1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * super.c contains code to handle: - mount structures
9 * - filesystem drivers list
11 * - umount system call
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include <linux/lockdep.h>
37 #include <linux/user_namespace.h>
38 #include <linux/fs_context.h>
39 #include <uapi/linux/mount.h>
42 static int thaw_super_locked(struct super_block
*sb
);
44 static LIST_HEAD(super_blocks
);
45 static DEFINE_SPINLOCK(sb_lock
);
47 static char *sb_writers_name
[SB_FREEZE_LEVELS
] = {
54 * One thing we have to be careful of with a per-sb shrinker is that we don't
55 * drop the last active reference to the superblock from within the shrinker.
56 * If that happens we could trigger unregistering the shrinker from within the
57 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
58 * take a passive reference to the superblock to avoid this from occurring.
60 static unsigned long super_cache_scan(struct shrinker
*shrink
,
61 struct shrink_control
*sc
)
63 struct super_block
*sb
;
70 sb
= container_of(shrink
, struct super_block
, s_shrink
);
73 * Deadlock avoidance. We may hold various FS locks, and we don't want
74 * to recurse into the FS that called us in clear_inode() and friends..
76 if (!(sc
->gfp_mask
& __GFP_FS
))
79 if (!trylock_super(sb
))
82 if (sb
->s_op
->nr_cached_objects
)
83 fs_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
85 inodes
= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
86 dentries
= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
87 total_objects
= dentries
+ inodes
+ fs_objects
+ 1;
91 /* proportion the scan between the caches */
92 dentries
= mult_frac(sc
->nr_to_scan
, dentries
, total_objects
);
93 inodes
= mult_frac(sc
->nr_to_scan
, inodes
, total_objects
);
94 fs_objects
= mult_frac(sc
->nr_to_scan
, fs_objects
, total_objects
);
97 * prune the dcache first as the icache is pinned by it, then
98 * prune the icache, followed by the filesystem specific caches
100 * Ensure that we always scan at least one object - memcg kmem
101 * accounting uses this to fully empty the caches.
103 sc
->nr_to_scan
= dentries
+ 1;
104 freed
= prune_dcache_sb(sb
, sc
);
105 sc
->nr_to_scan
= inodes
+ 1;
106 freed
+= prune_icache_sb(sb
, sc
);
109 sc
->nr_to_scan
= fs_objects
+ 1;
110 freed
+= sb
->s_op
->free_cached_objects(sb
, sc
);
113 up_read(&sb
->s_umount
);
117 static unsigned long super_cache_count(struct shrinker
*shrink
,
118 struct shrink_control
*sc
)
120 struct super_block
*sb
;
121 long total_objects
= 0;
123 sb
= container_of(shrink
, struct super_block
, s_shrink
);
126 * We don't call trylock_super() here as it is a scalability bottleneck,
127 * so we're exposed to partial setup state. The shrinker rwsem does not
128 * protect filesystem operations backing list_lru_shrink_count() or
129 * s_op->nr_cached_objects(). Counts can change between
130 * super_cache_count and super_cache_scan, so we really don't need locks
133 * However, if we are currently mounting the superblock, the underlying
134 * filesystem might be in a state of partial construction and hence it
135 * is dangerous to access it. trylock_super() uses a SB_BORN check to
136 * avoid this situation, so do the same here. The memory barrier is
137 * matched with the one in mount_fs() as we don't hold locks here.
139 if (!(sb
->s_flags
& SB_BORN
))
143 if (sb
->s_op
&& sb
->s_op
->nr_cached_objects
)
144 total_objects
= sb
->s_op
->nr_cached_objects(sb
, sc
);
146 total_objects
+= list_lru_shrink_count(&sb
->s_dentry_lru
, sc
);
147 total_objects
+= list_lru_shrink_count(&sb
->s_inode_lru
, sc
);
152 total_objects
= vfs_pressure_ratio(total_objects
);
153 return total_objects
;
156 static void destroy_super_work(struct work_struct
*work
)
158 struct super_block
*s
= container_of(work
, struct super_block
,
162 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++)
163 percpu_free_rwsem(&s
->s_writers
.rw_sem
[i
]);
167 static void destroy_super_rcu(struct rcu_head
*head
)
169 struct super_block
*s
= container_of(head
, struct super_block
, rcu
);
170 INIT_WORK(&s
->destroy_work
, destroy_super_work
);
171 schedule_work(&s
->destroy_work
);
174 /* Free a superblock that has never been seen by anyone */
175 static void destroy_unused_super(struct super_block
*s
)
179 up_write(&s
->s_umount
);
180 list_lru_destroy(&s
->s_dentry_lru
);
181 list_lru_destroy(&s
->s_inode_lru
);
183 put_user_ns(s
->s_user_ns
);
185 free_prealloced_shrinker(&s
->s_shrink
);
186 /* no delays needed */
187 destroy_super_work(&s
->destroy_work
);
191 * alloc_super - create new superblock
192 * @type: filesystem type superblock should belong to
193 * @flags: the mount flags
194 * @user_ns: User namespace for the super_block
196 * Allocates and initializes a new &struct super_block. alloc_super()
197 * returns a pointer new superblock or %NULL if allocation had failed.
199 static struct super_block
*alloc_super(struct file_system_type
*type
, int flags
,
200 struct user_namespace
*user_ns
)
202 struct super_block
*s
= kzalloc(sizeof(struct super_block
), GFP_USER
);
203 static const struct super_operations default_op
;
209 INIT_LIST_HEAD(&s
->s_mounts
);
210 s
->s_user_ns
= get_user_ns(user_ns
);
211 init_rwsem(&s
->s_umount
);
212 lockdep_set_class(&s
->s_umount
, &type
->s_umount_key
);
214 * sget() can have s_umount recursion.
216 * When it cannot find a suitable sb, it allocates a new
217 * one (this one), and tries again to find a suitable old
220 * In case that succeeds, it will acquire the s_umount
221 * lock of the old one. Since these are clearly distrinct
222 * locks, and this object isn't exposed yet, there's no
225 * Annotate this by putting this lock in a different
228 down_write_nested(&s
->s_umount
, SINGLE_DEPTH_NESTING
);
230 if (security_sb_alloc(s
))
233 for (i
= 0; i
< SB_FREEZE_LEVELS
; i
++) {
234 if (__percpu_init_rwsem(&s
->s_writers
.rw_sem
[i
],
236 &type
->s_writers_key
[i
]))
239 init_waitqueue_head(&s
->s_writers
.wait_unfrozen
);
240 s
->s_bdi
= &noop_backing_dev_info
;
242 if (s
->s_user_ns
!= &init_user_ns
)
243 s
->s_iflags
|= SB_I_NODEV
;
244 INIT_HLIST_NODE(&s
->s_instances
);
245 INIT_HLIST_BL_HEAD(&s
->s_roots
);
246 mutex_init(&s
->s_sync_lock
);
247 INIT_LIST_HEAD(&s
->s_inodes
);
248 spin_lock_init(&s
->s_inode_list_lock
);
249 INIT_LIST_HEAD(&s
->s_inodes_wb
);
250 spin_lock_init(&s
->s_inode_wblist_lock
);
253 atomic_set(&s
->s_active
, 1);
254 mutex_init(&s
->s_vfs_rename_mutex
);
255 lockdep_set_class(&s
->s_vfs_rename_mutex
, &type
->s_vfs_rename_key
);
256 init_rwsem(&s
->s_dquot
.dqio_sem
);
257 s
->s_maxbytes
= MAX_NON_LFS
;
258 s
->s_op
= &default_op
;
259 s
->s_time_gran
= 1000000000;
260 s
->cleancache_poolid
= CLEANCACHE_NO_POOL
;
262 s
->s_shrink
.seeks
= DEFAULT_SEEKS
;
263 s
->s_shrink
.scan_objects
= super_cache_scan
;
264 s
->s_shrink
.count_objects
= super_cache_count
;
265 s
->s_shrink
.batch
= 1024;
266 s
->s_shrink
.flags
= SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
;
267 if (prealloc_shrinker(&s
->s_shrink
))
269 if (list_lru_init_memcg(&s
->s_dentry_lru
, &s
->s_shrink
))
271 if (list_lru_init_memcg(&s
->s_inode_lru
, &s
->s_shrink
))
276 destroy_unused_super(s
);
280 /* Superblock refcounting */
283 * Drop a superblock's refcount. The caller must hold sb_lock.
285 static void __put_super(struct super_block
*s
)
288 list_del_init(&s
->s_list
);
289 WARN_ON(s
->s_dentry_lru
.node
);
290 WARN_ON(s
->s_inode_lru
.node
);
291 WARN_ON(!list_empty(&s
->s_mounts
));
293 put_user_ns(s
->s_user_ns
);
295 call_rcu(&s
->rcu
, destroy_super_rcu
);
300 * put_super - drop a temporary reference to superblock
301 * @sb: superblock in question
303 * Drops a temporary reference, frees superblock if there's no
306 static void put_super(struct super_block
*sb
)
310 spin_unlock(&sb_lock
);
315 * deactivate_locked_super - drop an active reference to superblock
316 * @s: superblock to deactivate
318 * Drops an active reference to superblock, converting it into a temporary
319 * one if there is no other active references left. In that case we
320 * tell fs driver to shut it down and drop the temporary reference we
323 * Caller holds exclusive lock on superblock; that lock is released.
325 void deactivate_locked_super(struct super_block
*s
)
327 struct file_system_type
*fs
= s
->s_type
;
328 if (atomic_dec_and_test(&s
->s_active
)) {
329 cleancache_invalidate_fs(s
);
330 unregister_shrinker(&s
->s_shrink
);
334 * Since list_lru_destroy() may sleep, we cannot call it from
335 * put_super(), where we hold the sb_lock. Therefore we destroy
336 * the lru lists right now.
338 list_lru_destroy(&s
->s_dentry_lru
);
339 list_lru_destroy(&s
->s_inode_lru
);
344 up_write(&s
->s_umount
);
348 EXPORT_SYMBOL(deactivate_locked_super
);
351 * deactivate_super - drop an active reference to superblock
352 * @s: superblock to deactivate
354 * Variant of deactivate_locked_super(), except that superblock is *not*
355 * locked by caller. If we are going to drop the final active reference,
356 * lock will be acquired prior to that.
358 void deactivate_super(struct super_block
*s
)
360 if (!atomic_add_unless(&s
->s_active
, -1, 1)) {
361 down_write(&s
->s_umount
);
362 deactivate_locked_super(s
);
366 EXPORT_SYMBOL(deactivate_super
);
369 * grab_super - acquire an active reference
370 * @s: reference we are trying to make active
372 * Tries to acquire an active reference. grab_super() is used when we
373 * had just found a superblock in super_blocks or fs_type->fs_supers
374 * and want to turn it into a full-blown active reference. grab_super()
375 * is called with sb_lock held and drops it. Returns 1 in case of
376 * success, 0 if we had failed (superblock contents was already dead or
377 * dying when grab_super() had been called). Note that this is only
378 * called for superblocks not in rundown mode (== ones still on ->fs_supers
379 * of their type), so increment of ->s_count is OK here.
381 static int grab_super(struct super_block
*s
) __releases(sb_lock
)
384 spin_unlock(&sb_lock
);
385 down_write(&s
->s_umount
);
386 if ((s
->s_flags
& SB_BORN
) && atomic_inc_not_zero(&s
->s_active
)) {
390 up_write(&s
->s_umount
);
396 * trylock_super - try to grab ->s_umount shared
397 * @sb: reference we are trying to grab
399 * Try to prevent fs shutdown. This is used in places where we
400 * cannot take an active reference but we need to ensure that the
401 * filesystem is not shut down while we are working on it. It returns
402 * false if we cannot acquire s_umount or if we lose the race and
403 * filesystem already got into shutdown, and returns true with the s_umount
404 * lock held in read mode in case of success. On successful return,
405 * the caller must drop the s_umount lock when done.
407 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
408 * The reason why it's safe is that we are OK with doing trylock instead
409 * of down_read(). There's a couple of places that are OK with that, but
410 * it's very much not a general-purpose interface.
412 bool trylock_super(struct super_block
*sb
)
414 if (down_read_trylock(&sb
->s_umount
)) {
415 if (!hlist_unhashed(&sb
->s_instances
) &&
416 sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
418 up_read(&sb
->s_umount
);
425 * generic_shutdown_super - common helper for ->kill_sb()
426 * @sb: superblock to kill
428 * generic_shutdown_super() does all fs-independent work on superblock
429 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
430 * that need destruction out of superblock, call generic_shutdown_super()
431 * and release aforementioned objects. Note: dentries and inodes _are_
432 * taken care of and do not need specific handling.
434 * Upon calling this function, the filesystem may no longer alter or
435 * rearrange the set of dentries belonging to this super_block, nor may it
436 * change the attachments of dentries to inodes.
438 void generic_shutdown_super(struct super_block
*sb
)
440 const struct super_operations
*sop
= sb
->s_op
;
443 shrink_dcache_for_umount(sb
);
445 sb
->s_flags
&= ~SB_ACTIVE
;
447 fsnotify_sb_delete(sb
);
448 cgroup_writeback_umount();
452 if (sb
->s_dio_done_wq
) {
453 destroy_workqueue(sb
->s_dio_done_wq
);
454 sb
->s_dio_done_wq
= NULL
;
460 if (!list_empty(&sb
->s_inodes
)) {
461 printk("VFS: Busy inodes after unmount of %s. "
462 "Self-destruct in 5 seconds. Have a nice day...\n",
467 /* should be initialized for __put_super_and_need_restart() */
468 hlist_del_init(&sb
->s_instances
);
469 spin_unlock(&sb_lock
);
470 up_write(&sb
->s_umount
);
471 if (sb
->s_bdi
!= &noop_backing_dev_info
) {
473 sb
->s_bdi
= &noop_backing_dev_info
;
477 EXPORT_SYMBOL(generic_shutdown_super
);
479 bool mount_capable(struct fs_context
*fc
)
481 struct user_namespace
*user_ns
= fc
->global
? &init_user_ns
484 if (!(fc
->fs_type
->fs_flags
& FS_USERNS_MOUNT
))
485 return capable(CAP_SYS_ADMIN
);
487 return ns_capable(user_ns
, CAP_SYS_ADMIN
);
491 * sget_fc - Find or create a superblock
492 * @fc: Filesystem context.
493 * @test: Comparison callback
494 * @set: Setup callback
496 * Find or create a superblock using the parameters stored in the filesystem
497 * context and the two callback functions.
499 * If an extant superblock is matched, then that will be returned with an
500 * elevated reference count that the caller must transfer or discard.
502 * If no match is made, a new superblock will be allocated and basic
503 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
504 * the set() callback will be invoked), the superblock will be published and it
505 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
508 struct super_block
*sget_fc(struct fs_context
*fc
,
509 int (*test
)(struct super_block
*, struct fs_context
*),
510 int (*set
)(struct super_block
*, struct fs_context
*))
512 struct super_block
*s
= NULL
;
513 struct super_block
*old
;
514 struct user_namespace
*user_ns
= fc
->global
? &init_user_ns
: fc
->user_ns
;
520 hlist_for_each_entry(old
, &fc
->fs_type
->fs_supers
, s_instances
) {
522 goto share_extant_sb
;
526 spin_unlock(&sb_lock
);
527 s
= alloc_super(fc
->fs_type
, fc
->sb_flags
, user_ns
);
529 return ERR_PTR(-ENOMEM
);
533 s
->s_fs_info
= fc
->s_fs_info
;
537 spin_unlock(&sb_lock
);
538 destroy_unused_super(s
);
541 fc
->s_fs_info
= NULL
;
542 s
->s_type
= fc
->fs_type
;
543 s
->s_iflags
|= fc
->s_iflags
;
544 strlcpy(s
->s_id
, s
->s_type
->name
, sizeof(s
->s_id
));
545 list_add_tail(&s
->s_list
, &super_blocks
);
546 hlist_add_head(&s
->s_instances
, &s
->s_type
->fs_supers
);
547 spin_unlock(&sb_lock
);
548 get_filesystem(s
->s_type
);
549 register_shrinker_prepared(&s
->s_shrink
);
553 if (user_ns
!= old
->s_user_ns
) {
554 spin_unlock(&sb_lock
);
555 destroy_unused_super(s
);
556 return ERR_PTR(-EBUSY
);
558 if (!grab_super(old
))
560 destroy_unused_super(s
);
563 EXPORT_SYMBOL(sget_fc
);
566 * sget - find or create a superblock
567 * @type: filesystem type superblock should belong to
568 * @test: comparison callback
569 * @set: setup callback
570 * @flags: mount flags
571 * @data: argument to each of them
573 struct super_block
*sget(struct file_system_type
*type
,
574 int (*test
)(struct super_block
*,void *),
575 int (*set
)(struct super_block
*,void *),
579 struct user_namespace
*user_ns
= current_user_ns();
580 struct super_block
*s
= NULL
;
581 struct super_block
*old
;
584 /* We don't yet pass the user namespace of the parent
585 * mount through to here so always use &init_user_ns
586 * until that changes.
588 if (flags
& SB_SUBMOUNT
)
589 user_ns
= &init_user_ns
;
594 hlist_for_each_entry(old
, &type
->fs_supers
, s_instances
) {
595 if (!test(old
, data
))
597 if (user_ns
!= old
->s_user_ns
) {
598 spin_unlock(&sb_lock
);
599 destroy_unused_super(s
);
600 return ERR_PTR(-EBUSY
);
602 if (!grab_super(old
))
604 destroy_unused_super(s
);
609 spin_unlock(&sb_lock
);
610 s
= alloc_super(type
, (flags
& ~SB_SUBMOUNT
), user_ns
);
612 return ERR_PTR(-ENOMEM
);
618 spin_unlock(&sb_lock
);
619 destroy_unused_super(s
);
623 strlcpy(s
->s_id
, type
->name
, sizeof(s
->s_id
));
624 list_add_tail(&s
->s_list
, &super_blocks
);
625 hlist_add_head(&s
->s_instances
, &type
->fs_supers
);
626 spin_unlock(&sb_lock
);
627 get_filesystem(type
);
628 register_shrinker_prepared(&s
->s_shrink
);
633 void drop_super(struct super_block
*sb
)
635 up_read(&sb
->s_umount
);
639 EXPORT_SYMBOL(drop_super
);
641 void drop_super_exclusive(struct super_block
*sb
)
643 up_write(&sb
->s_umount
);
646 EXPORT_SYMBOL(drop_super_exclusive
);
648 static void __iterate_supers(void (*f
)(struct super_block
*))
650 struct super_block
*sb
, *p
= NULL
;
653 list_for_each_entry(sb
, &super_blocks
, s_list
) {
654 if (hlist_unhashed(&sb
->s_instances
))
657 spin_unlock(&sb_lock
);
668 spin_unlock(&sb_lock
);
671 * iterate_supers - call function for all active superblocks
672 * @f: function to call
673 * @arg: argument to pass to it
675 * Scans the superblock list and calls given function, passing it
676 * locked superblock and given argument.
678 void iterate_supers(void (*f
)(struct super_block
*, void *), void *arg
)
680 struct super_block
*sb
, *p
= NULL
;
683 list_for_each_entry(sb
, &super_blocks
, s_list
) {
684 if (hlist_unhashed(&sb
->s_instances
))
687 spin_unlock(&sb_lock
);
689 down_read(&sb
->s_umount
);
690 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
692 up_read(&sb
->s_umount
);
701 spin_unlock(&sb_lock
);
705 * iterate_supers_type - call function for superblocks of given type
707 * @f: function to call
708 * @arg: argument to pass to it
710 * Scans the superblock list and calls given function, passing it
711 * locked superblock and given argument.
713 void iterate_supers_type(struct file_system_type
*type
,
714 void (*f
)(struct super_block
*, void *), void *arg
)
716 struct super_block
*sb
, *p
= NULL
;
719 hlist_for_each_entry(sb
, &type
->fs_supers
, s_instances
) {
721 spin_unlock(&sb_lock
);
723 down_read(&sb
->s_umount
);
724 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
726 up_read(&sb
->s_umount
);
735 spin_unlock(&sb_lock
);
738 EXPORT_SYMBOL(iterate_supers_type
);
740 static struct super_block
*__get_super(struct block_device
*bdev
, bool excl
)
742 struct super_block
*sb
;
749 list_for_each_entry(sb
, &super_blocks
, s_list
) {
750 if (hlist_unhashed(&sb
->s_instances
))
752 if (sb
->s_bdev
== bdev
) {
754 spin_unlock(&sb_lock
);
756 down_read(&sb
->s_umount
);
758 down_write(&sb
->s_umount
);
760 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
763 up_read(&sb
->s_umount
);
765 up_write(&sb
->s_umount
);
766 /* nope, got unmounted */
772 spin_unlock(&sb_lock
);
777 * get_super - get the superblock of a device
778 * @bdev: device to get the superblock for
780 * Scans the superblock list and finds the superblock of the file system
781 * mounted on the device given. %NULL is returned if no match is found.
783 struct super_block
*get_super(struct block_device
*bdev
)
785 return __get_super(bdev
, false);
787 EXPORT_SYMBOL(get_super
);
789 static struct super_block
*__get_super_thawed(struct block_device
*bdev
,
793 struct super_block
*s
= __get_super(bdev
, excl
);
794 if (!s
|| s
->s_writers
.frozen
== SB_UNFROZEN
)
797 up_read(&s
->s_umount
);
799 up_write(&s
->s_umount
);
800 wait_event(s
->s_writers
.wait_unfrozen
,
801 s
->s_writers
.frozen
== SB_UNFROZEN
);
807 * get_super_thawed - get thawed superblock of a device
808 * @bdev: device to get the superblock for
810 * Scans the superblock list and finds the superblock of the file system
811 * mounted on the device. The superblock is returned once it is thawed
812 * (or immediately if it was not frozen). %NULL is returned if no match
815 struct super_block
*get_super_thawed(struct block_device
*bdev
)
817 return __get_super_thawed(bdev
, false);
819 EXPORT_SYMBOL(get_super_thawed
);
822 * get_super_exclusive_thawed - get thawed superblock of a device
823 * @bdev: device to get the superblock for
825 * Scans the superblock list and finds the superblock of the file system
826 * mounted on the device. The superblock is returned once it is thawed
827 * (or immediately if it was not frozen) and s_umount semaphore is held
828 * in exclusive mode. %NULL is returned if no match is found.
830 struct super_block
*get_super_exclusive_thawed(struct block_device
*bdev
)
832 return __get_super_thawed(bdev
, true);
834 EXPORT_SYMBOL(get_super_exclusive_thawed
);
837 * get_active_super - get an active reference to the superblock of a device
838 * @bdev: device to get the superblock for
840 * Scans the superblock list and finds the superblock of the file system
841 * mounted on the device given. Returns the superblock with an active
842 * reference or %NULL if none was found.
844 struct super_block
*get_active_super(struct block_device
*bdev
)
846 struct super_block
*sb
;
853 list_for_each_entry(sb
, &super_blocks
, s_list
) {
854 if (hlist_unhashed(&sb
->s_instances
))
856 if (sb
->s_bdev
== bdev
) {
859 up_write(&sb
->s_umount
);
863 spin_unlock(&sb_lock
);
867 struct super_block
*user_get_super(dev_t dev
)
869 struct super_block
*sb
;
873 list_for_each_entry(sb
, &super_blocks
, s_list
) {
874 if (hlist_unhashed(&sb
->s_instances
))
876 if (sb
->s_dev
== dev
) {
878 spin_unlock(&sb_lock
);
879 down_read(&sb
->s_umount
);
881 if (sb
->s_root
&& (sb
->s_flags
& SB_BORN
))
883 up_read(&sb
->s_umount
);
884 /* nope, got unmounted */
890 spin_unlock(&sb_lock
);
895 * reconfigure_super - asks filesystem to change superblock parameters
896 * @fc: The superblock and configuration
898 * Alters the configuration parameters of a live superblock.
900 int reconfigure_super(struct fs_context
*fc
)
902 struct super_block
*sb
= fc
->root
->d_sb
;
904 bool remount_ro
= false;
905 bool force
= fc
->sb_flags
& SB_FORCE
;
907 if (fc
->sb_flags_mask
& ~MS_RMT_MASK
)
909 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
912 retval
= security_sb_remount(sb
, fc
->security
);
916 if (fc
->sb_flags_mask
& SB_RDONLY
) {
918 if (!(fc
->sb_flags
& SB_RDONLY
) && bdev_read_only(sb
->s_bdev
))
922 remount_ro
= (fc
->sb_flags
& SB_RDONLY
) && !sb_rdonly(sb
);
926 if (!hlist_empty(&sb
->s_pins
)) {
927 up_write(&sb
->s_umount
);
928 group_pin_kill(&sb
->s_pins
);
929 down_write(&sb
->s_umount
);
932 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
)
934 remount_ro
= !sb_rdonly(sb
);
937 shrink_dcache_sb(sb
);
939 /* If we are reconfiguring to RDONLY and current sb is read/write,
940 * make sure there are no files open for writing.
944 sb
->s_readonly_remount
= 1;
947 retval
= sb_prepare_remount_readonly(sb
);
953 if (fc
->ops
->reconfigure
) {
954 retval
= fc
->ops
->reconfigure(fc
);
957 goto cancel_readonly
;
958 /* If forced remount, go ahead despite any errors */
959 WARN(1, "forced remount of a %s fs returned %i\n",
960 sb
->s_type
->name
, retval
);
964 WRITE_ONCE(sb
->s_flags
, ((sb
->s_flags
& ~fc
->sb_flags_mask
) |
965 (fc
->sb_flags
& fc
->sb_flags_mask
)));
966 /* Needs to be ordered wrt mnt_is_readonly() */
968 sb
->s_readonly_remount
= 0;
971 * Some filesystems modify their metadata via some other path than the
972 * bdev buffer cache (eg. use a private mapping, or directories in
973 * pagecache, etc). Also file data modifications go via their own
974 * mappings. So If we try to mount readonly then copy the filesystem
975 * from bdev, we could get stale data, so invalidate it to give a best
976 * effort at coherency.
978 if (remount_ro
&& sb
->s_bdev
)
979 invalidate_bdev(sb
->s_bdev
);
983 sb
->s_readonly_remount
= 0;
987 static void do_emergency_remount_callback(struct super_block
*sb
)
989 down_write(&sb
->s_umount
);
990 if (sb
->s_root
&& sb
->s_bdev
&& (sb
->s_flags
& SB_BORN
) &&
992 struct fs_context
*fc
;
994 fc
= fs_context_for_reconfigure(sb
->s_root
,
995 SB_RDONLY
| SB_FORCE
, SB_RDONLY
);
997 if (parse_monolithic_mount_data(fc
, NULL
) == 0)
998 (void)reconfigure_super(fc
);
1002 up_write(&sb
->s_umount
);
1005 static void do_emergency_remount(struct work_struct
*work
)
1007 __iterate_supers(do_emergency_remount_callback
);
1009 printk("Emergency Remount complete\n");
1012 void emergency_remount(void)
1014 struct work_struct
*work
;
1016 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
1018 INIT_WORK(work
, do_emergency_remount
);
1019 schedule_work(work
);
1023 static void do_thaw_all_callback(struct super_block
*sb
)
1025 down_write(&sb
->s_umount
);
1026 if (sb
->s_root
&& sb
->s_flags
& SB_BORN
) {
1027 emergency_thaw_bdev(sb
);
1028 thaw_super_locked(sb
);
1030 up_write(&sb
->s_umount
);
1034 static void do_thaw_all(struct work_struct
*work
)
1036 __iterate_supers(do_thaw_all_callback
);
1038 printk(KERN_WARNING
"Emergency Thaw complete\n");
1042 * emergency_thaw_all -- forcibly thaw every frozen filesystem
1044 * Used for emergency unfreeze of all filesystems via SysRq
1046 void emergency_thaw_all(void)
1048 struct work_struct
*work
;
1050 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
1052 INIT_WORK(work
, do_thaw_all
);
1053 schedule_work(work
);
1057 static DEFINE_IDA(unnamed_dev_ida
);
1060 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1061 * @p: Pointer to a dev_t.
1063 * Filesystems which don't use real block devices can call this function
1064 * to allocate a virtual block device.
1066 * Context: Any context. Frequently called while holding sb_lock.
1067 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1068 * or -ENOMEM if memory allocation failed.
1070 int get_anon_bdev(dev_t
*p
)
1075 * Many userspace utilities consider an FSID of 0 invalid.
1076 * Always return at least 1 from get_anon_bdev.
1078 dev
= ida_alloc_range(&unnamed_dev_ida
, 1, (1 << MINORBITS
) - 1,
1088 EXPORT_SYMBOL(get_anon_bdev
);
1090 void free_anon_bdev(dev_t dev
)
1092 ida_free(&unnamed_dev_ida
, MINOR(dev
));
1094 EXPORT_SYMBOL(free_anon_bdev
);
1096 int set_anon_super(struct super_block
*s
, void *data
)
1098 return get_anon_bdev(&s
->s_dev
);
1100 EXPORT_SYMBOL(set_anon_super
);
1102 void kill_anon_super(struct super_block
*sb
)
1104 dev_t dev
= sb
->s_dev
;
1105 generic_shutdown_super(sb
);
1106 free_anon_bdev(dev
);
1108 EXPORT_SYMBOL(kill_anon_super
);
1110 void kill_litter_super(struct super_block
*sb
)
1113 d_genocide(sb
->s_root
);
1114 kill_anon_super(sb
);
1116 EXPORT_SYMBOL(kill_litter_super
);
1118 int set_anon_super_fc(struct super_block
*sb
, struct fs_context
*fc
)
1120 return set_anon_super(sb
, NULL
);
1122 EXPORT_SYMBOL(set_anon_super_fc
);
1124 static int test_keyed_super(struct super_block
*sb
, struct fs_context
*fc
)
1126 return sb
->s_fs_info
== fc
->s_fs_info
;
1129 static int test_single_super(struct super_block
*s
, struct fs_context
*fc
)
1135 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1136 * @fc: The filesystem context holding the parameters
1137 * @keying: How to distinguish superblocks
1138 * @fill_super: Helper to initialise a new superblock
1140 * Search for a superblock and create a new one if not found. The search
1141 * criterion is controlled by @keying. If the search fails, a new superblock
1142 * is created and @fill_super() is called to initialise it.
1144 * @keying can take one of a number of values:
1146 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1147 * system. This is typically used for special system filesystems.
1149 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1150 * distinct keys (where the key is in s_fs_info). Searching for the same
1151 * key again will turn up the superblock for that key.
1153 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1154 * unkeyed. Each call will get a new superblock.
1156 * A permissions check is made by sget_fc() unless we're getting a superblock
1157 * for a kernel-internal mount or a submount.
1159 int vfs_get_super(struct fs_context
*fc
,
1160 enum vfs_get_super_keying keying
,
1161 int (*fill_super
)(struct super_block
*sb
,
1162 struct fs_context
*fc
))
1164 int (*test
)(struct super_block
*, struct fs_context
*);
1165 struct super_block
*sb
;
1168 case vfs_get_single_super
:
1169 test
= test_single_super
;
1171 case vfs_get_keyed_super
:
1172 test
= test_keyed_super
;
1174 case vfs_get_independent_super
:
1181 sb
= sget_fc(fc
, test
, set_anon_super_fc
);
1186 int err
= fill_super(sb
, fc
);
1188 deactivate_locked_super(sb
);
1192 sb
->s_flags
|= SB_ACTIVE
;
1196 fc
->root
= dget(sb
->s_root
);
1199 EXPORT_SYMBOL(vfs_get_super
);
1201 int get_tree_nodev(struct fs_context
*fc
,
1202 int (*fill_super
)(struct super_block
*sb
,
1203 struct fs_context
*fc
))
1205 return vfs_get_super(fc
, vfs_get_independent_super
, fill_super
);
1207 EXPORT_SYMBOL(get_tree_nodev
);
1209 int get_tree_single(struct fs_context
*fc
,
1210 int (*fill_super
)(struct super_block
*sb
,
1211 struct fs_context
*fc
))
1213 return vfs_get_super(fc
, vfs_get_single_super
, fill_super
);
1215 EXPORT_SYMBOL(get_tree_single
);
1218 static int set_bdev_super(struct super_block
*s
, void *data
)
1221 s
->s_dev
= s
->s_bdev
->bd_dev
;
1222 s
->s_bdi
= bdi_get(s
->s_bdev
->bd_bdi
);
1227 static int test_bdev_super(struct super_block
*s
, void *data
)
1229 return (void *)s
->s_bdev
== data
;
1232 struct dentry
*mount_bdev(struct file_system_type
*fs_type
,
1233 int flags
, const char *dev_name
, void *data
,
1234 int (*fill_super
)(struct super_block
*, void *, int))
1236 struct block_device
*bdev
;
1237 struct super_block
*s
;
1238 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1241 if (!(flags
& SB_RDONLY
))
1242 mode
|= FMODE_WRITE
;
1244 bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1246 return ERR_CAST(bdev
);
1249 * once the super is inserted into the list by sget, s_umount
1250 * will protect the lockfs code from trying to start a snapshot
1251 * while we are mounting
1253 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
1254 if (bdev
->bd_fsfreeze_count
> 0) {
1255 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1259 s
= sget(fs_type
, test_bdev_super
, set_bdev_super
, flags
| SB_NOSEC
,
1261 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
1266 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1267 deactivate_locked_super(s
);
1273 * s_umount nests inside bd_mutex during
1274 * __invalidate_device(). blkdev_put() acquires
1275 * bd_mutex and can't be called under s_umount. Drop
1276 * s_umount temporarily. This is safe as we're
1277 * holding an active reference.
1279 up_write(&s
->s_umount
);
1280 blkdev_put(bdev
, mode
);
1281 down_write(&s
->s_umount
);
1284 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1285 sb_set_blocksize(s
, block_size(bdev
));
1286 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1288 deactivate_locked_super(s
);
1292 s
->s_flags
|= SB_ACTIVE
;
1296 return dget(s
->s_root
);
1301 blkdev_put(bdev
, mode
);
1303 return ERR_PTR(error
);
1305 EXPORT_SYMBOL(mount_bdev
);
1307 void kill_block_super(struct super_block
*sb
)
1309 struct block_device
*bdev
= sb
->s_bdev
;
1310 fmode_t mode
= sb
->s_mode
;
1312 bdev
->bd_super
= NULL
;
1313 generic_shutdown_super(sb
);
1314 sync_blockdev(bdev
);
1315 WARN_ON_ONCE(!(mode
& FMODE_EXCL
));
1316 blkdev_put(bdev
, mode
| FMODE_EXCL
);
1319 EXPORT_SYMBOL(kill_block_super
);
1322 struct dentry
*mount_nodev(struct file_system_type
*fs_type
,
1323 int flags
, void *data
,
1324 int (*fill_super
)(struct super_block
*, void *, int))
1327 struct super_block
*s
= sget(fs_type
, NULL
, set_anon_super
, flags
, NULL
);
1332 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1334 deactivate_locked_super(s
);
1335 return ERR_PTR(error
);
1337 s
->s_flags
|= SB_ACTIVE
;
1338 return dget(s
->s_root
);
1340 EXPORT_SYMBOL(mount_nodev
);
1342 static int reconfigure_single(struct super_block
*s
,
1343 int flags
, void *data
)
1345 struct fs_context
*fc
;
1348 /* The caller really need to be passing fc down into mount_single(),
1349 * then a chunk of this can be removed. [Bollocks -- AV]
1350 * Better yet, reconfiguration shouldn't happen, but rather the second
1351 * mount should be rejected if the parameters are not compatible.
1353 fc
= fs_context_for_reconfigure(s
->s_root
, flags
, MS_RMT_MASK
);
1357 ret
= parse_monolithic_mount_data(fc
, data
);
1361 ret
= reconfigure_super(fc
);
1367 static int compare_single(struct super_block
*s
, void *p
)
1372 struct dentry
*mount_single(struct file_system_type
*fs_type
,
1373 int flags
, void *data
,
1374 int (*fill_super
)(struct super_block
*, void *, int))
1376 struct super_block
*s
;
1379 s
= sget(fs_type
, compare_single
, set_anon_super
, flags
, NULL
);
1383 error
= fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1385 s
->s_flags
|= SB_ACTIVE
;
1387 error
= reconfigure_single(s
, flags
, data
);
1389 if (unlikely(error
)) {
1390 deactivate_locked_super(s
);
1391 return ERR_PTR(error
);
1393 return dget(s
->s_root
);
1395 EXPORT_SYMBOL(mount_single
);
1398 * vfs_get_tree - Get the mountable root
1399 * @fc: The superblock configuration context.
1401 * The filesystem is invoked to get or create a superblock which can then later
1402 * be used for mounting. The filesystem places a pointer to the root to be
1403 * used for mounting in @fc->root.
1405 int vfs_get_tree(struct fs_context
*fc
)
1407 struct super_block
*sb
;
1413 /* Get the mountable root in fc->root, with a ref on the root and a ref
1414 * on the superblock.
1416 error
= fc
->ops
->get_tree(fc
);
1421 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1423 /* We don't know what the locking state of the superblock is -
1424 * if there is a superblock.
1429 sb
= fc
->root
->d_sb
;
1430 WARN_ON(!sb
->s_bdi
);
1432 if (fc
->subtype
&& !sb
->s_subtype
) {
1433 sb
->s_subtype
= fc
->subtype
;
1438 * Write barrier is for super_cache_count(). We place it before setting
1439 * SB_BORN as the data dependency between the two functions is the
1440 * superblock structure contents that we just set up, not the SB_BORN
1444 sb
->s_flags
|= SB_BORN
;
1446 error
= security_sb_set_mnt_opts(sb
, fc
->security
, 0, NULL
);
1447 if (unlikely(error
)) {
1453 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1454 * but s_maxbytes was an unsigned long long for many releases. Throw
1455 * this warning for a little while to try and catch filesystems that
1456 * violate this rule.
1458 WARN((sb
->s_maxbytes
< 0), "%s set sb->s_maxbytes to "
1459 "negative value (%lld)\n", fc
->fs_type
->name
, sb
->s_maxbytes
);
1463 EXPORT_SYMBOL(vfs_get_tree
);
1466 * Setup private BDI for given superblock. It gets automatically cleaned up
1467 * in generic_shutdown_super().
1469 int super_setup_bdi_name(struct super_block
*sb
, char *fmt
, ...)
1471 struct backing_dev_info
*bdi
;
1475 bdi
= bdi_alloc(GFP_KERNEL
);
1479 bdi
->name
= sb
->s_type
->name
;
1481 va_start(args
, fmt
);
1482 err
= bdi_register_va(bdi
, fmt
, args
);
1488 WARN_ON(sb
->s_bdi
!= &noop_backing_dev_info
);
1493 EXPORT_SYMBOL(super_setup_bdi_name
);
1496 * Setup private BDI for given superblock. I gets automatically cleaned up
1497 * in generic_shutdown_super().
1499 int super_setup_bdi(struct super_block
*sb
)
1501 static atomic_long_t bdi_seq
= ATOMIC_LONG_INIT(0);
1503 return super_setup_bdi_name(sb
, "%.28s-%ld", sb
->s_type
->name
,
1504 atomic_long_inc_return(&bdi_seq
));
1506 EXPORT_SYMBOL(super_setup_bdi
);
1509 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1512 void __sb_end_write(struct super_block
*sb
, int level
)
1514 percpu_up_read(sb
->s_writers
.rw_sem
+ level
-1);
1516 EXPORT_SYMBOL(__sb_end_write
);
1519 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1522 int __sb_start_write(struct super_block
*sb
, int level
, bool wait
)
1524 bool force_trylock
= false;
1527 #ifdef CONFIG_LOCKDEP
1529 * We want lockdep to tell us about possible deadlocks with freezing
1530 * but it's it bit tricky to properly instrument it. Getting a freeze
1531 * protection works as getting a read lock but there are subtle
1532 * problems. XFS for example gets freeze protection on internal level
1533 * twice in some cases, which is OK only because we already hold a
1534 * freeze protection also on higher level. Due to these cases we have
1535 * to use wait == F (trylock mode) which must not fail.
1540 for (i
= 0; i
< level
- 1; i
++)
1541 if (percpu_rwsem_is_held(sb
->s_writers
.rw_sem
+ i
)) {
1542 force_trylock
= true;
1547 if (wait
&& !force_trylock
)
1548 percpu_down_read(sb
->s_writers
.rw_sem
+ level
-1);
1550 ret
= percpu_down_read_trylock(sb
->s_writers
.rw_sem
+ level
-1);
1552 WARN_ON(force_trylock
&& !ret
);
1555 EXPORT_SYMBOL(__sb_start_write
);
1558 * sb_wait_write - wait until all writers to given file system finish
1559 * @sb: the super for which we wait
1560 * @level: type of writers we wait for (normal vs page fault)
1562 * This function waits until there are no writers of given type to given file
1565 static void sb_wait_write(struct super_block
*sb
, int level
)
1567 percpu_down_write(sb
->s_writers
.rw_sem
+ level
-1);
1571 * We are going to return to userspace and forget about these locks, the
1572 * ownership goes to the caller of thaw_super() which does unlock().
1574 static void lockdep_sb_freeze_release(struct super_block
*sb
)
1578 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1579 percpu_rwsem_release(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1583 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1585 static void lockdep_sb_freeze_acquire(struct super_block
*sb
)
1589 for (level
= 0; level
< SB_FREEZE_LEVELS
; ++level
)
1590 percpu_rwsem_acquire(sb
->s_writers
.rw_sem
+ level
, 0, _THIS_IP_
);
1593 static void sb_freeze_unlock(struct super_block
*sb
)
1597 for (level
= SB_FREEZE_LEVELS
- 1; level
>= 0; level
--)
1598 percpu_up_write(sb
->s_writers
.rw_sem
+ level
);
1602 * freeze_super - lock the filesystem and force it into a consistent state
1603 * @sb: the super to lock
1605 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1606 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1609 * During this function, sb->s_writers.frozen goes through these values:
1611 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1613 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1614 * writes should be blocked, though page faults are still allowed. We wait for
1615 * all writes to complete and then proceed to the next stage.
1617 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1618 * but internal fs threads can still modify the filesystem (although they
1619 * should not dirty new pages or inodes), writeback can run etc. After waiting
1620 * for all running page faults we sync the filesystem which will clean all
1621 * dirty pages and inodes (no new dirty pages or inodes can be created when
1624 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1625 * modification are blocked (e.g. XFS preallocation truncation on inode
1626 * reclaim). This is usually implemented by blocking new transactions for
1627 * filesystems that have them and need this additional guard. After all
1628 * internal writers are finished we call ->freeze_fs() to finish filesystem
1629 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1630 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1632 * sb->s_writers.frozen is protected by sb->s_umount.
1634 int freeze_super(struct super_block
*sb
)
1638 atomic_inc(&sb
->s_active
);
1639 down_write(&sb
->s_umount
);
1640 if (sb
->s_writers
.frozen
!= SB_UNFROZEN
) {
1641 deactivate_locked_super(sb
);
1645 if (!(sb
->s_flags
& SB_BORN
)) {
1646 up_write(&sb
->s_umount
);
1647 return 0; /* sic - it's "nothing to do" */
1650 if (sb_rdonly(sb
)) {
1651 /* Nothing to do really... */
1652 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1653 up_write(&sb
->s_umount
);
1657 sb
->s_writers
.frozen
= SB_FREEZE_WRITE
;
1658 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1659 up_write(&sb
->s_umount
);
1660 sb_wait_write(sb
, SB_FREEZE_WRITE
);
1661 down_write(&sb
->s_umount
);
1663 /* Now we go and block page faults... */
1664 sb
->s_writers
.frozen
= SB_FREEZE_PAGEFAULT
;
1665 sb_wait_write(sb
, SB_FREEZE_PAGEFAULT
);
1667 /* All writers are done so after syncing there won't be dirty data */
1668 sync_filesystem(sb
);
1670 /* Now wait for internal filesystem counter */
1671 sb
->s_writers
.frozen
= SB_FREEZE_FS
;
1672 sb_wait_write(sb
, SB_FREEZE_FS
);
1674 if (sb
->s_op
->freeze_fs
) {
1675 ret
= sb
->s_op
->freeze_fs(sb
);
1678 "VFS:Filesystem freeze failed\n");
1679 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1680 sb_freeze_unlock(sb
);
1681 wake_up(&sb
->s_writers
.wait_unfrozen
);
1682 deactivate_locked_super(sb
);
1687 * For debugging purposes so that fs can warn if it sees write activity
1688 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1690 sb
->s_writers
.frozen
= SB_FREEZE_COMPLETE
;
1691 lockdep_sb_freeze_release(sb
);
1692 up_write(&sb
->s_umount
);
1695 EXPORT_SYMBOL(freeze_super
);
1698 * thaw_super -- unlock filesystem
1699 * @sb: the super to thaw
1701 * Unlocks the filesystem and marks it writeable again after freeze_super().
1703 static int thaw_super_locked(struct super_block
*sb
)
1707 if (sb
->s_writers
.frozen
!= SB_FREEZE_COMPLETE
) {
1708 up_write(&sb
->s_umount
);
1712 if (sb_rdonly(sb
)) {
1713 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1717 lockdep_sb_freeze_acquire(sb
);
1719 if (sb
->s_op
->unfreeze_fs
) {
1720 error
= sb
->s_op
->unfreeze_fs(sb
);
1723 "VFS:Filesystem thaw failed\n");
1724 lockdep_sb_freeze_release(sb
);
1725 up_write(&sb
->s_umount
);
1730 sb
->s_writers
.frozen
= SB_UNFROZEN
;
1731 sb_freeze_unlock(sb
);
1733 wake_up(&sb
->s_writers
.wait_unfrozen
);
1734 deactivate_locked_super(sb
);
1738 int thaw_super(struct super_block
*sb
)
1740 down_write(&sb
->s_umount
);
1741 return thaw_super_locked(sb
);
1743 EXPORT_SYMBOL(thaw_super
);