= VTIME_PER_SEC
/ USEC_PER_SEC
,
263 VTIME_PER_NSEC
= VTIME_PER_SEC
/ NSEC_PER_SEC
,
265 /* bound vrate adjustments within two orders of magnitude */
266 VRATE_MIN_PPM
= 10000, /* 1% */
267 VRATE_MAX_PPM
= 100000000, /* 10000% */
269 VRATE_MIN
= VTIME_PER_USEC
* VRATE_MIN_PPM
/ MILLION
,
270 VRATE_CLAMP_ADJ_PCT
= 4,
272 /* if IOs end up waiting for requests, issue less */
273 RQ_WAIT_BUSY_PCT
= 5,
275 /* unbusy hysterisis */
278 /* don't let cmds which take a very long time pin lagging for too long */
279 MAX_LAGGING_PERIODS
= 10,
282 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%,
283 * donate the surplus.
285 SURPLUS_SCALE_PCT
= 125, /* * 125% */
286 SURPLUS_SCALE_ABS
= HWEIGHT_WHOLE
/ 50, /* + 2% */
287 SURPLUS_MIN_ADJ_DELTA
= HWEIGHT_WHOLE
/ 33, /* 3% */
289 /* switch iff the conditions are met for longer than this */
290 AUTOP_CYCLE_NSEC
= 10LLU * NSEC_PER_SEC
,
293 * Count IO size in 4k pages. The 12bit shift helps keeping
294 * size-proportional components of cost calculation in closer
295 * numbers of digits to per-IO cost components.
298 IOC_PAGE_SIZE
= 1 << IOC_PAGE_SHIFT
,
299 IOC_SECT_TO_PAGE_SHIFT
= IOC_PAGE_SHIFT
- SECTOR_SHIFT
,
301 /* if apart further than 16M, consider randio for linear model */
302 LCOEF_RANDIO_PAGES
= 4096,
311 /* io.cost.qos controls including per-dev enable of the whole controller */
318 /* io.cost.qos params */
329 /* io.cost.model controls */
336 /* builtin linear cost model coefficients */
368 u32 qos
[NR_QOS_PARAMS
];
369 u64 i_lcoefs
[NR_I_LCOEFS
];
370 u64 lcoefs
[NR_LCOEFS
];
371 u32 too_fast_vrate_pct
;
372 u32 too_slow_vrate_pct
;
382 struct ioc_pcpu_stat
{
383 struct ioc_missed missed
[2];
395 struct ioc_params params
;
402 struct timer_list timer
;
403 struct list_head active_iocgs
; /* active cgroups */
404 struct ioc_pcpu_stat __percpu
*pcpu_stat
;
406 enum ioc_running running
;
407 atomic64_t vtime_rate
;
409 seqcount_t period_seqcount
;
410 u32 period_at
; /* wallclock starttime */
411 u64 period_at_vtime
; /* vtime starttime */
413 atomic64_t cur_period
; /* inc'd each period */
414 int busy_level
; /* saturation history */
416 u64 inuse_margin_vtime
;
417 bool weights_updated
;
418 atomic_t hweight_gen
; /* for lazy hweights */
420 u64 autop_too_fast_at
;
421 u64 autop_too_slow_at
;
423 bool user_qos_params
:1;
424 bool user_cost_model
:1;
427 /* per device-cgroup pair */
429 struct blkg_policy_data pd
;
433 * A iocg can get its weight from two sources - an explicit
434 * per-device-cgroup configuration or the default weight of the
435 * cgroup. `cfg_weight` is the explicit per-device-cgroup
436 * configuration. `weight` is the effective considering both
439 * When an idle cgroup becomes active its `active` goes from 0 to
440 * `weight`. `inuse` is the surplus adjusted active weight.
441 * `active` and `inuse` are used to calculate `hweight_active` and
444 * `last_inuse` remembers `inuse` while an iocg is idle to persist
445 * surplus adjustments.
453 sector_t cursor
; /* to detect randio */
456 * `vtime` is this iocg's vtime cursor which progresses as IOs are
457 * issued. If lagging behind device vtime, the delta represents
458 * the currently available IO budget. If runnning ahead, the
461 * `vtime_done` is the same but progressed on completion rather
462 * than issue. The delta behind `vtime` represents the cost of
463 * currently in-flight IOs.
465 * `last_vtime` is used to remember `vtime` at the end of the last
466 * period to calculate utilization.
469 atomic64_t done_vtime
;
474 * The period this iocg was last active in. Used for deactivation
475 * and invalidating `vtime`.
477 atomic64_t active_period
;
478 struct list_head active_list
;
480 /* see __propagate_active_weight() and current_hweight() for details */
481 u64 child_active_sum
;
488 struct wait_queue_head waitq
;
489 struct hrtimer waitq_timer
;
490 struct hrtimer delay_timer
;
492 /* usage is recorded as fractions of HWEIGHT_WHOLE */
494 u32 usages
[NR_USAGE_SLOTS
];
496 /* this iocg's depth in the hierarchy and ancestors including self */
498 struct ioc_gq
*ancestors
[];
503 struct blkcg_policy_data cpd
;
504 unsigned int dfl_weight
;
515 struct wait_queue_entry wait
;
521 struct iocg_wake_ctx
{
527 static const struct ioc_params autop
[] = {
530 [QOS_RLAT
] = 250000, /* 250ms */
532 [QOS_MIN
] = VRATE_MIN_PPM
,
533 [QOS_MAX
] = VRATE_MAX_PPM
,
536 [I_LCOEF_RBPS
] = 174019176,
537 [I_LCOEF_RSEQIOPS
] = 41708,
538 [I_LCOEF_RRANDIOPS
] = 370,
539 [I_LCOEF_WBPS
] = 178075866,
540 [I_LCOEF_WSEQIOPS
] = 42705,
541 [I_LCOEF_WRANDIOPS
] = 378,
546 [QOS_RLAT
] = 25000, /* 25ms */
548 [QOS_MIN
] = VRATE_MIN_PPM
,
549 [QOS_MAX
] = VRATE_MAX_PPM
,
552 [I_LCOEF_RBPS
] = 245855193,
553 [I_LCOEF_RSEQIOPS
] = 61575,
554 [I_LCOEF_RRANDIOPS
] = 6946,
555 [I_LCOEF_WBPS
] = 141365009,
556 [I_LCOEF_WSEQIOPS
] = 33716,
557 [I_LCOEF_WRANDIOPS
] = 26796,
562 [QOS_RLAT
] = 25000, /* 25ms */
564 [QOS_MIN
] = VRATE_MIN_PPM
,
565 [QOS_MAX
] = VRATE_MAX_PPM
,
568 [I_LCOEF_RBPS
] = 488636629,
569 [I_LCOEF_RSEQIOPS
] = 8932,
570 [I_LCOEF_RRANDIOPS
] = 8518,
571 [I_LCOEF_WBPS
] = 427891549,
572 [I_LCOEF_WSEQIOPS
] = 28755,
573 [I_LCOEF_WRANDIOPS
] = 21940,
575 .too_fast_vrate_pct
= 500,
579 [QOS_RLAT
] = 5000, /* 5ms */
581 [QOS_MIN
] = VRATE_MIN_PPM
,
582 [QOS_MAX
] = VRATE_MAX_PPM
,
585 [I_LCOEF_RBPS
] = 3102524156LLU,
586 [I_LCOEF_RSEQIOPS
] = 724816,
587 [I_LCOEF_RRANDIOPS
] = 778122,
588 [I_LCOEF_WBPS
] = 1742780862LLU,
589 [I_LCOEF_WSEQIOPS
] = 425702,
590 [I_LCOEF_WRANDIOPS
] = 443193,
592 .too_slow_vrate_pct
= 10,
597 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on
598 * vtime credit shortage and down on device saturation.
600 static u32 vrate_adj_pct
[] =
602 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
603 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
604 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 };
606 static struct blkcg_policy blkcg_policy_iocost
;
608 /* accessors and helpers */
609 static struct ioc
*rqos_to_ioc(struct rq_qos
*rqos
)
611 return container_of(rqos
, struct ioc
, rqos
);
614 static struct ioc
*q_to_ioc(struct request_queue
*q
)
616 return rqos_to_ioc(rq_qos_id(q
, RQ_QOS_COST
));
619 static const char *q_name(struct request_queue
*q
)
621 if (test_bit(QUEUE_FLAG_REGISTERED
, &q
->queue_flags
))
622 return kobject_name(q
->kobj
.parent
);
627 static const char __maybe_unused
*ioc_name(struct ioc
*ioc
)
629 return q_name(ioc
->rqos
.q
);
632 static struct ioc_gq
*pd_to_iocg(struct blkg_policy_data
*pd
)
634 return pd
? container_of(pd
, struct ioc_gq
, pd
) : NULL
;
637 static struct ioc_gq
*blkg_to_iocg(struct blkcg_gq
*blkg
)
639 return pd_to_iocg(blkg_to_pd(blkg
, &blkcg_policy_iocost
));
642 static struct blkcg_gq
*iocg_to_blkg(struct ioc_gq
*iocg
)
644 return pd_to_blkg(&iocg
->pd
);
647 static struct ioc_cgrp
*blkcg_to_iocc(struct blkcg
*blkcg
)
649 return container_of(blkcg_to_cpd(blkcg
, &blkcg_policy_iocost
),
650 struct ioc_cgrp
, cpd
);
654 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical
655 * weight, the more expensive each IO. Must round up.
657 static u64
abs_cost_to_cost(u64 abs_cost
, u32 hw_inuse
)
659 return DIV64_U64_ROUND_UP(abs_cost
* HWEIGHT_WHOLE
, hw_inuse
);
663 * The inverse of abs_cost_to_cost(). Must round up.
665 static u64
cost_to_abs_cost(u64 cost
, u32 hw_inuse
)
667 return DIV64_U64_ROUND_UP(cost
* hw_inuse
, HWEIGHT_WHOLE
);
670 static void iocg_commit_bio(struct ioc_gq
*iocg
, struct bio
*bio
, u64 cost
)
672 bio
->bi_iocost_cost
= cost
;
673 atomic64_add(cost
, &iocg
->vtime
);
676 #define CREATE_TRACE_POINTS
677 #include <trace/events/iocost.h>
679 /* latency Qos params changed, update period_us and all the dependent params */
680 static void ioc_refresh_period_us(struct ioc
*ioc
)
682 u32 ppm
, lat
, multi
, period_us
;
684 lockdep_assert_held(&ioc
->lock
);
686 /* pick the higher latency target */
687 if (ioc
->params
.qos
[QOS_RLAT
] >= ioc
->params
.qos
[QOS_WLAT
]) {
688 ppm
= ioc
->params
.qos
[QOS_RPPM
];
689 lat
= ioc
->params
.qos
[QOS_RLAT
];
691 ppm
= ioc
->params
.qos
[QOS_WPPM
];
692 lat
= ioc
->params
.qos
[QOS_WLAT
];
696 * We want the period to be long enough to contain a healthy number
697 * of IOs while short enough for granular control. Define it as a
698 * multiple of the latency target. Ideally, the multiplier should
699 * be scaled according to the percentile so that it would nominally
700 * contain a certain number of requests. Let's be simpler and
701 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50).
704 multi
= max_t(u32
, (MILLION
- ppm
) / 50000, 2);
707 period_us
= multi
* lat
;
708 period_us
= clamp_t(u32
, period_us
, MIN_PERIOD
, MAX_PERIOD
);
710 /* calculate dependent params */
711 ioc
->period_us
= period_us
;
712 ioc
->margin_us
= period_us
* MARGIN_PCT
/ 100;
713 ioc
->inuse_margin_vtime
= DIV64_U64_ROUND_UP(
714 period_us
* VTIME_PER_USEC
* INUSE_MARGIN_PCT
, 100);
717 static int ioc_autop_idx(struct ioc
*ioc
)
719 int idx
= ioc
->autop_idx
;
720 const struct ioc_params
*p
= &autop
[idx
];
725 if (!blk_queue_nonrot(ioc
->rqos
.q
))
728 /* handle SATA SSDs w/ broken NCQ */
729 if (blk_queue_depth(ioc
->rqos
.q
) == 1)
730 return AUTOP_SSD_QD1
;
732 /* use one of the normal ssd sets */
733 if (idx
< AUTOP_SSD_DFL
)
734 return AUTOP_SSD_DFL
;
736 /* if user is overriding anything, maintain what was there */
737 if (ioc
->user_qos_params
|| ioc
->user_cost_model
)
740 /* step up/down based on the vrate */
741 vrate_pct
= div64_u64(atomic64_read(&ioc
->vtime_rate
) * 100,
743 now_ns
= ktime_get_ns();
745 if (p
->too_fast_vrate_pct
&& p
->too_fast_vrate_pct
<= vrate_pct
) {
746 if (!ioc
->autop_too_fast_at
)
747 ioc
->autop_too_fast_at
= now_ns
;
748 if (now_ns
- ioc
->autop_too_fast_at
>= AUTOP_CYCLE_NSEC
)
751 ioc
->autop_too_fast_at
= 0;
754 if (p
->too_slow_vrate_pct
&& p
->too_slow_vrate_pct
>= vrate_pct
) {
755 if (!ioc
->autop_too_slow_at
)
756 ioc
->autop_too_slow_at
= now_ns
;
757 if (now_ns
- ioc
->autop_too_slow_at
>= AUTOP_CYCLE_NSEC
)
760 ioc
->autop_too_slow_at
= 0;
767 * Take the followings as input
769 * @bps maximum sequential throughput
770 * @seqiops maximum sequential 4k iops
771 * @randiops maximum random 4k iops
773 * and calculate the linear model cost coefficients.
775 * *@page per-page cost 1s / (@bps / 4096)
776 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0)
777 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0)
779 static void calc_lcoefs(u64 bps
, u64 seqiops
, u64 randiops
,
780 u64
*page
, u64
*seqio
, u64
*randio
)
784 *page
= *seqio
= *randio
= 0;
787 *page
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
,
788 DIV_ROUND_UP_ULL(bps
, IOC_PAGE_SIZE
));
791 v
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
, seqiops
);
797 v
= DIV64_U64_ROUND_UP(VTIME_PER_SEC
, randiops
);
803 static void ioc_refresh_lcoefs(struct ioc
*ioc
)
805 u64
*u
= ioc
->params
.i_lcoefs
;
806 u64
*c
= ioc
->params
.lcoefs
;
808 calc_lcoefs(u
[I_LCOEF_RBPS
], u
[I_LCOEF_RSEQIOPS
], u
[I_LCOEF_RRANDIOPS
],
809 &c
[LCOEF_RPAGE
], &c
[LCOEF_RSEQIO
], &c
[LCOEF_RRANDIO
]);
810 calc_lcoefs(u
[I_LCOEF_WBPS
], u
[I_LCOEF_WSEQIOPS
], u
[I_LCOEF_WRANDIOPS
],
811 &c
[LCOEF_WPAGE
], &c
[LCOEF_WSEQIO
], &c
[LCOEF_WRANDIO
]);
814 static bool ioc_refresh_params(struct ioc
*ioc
, bool force
)
816 const struct ioc_params
*p
;
819 lockdep_assert_held(&ioc
->lock
);
821 idx
= ioc_autop_idx(ioc
);
824 if (idx
== ioc
->autop_idx
&& !force
)
827 if (idx
!= ioc
->autop_idx
)
828 atomic64_set(&ioc
->vtime_rate
, VTIME_PER_USEC
);
830 ioc
->autop_idx
= idx
;
831 ioc
->autop_too_fast_at
= 0;
832 ioc
->autop_too_slow_at
= 0;
834 if (!ioc
->user_qos_params
)
835 memcpy(ioc
->params
.qos
, p
->qos
, sizeof(p
->qos
));
836 if (!ioc
->user_cost_model
)
837 memcpy(ioc
->params
.i_lcoefs
, p
->i_lcoefs
, sizeof(p
->i_lcoefs
));
839 ioc_refresh_period_us(ioc
);
840 ioc_refresh_lcoefs(ioc
);
842 ioc
->vrate_min
= DIV64_U64_ROUND_UP((u64
)ioc
->params
.qos
[QOS_MIN
] *
843 VTIME_PER_USEC
, MILLION
);
844 ioc
->vrate_max
= div64_u64((u64
)ioc
->params
.qos
[QOS_MAX
] *
845 VTIME_PER_USEC
, MILLION
);
850 /* take a snapshot of the current [v]time and vrate */
851 static void ioc_now(struct ioc
*ioc
, struct ioc_now
*now
)
855 now
->now_ns
= ktime_get();
856 now
->now
= ktime_to_us(now
->now_ns
);
857 now
->vrate
= atomic64_read(&ioc
->vtime_rate
);
860 * The current vtime is
862 * vtime at period start + (wallclock time since the start) * vrate
864 * As a consistent snapshot of `period_at_vtime` and `period_at` is
865 * needed, they're seqcount protected.
868 seq
= read_seqcount_begin(&ioc
->period_seqcount
);
869 now
->vnow
= ioc
->period_at_vtime
+
870 (now
->now
- ioc
->period_at
) * now
->vrate
;
871 } while (read_seqcount_retry(&ioc
->period_seqcount
, seq
));
874 static void ioc_start_period(struct ioc
*ioc
, struct ioc_now
*now
)
876 lockdep_assert_held(&ioc
->lock
);
877 WARN_ON_ONCE(ioc
->running
!= IOC_RUNNING
);
879 write_seqcount_begin(&ioc
->period_seqcount
);
880 ioc
->period_at
= now
->now
;
881 ioc
->period_at_vtime
= now
->vnow
;
882 write_seqcount_end(&ioc
->period_seqcount
);
884 ioc
->timer
.expires
= jiffies
+ usecs_to_jiffies(ioc
->period_us
);
885 add_timer(&ioc
->timer
);
889 * Update @iocg's `active` and `inuse` to @active and @inuse, update level
890 * weight sums and propagate upwards accordingly.
892 static void __propagate_active_weight(struct ioc_gq
*iocg
, u32 active
, u32 inuse
)
894 struct ioc
*ioc
= iocg
->ioc
;
897 lockdep_assert_held(&ioc
->lock
);
899 inuse
= min(active
, inuse
);
901 for (lvl
= iocg
->level
- 1; lvl
>= 0; lvl
--) {
902 struct ioc_gq
*parent
= iocg
->ancestors
[lvl
];
903 struct ioc_gq
*child
= iocg
->ancestors
[lvl
+ 1];
904 u32 parent_active
= 0, parent_inuse
= 0;
906 /* update the level sums */
907 parent
->child_active_sum
+= (s32
)(active
- child
->active
);
908 parent
->child_inuse_sum
+= (s32
)(inuse
- child
->inuse
);
909 /* apply the udpates */
910 child
->active
= active
;
911 child
->inuse
= inuse
;
914 * The delta between inuse and active sums indicates that
915 * that much of weight is being given away. Parent's inuse
916 * and active should reflect the ratio.
918 if (parent
->child_active_sum
) {
919 parent_active
= parent
->weight
;
920 parent_inuse
= DIV64_U64_ROUND_UP(
921 parent_active
* parent
->child_inuse_sum
,
922 parent
->child_active_sum
);
925 /* do we need to keep walking up? */
926 if (parent_active
== parent
->active
&&
927 parent_inuse
== parent
->inuse
)
930 active
= parent_active
;
931 inuse
= parent_inuse
;
934 ioc
->weights_updated
= true;
937 static void commit_active_weights(struct ioc
*ioc
)
939 lockdep_assert_held(&ioc
->lock
);
941 if (ioc
->weights_updated
) {
942 /* paired with rmb in current_hweight(), see there */
944 atomic_inc(&ioc
->hweight_gen
);
945 ioc
->weights_updated
= false;
949 static void propagate_active_weight(struct ioc_gq
*iocg
, u32 active
, u32 inuse
)
951 __propagate_active_weight(iocg
, active
, inuse
);
952 commit_active_weights(iocg
->ioc
);
955 static void current_hweight(struct ioc_gq
*iocg
, u32
*hw_activep
, u32
*hw_inusep
)
957 struct ioc
*ioc
= iocg
->ioc
;
962 /* hot path - if uptodate, use cached */
963 ioc_gen
= atomic_read(&ioc
->hweight_gen
);
964 if (ioc_gen
== iocg
->hweight_gen
)
968 * Paired with wmb in commit_active_weights(). If we saw the
969 * updated hweight_gen, all the weight updates from
970 * __propagate_active_weight() are visible too.
972 * We can race with weight updates during calculation and get it
973 * wrong. However, hweight_gen would have changed and a future
974 * reader will recalculate and we're guaranteed to discard the
979 hwa
= hwi
= HWEIGHT_WHOLE
;
980 for (lvl
= 0; lvl
<= iocg
->level
- 1; lvl
++) {
981 struct ioc_gq
*parent
= iocg
->ancestors
[lvl
];
982 struct ioc_gq
*child
= iocg
->ancestors
[lvl
+ 1];
983 u32 active_sum
= READ_ONCE(parent
->child_active_sum
);
984 u32 inuse_sum
= READ_ONCE(parent
->child_inuse_sum
);
985 u32 active
= READ_ONCE(child
->active
);
986 u32 inuse
= READ_ONCE(child
->inuse
);
988 /* we can race with deactivations and either may read as zero */
989 if (!active_sum
|| !inuse_sum
)
992 active_sum
= max(active
, active_sum
);
993 hwa
= hwa
* active
/ active_sum
; /* max 16bits * 10000 */
995 inuse_sum
= max(inuse
, inuse_sum
);
996 hwi
= hwi
* inuse
/ inuse_sum
; /* max 16bits * 10000 */
999 iocg
->hweight_active
= max_t(u32
, hwa
, 1);
1000 iocg
->hweight_inuse
= max_t(u32
, hwi
, 1);
1001 iocg
->hweight_gen
= ioc_gen
;
1004 *hw_activep
= iocg
->hweight_active
;
1006 *hw_inusep
= iocg
->hweight_inuse
;
1009 static void weight_updated(struct ioc_gq
*iocg
)
1011 struct ioc
*ioc
= iocg
->ioc
;
1012 struct blkcg_gq
*blkg
= iocg_to_blkg(iocg
);
1013 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkg
->blkcg
);
1016 lockdep_assert_held(&ioc
->lock
);
1018 weight
= iocg
->cfg_weight
?: iocc
->dfl_weight
;
1019 if (weight
!= iocg
->weight
&& iocg
->active
)
1020 propagate_active_weight(iocg
, weight
,
1021 DIV64_U64_ROUND_UP(iocg
->inuse
* weight
, iocg
->weight
));
1022 iocg
->weight
= weight
;
1025 static bool iocg_activate(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1027 struct ioc
*ioc
= iocg
->ioc
;
1028 u64 last_period
, cur_period
, max_period_delta
;
1029 u64 vtime
, vmargin
, vmin
;
1033 * If seem to be already active, just update the stamp to tell the
1034 * timer that we're still active. We don't mind occassional races.
1036 if (!list_empty(&iocg
->active_list
)) {
1038 cur_period
= atomic64_read(&ioc
->cur_period
);
1039 if (atomic64_read(&iocg
->active_period
) != cur_period
)
1040 atomic64_set(&iocg
->active_period
, cur_period
);
1044 /* racy check on internal node IOs, treat as root level IOs */
1045 if (iocg
->child_active_sum
)
1048 spin_lock_irq(&ioc
->lock
);
1053 cur_period
= atomic64_read(&ioc
->cur_period
);
1054 last_period
= atomic64_read(&iocg
->active_period
);
1055 atomic64_set(&iocg
->active_period
, cur_period
);
1057 /* already activated or breaking leaf-only constraint? */
1058 if (!list_empty(&iocg
->active_list
))
1059 goto succeed_unlock
;
1060 for (i
= iocg
->level
- 1; i
> 0; i
--)
1061 if (!list_empty(&iocg
->ancestors
[i
]->active_list
))
1064 if (iocg
->child_active_sum
)
1068 * vtime may wrap when vrate is raised substantially due to
1069 * underestimated IO costs. Look at the period and ignore its
1070 * vtime if the iocg has been idle for too long. Also, cap the
1071 * budget it can start with to the margin.
1073 max_period_delta
= DIV64_U64_ROUND_UP(VTIME_VALID_DUR
, ioc
->period_us
);
1074 vtime
= atomic64_read(&iocg
->vtime
);
1075 vmargin
= ioc
->margin_us
* now
->vrate
;
1076 vmin
= now
->vnow
- vmargin
;
1078 if (last_period
+ max_period_delta
< cur_period
||
1079 time_before64(vtime
, vmin
)) {
1080 atomic64_add(vmin
- vtime
, &iocg
->vtime
);
1081 atomic64_add(vmin
- vtime
, &iocg
->done_vtime
);
1086 * Activate, propagate weight and start period timer if not
1087 * running. Reset hweight_gen to avoid accidental match from
1090 iocg
->hweight_gen
= atomic_read(&ioc
->hweight_gen
) - 1;
1091 list_add(&iocg
->active_list
, &ioc
->active_iocgs
);
1092 propagate_active_weight(iocg
, iocg
->weight
,
1093 iocg
->last_inuse
?: iocg
->weight
);
1095 TRACE_IOCG_PATH(iocg_activate
, iocg
, now
,
1096 last_period
, cur_period
, vtime
);
1098 iocg
->last_vtime
= vtime
;
1100 if (ioc
->running
== IOC_IDLE
) {
1101 ioc
->running
= IOC_RUNNING
;
1102 ioc_start_period(ioc
, now
);
1106 spin_unlock_irq(&ioc
->lock
);
1110 spin_unlock_irq(&ioc
->lock
);
1114 static int iocg_wake_fn(struct wait_queue_entry
*wq_entry
, unsigned mode
,
1115 int flags
, void *key
)
1117 struct iocg_wait
*wait
= container_of(wq_entry
, struct iocg_wait
, wait
);
1118 struct iocg_wake_ctx
*ctx
= (struct iocg_wake_ctx
*)key
;
1119 u64 cost
= abs_cost_to_cost(wait
->abs_cost
, ctx
->hw_inuse
);
1121 ctx
->vbudget
-= cost
;
1123 if (ctx
->vbudget
< 0)
1126 iocg_commit_bio(ctx
->iocg
, wait
->bio
, cost
);
1129 * autoremove_wake_function() removes the wait entry only when it
1130 * actually changed the task state. We want the wait always
1131 * removed. Remove explicitly and use default_wake_function().
1133 list_del_init(&wq_entry
->entry
);
1134 wait
->committed
= true;
1136 default_wake_function(wq_entry
, mode
, flags
, key
);
1140 static void iocg_kick_waitq(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1142 struct ioc
*ioc
= iocg
->ioc
;
1143 struct iocg_wake_ctx ctx
= { .iocg
= iocg
};
1144 u64 margin_ns
= (u64
)(ioc
->period_us
*
1145 WAITQ_TIMER_MARGIN_PCT
/ 100) * NSEC_PER_USEC
;
1146 u64 vdebt
, vshortage
, expires
, oexpires
;
1150 lockdep_assert_held(&iocg
->waitq
.lock
);
1152 current_hweight(iocg
, NULL
, &hw_inuse
);
1153 vbudget
= now
->vnow
- atomic64_read(&iocg
->vtime
);
1156 vdebt
= abs_cost_to_cost(iocg
->abs_vdebt
, hw_inuse
);
1157 if (vdebt
&& vbudget
> 0) {
1158 u64 delta
= min_t(u64
, vbudget
, vdebt
);
1159 u64 abs_delta
= min(cost_to_abs_cost(delta
, hw_inuse
),
1162 atomic64_add(delta
, &iocg
->vtime
);
1163 atomic64_add(delta
, &iocg
->done_vtime
);
1164 iocg
->abs_vdebt
-= abs_delta
;
1168 * Wake up the ones which are due and see how much vtime we'll need
1171 ctx
.hw_inuse
= hw_inuse
;
1172 ctx
.vbudget
= vbudget
- vdebt
;
1173 __wake_up_locked_key(&iocg
->waitq
, TASK_NORMAL
, &ctx
);
1174 if (!waitqueue_active(&iocg
->waitq
))
1176 if (WARN_ON_ONCE(ctx
.vbudget
>= 0))
1179 /* determine next wakeup, add a quarter margin to guarantee chunking */
1180 vshortage
= -ctx
.vbudget
;
1181 expires
= now
->now_ns
+
1182 DIV64_U64_ROUND_UP(vshortage
, now
->vrate
) * NSEC_PER_USEC
;
1183 expires
+= margin_ns
/ 4;
1185 /* if already active and close enough, don't bother */
1186 oexpires
= ktime_to_ns(hrtimer_get_softexpires(&iocg
->waitq_timer
));
1187 if (hrtimer_is_queued(&iocg
->waitq_timer
) &&
1188 abs(oexpires
- expires
) <= margin_ns
/ 4)
1191 hrtimer_start_range_ns(&iocg
->waitq_timer
, ns_to_ktime(expires
),
1192 margin_ns
/ 4, HRTIMER_MODE_ABS
);
1195 static enum hrtimer_restart
iocg_waitq_timer_fn(struct hrtimer
*timer
)
1197 struct ioc_gq
*iocg
= container_of(timer
, struct ioc_gq
, waitq_timer
);
1199 unsigned long flags
;
1201 ioc_now(iocg
->ioc
, &now
);
1203 spin_lock_irqsave(&iocg
->waitq
.lock
, flags
);
1204 iocg_kick_waitq(iocg
, &now
);
1205 spin_unlock_irqrestore(&iocg
->waitq
.lock
, flags
);
1207 return HRTIMER_NORESTART
;
1210 static bool iocg_kick_delay(struct ioc_gq
*iocg
, struct ioc_now
*now
)
1212 struct ioc
*ioc
= iocg
->ioc
;
1213 struct blkcg_gq
*blkg
= iocg_to_blkg(iocg
);
1214 u64 vtime
= atomic64_read(&iocg
->vtime
);
1215 u64 vmargin
= ioc
->margin_us
* now
->vrate
;
1216 u64 margin_ns
= ioc
->margin_us
* NSEC_PER_USEC
;
1217 u64 delta_ns
, expires
, oexpires
;
1220 lockdep_assert_held(&iocg
->waitq
.lock
);
1222 /* debt-adjust vtime */
1223 current_hweight(iocg
, NULL
, &hw_inuse
);
1224 vtime
+= abs_cost_to_cost(iocg
->abs_vdebt
, hw_inuse
);
1227 * Clear or maintain depending on the overage. Non-zero vdebt is what
1228 * guarantees that @iocg is online and future iocg_kick_delay() will
1229 * clear use_delay. Don't leave it on when there's no vdebt.
1231 if (!iocg
->abs_vdebt
|| time_before_eq64(vtime
, now
->vnow
)) {
1232 blkcg_clear_delay(blkg
);
1235 if (!atomic_read(&blkg
->use_delay
) &&
1236 time_before_eq64(vtime
, now
->vnow
+ vmargin
))
1240 delta_ns
= DIV64_U64_ROUND_UP(vtime
- now
->vnow
,
1241 now
->vrate
) * NSEC_PER_USEC
;
1242 blkcg_set_delay(blkg
, delta_ns
);
1243 expires
= now
->now_ns
+ delta_ns
;
1245 /* if already active and close enough, don't bother */
1246 oexpires
= ktime_to_ns(hrtimer_get_softexpires(&iocg
->delay_timer
));
1247 if (hrtimer_is_queued(&iocg
->delay_timer
) &&
1248 abs(oexpires
- expires
) <= margin_ns
/ 4)
1251 hrtimer_start_range_ns(&iocg
->delay_timer
, ns_to_ktime(expires
),
1252 margin_ns
/ 4, HRTIMER_MODE_ABS
);
1256 static enum hrtimer_restart
iocg_delay_timer_fn(struct hrtimer
*timer
)
1258 struct ioc_gq
*iocg
= container_of(timer
, struct ioc_gq
, delay_timer
);
1260 unsigned long flags
;
1262 spin_lock_irqsave(&iocg
->waitq
.lock
, flags
);
1263 ioc_now(iocg
->ioc
, &now
);
1264 iocg_kick_delay(iocg
, &now
);
1265 spin_unlock_irqrestore(&iocg
->waitq
.lock
, flags
);
1267 return HRTIMER_NORESTART
;
1270 static void ioc_lat_stat(struct ioc
*ioc
, u32
*missed_ppm_ar
, u32
*rq_wait_pct_p
)
1272 u32 nr_met
[2] = { };
1273 u32 nr_missed
[2] = { };
1277 for_each_online_cpu(cpu
) {
1278 struct ioc_pcpu_stat
*stat
= per_cpu_ptr(ioc
->pcpu_stat
, cpu
);
1279 u64 this_rq_wait_ns
;
1281 for (rw
= READ
; rw
<= WRITE
; rw
++) {
1282 u32 this_met
= READ_ONCE(stat
->missed
[rw
].nr_met
);
1283 u32 this_missed
= READ_ONCE(stat
->missed
[rw
].nr_missed
);
1285 nr_met
[rw
] += this_met
- stat
->missed
[rw
].last_met
;
1286 nr_missed
[rw
] += this_missed
- stat
->missed
[rw
].last_missed
;
1287 stat
->missed
[rw
].last_met
= this_met
;
1288 stat
->missed
[rw
].last_missed
= this_missed
;
1291 this_rq_wait_ns
= READ_ONCE(stat
->rq_wait_ns
);
1292 rq_wait_ns
+= this_rq_wait_ns
- stat
->last_rq_wait_ns
;
1293 stat
->last_rq_wait_ns
= this_rq_wait_ns
;
1296 for (rw
= READ
; rw
<= WRITE
; rw
++) {
1297 if (nr_met
[rw
] + nr_missed
[rw
])
1299 DIV64_U64_ROUND_UP((u64
)nr_missed
[rw
] * MILLION
,
1300 nr_met
[rw
] + nr_missed
[rw
]);
1302 missed_ppm_ar
[rw
] = 0;
1305 *rq_wait_pct_p
= div64_u64(rq_wait_ns
* 100,
1306 ioc
->period_us
* NSEC_PER_USEC
);
1309 /* was iocg idle this period? */
1310 static bool iocg_is_idle(struct ioc_gq
*iocg
)
1312 struct ioc
*ioc
= iocg
->ioc
;
1314 /* did something get issued this period? */
1315 if (atomic64_read(&iocg
->active_period
) ==
1316 atomic64_read(&ioc
->cur_period
))
1319 /* is something in flight? */
1320 if (atomic64_read(&iocg
->done_vtime
) != atomic64_read(&iocg
->vtime
))
1326 /* returns usage with margin added if surplus is large enough */
1327 static u32
surplus_adjusted_hweight_inuse(u32 usage
, u32 hw_inuse
)
1330 usage
= DIV_ROUND_UP(usage
* SURPLUS_SCALE_PCT
, 100);
1331 usage
+= SURPLUS_SCALE_ABS
;
1333 /* don't bother if the surplus is too small */
1334 if (usage
+ SURPLUS_MIN_ADJ_DELTA
> hw_inuse
)
1340 static void ioc_timer_fn(struct timer_list
*timer
)
1342 struct ioc
*ioc
= container_of(timer
, struct ioc
, timer
);
1343 struct ioc_gq
*iocg
, *tiocg
;
1345 int nr_surpluses
= 0, nr_shortages
= 0, nr_lagging
= 0;
1346 u32 ppm_rthr
= MILLION
- ioc
->params
.qos
[QOS_RPPM
];
1347 u32 ppm_wthr
= MILLION
- ioc
->params
.qos
[QOS_WPPM
];
1348 u32 missed_ppm
[2], rq_wait_pct
;
1350 int prev_busy_level
, i
;
1352 /* how were the latencies during the period? */
1353 ioc_lat_stat(ioc
, missed_ppm
, &rq_wait_pct
);
1355 /* take care of active iocgs */
1356 spin_lock_irq(&ioc
->lock
);
1360 period_vtime
= now
.vnow
- ioc
->period_at_vtime
;
1361 if (WARN_ON_ONCE(!period_vtime
)) {
1362 spin_unlock_irq(&ioc
->lock
);
1367 * Waiters determine the sleep durations based on the vrate they
1368 * saw at the time of sleep. If vrate has increased, some waiters
1369 * could be sleeping for too long. Wake up tardy waiters which
1370 * should have woken up in the last period and expire idle iocgs.
1372 list_for_each_entry_safe(iocg
, tiocg
, &ioc
->active_iocgs
, active_list
) {
1373 if (!waitqueue_active(&iocg
->waitq
) && iocg
->abs_vdebt
&&
1374 !iocg_is_idle(iocg
))
1377 spin_lock(&iocg
->waitq
.lock
);
1379 if (waitqueue_active(&iocg
->waitq
) || iocg
->abs_vdebt
) {
1380 /* might be oversleeping vtime / hweight changes, kick */
1381 iocg_kick_waitq(iocg
, &now
);
1382 iocg_kick_delay(iocg
, &now
);
1383 } else if (iocg_is_idle(iocg
)) {
1384 /* no waiter and idle, deactivate */
1385 iocg
->last_inuse
= iocg
->inuse
;
1386 __propagate_active_weight(iocg
, 0, 0);
1387 list_del_init(&iocg
->active_list
);
1390 spin_unlock(&iocg
->waitq
.lock
);
1392 commit_active_weights(ioc
);
1394 /* calc usages and see whether some weights need to be moved around */
1395 list_for_each_entry(iocg
, &ioc
->active_iocgs
, active_list
) {
1396 u64 vdone
, vtime
, vusage
, vmargin
, vmin
;
1397 u32 hw_active
, hw_inuse
, usage
;
1400 * Collect unused and wind vtime closer to vnow to prevent
1401 * iocgs from accumulating a large amount of budget.
1403 vdone
= atomic64_read(&iocg
->done_vtime
);
1404 vtime
= atomic64_read(&iocg
->vtime
);
1405 current_hweight(iocg
, &hw_active
, &hw_inuse
);
1408 * Latency QoS detection doesn't account for IOs which are
1409 * in-flight for longer than a period. Detect them by
1410 * comparing vdone against period start. If lagging behind
1411 * IOs from past periods, don't increase vrate.
1413 if ((ppm_rthr
!= MILLION
|| ppm_wthr
!= MILLION
) &&
1414 !atomic_read(&iocg_to_blkg(iocg
)->use_delay
) &&
1415 time_after64(vtime
, vdone
) &&
1416 time_after64(vtime
, now
.vnow
-
1417 MAX_LAGGING_PERIODS
* period_vtime
) &&
1418 time_before64(vdone
, now
.vnow
- period_vtime
))
1421 if (waitqueue_active(&iocg
->waitq
))
1422 vusage
= now
.vnow
- iocg
->last_vtime
;
1423 else if (time_before64(iocg
->last_vtime
, vtime
))
1424 vusage
= vtime
- iocg
->last_vtime
;
1428 iocg
->last_vtime
+= vusage
;
1430 * Factor in in-flight vtime into vusage to avoid
1431 * high-latency completions appearing as idle. This should
1432 * be done after the above ->last_time adjustment.
1434 vusage
= max(vusage
, vtime
- vdone
);
1436 /* calculate hweight based usage ratio and record */
1438 usage
= DIV64_U64_ROUND_UP(vusage
* hw_inuse
,
1440 iocg
->usage_idx
= (iocg
->usage_idx
+ 1) % NR_USAGE_SLOTS
;
1441 iocg
->usages
[iocg
->usage_idx
] = usage
;
1446 /* see whether there's surplus vtime */
1447 vmargin
= ioc
->margin_us
* now
.vrate
;
1448 vmin
= now
.vnow
- vmargin
;
1450 iocg
->has_surplus
= false;
1452 if (!waitqueue_active(&iocg
->waitq
) &&
1453 time_before64(vtime
, vmin
)) {
1454 u64 delta
= vmin
- vtime
;
1456 /* throw away surplus vtime */
1457 atomic64_add(delta
, &iocg
->vtime
);
1458 atomic64_add(delta
, &iocg
->done_vtime
);
1459 iocg
->last_vtime
+= delta
;
1460 /* if usage is sufficiently low, maybe it can donate */
1461 if (surplus_adjusted_hweight_inuse(usage
, hw_inuse
)) {
1462 iocg
->has_surplus
= true;
1465 } else if (hw_inuse
< hw_active
) {
1466 u32 new_hwi
, new_inuse
;
1468 /* was donating but might need to take back some */
1469 if (waitqueue_active(&iocg
->waitq
)) {
1470 new_hwi
= hw_active
;
1472 new_hwi
= max(hw_inuse
,
1473 usage
* SURPLUS_SCALE_PCT
/ 100 +
1477 new_inuse
= div64_u64((u64
)iocg
->inuse
* new_hwi
,
1479 new_inuse
= clamp_t(u32
, new_inuse
, 1, iocg
->active
);
1481 if (new_inuse
> iocg
->inuse
) {
1482 TRACE_IOCG_PATH(inuse_takeback
, iocg
, &now
,
1483 iocg
->inuse
, new_inuse
,
1485 __propagate_active_weight(iocg
, iocg
->weight
,
1489 /* genuninely out of vtime */
1494 if (!nr_shortages
|| !nr_surpluses
)
1495 goto skip_surplus_transfers
;
1497 /* there are both shortages and surpluses, transfer surpluses */
1498 list_for_each_entry(iocg
, &ioc
->active_iocgs
, active_list
) {
1499 u32 usage
, hw_active
, hw_inuse
, new_hwi
, new_inuse
;
1502 if (!iocg
->has_surplus
)
1505 /* base the decision on max historical usage */
1506 for (i
= 0, usage
= 0; i
< NR_USAGE_SLOTS
; i
++) {
1507 if (iocg
->usages
[i
]) {
1508 usage
= max(usage
, iocg
->usages
[i
]);
1512 if (nr_valid
< MIN_VALID_USAGES
)
1515 current_hweight(iocg
, &hw_active
, &hw_inuse
);
1516 new_hwi
= surplus_adjusted_hweight_inuse(usage
, hw_inuse
);
1520 new_inuse
= DIV64_U64_ROUND_UP((u64
)iocg
->inuse
* new_hwi
,
1522 if (new_inuse
< iocg
->inuse
) {
1523 TRACE_IOCG_PATH(inuse_giveaway
, iocg
, &now
,
1524 iocg
->inuse
, new_inuse
,
1526 __propagate_active_weight(iocg
, iocg
->weight
, new_inuse
);
1529 skip_surplus_transfers
:
1530 commit_active_weights(ioc
);
1533 * If q is getting clogged or we're missing too much, we're issuing
1534 * too much IO and should lower vtime rate. If we're not missing
1535 * and experiencing shortages but not surpluses, we're too stingy
1536 * and should increase vtime rate.
1538 prev_busy_level
= ioc
->busy_level
;
1539 if (rq_wait_pct
> RQ_WAIT_BUSY_PCT
||
1540 missed_ppm
[READ
] > ppm_rthr
||
1541 missed_ppm
[WRITE
] > ppm_wthr
) {
1542 /* clearly missing QoS targets, slow down vrate */
1543 ioc
->busy_level
= max(ioc
->busy_level
, 0);
1545 } else if (rq_wait_pct
<= RQ_WAIT_BUSY_PCT
* UNBUSY_THR_PCT
/ 100 &&
1546 missed_ppm
[READ
] <= ppm_rthr
* UNBUSY_THR_PCT
/ 100 &&
1547 missed_ppm
[WRITE
] <= ppm_wthr
* UNBUSY_THR_PCT
/ 100) {
1548 /* QoS targets are being met with >25% margin */
1551 * We're throttling while the device has spare
1552 * capacity. If vrate was being slowed down, stop.
1554 ioc
->busy_level
= min(ioc
->busy_level
, 0);
1557 * If there are IOs spanning multiple periods, wait
1558 * them out before pushing the device harder. If
1559 * there are surpluses, let redistribution work it
1562 if (!nr_lagging
&& !nr_surpluses
)
1566 * Nobody is being throttled and the users aren't
1567 * issuing enough IOs to saturate the device. We
1568 * simply don't know how close the device is to
1569 * saturation. Coast.
1571 ioc
->busy_level
= 0;
1574 /* inside the hysterisis margin, we're good */
1575 ioc
->busy_level
= 0;
1578 ioc
->busy_level
= clamp(ioc
->busy_level
, -1000, 1000);
1580 if (ioc
->busy_level
> 0 || (ioc
->busy_level
< 0 && !nr_lagging
)) {
1581 u64 vrate
= atomic64_read(&ioc
->vtime_rate
);
1582 u64 vrate_min
= ioc
->vrate_min
, vrate_max
= ioc
->vrate_max
;
1584 /* rq_wait signal is always reliable, ignore user vrate_min */
1585 if (rq_wait_pct
> RQ_WAIT_BUSY_PCT
)
1586 vrate_min
= VRATE_MIN
;
1589 * If vrate is out of bounds, apply clamp gradually as the
1590 * bounds can change abruptly. Otherwise, apply busy_level
1593 if (vrate
< vrate_min
) {
1594 vrate
= div64_u64(vrate
* (100 + VRATE_CLAMP_ADJ_PCT
),
1596 vrate
= min(vrate
, vrate_min
);
1597 } else if (vrate
> vrate_max
) {
1598 vrate
= div64_u64(vrate
* (100 - VRATE_CLAMP_ADJ_PCT
),
1600 vrate
= max(vrate
, vrate_max
);
1602 int idx
= min_t(int, abs(ioc
->busy_level
),
1603 ARRAY_SIZE(vrate_adj_pct
) - 1);
1604 u32 adj_pct
= vrate_adj_pct
[idx
];
1606 if (ioc
->busy_level
> 0)
1607 adj_pct
= 100 - adj_pct
;
1609 adj_pct
= 100 + adj_pct
;
1611 vrate
= clamp(DIV64_U64_ROUND_UP(vrate
* adj_pct
, 100),
1612 vrate_min
, vrate_max
);
1615 trace_iocost_ioc_vrate_adj(ioc
, vrate
, missed_ppm
, rq_wait_pct
,
1616 nr_lagging
, nr_shortages
,
1619 atomic64_set(&ioc
->vtime_rate
, vrate
);
1620 ioc
->inuse_margin_vtime
= DIV64_U64_ROUND_UP(
1621 ioc
->period_us
* vrate
* INUSE_MARGIN_PCT
, 100);
1622 } else if (ioc
->busy_level
!= prev_busy_level
|| nr_lagging
) {
1623 trace_iocost_ioc_vrate_adj(ioc
, atomic64_read(&ioc
->vtime_rate
),
1624 missed_ppm
, rq_wait_pct
, nr_lagging
,
1625 nr_shortages
, nr_surpluses
);
1628 ioc_refresh_params(ioc
, false);
1631 * This period is done. Move onto the next one. If nothing's
1632 * going on with the device, stop the timer.
1634 atomic64_inc(&ioc
->cur_period
);
1636 if (ioc
->running
!= IOC_STOP
) {
1637 if (!list_empty(&ioc
->active_iocgs
)) {
1638 ioc_start_period(ioc
, &now
);
1640 ioc
->busy_level
= 0;
1641 ioc
->running
= IOC_IDLE
;
1645 spin_unlock_irq(&ioc
->lock
);
1648 static void calc_vtime_cost_builtin(struct bio
*bio
, struct ioc_gq
*iocg
,
1649 bool is_merge
, u64
*costp
)
1651 struct ioc
*ioc
= iocg
->ioc
;
1652 u64 coef_seqio
, coef_randio
, coef_page
;
1653 u64 pages
= max_t(u64
, bio_sectors(bio
) >> IOC_SECT_TO_PAGE_SHIFT
, 1);
1657 switch (bio_op(bio
)) {
1659 coef_seqio
= ioc
->params
.lcoefs
[LCOEF_RSEQIO
];
1660 coef_randio
= ioc
->params
.lcoefs
[LCOEF_RRANDIO
];
1661 coef_page
= ioc
->params
.lcoefs
[LCOEF_RPAGE
];
1664 coef_seqio
= ioc
->params
.lcoefs
[LCOEF_WSEQIO
];
1665 coef_randio
= ioc
->params
.lcoefs
[LCOEF_WRANDIO
];
1666 coef_page
= ioc
->params
.lcoefs
[LCOEF_WPAGE
];
1673 seek_pages
= abs(bio
->bi_iter
.bi_sector
- iocg
->cursor
);
1674 seek_pages
>>= IOC_SECT_TO_PAGE_SHIFT
;
1678 if (seek_pages
> LCOEF_RANDIO_PAGES
) {
1679 cost
+= coef_randio
;
1684 cost
+= pages
* coef_page
;
1689 static u64
calc_vtime_cost(struct bio
*bio
, struct ioc_gq
*iocg
, bool is_merge
)
1693 calc_vtime_cost_builtin(bio
, iocg
, is_merge
, &cost
);
1697 static void calc_size_vtime_cost_builtin(struct request
*rq
, struct ioc
*ioc
,
1700 unsigned int pages
= blk_rq_stats_sectors(rq
) >> IOC_SECT_TO_PAGE_SHIFT
;
1702 switch (req_op(rq
)) {
1704 *costp
= pages
* ioc
->params
.lcoefs
[LCOEF_RPAGE
];
1707 *costp
= pages
* ioc
->params
.lcoefs
[LCOEF_WPAGE
];
1714 static u64
calc_size_vtime_cost(struct request
*rq
, struct ioc
*ioc
)
1718 calc_size_vtime_cost_builtin(rq
, ioc
, &cost
);
1722 static void ioc_rqos_throttle(struct rq_qos
*rqos
, struct bio
*bio
)
1724 struct blkcg_gq
*blkg
= bio
->bi_blkg
;
1725 struct ioc
*ioc
= rqos_to_ioc(rqos
);
1726 struct ioc_gq
*iocg
= blkg_to_iocg(blkg
);
1728 struct iocg_wait wait
;
1729 u32 hw_active
, hw_inuse
;
1730 u64 abs_cost
, cost
, vtime
;
1732 /* bypass IOs if disabled or for root cgroup */
1733 if (!ioc
->enabled
|| !iocg
->level
)
1736 /* always activate so that even 0 cost IOs get protected to some level */
1737 if (!iocg_activate(iocg
, &now
))
1740 /* calculate the absolute vtime cost */
1741 abs_cost
= calc_vtime_cost(bio
, iocg
, false);
1745 iocg
->cursor
= bio_end_sector(bio
);
1747 vtime
= atomic64_read(&iocg
->vtime
);
1748 current_hweight(iocg
, &hw_active
, &hw_inuse
);
1750 if (hw_inuse
< hw_active
&&
1751 time_after_eq64(vtime
+ ioc
->inuse_margin_vtime
, now
.vnow
)) {
1752 TRACE_IOCG_PATH(inuse_reset
, iocg
, &now
,
1753 iocg
->inuse
, iocg
->weight
, hw_inuse
, hw_active
);
1754 spin_lock_irq(&ioc
->lock
);
1755 propagate_active_weight(iocg
, iocg
->weight
, iocg
->weight
);
1756 spin_unlock_irq(&ioc
->lock
);
1757 current_hweight(iocg
, &hw_active
, &hw_inuse
);
1760 cost
= abs_cost_to_cost(abs_cost
, hw_inuse
);
1763 * If no one's waiting and within budget, issue right away. The
1764 * tests are racy but the races aren't systemic - we only miss once
1765 * in a while which is fine.
1767 if (!waitqueue_active(&iocg
->waitq
) && !iocg
->abs_vdebt
&&
1768 time_before_eq64(vtime
+ cost
, now
.vnow
)) {
1769 iocg_commit_bio(iocg
, bio
, cost
);
1774 * We activated above but w/o any synchronization. Deactivation is
1775 * synchronized with waitq.lock and we won't get deactivated as long
1776 * as we're waiting or has debt, so we're good if we're activated
1777 * here. In the unlikely case that we aren't, just issue the IO.
1779 spin_lock_irq(&iocg
->waitq
.lock
);
1781 if (unlikely(list_empty(&iocg
->active_list
))) {
1782 spin_unlock_irq(&iocg
->waitq
.lock
);
1783 iocg_commit_bio(iocg
, bio
, cost
);
1788 * We're over budget. If @bio has to be issued regardless, remember
1789 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay
1790 * off the debt before waking more IOs.
1792 * This way, the debt is continuously paid off each period with the
1793 * actual budget available to the cgroup. If we just wound vtime, we
1794 * would incorrectly use the current hw_inuse for the entire amount
1795 * which, for example, can lead to the cgroup staying blocked for a
1796 * long time even with substantially raised hw_inuse.
1798 * An iocg with vdebt should stay online so that the timer can keep
1799 * deducting its vdebt and [de]activate use_delay mechanism
1800 * accordingly. We don't want to race against the timer trying to
1801 * clear them and leave @iocg inactive w/ dangling use_delay heavily
1802 * penalizing the cgroup and its descendants.
1804 if (bio_issue_as_root_blkg(bio
) || fatal_signal_pending(current
)) {
1805 iocg
->abs_vdebt
+= abs_cost
;
1806 if (iocg_kick_delay(iocg
, &now
))
1807 blkcg_schedule_throttle(rqos
->q
,
1808 (bio
->bi_opf
& REQ_SWAP
) == REQ_SWAP
);
1809 spin_unlock_irq(&iocg
->waitq
.lock
);
1814 * Append self to the waitq and schedule the wakeup timer if we're
1815 * the first waiter. The timer duration is calculated based on the
1816 * current vrate. vtime and hweight changes can make it too short
1817 * or too long. Each wait entry records the absolute cost it's
1818 * waiting for to allow re-evaluation using a custom wait entry.
1820 * If too short, the timer simply reschedules itself. If too long,
1821 * the period timer will notice and trigger wakeups.
1823 * All waiters are on iocg->waitq and the wait states are
1824 * synchronized using waitq.lock.
1826 init_waitqueue_func_entry(&wait
.wait
, iocg_wake_fn
);
1827 wait
.wait
.private = current
;
1829 wait
.abs_cost
= abs_cost
;
1830 wait
.committed
= false; /* will be set true by waker */
1832 __add_wait_queue_entry_tail(&iocg
->waitq
, &wait
.wait
);
1833 iocg_kick_waitq(iocg
, &now
);
1835 spin_unlock_irq(&iocg
->waitq
.lock
);
1838 set_current_state(TASK_UNINTERRUPTIBLE
);
1844 /* waker already committed us, proceed */
1845 finish_wait(&iocg
->waitq
, &wait
.wait
);
1848 static void ioc_rqos_merge(struct rq_qos
*rqos
, struct request
*rq
,
1851 struct ioc_gq
*iocg
= blkg_to_iocg(bio
->bi_blkg
);
1852 struct ioc
*ioc
= iocg
->ioc
;
1853 sector_t bio_end
= bio_end_sector(bio
);
1857 unsigned long flags
;
1859 /* bypass if disabled or for root cgroup */
1860 if (!ioc
->enabled
|| !iocg
->level
)
1863 abs_cost
= calc_vtime_cost(bio
, iocg
, true);
1868 current_hweight(iocg
, NULL
, &hw_inuse
);
1869 cost
= abs_cost_to_cost(abs_cost
, hw_inuse
);
1871 /* update cursor if backmerging into the request at the cursor */
1872 if (blk_rq_pos(rq
) < bio_end
&&
1873 blk_rq_pos(rq
) + blk_rq_sectors(rq
) == iocg
->cursor
)
1874 iocg
->cursor
= bio_end
;
1877 * Charge if there's enough vtime budget and the existing request has
1880 if (rq
->bio
&& rq
->bio
->bi_iocost_cost
&&
1881 time_before_eq64(atomic64_read(&iocg
->vtime
) + cost
, now
.vnow
)) {
1882 iocg_commit_bio(iocg
, bio
, cost
);
1887 * Otherwise, account it as debt if @iocg is online, which it should
1888 * be for the vast majority of cases. See debt handling in
1889 * ioc_rqos_throttle() for details.
1891 spin_lock_irqsave(&iocg
->waitq
.lock
, flags
);
1892 if (likely(!list_empty(&iocg
->active_list
))) {
1893 iocg
->abs_vdebt
+= abs_cost
;
1894 iocg_kick_delay(iocg
, &now
);
1896 iocg_commit_bio(iocg
, bio
, cost
);
1898 spin_unlock_irqrestore(&iocg
->waitq
.lock
, flags
);
1901 static void ioc_rqos_done_bio(struct rq_qos
*rqos
, struct bio
*bio
)
1903 struct ioc_gq
*iocg
= blkg_to_iocg(bio
->bi_blkg
);
1905 if (iocg
&& bio
->bi_iocost_cost
)
1906 atomic64_add(bio
->bi_iocost_cost
, &iocg
->done_vtime
);
1909 static void ioc_rqos_done(struct rq_qos
*rqos
, struct request
*rq
)
1911 struct ioc
*ioc
= rqos_to_ioc(rqos
);
1912 u64 on_q_ns
, rq_wait_ns
, size_nsec
;
1915 if (!ioc
->enabled
|| !rq
->alloc_time_ns
|| !rq
->start_time_ns
)
1918 switch (req_op(rq
) & REQ_OP_MASK
) {
1931 on_q_ns
= ktime_get_ns() - rq
->alloc_time_ns
;
1932 rq_wait_ns
= rq
->start_time_ns
- rq
->alloc_time_ns
;
1933 size_nsec
= div64_u64(calc_size_vtime_cost(rq
, ioc
), VTIME_PER_NSEC
);
1935 if (on_q_ns
<= size_nsec
||
1936 on_q_ns
- size_nsec
<= ioc
->params
.qos
[pidx
] * NSEC_PER_USEC
)
1937 this_cpu_inc(ioc
->pcpu_stat
->missed
[rw
].nr_met
);
1939 this_cpu_inc(ioc
->pcpu_stat
->missed
[rw
].nr_missed
);
1941 this_cpu_add(ioc
->pcpu_stat
->rq_wait_ns
, rq_wait_ns
);
1944 static void ioc_rqos_queue_depth_changed(struct rq_qos
*rqos
)
1946 struct ioc
*ioc
= rqos_to_ioc(rqos
);
1948 spin_lock_irq(&ioc
->lock
);
1949 ioc_refresh_params(ioc
, false);
1950 spin_unlock_irq(&ioc
->lock
);
1953 static void ioc_rqos_exit(struct rq_qos
*rqos
)
1955 struct ioc
*ioc
= rqos_to_ioc(rqos
);
1957 blkcg_deactivate_policy(rqos
->q
, &blkcg_policy_iocost
);
1959 spin_lock_irq(&ioc
->lock
);
1960 ioc
->running
= IOC_STOP
;
1961 spin_unlock_irq(&ioc
->lock
);
1963 del_timer_sync(&ioc
->timer
);
1964 free_percpu(ioc
->pcpu_stat
);
1968 static struct rq_qos_ops ioc_rqos_ops
= {
1969 .throttle
= ioc_rqos_throttle
,
1970 .merge
= ioc_rqos_merge
,
1971 .done_bio
= ioc_rqos_done_bio
,
1972 .done
= ioc_rqos_done
,
1973 .queue_depth_changed
= ioc_rqos_queue_depth_changed
,
1974 .exit
= ioc_rqos_exit
,
1977 static int blk_iocost_init(struct request_queue
*q
)
1980 struct rq_qos
*rqos
;
1983 ioc
= kzalloc(sizeof(*ioc
), GFP_KERNEL
);
1987 ioc
->pcpu_stat
= alloc_percpu(struct ioc_pcpu_stat
);
1988 if (!ioc
->pcpu_stat
) {
1994 rqos
->id
= RQ_QOS_COST
;
1995 rqos
->ops
= &ioc_rqos_ops
;
1998 spin_lock_init(&ioc
->lock
);
1999 timer_setup(&ioc
->timer
, ioc_timer_fn
, 0);
2000 INIT_LIST_HEAD(&ioc
->active_iocgs
);
2002 ioc
->running
= IOC_IDLE
;
2003 atomic64_set(&ioc
->vtime_rate
, VTIME_PER_USEC
);
2004 seqcount_init(&ioc
->period_seqcount
);
2005 ioc
->period_at
= ktime_to_us(ktime_get());
2006 atomic64_set(&ioc
->cur_period
, 0);
2007 atomic_set(&ioc
->hweight_gen
, 0);
2009 spin_lock_irq(&ioc
->lock
);
2010 ioc
->autop_idx
= AUTOP_INVALID
;
2011 ioc_refresh_params(ioc
, true);
2012 spin_unlock_irq(&ioc
->lock
);
2014 rq_qos_add(q
, rqos
);
2015 ret
= blkcg_activate_policy(q
, &blkcg_policy_iocost
);
2017 rq_qos_del(q
, rqos
);
2018 free_percpu(ioc
->pcpu_stat
);
2025 static struct blkcg_policy_data
*ioc_cpd_alloc(gfp_t gfp
)
2027 struct ioc_cgrp
*iocc
;
2029 iocc
= kzalloc(sizeof(struct ioc_cgrp
), gfp
);
2033 iocc
->dfl_weight
= CGROUP_WEIGHT_DFL
;
2037 static void ioc_cpd_free(struct blkcg_policy_data
*cpd
)
2039 kfree(container_of(cpd
, struct ioc_cgrp
, cpd
));
2042 static struct blkg_policy_data
*ioc_pd_alloc(gfp_t gfp
, struct request_queue
*q
,
2043 struct blkcg
*blkcg
)
2045 int levels
= blkcg
->css
.cgroup
->level
+ 1;
2046 struct ioc_gq
*iocg
;
2048 iocg
= kzalloc_node(sizeof(*iocg
) + levels
* sizeof(iocg
->ancestors
[0]),
2056 static void ioc_pd_init(struct blkg_policy_data
*pd
)
2058 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2059 struct blkcg_gq
*blkg
= pd_to_blkg(&iocg
->pd
);
2060 struct ioc
*ioc
= q_to_ioc(blkg
->q
);
2062 struct blkcg_gq
*tblkg
;
2063 unsigned long flags
;
2068 atomic64_set(&iocg
->vtime
, now
.vnow
);
2069 atomic64_set(&iocg
->done_vtime
, now
.vnow
);
2070 atomic64_set(&iocg
->active_period
, atomic64_read(&ioc
->cur_period
));
2071 INIT_LIST_HEAD(&iocg
->active_list
);
2072 iocg
->hweight_active
= HWEIGHT_WHOLE
;
2073 iocg
->hweight_inuse
= HWEIGHT_WHOLE
;
2075 init_waitqueue_head(&iocg
->waitq
);
2076 hrtimer_init(&iocg
->waitq_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
2077 iocg
->waitq_timer
.function
= iocg_waitq_timer_fn
;
2078 hrtimer_init(&iocg
->delay_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
2079 iocg
->delay_timer
.function
= iocg_delay_timer_fn
;
2081 iocg
->level
= blkg
->blkcg
->css
.cgroup
->level
;
2083 for (tblkg
= blkg
; tblkg
; tblkg
= tblkg
->parent
) {
2084 struct ioc_gq
*tiocg
= blkg_to_iocg(tblkg
);
2085 iocg
->ancestors
[tiocg
->level
] = tiocg
;
2088 spin_lock_irqsave(&ioc
->lock
, flags
);
2089 weight_updated(iocg
);
2090 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2093 static void ioc_pd_free(struct blkg_policy_data
*pd
)
2095 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2096 struct ioc
*ioc
= iocg
->ioc
;
2099 spin_lock(&ioc
->lock
);
2100 if (!list_empty(&iocg
->active_list
)) {
2101 propagate_active_weight(iocg
, 0, 0);
2102 list_del_init(&iocg
->active_list
);
2104 spin_unlock(&ioc
->lock
);
2106 hrtimer_cancel(&iocg
->waitq_timer
);
2107 hrtimer_cancel(&iocg
->delay_timer
);
2112 static u64
ioc_weight_prfill(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
2115 const char *dname
= blkg_dev_name(pd
->blkg
);
2116 struct ioc_gq
*iocg
= pd_to_iocg(pd
);
2118 if (dname
&& iocg
->cfg_weight
)
2119 seq_printf(sf
, "%s %u\n", dname
, iocg
->cfg_weight
);
2124 static int ioc_weight_show(struct seq_file
*sf
, void *v
)
2126 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2127 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkcg
);
2129 seq_printf(sf
, "default %u\n", iocc
->dfl_weight
);
2130 blkcg_print_blkgs(sf
, blkcg
, ioc_weight_prfill
,
2131 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
2135 static ssize_t
ioc_weight_write(struct kernfs_open_file
*of
, char *buf
,
2136 size_t nbytes
, loff_t off
)
2138 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
2139 struct ioc_cgrp
*iocc
= blkcg_to_iocc(blkcg
);
2140 struct blkg_conf_ctx ctx
;
2141 struct ioc_gq
*iocg
;
2145 if (!strchr(buf
, ':')) {
2146 struct blkcg_gq
*blkg
;
2148 if (!sscanf(buf
, "default %u", &v
) && !sscanf(buf
, "%u", &v
))
2151 if (v
< CGROUP_WEIGHT_MIN
|| v
> CGROUP_WEIGHT_MAX
)
2154 spin_lock(&blkcg
->lock
);
2155 iocc
->dfl_weight
= v
;
2156 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
2157 struct ioc_gq
*iocg
= blkg_to_iocg(blkg
);
2160 spin_lock_irq(&iocg
->ioc
->lock
);
2161 weight_updated(iocg
);
2162 spin_unlock_irq(&iocg
->ioc
->lock
);
2165 spin_unlock(&blkcg
->lock
);
2170 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_iocost
, buf
, &ctx
);
2174 iocg
= blkg_to_iocg(ctx
.blkg
);
2176 if (!strncmp(ctx
.body
, "default", 7)) {
2179 if (!sscanf(ctx
.body
, "%u", &v
))
2181 if (v
< CGROUP_WEIGHT_MIN
|| v
> CGROUP_WEIGHT_MAX
)
2185 spin_lock(&iocg
->ioc
->lock
);
2186 iocg
->cfg_weight
= v
;
2187 weight_updated(iocg
);
2188 spin_unlock(&iocg
->ioc
->lock
);
2190 blkg_conf_finish(&ctx
);
2194 blkg_conf_finish(&ctx
);
2198 static u64
ioc_qos_prfill(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
2201 const char *dname
= blkg_dev_name(pd
->blkg
);
2202 struct ioc
*ioc
= pd_to_iocg(pd
)->ioc
;
2207 seq_printf(sf
, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n",
2208 dname
, ioc
->enabled
, ioc
->user_qos_params
? "user" : "auto",
2209 ioc
->params
.qos
[QOS_RPPM
] / 10000,
2210 ioc
->params
.qos
[QOS_RPPM
] % 10000 / 100,
2211 ioc
->params
.qos
[QOS_RLAT
],
2212 ioc
->params
.qos
[QOS_WPPM
] / 10000,
2213 ioc
->params
.qos
[QOS_WPPM
] % 10000 / 100,
2214 ioc
->params
.qos
[QOS_WLAT
],
2215 ioc
->params
.qos
[QOS_MIN
] / 10000,
2216 ioc
->params
.qos
[QOS_MIN
] % 10000 / 100,
2217 ioc
->params
.qos
[QOS_MAX
] / 10000,
2218 ioc
->params
.qos
[QOS_MAX
] % 10000 / 100);
2222 static int ioc_qos_show(struct seq_file
*sf
, void *v
)
2224 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2226 blkcg_print_blkgs(sf
, blkcg
, ioc_qos_prfill
,
2227 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
2231 static const match_table_t qos_ctrl_tokens
= {
2232 { QOS_ENABLE
, "enable=%u" },
2233 { QOS_CTRL
, "ctrl=%s" },
2234 { NR_QOS_CTRL_PARAMS
, NULL
},
2237 static const match_table_t qos_tokens
= {
2238 { QOS_RPPM
, "rpct=%s" },
2239 { QOS_RLAT
, "rlat=%u" },
2240 { QOS_WPPM
, "wpct=%s" },
2241 { QOS_WLAT
, "wlat=%u" },
2242 { QOS_MIN
, "min=%s" },
2243 { QOS_MAX
, "max=%s" },
2244 { NR_QOS_PARAMS
, NULL
},
2247 static ssize_t
ioc_qos_write(struct kernfs_open_file
*of
, char *input
,
2248 size_t nbytes
, loff_t off
)
2250 struct gendisk
*disk
;
2252 u32 qos
[NR_QOS_PARAMS
];
2257 disk
= blkcg_conf_get_disk(&input
);
2259 return PTR_ERR(disk
);
2261 ioc
= q_to_ioc(disk
->queue
);
2263 ret
= blk_iocost_init(disk
->queue
);
2266 ioc
= q_to_ioc(disk
->queue
);
2269 spin_lock_irq(&ioc
->lock
);
2270 memcpy(qos
, ioc
->params
.qos
, sizeof(qos
));
2271 enable
= ioc
->enabled
;
2272 user
= ioc
->user_qos_params
;
2273 spin_unlock_irq(&ioc
->lock
);
2275 while ((p
= strsep(&input
, " \t\n"))) {
2276 substring_t args
[MAX_OPT_ARGS
];
2284 switch (match_token(p
, qos_ctrl_tokens
, args
)) {
2286 match_u64(&args
[0], &v
);
2290 match_strlcpy(buf
, &args
[0], sizeof(buf
));
2291 if (!strcmp(buf
, "auto"))
2293 else if (!strcmp(buf
, "user"))
2300 tok
= match_token(p
, qos_tokens
, args
);
2304 if (match_strlcpy(buf
, &args
[0], sizeof(buf
)) >=
2307 if (cgroup_parse_float(buf
, 2, &v
))
2309 if (v
< 0 || v
> 10000)
2315 if (match_u64(&args
[0], &v
))
2321 if (match_strlcpy(buf
, &args
[0], sizeof(buf
)) >=
2324 if (cgroup_parse_float(buf
, 2, &v
))
2328 qos
[tok
] = clamp_t(s64
, v
* 100,
2329 VRATE_MIN_PPM
, VRATE_MAX_PPM
);
2337 if (qos
[QOS_MIN
] > qos
[QOS_MAX
])
2340 spin_lock_irq(&ioc
->lock
);
2343 blk_stat_enable_accounting(ioc
->rqos
.q
);
2344 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME
, ioc
->rqos
.q
);
2345 ioc
->enabled
= true;
2347 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME
, ioc
->rqos
.q
);
2348 ioc
->enabled
= false;
2352 memcpy(ioc
->params
.qos
, qos
, sizeof(qos
));
2353 ioc
->user_qos_params
= true;
2355 ioc
->user_qos_params
= false;
2358 ioc_refresh_params(ioc
, true);
2359 spin_unlock_irq(&ioc
->lock
);
2361 put_disk_and_module(disk
);
2366 put_disk_and_module(disk
);
2370 static u64
ioc_cost_model_prfill(struct seq_file
*sf
,
2371 struct blkg_policy_data
*pd
, int off
)
2373 const char *dname
= blkg_dev_name(pd
->blkg
);
2374 struct ioc
*ioc
= pd_to_iocg(pd
)->ioc
;
2375 u64
*u
= ioc
->params
.i_lcoefs
;
2380 seq_printf(sf
, "%s ctrl=%s model=linear "
2381 "rbps=%llu rseqiops=%llu rrandiops=%llu "
2382 "wbps=%llu wseqiops=%llu wrandiops=%llu\n",
2383 dname
, ioc
->user_cost_model
? "user" : "auto",
2384 u
[I_LCOEF_RBPS
], u
[I_LCOEF_RSEQIOPS
], u
[I_LCOEF_RRANDIOPS
],
2385 u
[I_LCOEF_WBPS
], u
[I_LCOEF_WSEQIOPS
], u
[I_LCOEF_WRANDIOPS
]);
2389 static int ioc_cost_model_show(struct seq_file
*sf
, void *v
)
2391 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2393 blkcg_print_blkgs(sf
, blkcg
, ioc_cost_model_prfill
,
2394 &blkcg_policy_iocost
, seq_cft(sf
)->private, false);
2398 static const match_table_t cost_ctrl_tokens
= {
2399 { COST_CTRL
, "ctrl=%s" },
2400 { COST_MODEL
, "model=%s" },
2401 { NR_COST_CTRL_PARAMS
, NULL
},
2404 static const match_table_t i_lcoef_tokens
= {
2405 { I_LCOEF_RBPS
, "rbps=%u" },
2406 { I_LCOEF_RSEQIOPS
, "rseqiops=%u" },
2407 { I_LCOEF_RRANDIOPS
, "rrandiops=%u" },
2408 { I_LCOEF_WBPS
, "wbps=%u" },
2409 { I_LCOEF_WSEQIOPS
, "wseqiops=%u" },
2410 { I_LCOEF_WRANDIOPS
, "wrandiops=%u" },
2411 { NR_I_LCOEFS
, NULL
},
2414 static ssize_t
ioc_cost_model_write(struct kernfs_open_file
*of
, char *input
,
2415 size_t nbytes
, loff_t off
)
2417 struct gendisk
*disk
;
2424 disk
= blkcg_conf_get_disk(&input
);
2426 return PTR_ERR(disk
);
2428 ioc
= q_to_ioc(disk
->queue
);
2430 ret
= blk_iocost_init(disk
->queue
);
2433 ioc
= q_to_ioc(disk
->queue
);
2436 spin_lock_irq(&ioc
->lock
);
2437 memcpy(u
, ioc
->params
.i_lcoefs
, sizeof(u
));
2438 user
= ioc
->user_cost_model
;
2439 spin_unlock_irq(&ioc
->lock
);
2441 while ((p
= strsep(&input
, " \t\n"))) {
2442 substring_t args
[MAX_OPT_ARGS
];
2450 switch (match_token(p
, cost_ctrl_tokens
, args
)) {
2452 match_strlcpy(buf
, &args
[0], sizeof(buf
));
2453 if (!strcmp(buf
, "auto"))
2455 else if (!strcmp(buf
, "user"))
2461 match_strlcpy(buf
, &args
[0], sizeof(buf
));
2462 if (strcmp(buf
, "linear"))
2467 tok
= match_token(p
, i_lcoef_tokens
, args
);
2468 if (tok
== NR_I_LCOEFS
)
2470 if (match_u64(&args
[0], &v
))
2476 spin_lock_irq(&ioc
->lock
);
2478 memcpy(ioc
->params
.i_lcoefs
, u
, sizeof(u
));
2479 ioc
->user_cost_model
= true;
2481 ioc
->user_cost_model
= false;
2483 ioc_refresh_params(ioc
, true);
2484 spin_unlock_irq(&ioc
->lock
);
2486 put_disk_and_module(disk
);
2492 put_disk_and_module(disk
);
2496 static struct cftype ioc_files
[] = {
2499 .flags
= CFTYPE_NOT_ON_ROOT
,
2500 .seq_show
= ioc_weight_show
,
2501 .write
= ioc_weight_write
,
2505 .flags
= CFTYPE_ONLY_ON_ROOT
,
2506 .seq_show
= ioc_qos_show
,
2507 .write
= ioc_qos_write
,
2510 .name
= "cost.model",
2511 .flags
= CFTYPE_ONLY_ON_ROOT
,
2512 .seq_show
= ioc_cost_model_show
,
2513 .write
= ioc_cost_model_write
,
2518 static struct blkcg_policy blkcg_policy_iocost
= {
2519 .dfl_cftypes
= ioc_files
,
2520 .cpd_alloc_fn
= ioc_cpd_alloc
,
2521 .cpd_free_fn
= ioc_cpd_free
,
2522 .pd_alloc_fn
= ioc_pd_alloc
,
2523 .pd_init_fn
= ioc_pd_init
,
2524 .pd_free_fn
= ioc_pd_free
,
2527 static int __init
ioc_init(void)
2529 return blkcg_policy_register(&blkcg_policy_iocost
);
2532 static void __exit
ioc_exit(void)
2534 return blkcg_policy_unregister(&blkcg_policy_iocost
);
2537 module_init(ioc_init
);
2538 module_exit(ioc_exit
);