1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
82 u32 head ____cacheline_aligned_in_smp
;
83 u32 tail ____cacheline_aligned_in_smp
;
87 * This data is shared with the application through the mmap at offset
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head and the application controls tail.
102 * Bitmask to apply to head and tail offsets (constant, equals
106 /* Ring size (constant, power of 2) */
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
124 * Written by the kernel, shouldn't be modified by the
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
139 * The kernel modifies neither the indices array nor the entries
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
157 * The application controls head and the kernel tail.
161 * Bitmask to apply to head and tail offsets (constant, equals
165 /* Ring size (constant, power of 2) */
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
182 * Ring buffer of completion events.
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
188 struct io_uring_cqe cqes
[];
191 struct io_mapped_ubuf
{
194 struct bio_vec
*bvec
;
195 unsigned int nr_bvecs
;
201 struct list_head list
;
210 struct percpu_ref refs
;
211 } ____cacheline_aligned_in_smp
;
219 struct io_sq_ring
*sq_ring
;
220 unsigned cached_sq_head
;
223 unsigned sq_thread_idle
;
224 struct io_uring_sqe
*sq_sqes
;
226 struct list_head defer_list
;
227 } ____cacheline_aligned_in_smp
;
230 struct workqueue_struct
*sqo_wq
;
231 struct task_struct
*sqo_thread
; /* if using sq thread polling */
232 struct mm_struct
*sqo_mm
;
233 wait_queue_head_t sqo_wait
;
234 struct completion sqo_thread_started
;
238 struct io_cq_ring
*cq_ring
;
239 unsigned cached_cq_tail
;
242 struct wait_queue_head cq_wait
;
243 struct fasync_struct
*cq_fasync
;
244 struct eventfd_ctx
*cq_ev_fd
;
245 } ____cacheline_aligned_in_smp
;
248 * If used, fixed file set. Writers must ensure that ->refs is dead,
249 * readers must ensure that ->refs is alive as long as the file* is
250 * used. Only updated through io_uring_register(2).
252 struct file
**user_files
;
253 unsigned nr_user_files
;
255 /* if used, fixed mapped user buffers */
256 unsigned nr_user_bufs
;
257 struct io_mapped_ubuf
*user_bufs
;
259 struct user_struct
*user
;
261 struct completion ctx_done
;
264 struct mutex uring_lock
;
265 wait_queue_head_t wait
;
266 } ____cacheline_aligned_in_smp
;
269 spinlock_t completion_lock
;
270 bool poll_multi_file
;
272 * ->poll_list is protected by the ctx->uring_lock for
273 * io_uring instances that don't use IORING_SETUP_SQPOLL.
274 * For SQPOLL, only the single threaded io_sq_thread() will
275 * manipulate the list, hence no extra locking is needed there.
277 struct list_head poll_list
;
278 struct list_head cancel_list
;
279 } ____cacheline_aligned_in_smp
;
281 struct async_list pending_async
[2];
283 #if defined(CONFIG_UNIX)
284 struct socket
*ring_sock
;
289 const struct io_uring_sqe
*sqe
;
290 unsigned short index
;
293 bool needs_fixed_file
;
297 * First field must be the file pointer in all the
298 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
300 struct io_poll_iocb
{
302 struct wait_queue_head
*head
;
306 struct wait_queue_entry wait
;
310 * NOTE! Each of the iocb union members has the file pointer
311 * as the first entry in their struct definition. So you can
312 * access the file pointer through any of the sub-structs,
313 * or directly as just 'ki_filp' in this struct.
319 struct io_poll_iocb poll
;
322 struct sqe_submit submit
;
324 struct io_ring_ctx
*ctx
;
325 struct list_head list
;
326 struct list_head link_list
;
329 #define REQ_F_NOWAIT 1 /* must not punt to workers */
330 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
331 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
332 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
333 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
334 #define REQ_F_IO_DRAINED 32 /* drain done */
335 #define REQ_F_LINK 64 /* linked sqes */
336 #define REQ_F_FAIL_LINK 128 /* fail rest of links */
341 struct work_struct work
;
344 #define IO_PLUG_THRESHOLD 2
345 #define IO_IOPOLL_BATCH 8
347 struct io_submit_state
{
348 struct blk_plug plug
;
351 * io_kiocb alloc cache
353 void *reqs
[IO_IOPOLL_BATCH
];
354 unsigned int free_reqs
;
355 unsigned int cur_req
;
358 * File reference cache
362 unsigned int has_refs
;
363 unsigned int used_refs
;
364 unsigned int ios_left
;
367 static void io_sq_wq_submit_work(struct work_struct
*work
);
369 static struct kmem_cache
*req_cachep
;
371 static const struct file_operations io_uring_fops
;
373 struct sock
*io_uring_get_socket(struct file
*file
)
375 #if defined(CONFIG_UNIX)
376 if (file
->f_op
== &io_uring_fops
) {
377 struct io_ring_ctx
*ctx
= file
->private_data
;
379 return ctx
->ring_sock
->sk
;
384 EXPORT_SYMBOL(io_uring_get_socket
);
386 static void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
388 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
390 complete(&ctx
->ctx_done
);
393 static struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
395 struct io_ring_ctx
*ctx
;
398 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
402 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
,
403 PERCPU_REF_ALLOW_REINIT
, GFP_KERNEL
)) {
408 ctx
->flags
= p
->flags
;
409 init_waitqueue_head(&ctx
->cq_wait
);
410 init_completion(&ctx
->ctx_done
);
411 init_completion(&ctx
->sqo_thread_started
);
412 mutex_init(&ctx
->uring_lock
);
413 init_waitqueue_head(&ctx
->wait
);
414 for (i
= 0; i
< ARRAY_SIZE(ctx
->pending_async
); i
++) {
415 spin_lock_init(&ctx
->pending_async
[i
].lock
);
416 INIT_LIST_HEAD(&ctx
->pending_async
[i
].list
);
417 atomic_set(&ctx
->pending_async
[i
].cnt
, 0);
419 spin_lock_init(&ctx
->completion_lock
);
420 INIT_LIST_HEAD(&ctx
->poll_list
);
421 INIT_LIST_HEAD(&ctx
->cancel_list
);
422 INIT_LIST_HEAD(&ctx
->defer_list
);
426 static inline bool io_sequence_defer(struct io_ring_ctx
*ctx
,
427 struct io_kiocb
*req
)
429 if ((req
->flags
& (REQ_F_IO_DRAIN
|REQ_F_IO_DRAINED
)) != REQ_F_IO_DRAIN
)
432 return req
->sequence
> ctx
->cached_cq_tail
+ ctx
->sq_ring
->dropped
;
435 static struct io_kiocb
*io_get_deferred_req(struct io_ring_ctx
*ctx
)
437 struct io_kiocb
*req
;
439 if (list_empty(&ctx
->defer_list
))
442 req
= list_first_entry(&ctx
->defer_list
, struct io_kiocb
, list
);
443 if (!io_sequence_defer(ctx
, req
)) {
444 list_del_init(&req
->list
);
451 static void __io_commit_cqring(struct io_ring_ctx
*ctx
)
453 struct io_cq_ring
*ring
= ctx
->cq_ring
;
455 if (ctx
->cached_cq_tail
!= READ_ONCE(ring
->r
.tail
)) {
456 /* order cqe stores with ring update */
457 smp_store_release(&ring
->r
.tail
, ctx
->cached_cq_tail
);
459 if (wq_has_sleeper(&ctx
->cq_wait
)) {
460 wake_up_interruptible(&ctx
->cq_wait
);
461 kill_fasync(&ctx
->cq_fasync
, SIGIO
, POLL_IN
);
466 static void io_commit_cqring(struct io_ring_ctx
*ctx
)
468 struct io_kiocb
*req
;
470 __io_commit_cqring(ctx
);
472 while ((req
= io_get_deferred_req(ctx
)) != NULL
) {
473 req
->flags
|= REQ_F_IO_DRAINED
;
474 queue_work(ctx
->sqo_wq
, &req
->work
);
478 static struct io_uring_cqe
*io_get_cqring(struct io_ring_ctx
*ctx
)
480 struct io_cq_ring
*ring
= ctx
->cq_ring
;
483 tail
= ctx
->cached_cq_tail
;
485 * writes to the cq entry need to come after reading head; the
486 * control dependency is enough as we're using WRITE_ONCE to
489 if (tail
- READ_ONCE(ring
->r
.head
) == ring
->ring_entries
)
492 ctx
->cached_cq_tail
++;
493 return &ring
->cqes
[tail
& ctx
->cq_mask
];
496 static void io_cqring_fill_event(struct io_ring_ctx
*ctx
, u64 ki_user_data
,
499 struct io_uring_cqe
*cqe
;
502 * If we can't get a cq entry, userspace overflowed the
503 * submission (by quite a lot). Increment the overflow count in
506 cqe
= io_get_cqring(ctx
);
508 WRITE_ONCE(cqe
->user_data
, ki_user_data
);
509 WRITE_ONCE(cqe
->res
, res
);
510 WRITE_ONCE(cqe
->flags
, 0);
512 unsigned overflow
= READ_ONCE(ctx
->cq_ring
->overflow
);
514 WRITE_ONCE(ctx
->cq_ring
->overflow
, overflow
+ 1);
518 static void io_cqring_ev_posted(struct io_ring_ctx
*ctx
)
520 if (waitqueue_active(&ctx
->wait
))
522 if (waitqueue_active(&ctx
->sqo_wait
))
523 wake_up(&ctx
->sqo_wait
);
525 eventfd_signal(ctx
->cq_ev_fd
, 1);
528 static void io_cqring_add_event(struct io_ring_ctx
*ctx
, u64 user_data
,
533 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
534 io_cqring_fill_event(ctx
, user_data
, res
);
535 io_commit_cqring(ctx
);
536 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
538 io_cqring_ev_posted(ctx
);
541 static void io_ring_drop_ctx_refs(struct io_ring_ctx
*ctx
, unsigned refs
)
543 percpu_ref_put_many(&ctx
->refs
, refs
);
545 if (waitqueue_active(&ctx
->wait
))
549 static struct io_kiocb
*io_get_req(struct io_ring_ctx
*ctx
,
550 struct io_submit_state
*state
)
552 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
553 struct io_kiocb
*req
;
555 if (!percpu_ref_tryget(&ctx
->refs
))
559 req
= kmem_cache_alloc(req_cachep
, gfp
);
562 } else if (!state
->free_reqs
) {
566 sz
= min_t(size_t, state
->ios_left
, ARRAY_SIZE(state
->reqs
));
567 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, sz
, state
->reqs
);
570 * Bulk alloc is all-or-nothing. If we fail to get a batch,
571 * retry single alloc to be on the safe side.
573 if (unlikely(ret
<= 0)) {
574 state
->reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
579 state
->free_reqs
= ret
- 1;
581 req
= state
->reqs
[0];
583 req
= state
->reqs
[state
->cur_req
];
591 /* one is dropped after submission, the other at completion */
592 refcount_set(&req
->refs
, 2);
596 io_ring_drop_ctx_refs(ctx
, 1);
600 static void io_free_req_many(struct io_ring_ctx
*ctx
, void **reqs
, int *nr
)
603 kmem_cache_free_bulk(req_cachep
, *nr
, reqs
);
604 io_ring_drop_ctx_refs(ctx
, *nr
);
609 static void __io_free_req(struct io_kiocb
*req
)
611 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
613 io_ring_drop_ctx_refs(req
->ctx
, 1);
614 kmem_cache_free(req_cachep
, req
);
617 static void io_req_link_next(struct io_kiocb
*req
)
619 struct io_kiocb
*nxt
;
622 * The list should never be empty when we are called here. But could
623 * potentially happen if the chain is messed up, check to be on the
626 nxt
= list_first_entry_or_null(&req
->link_list
, struct io_kiocb
, list
);
628 list_del(&nxt
->list
);
629 if (!list_empty(&req
->link_list
)) {
630 INIT_LIST_HEAD(&nxt
->link_list
);
631 list_splice(&req
->link_list
, &nxt
->link_list
);
632 nxt
->flags
|= REQ_F_LINK
;
635 INIT_WORK(&nxt
->work
, io_sq_wq_submit_work
);
636 queue_work(req
->ctx
->sqo_wq
, &nxt
->work
);
641 * Called if REQ_F_LINK is set, and we fail the head request
643 static void io_fail_links(struct io_kiocb
*req
)
645 struct io_kiocb
*link
;
647 while (!list_empty(&req
->link_list
)) {
648 link
= list_first_entry(&req
->link_list
, struct io_kiocb
, list
);
649 list_del(&link
->list
);
651 io_cqring_add_event(req
->ctx
, link
->user_data
, -ECANCELED
);
656 static void io_free_req(struct io_kiocb
*req
)
659 * If LINK is set, we have dependent requests in this chain. If we
660 * didn't fail this request, queue the first one up, moving any other
661 * dependencies to the next request. In case of failure, fail the rest
664 if (req
->flags
& REQ_F_LINK
) {
665 if (req
->flags
& REQ_F_FAIL_LINK
)
668 io_req_link_next(req
);
674 static void io_put_req(struct io_kiocb
*req
)
676 if (refcount_dec_and_test(&req
->refs
))
681 * Find and free completed poll iocbs
683 static void io_iopoll_complete(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
684 struct list_head
*done
)
686 void *reqs
[IO_IOPOLL_BATCH
];
687 struct io_kiocb
*req
;
691 while (!list_empty(done
)) {
692 req
= list_first_entry(done
, struct io_kiocb
, list
);
693 list_del(&req
->list
);
695 io_cqring_fill_event(ctx
, req
->user_data
, req
->result
);
698 if (refcount_dec_and_test(&req
->refs
)) {
699 /* If we're not using fixed files, we have to pair the
700 * completion part with the file put. Use regular
701 * completions for those, only batch free for fixed
702 * file and non-linked commands.
704 if ((req
->flags
& (REQ_F_FIXED_FILE
|REQ_F_LINK
)) ==
706 reqs
[to_free
++] = req
;
707 if (to_free
== ARRAY_SIZE(reqs
))
708 io_free_req_many(ctx
, reqs
, &to_free
);
715 io_commit_cqring(ctx
);
716 io_free_req_many(ctx
, reqs
, &to_free
);
719 static int io_do_iopoll(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
722 struct io_kiocb
*req
, *tmp
;
728 * Only spin for completions if we don't have multiple devices hanging
729 * off our complete list, and we're under the requested amount.
731 spin
= !ctx
->poll_multi_file
&& *nr_events
< min
;
734 list_for_each_entry_safe(req
, tmp
, &ctx
->poll_list
, list
) {
735 struct kiocb
*kiocb
= &req
->rw
;
738 * Move completed entries to our local list. If we find a
739 * request that requires polling, break out and complete
740 * the done list first, if we have entries there.
742 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
) {
743 list_move_tail(&req
->list
, &done
);
746 if (!list_empty(&done
))
749 ret
= kiocb
->ki_filp
->f_op
->iopoll(kiocb
, spin
);
758 if (!list_empty(&done
))
759 io_iopoll_complete(ctx
, nr_events
, &done
);
765 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
766 * non-spinning poll check - we'll still enter the driver poll loop, but only
767 * as a non-spinning completion check.
769 static int io_iopoll_getevents(struct io_ring_ctx
*ctx
, unsigned int *nr_events
,
772 while (!list_empty(&ctx
->poll_list
)) {
775 ret
= io_do_iopoll(ctx
, nr_events
, min
);
778 if (!min
|| *nr_events
>= min
)
786 * We can't just wait for polled events to come to us, we have to actively
787 * find and complete them.
789 static void io_iopoll_reap_events(struct io_ring_ctx
*ctx
)
791 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
794 mutex_lock(&ctx
->uring_lock
);
795 while (!list_empty(&ctx
->poll_list
)) {
796 unsigned int nr_events
= 0;
798 io_iopoll_getevents(ctx
, &nr_events
, 1);
800 mutex_unlock(&ctx
->uring_lock
);
803 static int io_iopoll_check(struct io_ring_ctx
*ctx
, unsigned *nr_events
,
811 if (*nr_events
< min
)
812 tmin
= min
- *nr_events
;
814 ret
= io_iopoll_getevents(ctx
, nr_events
, tmin
);
818 } while (min
&& !*nr_events
&& !need_resched());
823 static void kiocb_end_write(struct kiocb
*kiocb
)
825 if (kiocb
->ki_flags
& IOCB_WRITE
) {
826 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
829 * Tell lockdep we inherited freeze protection from submission
832 if (S_ISREG(inode
->i_mode
))
833 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
834 file_end_write(kiocb
->ki_filp
);
838 static void io_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
840 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
842 kiocb_end_write(kiocb
);
844 if ((req
->flags
& REQ_F_LINK
) && res
!= req
->result
)
845 req
->flags
|= REQ_F_FAIL_LINK
;
846 io_cqring_add_event(req
->ctx
, req
->user_data
, res
);
850 static void io_complete_rw_iopoll(struct kiocb
*kiocb
, long res
, long res2
)
852 struct io_kiocb
*req
= container_of(kiocb
, struct io_kiocb
, rw
);
854 kiocb_end_write(kiocb
);
856 if ((req
->flags
& REQ_F_LINK
) && res
!= req
->result
)
857 req
->flags
|= REQ_F_FAIL_LINK
;
860 req
->flags
|= REQ_F_IOPOLL_COMPLETED
;
864 * After the iocb has been issued, it's safe to be found on the poll list.
865 * Adding the kiocb to the list AFTER submission ensures that we don't
866 * find it from a io_iopoll_getevents() thread before the issuer is done
867 * accessing the kiocb cookie.
869 static void io_iopoll_req_issued(struct io_kiocb
*req
)
871 struct io_ring_ctx
*ctx
= req
->ctx
;
874 * Track whether we have multiple files in our lists. This will impact
875 * how we do polling eventually, not spinning if we're on potentially
878 if (list_empty(&ctx
->poll_list
)) {
879 ctx
->poll_multi_file
= false;
880 } else if (!ctx
->poll_multi_file
) {
881 struct io_kiocb
*list_req
;
883 list_req
= list_first_entry(&ctx
->poll_list
, struct io_kiocb
,
885 if (list_req
->rw
.ki_filp
!= req
->rw
.ki_filp
)
886 ctx
->poll_multi_file
= true;
890 * For fast devices, IO may have already completed. If it has, add
891 * it to the front so we find it first.
893 if (req
->flags
& REQ_F_IOPOLL_COMPLETED
)
894 list_add(&req
->list
, &ctx
->poll_list
);
896 list_add_tail(&req
->list
, &ctx
->poll_list
);
899 static void io_file_put(struct io_submit_state
*state
)
902 int diff
= state
->has_refs
- state
->used_refs
;
905 fput_many(state
->file
, diff
);
911 * Get as many references to a file as we have IOs left in this submission,
912 * assuming most submissions are for one file, or at least that each file
913 * has more than one submission.
915 static struct file
*io_file_get(struct io_submit_state
*state
, int fd
)
921 if (state
->fd
== fd
) {
928 state
->file
= fget_many(fd
, state
->ios_left
);
933 state
->has_refs
= state
->ios_left
;
934 state
->used_refs
= 1;
940 * If we tracked the file through the SCM inflight mechanism, we could support
941 * any file. For now, just ensure that anything potentially problematic is done
944 static bool io_file_supports_async(struct file
*file
)
946 umode_t mode
= file_inode(file
)->i_mode
;
948 if (S_ISBLK(mode
) || S_ISCHR(mode
))
950 if (S_ISREG(mode
) && file
->f_op
!= &io_uring_fops
)
956 static int io_prep_rw(struct io_kiocb
*req
, const struct sqe_submit
*s
,
959 const struct io_uring_sqe
*sqe
= s
->sqe
;
960 struct io_ring_ctx
*ctx
= req
->ctx
;
961 struct kiocb
*kiocb
= &req
->rw
;
968 if (force_nonblock
&& !io_file_supports_async(req
->file
))
969 force_nonblock
= false;
971 kiocb
->ki_pos
= READ_ONCE(sqe
->off
);
972 kiocb
->ki_flags
= iocb_flags(kiocb
->ki_filp
);
973 kiocb
->ki_hint
= ki_hint_validate(file_write_hint(kiocb
->ki_filp
));
975 ioprio
= READ_ONCE(sqe
->ioprio
);
977 ret
= ioprio_check_cap(ioprio
);
981 kiocb
->ki_ioprio
= ioprio
;
983 kiocb
->ki_ioprio
= get_current_ioprio();
985 ret
= kiocb_set_rw_flags(kiocb
, READ_ONCE(sqe
->rw_flags
));
989 /* don't allow async punt if RWF_NOWAIT was requested */
990 if (kiocb
->ki_flags
& IOCB_NOWAIT
)
991 req
->flags
|= REQ_F_NOWAIT
;
994 kiocb
->ki_flags
|= IOCB_NOWAIT
;
996 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
997 if (!(kiocb
->ki_flags
& IOCB_DIRECT
) ||
998 !kiocb
->ki_filp
->f_op
->iopoll
)
1001 kiocb
->ki_flags
|= IOCB_HIPRI
;
1002 kiocb
->ki_complete
= io_complete_rw_iopoll
;
1004 if (kiocb
->ki_flags
& IOCB_HIPRI
)
1006 kiocb
->ki_complete
= io_complete_rw
;
1011 static inline void io_rw_done(struct kiocb
*kiocb
, ssize_t ret
)
1017 case -ERESTARTNOINTR
:
1018 case -ERESTARTNOHAND
:
1019 case -ERESTART_RESTARTBLOCK
:
1021 * We can't just restart the syscall, since previously
1022 * submitted sqes may already be in progress. Just fail this
1028 kiocb
->ki_complete(kiocb
, ret
, 0);
1032 static int io_import_fixed(struct io_ring_ctx
*ctx
, int rw
,
1033 const struct io_uring_sqe
*sqe
,
1034 struct iov_iter
*iter
)
1036 size_t len
= READ_ONCE(sqe
->len
);
1037 struct io_mapped_ubuf
*imu
;
1038 unsigned index
, buf_index
;
1042 /* attempt to use fixed buffers without having provided iovecs */
1043 if (unlikely(!ctx
->user_bufs
))
1046 buf_index
= READ_ONCE(sqe
->buf_index
);
1047 if (unlikely(buf_index
>= ctx
->nr_user_bufs
))
1050 index
= array_index_nospec(buf_index
, ctx
->nr_user_bufs
);
1051 imu
= &ctx
->user_bufs
[index
];
1052 buf_addr
= READ_ONCE(sqe
->addr
);
1055 if (buf_addr
+ len
< buf_addr
)
1057 /* not inside the mapped region */
1058 if (buf_addr
< imu
->ubuf
|| buf_addr
+ len
> imu
->ubuf
+ imu
->len
)
1062 * May not be a start of buffer, set size appropriately
1063 * and advance us to the beginning.
1065 offset
= buf_addr
- imu
->ubuf
;
1066 iov_iter_bvec(iter
, rw
, imu
->bvec
, imu
->nr_bvecs
, offset
+ len
);
1068 iov_iter_advance(iter
, offset
);
1072 static ssize_t
io_import_iovec(struct io_ring_ctx
*ctx
, int rw
,
1073 const struct sqe_submit
*s
, struct iovec
**iovec
,
1074 struct iov_iter
*iter
)
1076 const struct io_uring_sqe
*sqe
= s
->sqe
;
1077 void __user
*buf
= u64_to_user_ptr(READ_ONCE(sqe
->addr
));
1078 size_t sqe_len
= READ_ONCE(sqe
->len
);
1082 * We're reading ->opcode for the second time, but the first read
1083 * doesn't care whether it's _FIXED or not, so it doesn't matter
1084 * whether ->opcode changes concurrently. The first read does care
1085 * about whether it is a READ or a WRITE, so we don't trust this read
1086 * for that purpose and instead let the caller pass in the read/write
1089 opcode
= READ_ONCE(sqe
->opcode
);
1090 if (opcode
== IORING_OP_READ_FIXED
||
1091 opcode
== IORING_OP_WRITE_FIXED
) {
1092 ssize_t ret
= io_import_fixed(ctx
, rw
, sqe
, iter
);
1100 #ifdef CONFIG_COMPAT
1102 return compat_import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
,
1106 return import_iovec(rw
, buf
, sqe_len
, UIO_FASTIOV
, iovec
, iter
);
1110 * Make a note of the last file/offset/direction we punted to async
1111 * context. We'll use this information to see if we can piggy back a
1112 * sequential request onto the previous one, if it's still hasn't been
1113 * completed by the async worker.
1115 static void io_async_list_note(int rw
, struct io_kiocb
*req
, size_t len
)
1117 struct async_list
*async_list
= &req
->ctx
->pending_async
[rw
];
1118 struct kiocb
*kiocb
= &req
->rw
;
1119 struct file
*filp
= kiocb
->ki_filp
;
1120 off_t io_end
= kiocb
->ki_pos
+ len
;
1122 if (filp
== async_list
->file
&& kiocb
->ki_pos
== async_list
->io_end
) {
1123 unsigned long max_pages
;
1125 /* Use 8x RA size as a decent limiter for both reads/writes */
1126 max_pages
= filp
->f_ra
.ra_pages
;
1128 max_pages
= VM_READAHEAD_PAGES
;
1131 /* If max pages are exceeded, reset the state */
1133 if (async_list
->io_pages
+ len
<= max_pages
) {
1134 req
->flags
|= REQ_F_SEQ_PREV
;
1135 async_list
->io_pages
+= len
;
1138 async_list
->io_pages
= 0;
1142 /* New file? Reset state. */
1143 if (async_list
->file
!= filp
) {
1144 async_list
->io_pages
= 0;
1145 async_list
->file
= filp
;
1147 async_list
->io_end
= io_end
;
1150 static int io_read(struct io_kiocb
*req
, const struct sqe_submit
*s
,
1151 bool force_nonblock
)
1153 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1154 struct kiocb
*kiocb
= &req
->rw
;
1155 struct iov_iter iter
;
1158 ssize_t read_size
, ret
;
1160 ret
= io_prep_rw(req
, s
, force_nonblock
);
1163 file
= kiocb
->ki_filp
;
1165 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1167 if (unlikely(!file
->f_op
->read_iter
))
1170 ret
= io_import_iovec(req
->ctx
, READ
, s
, &iovec
, &iter
);
1175 if (req
->flags
& REQ_F_LINK
)
1176 req
->result
= read_size
;
1178 iov_count
= iov_iter_count(&iter
);
1179 ret
= rw_verify_area(READ
, file
, &kiocb
->ki_pos
, iov_count
);
1183 ret2
= call_read_iter(file
, kiocb
, &iter
);
1185 * In case of a short read, punt to async. This can happen
1186 * if we have data partially cached. Alternatively we can
1187 * return the short read, in which case the application will
1188 * need to issue another SQE and wait for it. That SQE will
1189 * need async punt anyway, so it's more efficient to do it
1192 if (force_nonblock
&& ret2
> 0 && ret2
< read_size
)
1194 /* Catch -EAGAIN return for forced non-blocking submission */
1195 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
1196 io_rw_done(kiocb
, ret2
);
1199 * If ->needs_lock is true, we're already in async
1203 io_async_list_note(READ
, req
, iov_count
);
1211 static int io_write(struct io_kiocb
*req
, const struct sqe_submit
*s
,
1212 bool force_nonblock
)
1214 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1215 struct kiocb
*kiocb
= &req
->rw
;
1216 struct iov_iter iter
;
1221 ret
= io_prep_rw(req
, s
, force_nonblock
);
1225 file
= kiocb
->ki_filp
;
1226 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1228 if (unlikely(!file
->f_op
->write_iter
))
1231 ret
= io_import_iovec(req
->ctx
, WRITE
, s
, &iovec
, &iter
);
1235 if (req
->flags
& REQ_F_LINK
)
1238 iov_count
= iov_iter_count(&iter
);
1241 if (force_nonblock
&& !(kiocb
->ki_flags
& IOCB_DIRECT
)) {
1242 /* If ->needs_lock is true, we're already in async context. */
1244 io_async_list_note(WRITE
, req
, iov_count
);
1248 ret
= rw_verify_area(WRITE
, file
, &kiocb
->ki_pos
, iov_count
);
1253 * Open-code file_start_write here to grab freeze protection,
1254 * which will be released by another thread in
1255 * io_complete_rw(). Fool lockdep by telling it the lock got
1256 * released so that it doesn't complain about the held lock when
1257 * we return to userspace.
1259 if (S_ISREG(file_inode(file
)->i_mode
)) {
1260 __sb_start_write(file_inode(file
)->i_sb
,
1261 SB_FREEZE_WRITE
, true);
1262 __sb_writers_release(file_inode(file
)->i_sb
,
1265 kiocb
->ki_flags
|= IOCB_WRITE
;
1267 ret2
= call_write_iter(file
, kiocb
, &iter
);
1268 if (!force_nonblock
|| ret2
!= -EAGAIN
) {
1269 io_rw_done(kiocb
, ret2
);
1272 * If ->needs_lock is true, we're already in async
1276 io_async_list_note(WRITE
, req
, iov_count
);
1286 * IORING_OP_NOP just posts a completion event, nothing else.
1288 static int io_nop(struct io_kiocb
*req
, u64 user_data
)
1290 struct io_ring_ctx
*ctx
= req
->ctx
;
1293 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1296 io_cqring_add_event(ctx
, user_data
, err
);
1301 static int io_prep_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1303 struct io_ring_ctx
*ctx
= req
->ctx
;
1308 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1310 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
1316 static int io_fsync(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1317 bool force_nonblock
)
1319 loff_t sqe_off
= READ_ONCE(sqe
->off
);
1320 loff_t sqe_len
= READ_ONCE(sqe
->len
);
1321 loff_t end
= sqe_off
+ sqe_len
;
1322 unsigned fsync_flags
;
1325 fsync_flags
= READ_ONCE(sqe
->fsync_flags
);
1326 if (unlikely(fsync_flags
& ~IORING_FSYNC_DATASYNC
))
1329 ret
= io_prep_fsync(req
, sqe
);
1333 /* fsync always requires a blocking context */
1337 ret
= vfs_fsync_range(req
->rw
.ki_filp
, sqe_off
,
1338 end
> 0 ? end
: LLONG_MAX
,
1339 fsync_flags
& IORING_FSYNC_DATASYNC
);
1341 if (ret
< 0 && (req
->flags
& REQ_F_LINK
))
1342 req
->flags
|= REQ_F_FAIL_LINK
;
1343 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1348 static int io_prep_sfr(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1350 struct io_ring_ctx
*ctx
= req
->ctx
;
1356 if (unlikely(ctx
->flags
& IORING_SETUP_IOPOLL
))
1358 if (unlikely(sqe
->addr
|| sqe
->ioprio
|| sqe
->buf_index
))
1364 static int io_sync_file_range(struct io_kiocb
*req
,
1365 const struct io_uring_sqe
*sqe
,
1366 bool force_nonblock
)
1373 ret
= io_prep_sfr(req
, sqe
);
1377 /* sync_file_range always requires a blocking context */
1381 sqe_off
= READ_ONCE(sqe
->off
);
1382 sqe_len
= READ_ONCE(sqe
->len
);
1383 flags
= READ_ONCE(sqe
->sync_range_flags
);
1385 ret
= sync_file_range(req
->rw
.ki_filp
, sqe_off
, sqe_len
, flags
);
1387 if (ret
< 0 && (req
->flags
& REQ_F_LINK
))
1388 req
->flags
|= REQ_F_FAIL_LINK
;
1389 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1394 #if defined(CONFIG_NET)
1395 static int io_send_recvmsg(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1396 bool force_nonblock
,
1397 long (*fn
)(struct socket
*, struct user_msghdr __user
*,
1400 struct socket
*sock
;
1403 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1406 sock
= sock_from_file(req
->file
, &ret
);
1408 struct user_msghdr __user
*msg
;
1411 flags
= READ_ONCE(sqe
->msg_flags
);
1412 if (flags
& MSG_DONTWAIT
)
1413 req
->flags
|= REQ_F_NOWAIT
;
1414 else if (force_nonblock
)
1415 flags
|= MSG_DONTWAIT
;
1417 msg
= (struct user_msghdr __user
*) (unsigned long)
1418 READ_ONCE(sqe
->addr
);
1420 ret
= fn(sock
, msg
, flags
);
1421 if (force_nonblock
&& ret
== -EAGAIN
)
1425 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1431 static int io_sendmsg(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1432 bool force_nonblock
)
1434 #if defined(CONFIG_NET)
1435 return io_send_recvmsg(req
, sqe
, force_nonblock
, __sys_sendmsg_sock
);
1441 static int io_recvmsg(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
,
1442 bool force_nonblock
)
1444 #if defined(CONFIG_NET)
1445 return io_send_recvmsg(req
, sqe
, force_nonblock
, __sys_recvmsg_sock
);
1451 static void io_poll_remove_one(struct io_kiocb
*req
)
1453 struct io_poll_iocb
*poll
= &req
->poll
;
1455 spin_lock(&poll
->head
->lock
);
1456 WRITE_ONCE(poll
->canceled
, true);
1457 if (!list_empty(&poll
->wait
.entry
)) {
1458 list_del_init(&poll
->wait
.entry
);
1459 queue_work(req
->ctx
->sqo_wq
, &req
->work
);
1461 spin_unlock(&poll
->head
->lock
);
1463 list_del_init(&req
->list
);
1466 static void io_poll_remove_all(struct io_ring_ctx
*ctx
)
1468 struct io_kiocb
*req
;
1470 spin_lock_irq(&ctx
->completion_lock
);
1471 while (!list_empty(&ctx
->cancel_list
)) {
1472 req
= list_first_entry(&ctx
->cancel_list
, struct io_kiocb
,list
);
1473 io_poll_remove_one(req
);
1475 spin_unlock_irq(&ctx
->completion_lock
);
1479 * Find a running poll command that matches one specified in sqe->addr,
1480 * and remove it if found.
1482 static int io_poll_remove(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1484 struct io_ring_ctx
*ctx
= req
->ctx
;
1485 struct io_kiocb
*poll_req
, *next
;
1488 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1490 if (sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
||
1494 spin_lock_irq(&ctx
->completion_lock
);
1495 list_for_each_entry_safe(poll_req
, next
, &ctx
->cancel_list
, list
) {
1496 if (READ_ONCE(sqe
->addr
) == poll_req
->user_data
) {
1497 io_poll_remove_one(poll_req
);
1502 spin_unlock_irq(&ctx
->completion_lock
);
1504 io_cqring_add_event(req
->ctx
, sqe
->user_data
, ret
);
1509 static void io_poll_complete(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1512 req
->poll
.done
= true;
1513 io_cqring_fill_event(ctx
, req
->user_data
, mangle_poll(mask
));
1514 io_commit_cqring(ctx
);
1517 static void io_poll_complete_work(struct work_struct
*work
)
1519 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1520 struct io_poll_iocb
*poll
= &req
->poll
;
1521 struct poll_table_struct pt
= { ._key
= poll
->events
};
1522 struct io_ring_ctx
*ctx
= req
->ctx
;
1525 if (!READ_ONCE(poll
->canceled
))
1526 mask
= vfs_poll(poll
->file
, &pt
) & poll
->events
;
1529 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1530 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1531 * synchronize with them. In the cancellation case the list_del_init
1532 * itself is not actually needed, but harmless so we keep it in to
1533 * avoid further branches in the fast path.
1535 spin_lock_irq(&ctx
->completion_lock
);
1536 if (!mask
&& !READ_ONCE(poll
->canceled
)) {
1537 add_wait_queue(poll
->head
, &poll
->wait
);
1538 spin_unlock_irq(&ctx
->completion_lock
);
1541 list_del_init(&req
->list
);
1542 io_poll_complete(ctx
, req
, mask
);
1543 spin_unlock_irq(&ctx
->completion_lock
);
1545 io_cqring_ev_posted(ctx
);
1549 static int io_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1552 struct io_poll_iocb
*poll
= container_of(wait
, struct io_poll_iocb
,
1554 struct io_kiocb
*req
= container_of(poll
, struct io_kiocb
, poll
);
1555 struct io_ring_ctx
*ctx
= req
->ctx
;
1556 __poll_t mask
= key_to_poll(key
);
1557 unsigned long flags
;
1559 /* for instances that support it check for an event match first: */
1560 if (mask
&& !(mask
& poll
->events
))
1563 list_del_init(&poll
->wait
.entry
);
1565 if (mask
&& spin_trylock_irqsave(&ctx
->completion_lock
, flags
)) {
1566 list_del(&req
->list
);
1567 io_poll_complete(ctx
, req
, mask
);
1568 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1570 io_cqring_ev_posted(ctx
);
1573 queue_work(ctx
->sqo_wq
, &req
->work
);
1579 struct io_poll_table
{
1580 struct poll_table_struct pt
;
1581 struct io_kiocb
*req
;
1585 static void io_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1586 struct poll_table_struct
*p
)
1588 struct io_poll_table
*pt
= container_of(p
, struct io_poll_table
, pt
);
1590 if (unlikely(pt
->req
->poll
.head
)) {
1591 pt
->error
= -EINVAL
;
1596 pt
->req
->poll
.head
= head
;
1597 add_wait_queue(head
, &pt
->req
->poll
.wait
);
1600 static int io_poll_add(struct io_kiocb
*req
, const struct io_uring_sqe
*sqe
)
1602 struct io_poll_iocb
*poll
= &req
->poll
;
1603 struct io_ring_ctx
*ctx
= req
->ctx
;
1604 struct io_poll_table ipt
;
1605 bool cancel
= false;
1609 if (unlikely(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1611 if (sqe
->addr
|| sqe
->ioprio
|| sqe
->off
|| sqe
->len
|| sqe
->buf_index
)
1616 INIT_WORK(&req
->work
, io_poll_complete_work
);
1617 events
= READ_ONCE(sqe
->poll_events
);
1618 poll
->events
= demangle_poll(events
) | EPOLLERR
| EPOLLHUP
;
1622 poll
->canceled
= false;
1624 ipt
.pt
._qproc
= io_poll_queue_proc
;
1625 ipt
.pt
._key
= poll
->events
;
1627 ipt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1629 /* initialized the list so that we can do list_empty checks */
1630 INIT_LIST_HEAD(&poll
->wait
.entry
);
1631 init_waitqueue_func_entry(&poll
->wait
, io_poll_wake
);
1633 mask
= vfs_poll(poll
->file
, &ipt
.pt
) & poll
->events
;
1635 spin_lock_irq(&ctx
->completion_lock
);
1636 if (likely(poll
->head
)) {
1637 spin_lock(&poll
->head
->lock
);
1638 if (unlikely(list_empty(&poll
->wait
.entry
))) {
1644 if (mask
|| ipt
.error
)
1645 list_del_init(&poll
->wait
.entry
);
1647 WRITE_ONCE(poll
->canceled
, true);
1648 else if (!poll
->done
) /* actually waiting for an event */
1649 list_add_tail(&req
->list
, &ctx
->cancel_list
);
1650 spin_unlock(&poll
->head
->lock
);
1652 if (mask
) { /* no async, we'd stolen it */
1654 io_poll_complete(ctx
, req
, mask
);
1656 spin_unlock_irq(&ctx
->completion_lock
);
1659 io_cqring_ev_posted(ctx
);
1665 static int io_req_defer(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1666 const struct io_uring_sqe
*sqe
)
1668 struct io_uring_sqe
*sqe_copy
;
1670 if (!io_sequence_defer(ctx
, req
) && list_empty(&ctx
->defer_list
))
1673 sqe_copy
= kmalloc(sizeof(*sqe_copy
), GFP_KERNEL
);
1677 spin_lock_irq(&ctx
->completion_lock
);
1678 if (!io_sequence_defer(ctx
, req
) && list_empty(&ctx
->defer_list
)) {
1679 spin_unlock_irq(&ctx
->completion_lock
);
1684 memcpy(sqe_copy
, sqe
, sizeof(*sqe_copy
));
1685 req
->submit
.sqe
= sqe_copy
;
1687 INIT_WORK(&req
->work
, io_sq_wq_submit_work
);
1688 list_add_tail(&req
->list
, &ctx
->defer_list
);
1689 spin_unlock_irq(&ctx
->completion_lock
);
1690 return -EIOCBQUEUED
;
1693 static int __io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1694 const struct sqe_submit
*s
, bool force_nonblock
)
1698 req
->user_data
= READ_ONCE(s
->sqe
->user_data
);
1700 if (unlikely(s
->index
>= ctx
->sq_entries
))
1703 opcode
= READ_ONCE(s
->sqe
->opcode
);
1706 ret
= io_nop(req
, req
->user_data
);
1708 case IORING_OP_READV
:
1709 if (unlikely(s
->sqe
->buf_index
))
1711 ret
= io_read(req
, s
, force_nonblock
);
1713 case IORING_OP_WRITEV
:
1714 if (unlikely(s
->sqe
->buf_index
))
1716 ret
= io_write(req
, s
, force_nonblock
);
1718 case IORING_OP_READ_FIXED
:
1719 ret
= io_read(req
, s
, force_nonblock
);
1721 case IORING_OP_WRITE_FIXED
:
1722 ret
= io_write(req
, s
, force_nonblock
);
1724 case IORING_OP_FSYNC
:
1725 ret
= io_fsync(req
, s
->sqe
, force_nonblock
);
1727 case IORING_OP_POLL_ADD
:
1728 ret
= io_poll_add(req
, s
->sqe
);
1730 case IORING_OP_POLL_REMOVE
:
1731 ret
= io_poll_remove(req
, s
->sqe
);
1733 case IORING_OP_SYNC_FILE_RANGE
:
1734 ret
= io_sync_file_range(req
, s
->sqe
, force_nonblock
);
1736 case IORING_OP_SENDMSG
:
1737 ret
= io_sendmsg(req
, s
->sqe
, force_nonblock
);
1739 case IORING_OP_RECVMSG
:
1740 ret
= io_recvmsg(req
, s
->sqe
, force_nonblock
);
1750 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
1751 if (req
->result
== -EAGAIN
)
1754 /* workqueue context doesn't hold uring_lock, grab it now */
1756 mutex_lock(&ctx
->uring_lock
);
1757 io_iopoll_req_issued(req
);
1759 mutex_unlock(&ctx
->uring_lock
);
1765 static struct async_list
*io_async_list_from_sqe(struct io_ring_ctx
*ctx
,
1766 const struct io_uring_sqe
*sqe
)
1768 switch (sqe
->opcode
) {
1769 case IORING_OP_READV
:
1770 case IORING_OP_READ_FIXED
:
1771 return &ctx
->pending_async
[READ
];
1772 case IORING_OP_WRITEV
:
1773 case IORING_OP_WRITE_FIXED
:
1774 return &ctx
->pending_async
[WRITE
];
1780 static inline bool io_sqe_needs_user(const struct io_uring_sqe
*sqe
)
1782 u8 opcode
= READ_ONCE(sqe
->opcode
);
1784 return !(opcode
== IORING_OP_READ_FIXED
||
1785 opcode
== IORING_OP_WRITE_FIXED
);
1788 static void io_sq_wq_submit_work(struct work_struct
*work
)
1790 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1791 struct io_ring_ctx
*ctx
= req
->ctx
;
1792 struct mm_struct
*cur_mm
= NULL
;
1793 struct async_list
*async_list
;
1794 LIST_HEAD(req_list
);
1795 mm_segment_t old_fs
;
1798 async_list
= io_async_list_from_sqe(ctx
, req
->submit
.sqe
);
1801 struct sqe_submit
*s
= &req
->submit
;
1802 const struct io_uring_sqe
*sqe
= s
->sqe
;
1804 /* Ensure we clear previously set non-block flag */
1805 req
->rw
.ki_flags
&= ~IOCB_NOWAIT
;
1808 if (io_sqe_needs_user(sqe
) && !cur_mm
) {
1809 if (!mmget_not_zero(ctx
->sqo_mm
)) {
1812 cur_mm
= ctx
->sqo_mm
;
1820 s
->has_user
= cur_mm
!= NULL
;
1821 s
->needs_lock
= true;
1823 ret
= __io_submit_sqe(ctx
, req
, s
, false);
1825 * We can get EAGAIN for polled IO even though
1826 * we're forcing a sync submission from here,
1827 * since we can't wait for request slots on the
1836 /* drop submission reference */
1840 io_cqring_add_event(ctx
, sqe
->user_data
, ret
);
1844 /* async context always use a copy of the sqe */
1849 if (!list_empty(&req_list
)) {
1850 req
= list_first_entry(&req_list
, struct io_kiocb
,
1852 list_del(&req
->list
);
1855 if (list_empty(&async_list
->list
))
1859 spin_lock(&async_list
->lock
);
1860 if (list_empty(&async_list
->list
)) {
1861 spin_unlock(&async_list
->lock
);
1864 list_splice_init(&async_list
->list
, &req_list
);
1865 spin_unlock(&async_list
->lock
);
1867 req
= list_first_entry(&req_list
, struct io_kiocb
, list
);
1868 list_del(&req
->list
);
1872 * Rare case of racing with a submitter. If we find the count has
1873 * dropped to zero AND we have pending work items, then restart
1874 * the processing. This is a tiny race window.
1877 ret
= atomic_dec_return(&async_list
->cnt
);
1878 while (!ret
&& !list_empty(&async_list
->list
)) {
1879 spin_lock(&async_list
->lock
);
1880 atomic_inc(&async_list
->cnt
);
1881 list_splice_init(&async_list
->list
, &req_list
);
1882 spin_unlock(&async_list
->lock
);
1884 if (!list_empty(&req_list
)) {
1885 req
= list_first_entry(&req_list
,
1886 struct io_kiocb
, list
);
1887 list_del(&req
->list
);
1890 ret
= atomic_dec_return(&async_list
->cnt
);
1902 * See if we can piggy back onto previously submitted work, that is still
1903 * running. We currently only allow this if the new request is sequential
1904 * to the previous one we punted.
1906 static bool io_add_to_prev_work(struct async_list
*list
, struct io_kiocb
*req
)
1912 if (!(req
->flags
& REQ_F_SEQ_PREV
))
1914 if (!atomic_read(&list
->cnt
))
1918 spin_lock(&list
->lock
);
1919 list_add_tail(&req
->list
, &list
->list
);
1920 if (!atomic_read(&list
->cnt
)) {
1921 list_del_init(&req
->list
);
1924 spin_unlock(&list
->lock
);
1928 static bool io_op_needs_file(const struct io_uring_sqe
*sqe
)
1930 int op
= READ_ONCE(sqe
->opcode
);
1934 case IORING_OP_POLL_REMOVE
:
1941 static int io_req_set_file(struct io_ring_ctx
*ctx
, const struct sqe_submit
*s
,
1942 struct io_submit_state
*state
, struct io_kiocb
*req
)
1947 flags
= READ_ONCE(s
->sqe
->flags
);
1948 fd
= READ_ONCE(s
->sqe
->fd
);
1950 if (flags
& IOSQE_IO_DRAIN
) {
1951 req
->flags
|= REQ_F_IO_DRAIN
;
1952 req
->sequence
= ctx
->cached_sq_head
- 1;
1955 if (!io_op_needs_file(s
->sqe
))
1958 if (flags
& IOSQE_FIXED_FILE
) {
1959 if (unlikely(!ctx
->user_files
||
1960 (unsigned) fd
>= ctx
->nr_user_files
))
1962 req
->file
= ctx
->user_files
[fd
];
1963 req
->flags
|= REQ_F_FIXED_FILE
;
1965 if (s
->needs_fixed_file
)
1967 req
->file
= io_file_get(state
, fd
);
1968 if (unlikely(!req
->file
))
1975 static int io_queue_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
1976 struct sqe_submit
*s
)
1980 ret
= __io_submit_sqe(ctx
, req
, s
, true);
1981 if (ret
== -EAGAIN
&& !(req
->flags
& REQ_F_NOWAIT
)) {
1982 struct io_uring_sqe
*sqe_copy
;
1984 sqe_copy
= kmalloc(sizeof(*sqe_copy
), GFP_KERNEL
);
1986 struct async_list
*list
;
1988 memcpy(sqe_copy
, s
->sqe
, sizeof(*sqe_copy
));
1991 memcpy(&req
->submit
, s
, sizeof(*s
));
1992 list
= io_async_list_from_sqe(ctx
, s
->sqe
);
1993 if (!io_add_to_prev_work(list
, req
)) {
1995 atomic_inc(&list
->cnt
);
1996 INIT_WORK(&req
->work
, io_sq_wq_submit_work
);
1997 queue_work(ctx
->sqo_wq
, &req
->work
);
2001 * Queued up for async execution, worker will release
2002 * submit reference when the iocb is actually submitted.
2008 /* drop submission reference */
2011 /* and drop final reference, if we failed */
2013 io_cqring_add_event(ctx
, req
->user_data
, ret
);
2014 if (req
->flags
& REQ_F_LINK
)
2015 req
->flags
|= REQ_F_FAIL_LINK
;
2022 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2024 static void io_submit_sqe(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
,
2025 struct io_submit_state
*state
, struct io_kiocb
**link
)
2027 struct io_uring_sqe
*sqe_copy
;
2028 struct io_kiocb
*req
;
2031 /* enforce forwards compatibility on users */
2032 if (unlikely(s
->sqe
->flags
& ~SQE_VALID_FLAGS
)) {
2037 req
= io_get_req(ctx
, state
);
2038 if (unlikely(!req
)) {
2043 ret
= io_req_set_file(ctx
, s
, state
, req
);
2044 if (unlikely(ret
)) {
2048 io_cqring_add_event(ctx
, s
->sqe
->user_data
, ret
);
2052 ret
= io_req_defer(ctx
, req
, s
->sqe
);
2054 if (ret
!= -EIOCBQUEUED
)
2060 * If we already have a head request, queue this one for async
2061 * submittal once the head completes. If we don't have a head but
2062 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2063 * submitted sync once the chain is complete. If none of those
2064 * conditions are true (normal request), then just queue it.
2067 struct io_kiocb
*prev
= *link
;
2069 sqe_copy
= kmemdup(s
->sqe
, sizeof(*sqe_copy
), GFP_KERNEL
);
2076 memcpy(&req
->submit
, s
, sizeof(*s
));
2077 list_add_tail(&req
->list
, &prev
->link_list
);
2078 } else if (s
->sqe
->flags
& IOSQE_IO_LINK
) {
2079 req
->flags
|= REQ_F_LINK
;
2081 memcpy(&req
->submit
, s
, sizeof(*s
));
2082 INIT_LIST_HEAD(&req
->link_list
);
2085 io_queue_sqe(ctx
, req
, s
);
2090 * Batched submission is done, ensure local IO is flushed out.
2092 static void io_submit_state_end(struct io_submit_state
*state
)
2094 blk_finish_plug(&state
->plug
);
2096 if (state
->free_reqs
)
2097 kmem_cache_free_bulk(req_cachep
, state
->free_reqs
,
2098 &state
->reqs
[state
->cur_req
]);
2102 * Start submission side cache.
2104 static void io_submit_state_start(struct io_submit_state
*state
,
2105 struct io_ring_ctx
*ctx
, unsigned max_ios
)
2107 blk_start_plug(&state
->plug
);
2108 state
->free_reqs
= 0;
2110 state
->ios_left
= max_ios
;
2113 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
2115 struct io_sq_ring
*ring
= ctx
->sq_ring
;
2117 if (ctx
->cached_sq_head
!= READ_ONCE(ring
->r
.head
)) {
2119 * Ensure any loads from the SQEs are done at this point,
2120 * since once we write the new head, the application could
2121 * write new data to them.
2123 smp_store_release(&ring
->r
.head
, ctx
->cached_sq_head
);
2128 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2129 * that is mapped by userspace. This means that care needs to be taken to
2130 * ensure that reads are stable, as we cannot rely on userspace always
2131 * being a good citizen. If members of the sqe are validated and then later
2132 * used, it's important that those reads are done through READ_ONCE() to
2133 * prevent a re-load down the line.
2135 static bool io_get_sqring(struct io_ring_ctx
*ctx
, struct sqe_submit
*s
)
2137 struct io_sq_ring
*ring
= ctx
->sq_ring
;
2141 * The cached sq head (or cq tail) serves two purposes:
2143 * 1) allows us to batch the cost of updating the user visible
2145 * 2) allows the kernel side to track the head on its own, even
2146 * though the application is the one updating it.
2148 head
= ctx
->cached_sq_head
;
2149 /* make sure SQ entry isn't read before tail */
2150 if (head
== smp_load_acquire(&ring
->r
.tail
))
2153 head
= READ_ONCE(ring
->array
[head
& ctx
->sq_mask
]);
2154 if (head
< ctx
->sq_entries
) {
2156 s
->sqe
= &ctx
->sq_sqes
[head
];
2157 ctx
->cached_sq_head
++;
2161 /* drop invalid entries */
2162 ctx
->cached_sq_head
++;
2167 static int io_submit_sqes(struct io_ring_ctx
*ctx
, struct sqe_submit
*sqes
,
2168 unsigned int nr
, bool has_user
, bool mm_fault
)
2170 struct io_submit_state state
, *statep
= NULL
;
2171 struct io_kiocb
*link
= NULL
;
2172 bool prev_was_link
= false;
2173 int i
, submitted
= 0;
2175 if (nr
> IO_PLUG_THRESHOLD
) {
2176 io_submit_state_start(&state
, ctx
, nr
);
2180 for (i
= 0; i
< nr
; i
++) {
2182 * If previous wasn't linked and we have a linked command,
2183 * that's the end of the chain. Submit the previous link.
2185 if (!prev_was_link
&& link
) {
2186 io_queue_sqe(ctx
, link
, &link
->submit
);
2189 prev_was_link
= (sqes
[i
].sqe
->flags
& IOSQE_IO_LINK
) != 0;
2191 if (unlikely(mm_fault
)) {
2192 io_cqring_add_event(ctx
, sqes
[i
].sqe
->user_data
,
2195 sqes
[i
].has_user
= has_user
;
2196 sqes
[i
].needs_lock
= true;
2197 sqes
[i
].needs_fixed_file
= true;
2198 io_submit_sqe(ctx
, &sqes
[i
], statep
, &link
);
2204 io_queue_sqe(ctx
, link
, &link
->submit
);
2206 io_submit_state_end(&state
);
2211 static int io_sq_thread(void *data
)
2213 struct sqe_submit sqes
[IO_IOPOLL_BATCH
];
2214 struct io_ring_ctx
*ctx
= data
;
2215 struct mm_struct
*cur_mm
= NULL
;
2216 mm_segment_t old_fs
;
2219 unsigned long timeout
;
2221 complete(&ctx
->sqo_thread_started
);
2226 timeout
= inflight
= 0;
2227 while (!kthread_should_park()) {
2228 bool all_fixed
, mm_fault
= false;
2232 unsigned nr_events
= 0;
2234 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
2236 * We disallow the app entering submit/complete
2237 * with polling, but we still need to lock the
2238 * ring to prevent racing with polled issue
2239 * that got punted to a workqueue.
2241 mutex_lock(&ctx
->uring_lock
);
2242 io_iopoll_check(ctx
, &nr_events
, 0);
2243 mutex_unlock(&ctx
->uring_lock
);
2246 * Normal IO, just pretend everything completed.
2247 * We don't have to poll completions for that.
2249 nr_events
= inflight
;
2252 inflight
-= nr_events
;
2254 timeout
= jiffies
+ ctx
->sq_thread_idle
;
2257 if (!io_get_sqring(ctx
, &sqes
[0])) {
2259 * We're polling. If we're within the defined idle
2260 * period, then let us spin without work before going
2263 if (inflight
|| !time_after(jiffies
, timeout
)) {
2269 * Drop cur_mm before scheduling, we can't hold it for
2270 * long periods (or over schedule()). Do this before
2271 * adding ourselves to the waitqueue, as the unuse/drop
2280 prepare_to_wait(&ctx
->sqo_wait
, &wait
,
2281 TASK_INTERRUPTIBLE
);
2283 /* Tell userspace we may need a wakeup call */
2284 ctx
->sq_ring
->flags
|= IORING_SQ_NEED_WAKEUP
;
2285 /* make sure to read SQ tail after writing flags */
2288 if (!io_get_sqring(ctx
, &sqes
[0])) {
2289 if (kthread_should_park()) {
2290 finish_wait(&ctx
->sqo_wait
, &wait
);
2293 if (signal_pending(current
))
2294 flush_signals(current
);
2296 finish_wait(&ctx
->sqo_wait
, &wait
);
2298 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
2301 finish_wait(&ctx
->sqo_wait
, &wait
);
2303 ctx
->sq_ring
->flags
&= ~IORING_SQ_NEED_WAKEUP
;
2309 if (all_fixed
&& io_sqe_needs_user(sqes
[i
].sqe
))
2313 if (i
== ARRAY_SIZE(sqes
))
2315 } while (io_get_sqring(ctx
, &sqes
[i
]));
2317 /* Unless all new commands are FIXED regions, grab mm */
2318 if (!all_fixed
&& !cur_mm
) {
2319 mm_fault
= !mmget_not_zero(ctx
->sqo_mm
);
2321 use_mm(ctx
->sqo_mm
);
2322 cur_mm
= ctx
->sqo_mm
;
2326 inflight
+= io_submit_sqes(ctx
, sqes
, i
, cur_mm
!= NULL
,
2329 /* Commit SQ ring head once we've consumed all SQEs */
2330 io_commit_sqring(ctx
);
2344 static int io_ring_submit(struct io_ring_ctx
*ctx
, unsigned int to_submit
)
2346 struct io_submit_state state
, *statep
= NULL
;
2347 struct io_kiocb
*link
= NULL
;
2348 bool prev_was_link
= false;
2351 if (to_submit
> IO_PLUG_THRESHOLD
) {
2352 io_submit_state_start(&state
, ctx
, to_submit
);
2356 for (i
= 0; i
< to_submit
; i
++) {
2357 struct sqe_submit s
;
2359 if (!io_get_sqring(ctx
, &s
))
2363 * If previous wasn't linked and we have a linked command,
2364 * that's the end of the chain. Submit the previous link.
2366 if (!prev_was_link
&& link
) {
2367 io_queue_sqe(ctx
, link
, &link
->submit
);
2370 prev_was_link
= (s
.sqe
->flags
& IOSQE_IO_LINK
) != 0;
2373 s
.needs_lock
= false;
2374 s
.needs_fixed_file
= false;
2376 io_submit_sqe(ctx
, &s
, statep
, &link
);
2378 io_commit_sqring(ctx
);
2381 io_queue_sqe(ctx
, link
, &link
->submit
);
2383 io_submit_state_end(statep
);
2388 static unsigned io_cqring_events(struct io_cq_ring
*ring
)
2390 /* See comment at the top of this file */
2392 return READ_ONCE(ring
->r
.tail
) - READ_ONCE(ring
->r
.head
);
2396 * Wait until events become available, if we don't already have some. The
2397 * application must reap them itself, as they reside on the shared cq ring.
2399 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
,
2400 const sigset_t __user
*sig
, size_t sigsz
)
2402 struct io_cq_ring
*ring
= ctx
->cq_ring
;
2405 if (io_cqring_events(ring
) >= min_events
)
2409 #ifdef CONFIG_COMPAT
2410 if (in_compat_syscall())
2411 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)sig
,
2415 ret
= set_user_sigmask(sig
, sigsz
);
2421 ret
= wait_event_interruptible(ctx
->wait
, io_cqring_events(ring
) >= min_events
);
2422 restore_saved_sigmask_unless(ret
== -ERESTARTSYS
);
2423 if (ret
== -ERESTARTSYS
)
2426 return READ_ONCE(ring
->r
.head
) == READ_ONCE(ring
->r
.tail
) ? ret
: 0;
2429 static void __io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2431 #if defined(CONFIG_UNIX)
2432 if (ctx
->ring_sock
) {
2433 struct sock
*sock
= ctx
->ring_sock
->sk
;
2434 struct sk_buff
*skb
;
2436 while ((skb
= skb_dequeue(&sock
->sk_receive_queue
)) != NULL
)
2442 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2443 fput(ctx
->user_files
[i
]);
2447 static int io_sqe_files_unregister(struct io_ring_ctx
*ctx
)
2449 if (!ctx
->user_files
)
2452 __io_sqe_files_unregister(ctx
);
2453 kfree(ctx
->user_files
);
2454 ctx
->user_files
= NULL
;
2455 ctx
->nr_user_files
= 0;
2459 static void io_sq_thread_stop(struct io_ring_ctx
*ctx
)
2461 if (ctx
->sqo_thread
) {
2462 wait_for_completion(&ctx
->sqo_thread_started
);
2464 * The park is a bit of a work-around, without it we get
2465 * warning spews on shutdown with SQPOLL set and affinity
2466 * set to a single CPU.
2468 kthread_park(ctx
->sqo_thread
);
2469 kthread_stop(ctx
->sqo_thread
);
2470 ctx
->sqo_thread
= NULL
;
2474 static void io_finish_async(struct io_ring_ctx
*ctx
)
2476 io_sq_thread_stop(ctx
);
2479 destroy_workqueue(ctx
->sqo_wq
);
2484 #if defined(CONFIG_UNIX)
2485 static void io_destruct_skb(struct sk_buff
*skb
)
2487 struct io_ring_ctx
*ctx
= skb
->sk
->sk_user_data
;
2489 io_finish_async(ctx
);
2490 unix_destruct_scm(skb
);
2494 * Ensure the UNIX gc is aware of our file set, so we are certain that
2495 * the io_uring can be safely unregistered on process exit, even if we have
2496 * loops in the file referencing.
2498 static int __io_sqe_files_scm(struct io_ring_ctx
*ctx
, int nr
, int offset
)
2500 struct sock
*sk
= ctx
->ring_sock
->sk
;
2501 struct scm_fp_list
*fpl
;
2502 struct sk_buff
*skb
;
2505 if (!capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
)) {
2506 unsigned long inflight
= ctx
->user
->unix_inflight
+ nr
;
2508 if (inflight
> task_rlimit(current
, RLIMIT_NOFILE
))
2512 fpl
= kzalloc(sizeof(*fpl
), GFP_KERNEL
);
2516 skb
= alloc_skb(0, GFP_KERNEL
);
2523 skb
->destructor
= io_destruct_skb
;
2525 fpl
->user
= get_uid(ctx
->user
);
2526 for (i
= 0; i
< nr
; i
++) {
2527 fpl
->fp
[i
] = get_file(ctx
->user_files
[i
+ offset
]);
2528 unix_inflight(fpl
->user
, fpl
->fp
[i
]);
2531 fpl
->max
= fpl
->count
= nr
;
2532 UNIXCB(skb
).fp
= fpl
;
2533 refcount_add(skb
->truesize
, &sk
->sk_wmem_alloc
);
2534 skb_queue_head(&sk
->sk_receive_queue
, skb
);
2536 for (i
= 0; i
< nr
; i
++)
2543 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2544 * causes regular reference counting to break down. We rely on the UNIX
2545 * garbage collection to take care of this problem for us.
2547 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2549 unsigned left
, total
;
2553 left
= ctx
->nr_user_files
;
2555 unsigned this_files
= min_t(unsigned, left
, SCM_MAX_FD
);
2557 ret
= __io_sqe_files_scm(ctx
, this_files
, total
);
2561 total
+= this_files
;
2567 while (total
< ctx
->nr_user_files
) {
2568 fput(ctx
->user_files
[total
]);
2575 static int io_sqe_files_scm(struct io_ring_ctx
*ctx
)
2581 static int io_sqe_files_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2584 __s32 __user
*fds
= (__s32 __user
*) arg
;
2588 if (ctx
->user_files
)
2592 if (nr_args
> IORING_MAX_FIXED_FILES
)
2595 ctx
->user_files
= kcalloc(nr_args
, sizeof(struct file
*), GFP_KERNEL
);
2596 if (!ctx
->user_files
)
2599 for (i
= 0; i
< nr_args
; i
++) {
2601 if (copy_from_user(&fd
, &fds
[i
], sizeof(fd
)))
2604 ctx
->user_files
[i
] = fget(fd
);
2607 if (!ctx
->user_files
[i
])
2610 * Don't allow io_uring instances to be registered. If UNIX
2611 * isn't enabled, then this causes a reference cycle and this
2612 * instance can never get freed. If UNIX is enabled we'll
2613 * handle it just fine, but there's still no point in allowing
2614 * a ring fd as it doesn't support regular read/write anyway.
2616 if (ctx
->user_files
[i
]->f_op
== &io_uring_fops
) {
2617 fput(ctx
->user_files
[i
]);
2620 ctx
->nr_user_files
++;
2625 for (i
= 0; i
< ctx
->nr_user_files
; i
++)
2626 fput(ctx
->user_files
[i
]);
2628 kfree(ctx
->user_files
);
2629 ctx
->user_files
= NULL
;
2630 ctx
->nr_user_files
= 0;
2634 ret
= io_sqe_files_scm(ctx
);
2636 io_sqe_files_unregister(ctx
);
2641 static int io_sq_offload_start(struct io_ring_ctx
*ctx
,
2642 struct io_uring_params
*p
)
2646 init_waitqueue_head(&ctx
->sqo_wait
);
2647 mmgrab(current
->mm
);
2648 ctx
->sqo_mm
= current
->mm
;
2650 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
2652 if (!capable(CAP_SYS_ADMIN
))
2655 ctx
->sq_thread_idle
= msecs_to_jiffies(p
->sq_thread_idle
);
2656 if (!ctx
->sq_thread_idle
)
2657 ctx
->sq_thread_idle
= HZ
;
2659 if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2660 int cpu
= p
->sq_thread_cpu
;
2663 if (cpu
>= nr_cpu_ids
)
2665 if (!cpu_online(cpu
))
2668 ctx
->sqo_thread
= kthread_create_on_cpu(io_sq_thread
,
2672 ctx
->sqo_thread
= kthread_create(io_sq_thread
, ctx
,
2675 if (IS_ERR(ctx
->sqo_thread
)) {
2676 ret
= PTR_ERR(ctx
->sqo_thread
);
2677 ctx
->sqo_thread
= NULL
;
2680 wake_up_process(ctx
->sqo_thread
);
2681 } else if (p
->flags
& IORING_SETUP_SQ_AFF
) {
2682 /* Can't have SQ_AFF without SQPOLL */
2687 /* Do QD, or 2 * CPUS, whatever is smallest */
2688 ctx
->sqo_wq
= alloc_workqueue("io_ring-wq", WQ_UNBOUND
| WQ_FREEZABLE
,
2689 min(ctx
->sq_entries
- 1, 2 * num_online_cpus()));
2697 io_sq_thread_stop(ctx
);
2698 mmdrop(ctx
->sqo_mm
);
2703 static void io_unaccount_mem(struct user_struct
*user
, unsigned long nr_pages
)
2705 atomic_long_sub(nr_pages
, &user
->locked_vm
);
2708 static int io_account_mem(struct user_struct
*user
, unsigned long nr_pages
)
2710 unsigned long page_limit
, cur_pages
, new_pages
;
2712 /* Don't allow more pages than we can safely lock */
2713 page_limit
= rlimit(RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
2716 cur_pages
= atomic_long_read(&user
->locked_vm
);
2717 new_pages
= cur_pages
+ nr_pages
;
2718 if (new_pages
> page_limit
)
2720 } while (atomic_long_cmpxchg(&user
->locked_vm
, cur_pages
,
2721 new_pages
) != cur_pages
);
2726 static void io_mem_free(void *ptr
)
2733 page
= virt_to_head_page(ptr
);
2734 if (put_page_testzero(page
))
2735 free_compound_page(page
);
2738 static void *io_mem_alloc(size_t size
)
2740 gfp_t gfp_flags
= GFP_KERNEL
| __GFP_ZERO
| __GFP_NOWARN
| __GFP_COMP
|
2743 return (void *) __get_free_pages(gfp_flags
, get_order(size
));
2746 static unsigned long ring_pages(unsigned sq_entries
, unsigned cq_entries
)
2748 struct io_sq_ring
*sq_ring
;
2749 struct io_cq_ring
*cq_ring
;
2752 bytes
= struct_size(sq_ring
, array
, sq_entries
);
2753 bytes
+= array_size(sizeof(struct io_uring_sqe
), sq_entries
);
2754 bytes
+= struct_size(cq_ring
, cqes
, cq_entries
);
2756 return (bytes
+ PAGE_SIZE
- 1) / PAGE_SIZE
;
2759 static int io_sqe_buffer_unregister(struct io_ring_ctx
*ctx
)
2763 if (!ctx
->user_bufs
)
2766 for (i
= 0; i
< ctx
->nr_user_bufs
; i
++) {
2767 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2769 for (j
= 0; j
< imu
->nr_bvecs
; j
++)
2770 put_page(imu
->bvec
[j
].bv_page
);
2772 if (ctx
->account_mem
)
2773 io_unaccount_mem(ctx
->user
, imu
->nr_bvecs
);
2778 kfree(ctx
->user_bufs
);
2779 ctx
->user_bufs
= NULL
;
2780 ctx
->nr_user_bufs
= 0;
2784 static int io_copy_iov(struct io_ring_ctx
*ctx
, struct iovec
*dst
,
2785 void __user
*arg
, unsigned index
)
2787 struct iovec __user
*src
;
2789 #ifdef CONFIG_COMPAT
2791 struct compat_iovec __user
*ciovs
;
2792 struct compat_iovec ciov
;
2794 ciovs
= (struct compat_iovec __user
*) arg
;
2795 if (copy_from_user(&ciov
, &ciovs
[index
], sizeof(ciov
)))
2798 dst
->iov_base
= (void __user
*) (unsigned long) ciov
.iov_base
;
2799 dst
->iov_len
= ciov
.iov_len
;
2803 src
= (struct iovec __user
*) arg
;
2804 if (copy_from_user(dst
, &src
[index
], sizeof(*dst
)))
2809 static int io_sqe_buffer_register(struct io_ring_ctx
*ctx
, void __user
*arg
,
2812 struct vm_area_struct
**vmas
= NULL
;
2813 struct page
**pages
= NULL
;
2814 int i
, j
, got_pages
= 0;
2819 if (!nr_args
|| nr_args
> UIO_MAXIOV
)
2822 ctx
->user_bufs
= kcalloc(nr_args
, sizeof(struct io_mapped_ubuf
),
2824 if (!ctx
->user_bufs
)
2827 for (i
= 0; i
< nr_args
; i
++) {
2828 struct io_mapped_ubuf
*imu
= &ctx
->user_bufs
[i
];
2829 unsigned long off
, start
, end
, ubuf
;
2834 ret
= io_copy_iov(ctx
, &iov
, arg
, i
);
2839 * Don't impose further limits on the size and buffer
2840 * constraints here, we'll -EINVAL later when IO is
2841 * submitted if they are wrong.
2844 if (!iov
.iov_base
|| !iov
.iov_len
)
2847 /* arbitrary limit, but we need something */
2848 if (iov
.iov_len
> SZ_1G
)
2851 ubuf
= (unsigned long) iov
.iov_base
;
2852 end
= (ubuf
+ iov
.iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2853 start
= ubuf
>> PAGE_SHIFT
;
2854 nr_pages
= end
- start
;
2856 if (ctx
->account_mem
) {
2857 ret
= io_account_mem(ctx
->user
, nr_pages
);
2863 if (!pages
|| nr_pages
> got_pages
) {
2866 pages
= kvmalloc_array(nr_pages
, sizeof(struct page
*),
2868 vmas
= kvmalloc_array(nr_pages
,
2869 sizeof(struct vm_area_struct
*),
2871 if (!pages
|| !vmas
) {
2873 if (ctx
->account_mem
)
2874 io_unaccount_mem(ctx
->user
, nr_pages
);
2877 got_pages
= nr_pages
;
2880 imu
->bvec
= kvmalloc_array(nr_pages
, sizeof(struct bio_vec
),
2884 if (ctx
->account_mem
)
2885 io_unaccount_mem(ctx
->user
, nr_pages
);
2890 down_read(¤t
->mm
->mmap_sem
);
2891 pret
= get_user_pages(ubuf
, nr_pages
,
2892 FOLL_WRITE
| FOLL_LONGTERM
,
2894 if (pret
== nr_pages
) {
2895 /* don't support file backed memory */
2896 for (j
= 0; j
< nr_pages
; j
++) {
2897 struct vm_area_struct
*vma
= vmas
[j
];
2900 !is_file_hugepages(vma
->vm_file
)) {
2906 ret
= pret
< 0 ? pret
: -EFAULT
;
2908 up_read(¤t
->mm
->mmap_sem
);
2911 * if we did partial map, or found file backed vmas,
2912 * release any pages we did get
2915 for (j
= 0; j
< pret
; j
++)
2918 if (ctx
->account_mem
)
2919 io_unaccount_mem(ctx
->user
, nr_pages
);
2924 off
= ubuf
& ~PAGE_MASK
;
2926 for (j
= 0; j
< nr_pages
; j
++) {
2929 vec_len
= min_t(size_t, size
, PAGE_SIZE
- off
);
2930 imu
->bvec
[j
].bv_page
= pages
[j
];
2931 imu
->bvec
[j
].bv_len
= vec_len
;
2932 imu
->bvec
[j
].bv_offset
= off
;
2936 /* store original address for later verification */
2938 imu
->len
= iov
.iov_len
;
2939 imu
->nr_bvecs
= nr_pages
;
2941 ctx
->nr_user_bufs
++;
2949 io_sqe_buffer_unregister(ctx
);
2953 static int io_eventfd_register(struct io_ring_ctx
*ctx
, void __user
*arg
)
2955 __s32 __user
*fds
= arg
;
2961 if (copy_from_user(&fd
, fds
, sizeof(*fds
)))
2964 ctx
->cq_ev_fd
= eventfd_ctx_fdget(fd
);
2965 if (IS_ERR(ctx
->cq_ev_fd
)) {
2966 int ret
= PTR_ERR(ctx
->cq_ev_fd
);
2967 ctx
->cq_ev_fd
= NULL
;
2974 static int io_eventfd_unregister(struct io_ring_ctx
*ctx
)
2976 if (ctx
->cq_ev_fd
) {
2977 eventfd_ctx_put(ctx
->cq_ev_fd
);
2978 ctx
->cq_ev_fd
= NULL
;
2985 static void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2987 io_finish_async(ctx
);
2989 mmdrop(ctx
->sqo_mm
);
2991 io_iopoll_reap_events(ctx
);
2992 io_sqe_buffer_unregister(ctx
);
2993 io_sqe_files_unregister(ctx
);
2994 io_eventfd_unregister(ctx
);
2996 #if defined(CONFIG_UNIX)
2997 if (ctx
->ring_sock
) {
2998 ctx
->ring_sock
->file
= NULL
; /* so that iput() is called */
2999 sock_release(ctx
->ring_sock
);
3003 io_mem_free(ctx
->sq_ring
);
3004 io_mem_free(ctx
->sq_sqes
);
3005 io_mem_free(ctx
->cq_ring
);
3007 percpu_ref_exit(&ctx
->refs
);
3008 if (ctx
->account_mem
)
3009 io_unaccount_mem(ctx
->user
,
3010 ring_pages(ctx
->sq_entries
, ctx
->cq_entries
));
3011 free_uid(ctx
->user
);
3015 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
3017 struct io_ring_ctx
*ctx
= file
->private_data
;
3020 poll_wait(file
, &ctx
->cq_wait
, wait
);
3022 * synchronizes with barrier from wq_has_sleeper call in
3026 if (READ_ONCE(ctx
->sq_ring
->r
.tail
) - ctx
->cached_sq_head
!=
3027 ctx
->sq_ring
->ring_entries
)
3028 mask
|= EPOLLOUT
| EPOLLWRNORM
;
3029 if (READ_ONCE(ctx
->cq_ring
->r
.head
) != ctx
->cached_cq_tail
)
3030 mask
|= EPOLLIN
| EPOLLRDNORM
;
3035 static int io_uring_fasync(int fd
, struct file
*file
, int on
)
3037 struct io_ring_ctx
*ctx
= file
->private_data
;
3039 return fasync_helper(fd
, file
, on
, &ctx
->cq_fasync
);
3042 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
3044 mutex_lock(&ctx
->uring_lock
);
3045 percpu_ref_kill(&ctx
->refs
);
3046 mutex_unlock(&ctx
->uring_lock
);
3048 io_poll_remove_all(ctx
);
3049 io_iopoll_reap_events(ctx
);
3050 wait_for_completion(&ctx
->ctx_done
);
3051 io_ring_ctx_free(ctx
);
3054 static int io_uring_release(struct inode
*inode
, struct file
*file
)
3056 struct io_ring_ctx
*ctx
= file
->private_data
;
3058 file
->private_data
= NULL
;
3059 io_ring_ctx_wait_and_kill(ctx
);
3063 static int io_uring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3065 loff_t offset
= (loff_t
) vma
->vm_pgoff
<< PAGE_SHIFT
;
3066 unsigned long sz
= vma
->vm_end
- vma
->vm_start
;
3067 struct io_ring_ctx
*ctx
= file
->private_data
;
3073 case IORING_OFF_SQ_RING
:
3076 case IORING_OFF_SQES
:
3079 case IORING_OFF_CQ_RING
:
3086 page
= virt_to_head_page(ptr
);
3087 if (sz
> (PAGE_SIZE
<< compound_order(page
)))
3090 pfn
= virt_to_phys(ptr
) >> PAGE_SHIFT
;
3091 return remap_pfn_range(vma
, vma
->vm_start
, pfn
, sz
, vma
->vm_page_prot
);
3094 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
3095 u32
, min_complete
, u32
, flags
, const sigset_t __user
*, sig
,
3098 struct io_ring_ctx
*ctx
;
3103 if (flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
))
3111 if (f
.file
->f_op
!= &io_uring_fops
)
3115 ctx
= f
.file
->private_data
;
3116 if (!percpu_ref_tryget(&ctx
->refs
))
3120 * For SQ polling, the thread will do all submissions and completions.
3121 * Just return the requested submit count, and wake the thread if
3124 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3125 if (flags
& IORING_ENTER_SQ_WAKEUP
)
3126 wake_up(&ctx
->sqo_wait
);
3127 submitted
= to_submit
;
3133 to_submit
= min(to_submit
, ctx
->sq_entries
);
3135 mutex_lock(&ctx
->uring_lock
);
3136 submitted
= io_ring_submit(ctx
, to_submit
);
3137 mutex_unlock(&ctx
->uring_lock
);
3139 if (flags
& IORING_ENTER_GETEVENTS
) {
3140 unsigned nr_events
= 0;
3142 min_complete
= min(min_complete
, ctx
->cq_entries
);
3144 if (ctx
->flags
& IORING_SETUP_IOPOLL
) {
3145 mutex_lock(&ctx
->uring_lock
);
3146 ret
= io_iopoll_check(ctx
, &nr_events
, min_complete
);
3147 mutex_unlock(&ctx
->uring_lock
);
3149 ret
= io_cqring_wait(ctx
, min_complete
, sig
, sigsz
);
3154 io_ring_drop_ctx_refs(ctx
, 1);
3157 return submitted
? submitted
: ret
;
3160 static const struct file_operations io_uring_fops
= {
3161 .release
= io_uring_release
,
3162 .mmap
= io_uring_mmap
,
3163 .poll
= io_uring_poll
,
3164 .fasync
= io_uring_fasync
,
3167 static int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
3168 struct io_uring_params
*p
)
3170 struct io_sq_ring
*sq_ring
;
3171 struct io_cq_ring
*cq_ring
;
3174 sq_ring
= io_mem_alloc(struct_size(sq_ring
, array
, p
->sq_entries
));
3178 ctx
->sq_ring
= sq_ring
;
3179 sq_ring
->ring_mask
= p
->sq_entries
- 1;
3180 sq_ring
->ring_entries
= p
->sq_entries
;
3181 ctx
->sq_mask
= sq_ring
->ring_mask
;
3182 ctx
->sq_entries
= sq_ring
->ring_entries
;
3184 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
3185 if (size
== SIZE_MAX
)
3188 ctx
->sq_sqes
= io_mem_alloc(size
);
3192 cq_ring
= io_mem_alloc(struct_size(cq_ring
, cqes
, p
->cq_entries
));
3196 ctx
->cq_ring
= cq_ring
;
3197 cq_ring
->ring_mask
= p
->cq_entries
- 1;
3198 cq_ring
->ring_entries
= p
->cq_entries
;
3199 ctx
->cq_mask
= cq_ring
->ring_mask
;
3200 ctx
->cq_entries
= cq_ring
->ring_entries
;
3205 * Allocate an anonymous fd, this is what constitutes the application
3206 * visible backing of an io_uring instance. The application mmaps this
3207 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3208 * we have to tie this fd to a socket for file garbage collection purposes.
3210 static int io_uring_get_fd(struct io_ring_ctx
*ctx
)
3215 #if defined(CONFIG_UNIX)
3216 ret
= sock_create_kern(&init_net
, PF_UNIX
, SOCK_RAW
, IPPROTO_IP
,
3222 ret
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
3226 file
= anon_inode_getfile("[io_uring]", &io_uring_fops
, ctx
,
3227 O_RDWR
| O_CLOEXEC
);
3230 ret
= PTR_ERR(file
);
3234 #if defined(CONFIG_UNIX)
3235 ctx
->ring_sock
->file
= file
;
3236 ctx
->ring_sock
->sk
->sk_user_data
= ctx
;
3238 fd_install(ret
, file
);
3241 #if defined(CONFIG_UNIX)
3242 sock_release(ctx
->ring_sock
);
3243 ctx
->ring_sock
= NULL
;
3248 static int io_uring_create(unsigned entries
, struct io_uring_params
*p
)
3250 struct user_struct
*user
= NULL
;
3251 struct io_ring_ctx
*ctx
;
3255 if (!entries
|| entries
> IORING_MAX_ENTRIES
)
3259 * Use twice as many entries for the CQ ring. It's possible for the
3260 * application to drive a higher depth than the size of the SQ ring,
3261 * since the sqes are only used at submission time. This allows for
3262 * some flexibility in overcommitting a bit.
3264 p
->sq_entries
= roundup_pow_of_two(entries
);
3265 p
->cq_entries
= 2 * p
->sq_entries
;
3267 user
= get_uid(current_user());
3268 account_mem
= !capable(CAP_IPC_LOCK
);
3271 ret
= io_account_mem(user
,
3272 ring_pages(p
->sq_entries
, p
->cq_entries
));
3279 ctx
= io_ring_ctx_alloc(p
);
3282 io_unaccount_mem(user
, ring_pages(p
->sq_entries
,
3287 ctx
->compat
= in_compat_syscall();
3288 ctx
->account_mem
= account_mem
;
3291 ret
= io_allocate_scq_urings(ctx
, p
);
3295 ret
= io_sq_offload_start(ctx
, p
);
3299 ret
= io_uring_get_fd(ctx
);
3303 memset(&p
->sq_off
, 0, sizeof(p
->sq_off
));
3304 p
->sq_off
.head
= offsetof(struct io_sq_ring
, r
.head
);
3305 p
->sq_off
.tail
= offsetof(struct io_sq_ring
, r
.tail
);
3306 p
->sq_off
.ring_mask
= offsetof(struct io_sq_ring
, ring_mask
);
3307 p
->sq_off
.ring_entries
= offsetof(struct io_sq_ring
, ring_entries
);
3308 p
->sq_off
.flags
= offsetof(struct io_sq_ring
, flags
);
3309 p
->sq_off
.dropped
= offsetof(struct io_sq_ring
, dropped
);
3310 p
->sq_off
.array
= offsetof(struct io_sq_ring
, array
);
3312 memset(&p
->cq_off
, 0, sizeof(p
->cq_off
));
3313 p
->cq_off
.head
= offsetof(struct io_cq_ring
, r
.head
);
3314 p
->cq_off
.tail
= offsetof(struct io_cq_ring
, r
.tail
);
3315 p
->cq_off
.ring_mask
= offsetof(struct io_cq_ring
, ring_mask
);
3316 p
->cq_off
.ring_entries
= offsetof(struct io_cq_ring
, ring_entries
);
3317 p
->cq_off
.overflow
= offsetof(struct io_cq_ring
, overflow
);
3318 p
->cq_off
.cqes
= offsetof(struct io_cq_ring
, cqes
);
3321 io_ring_ctx_wait_and_kill(ctx
);
3326 * Sets up an aio uring context, and returns the fd. Applications asks for a
3327 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3328 * params structure passed in.
3330 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
3332 struct io_uring_params p
;
3336 if (copy_from_user(&p
, params
, sizeof(p
)))
3338 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
3343 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
3344 IORING_SETUP_SQ_AFF
))
3347 ret
= io_uring_create(entries
, &p
);
3351 if (copy_to_user(params
, &p
, sizeof(p
)))
3357 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
3358 struct io_uring_params __user
*, params
)
3360 return io_uring_setup(entries
, params
);
3363 static int __io_uring_register(struct io_ring_ctx
*ctx
, unsigned opcode
,
3364 void __user
*arg
, unsigned nr_args
)
3365 __releases(ctx
->uring_lock
)
3366 __acquires(ctx
->uring_lock
)
3371 * We're inside the ring mutex, if the ref is already dying, then
3372 * someone else killed the ctx or is already going through
3373 * io_uring_register().
3375 if (percpu_ref_is_dying(&ctx
->refs
))
3378 percpu_ref_kill(&ctx
->refs
);
3381 * Drop uring mutex before waiting for references to exit. If another
3382 * thread is currently inside io_uring_enter() it might need to grab
3383 * the uring_lock to make progress. If we hold it here across the drain
3384 * wait, then we can deadlock. It's safe to drop the mutex here, since
3385 * no new references will come in after we've killed the percpu ref.
3387 mutex_unlock(&ctx
->uring_lock
);
3388 wait_for_completion(&ctx
->ctx_done
);
3389 mutex_lock(&ctx
->uring_lock
);
3392 case IORING_REGISTER_BUFFERS
:
3393 ret
= io_sqe_buffer_register(ctx
, arg
, nr_args
);
3395 case IORING_UNREGISTER_BUFFERS
:
3399 ret
= io_sqe_buffer_unregister(ctx
);
3401 case IORING_REGISTER_FILES
:
3402 ret
= io_sqe_files_register(ctx
, arg
, nr_args
);
3404 case IORING_UNREGISTER_FILES
:
3408 ret
= io_sqe_files_unregister(ctx
);
3410 case IORING_REGISTER_EVENTFD
:
3414 ret
= io_eventfd_register(ctx
, arg
);
3416 case IORING_UNREGISTER_EVENTFD
:
3420 ret
= io_eventfd_unregister(ctx
);
3427 /* bring the ctx back to life */
3428 reinit_completion(&ctx
->ctx_done
);
3429 percpu_ref_reinit(&ctx
->refs
);
3433 SYSCALL_DEFINE4(io_uring_register
, unsigned int, fd
, unsigned int, opcode
,
3434 void __user
*, arg
, unsigned int, nr_args
)
3436 struct io_ring_ctx
*ctx
;
3445 if (f
.file
->f_op
!= &io_uring_fops
)
3448 ctx
= f
.file
->private_data
;
3450 mutex_lock(&ctx
->uring_lock
);
3451 ret
= __io_uring_register(ctx
, opcode
, arg
, nr_args
);
3452 mutex_unlock(&ctx
->uring_lock
);
3458 static int __init
io_uring_init(void)
3460 req_cachep
= KMEM_CACHE(io_kiocb
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
3463 __initcall(io_uring_init
);