Linux 4.4.252
[linux/fpc-iii.git] / kernel / futex.c
blobe50b67674ba25c2a716a96ccb394a7ea4d063c88
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
69 #include <asm/futex.h>
71 #include "locking/rtmutex_common.h"
74 * READ this before attempting to hack on futexes!
76 * Basic futex operation and ordering guarantees
77 * =============================================
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
126 * waiters++; (a)
127 * mb(); (A) <-- paired with -.
129 * lock(hash_bucket(futex)); |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
136 * `-------> mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
150 * This yields the following case (where X:=waiters, Y:=futex):
152 * X = Y = 0
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
187 * Priority Inheritance state:
189 struct futex_pi_state {
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
194 struct list_head list;
197 * The PI object:
199 struct rt_mutex pi_mutex;
201 struct task_struct *owner;
202 atomic_t refcount;
204 union futex_key key;
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
229 struct futex_q {
230 struct plist_node list;
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
272 * Fault injections for futexes.
274 #ifdef CONFIG_FAIL_FUTEX
276 static struct {
277 struct fault_attr attr;
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
285 static int __init setup_fail_futex(char *str)
287 return setup_fault_attr(&fail_futex.attr, str);
289 __setup("fail_futex=", setup_fail_futex);
291 static bool should_fail_futex(bool fshared)
293 if (fail_futex.ignore_private && !fshared)
294 return false;
296 return should_fail(&fail_futex.attr, 1);
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301 static int __init fail_futex_debugfs(void)
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
317 return 0;
320 late_initcall(fail_futex_debugfs);
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
324 #else
325 static inline bool should_fail_futex(bool fshared)
327 return false;
329 #endif /* CONFIG_FAIL_FUTEX */
331 static inline void futex_get_mm(union futex_key *key)
333 atomic_inc(&key->private.mm->mm_count);
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as full barrier (B), see the ordering comment above.
339 smp_mb__after_atomic();
343 * Reflects a new waiter being added to the waitqueue.
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
347 #ifdef CONFIG_SMP
348 atomic_inc(&hb->waiters);
350 * Full barrier (A), see the ordering comment above.
352 smp_mb__after_atomic();
353 #endif
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
362 #ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364 #endif
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
369 #ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
371 #else
372 return 1;
373 #endif
377 * We hash on the keys returned from get_futex_key (see below).
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
381 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
382 key->both.offset);
384 return &futex_queues[hash & (futex_hashsize - 1)];
388 * Return 1 if two futex_keys are equal, 0 otherwise.
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
392 return (key1 && key2
393 && key1->both.word == key2->both.word
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
403 static void get_futex_key_refs(union futex_key *key)
405 if (!key->both.ptr)
406 return;
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
410 smp_mb(); /* explicit smp_mb(); (B) */
411 break;
412 case FUT_OFF_MMSHARED:
413 futex_get_mm(key); /* implies MB (B) */
414 break;
415 default:
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
421 smp_mb(); /* explicit MB (B) */
426 * Drop a reference to the resource addressed by a key.
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
431 static void drop_futex_key_refs(union futex_key *key)
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
436 return;
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 break;
442 case FUT_OFF_MMSHARED:
443 mmdrop(key->private.mm);
444 break;
449 * Generate a machine wide unique identifier for this inode.
451 * This relies on u64 not wrapping in the life-time of the machine; which with
452 * 1ns resolution means almost 585 years.
454 * This further relies on the fact that a well formed program will not unmap
455 * the file while it has a (shared) futex waiting on it. This mapping will have
456 * a file reference which pins the mount and inode.
458 * If for some reason an inode gets evicted and read back in again, it will get
459 * a new sequence number and will _NOT_ match, even though it is the exact same
460 * file.
462 * It is important that match_futex() will never have a false-positive, esp.
463 * for PI futexes that can mess up the state. The above argues that false-negatives
464 * are only possible for malformed programs.
466 static u64 get_inode_sequence_number(struct inode *inode)
468 static atomic64_t i_seq;
469 u64 old;
471 /* Does the inode already have a sequence number? */
472 old = atomic64_read(&inode->i_sequence);
473 if (likely(old))
474 return old;
476 for (;;) {
477 u64 new = atomic64_add_return(1, &i_seq);
478 if (WARN_ON_ONCE(!new))
479 continue;
481 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
482 if (old)
483 return old;
484 return new;
489 * get_futex_key() - Get parameters which are the keys for a futex
490 * @uaddr: virtual address of the futex
491 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
492 * @key: address where result is stored.
493 * @rw: mapping needs to be read/write (values: VERIFY_READ,
494 * VERIFY_WRITE)
496 * Return: a negative error code or 0
498 * The key words are stored in *key on success.
500 * For shared mappings (when @fshared), the key is:
501 * ( inode->i_sequence, page->index, offset_within_page )
502 * [ also see get_inode_sequence_number() ]
504 * For private mappings (or when !@fshared), the key is:
505 * ( current->mm, address, 0 )
507 * This allows (cross process, where applicable) identification of the futex
508 * without keeping the page pinned for the duration of the FUTEX_WAIT.
510 * lock_page() might sleep, the caller should not hold a spinlock.
512 static int
513 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
515 unsigned long address = (unsigned long)uaddr;
516 struct mm_struct *mm = current->mm;
517 struct page *page, *page_head;
518 struct address_space *mapping;
519 int err, ro = 0;
522 * The futex address must be "naturally" aligned.
524 key->both.offset = address % PAGE_SIZE;
525 if (unlikely((address % sizeof(u32)) != 0))
526 return -EINVAL;
527 address -= key->both.offset;
529 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
530 return -EFAULT;
532 if (unlikely(should_fail_futex(fshared)))
533 return -EFAULT;
536 * PROCESS_PRIVATE futexes are fast.
537 * As the mm cannot disappear under us and the 'key' only needs
538 * virtual address, we dont even have to find the underlying vma.
539 * Note : We do have to check 'uaddr' is a valid user address,
540 * but access_ok() should be faster than find_vma()
542 if (!fshared) {
543 key->private.mm = mm;
544 key->private.address = address;
545 get_futex_key_refs(key); /* implies MB (B) */
546 return 0;
549 again:
550 /* Ignore any VERIFY_READ mapping (futex common case) */
551 if (unlikely(should_fail_futex(fshared)))
552 return -EFAULT;
554 err = get_user_pages_fast(address, 1, 1, &page);
556 * If write access is not required (eg. FUTEX_WAIT), try
557 * and get read-only access.
559 if (err == -EFAULT && rw == VERIFY_READ) {
560 err = get_user_pages_fast(address, 1, 0, &page);
561 ro = 1;
563 if (err < 0)
564 return err;
565 else
566 err = 0;
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 page_head = page;
570 if (unlikely(PageTail(page))) {
571 put_page(page);
572 /* serialize against __split_huge_page_splitting() */
573 local_irq_disable();
574 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
575 page_head = compound_head(page);
577 * page_head is valid pointer but we must pin
578 * it before taking the PG_lock and/or
579 * PG_compound_lock. The moment we re-enable
580 * irqs __split_huge_page_splitting() can
581 * return and the head page can be freed from
582 * under us. We can't take the PG_lock and/or
583 * PG_compound_lock on a page that could be
584 * freed from under us.
586 if (page != page_head) {
587 get_page(page_head);
588 put_page(page);
590 local_irq_enable();
591 } else {
592 local_irq_enable();
593 goto again;
596 #else
597 page_head = compound_head(page);
598 if (page != page_head) {
599 get_page(page_head);
600 put_page(page);
602 #endif
605 * The treatment of mapping from this point on is critical. The page
606 * lock protects many things but in this context the page lock
607 * stabilizes mapping, prevents inode freeing in the shared
608 * file-backed region case and guards against movement to swap cache.
610 * Strictly speaking the page lock is not needed in all cases being
611 * considered here and page lock forces unnecessarily serialization
612 * From this point on, mapping will be re-verified if necessary and
613 * page lock will be acquired only if it is unavoidable
616 mapping = READ_ONCE(page_head->mapping);
619 * If page_head->mapping is NULL, then it cannot be a PageAnon
620 * page; but it might be the ZERO_PAGE or in the gate area or
621 * in a special mapping (all cases which we are happy to fail);
622 * or it may have been a good file page when get_user_pages_fast
623 * found it, but truncated or holepunched or subjected to
624 * invalidate_complete_page2 before we got the page lock (also
625 * cases which we are happy to fail). And we hold a reference,
626 * so refcount care in invalidate_complete_page's remove_mapping
627 * prevents drop_caches from setting mapping to NULL beneath us.
629 * The case we do have to guard against is when memory pressure made
630 * shmem_writepage move it from filecache to swapcache beneath us:
631 * an unlikely race, but we do need to retry for page_head->mapping.
633 if (unlikely(!mapping)) {
634 int shmem_swizzled;
637 * Page lock is required to identify which special case above
638 * applies. If this is really a shmem page then the page lock
639 * will prevent unexpected transitions.
641 lock_page(page_head);
642 shmem_swizzled = PageSwapCache(page_head) || page_head->mapping;
643 unlock_page(page_head);
644 put_page(page_head);
646 if (shmem_swizzled)
647 goto again;
649 return -EFAULT;
653 * Private mappings are handled in a simple way.
655 * If the futex key is stored on an anonymous page, then the associated
656 * object is the mm which is implicitly pinned by the calling process.
658 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
659 * it's a read-only handle, it's expected that futexes attach to
660 * the object not the particular process.
662 if (PageAnon(page_head)) {
664 * A RO anonymous page will never change and thus doesn't make
665 * sense for futex operations.
667 if (unlikely(should_fail_futex(fshared)) || ro) {
668 err = -EFAULT;
669 goto out;
672 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
673 key->private.mm = mm;
674 key->private.address = address;
676 } else {
677 struct inode *inode;
680 * The associated futex object in this case is the inode and
681 * the page->mapping must be traversed. Ordinarily this should
682 * be stabilised under page lock but it's not strictly
683 * necessary in this case as we just want to pin the inode, not
684 * update the radix tree or anything like that.
686 * The RCU read lock is taken as the inode is finally freed
687 * under RCU. If the mapping still matches expectations then the
688 * mapping->host can be safely accessed as being a valid inode.
690 rcu_read_lock();
692 if (READ_ONCE(page_head->mapping) != mapping) {
693 rcu_read_unlock();
694 put_page(page_head);
696 goto again;
699 inode = READ_ONCE(mapping->host);
700 if (!inode) {
701 rcu_read_unlock();
702 put_page(page_head);
704 goto again;
707 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
708 key->shared.i_seq = get_inode_sequence_number(inode);
709 key->shared.pgoff = basepage_index(page);
710 rcu_read_unlock();
713 get_futex_key_refs(key); /* implies smp_mb(); (B) */
715 out:
716 put_page(page_head);
717 return err;
720 static inline void put_futex_key(union futex_key *key)
722 drop_futex_key_refs(key);
726 * fault_in_user_writeable() - Fault in user address and verify RW access
727 * @uaddr: pointer to faulting user space address
729 * Slow path to fixup the fault we just took in the atomic write
730 * access to @uaddr.
732 * We have no generic implementation of a non-destructive write to the
733 * user address. We know that we faulted in the atomic pagefault
734 * disabled section so we can as well avoid the #PF overhead by
735 * calling get_user_pages() right away.
737 static int fault_in_user_writeable(u32 __user *uaddr)
739 struct mm_struct *mm = current->mm;
740 int ret;
742 down_read(&mm->mmap_sem);
743 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
744 FAULT_FLAG_WRITE);
745 up_read(&mm->mmap_sem);
747 return ret < 0 ? ret : 0;
751 * futex_top_waiter() - Return the highest priority waiter on a futex
752 * @hb: the hash bucket the futex_q's reside in
753 * @key: the futex key (to distinguish it from other futex futex_q's)
755 * Must be called with the hb lock held.
757 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
758 union futex_key *key)
760 struct futex_q *this;
762 plist_for_each_entry(this, &hb->chain, list) {
763 if (match_futex(&this->key, key))
764 return this;
766 return NULL;
769 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
770 u32 uval, u32 newval)
772 int ret;
774 pagefault_disable();
775 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
776 pagefault_enable();
778 return ret;
781 static int get_futex_value_locked(u32 *dest, u32 __user *from)
783 int ret;
785 pagefault_disable();
786 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
787 pagefault_enable();
789 return ret ? -EFAULT : 0;
794 * PI code:
796 static int refill_pi_state_cache(void)
798 struct futex_pi_state *pi_state;
800 if (likely(current->pi_state_cache))
801 return 0;
803 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
805 if (!pi_state)
806 return -ENOMEM;
808 INIT_LIST_HEAD(&pi_state->list);
809 /* pi_mutex gets initialized later */
810 pi_state->owner = NULL;
811 atomic_set(&pi_state->refcount, 1);
812 pi_state->key = FUTEX_KEY_INIT;
814 current->pi_state_cache = pi_state;
816 return 0;
819 static struct futex_pi_state * alloc_pi_state(void)
821 struct futex_pi_state *pi_state = current->pi_state_cache;
823 WARN_ON(!pi_state);
824 current->pi_state_cache = NULL;
826 return pi_state;
830 * Must be called with the hb lock held.
832 static void free_pi_state(struct futex_pi_state *pi_state)
834 if (!pi_state)
835 return;
837 if (!atomic_dec_and_test(&pi_state->refcount))
838 return;
841 * If pi_state->owner is NULL, the owner is most probably dying
842 * and has cleaned up the pi_state already
844 if (pi_state->owner) {
845 raw_spin_lock_irq(&pi_state->owner->pi_lock);
846 list_del_init(&pi_state->list);
847 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
849 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
852 if (current->pi_state_cache)
853 kfree(pi_state);
854 else {
856 * pi_state->list is already empty.
857 * clear pi_state->owner.
858 * refcount is at 0 - put it back to 1.
860 pi_state->owner = NULL;
861 atomic_set(&pi_state->refcount, 1);
862 current->pi_state_cache = pi_state;
867 * Look up the task based on what TID userspace gave us.
868 * We dont trust it.
870 static struct task_struct * futex_find_get_task(pid_t pid)
872 struct task_struct *p;
874 rcu_read_lock();
875 p = find_task_by_vpid(pid);
876 if (p)
877 get_task_struct(p);
879 rcu_read_unlock();
881 return p;
885 * This task is holding PI mutexes at exit time => bad.
886 * Kernel cleans up PI-state, but userspace is likely hosed.
887 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 void exit_pi_state_list(struct task_struct *curr)
891 struct list_head *next, *head = &curr->pi_state_list;
892 struct futex_pi_state *pi_state;
893 struct futex_hash_bucket *hb;
894 union futex_key key = FUTEX_KEY_INIT;
896 if (!futex_cmpxchg_enabled)
897 return;
899 * We are a ZOMBIE and nobody can enqueue itself on
900 * pi_state_list anymore, but we have to be careful
901 * versus waiters unqueueing themselves:
903 raw_spin_lock_irq(&curr->pi_lock);
904 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
910 raw_spin_unlock_irq(&curr->pi_lock);
912 spin_lock(&hb->lock);
914 raw_spin_lock_irq(&curr->pi_lock);
916 * We dropped the pi-lock, so re-check whether this
917 * task still owns the PI-state:
919 if (head->next != next) {
920 spin_unlock(&hb->lock);
921 continue;
924 WARN_ON(pi_state->owner != curr);
925 WARN_ON(list_empty(&pi_state->list));
926 list_del_init(&pi_state->list);
927 pi_state->owner = NULL;
928 raw_spin_unlock_irq(&curr->pi_lock);
930 rt_mutex_unlock(&pi_state->pi_mutex);
932 spin_unlock(&hb->lock);
934 raw_spin_lock_irq(&curr->pi_lock);
936 raw_spin_unlock_irq(&curr->pi_lock);
940 * We need to check the following states:
942 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
944 * [1] NULL | --- | --- | 0 | 0/1 | Valid
945 * [2] NULL | --- | --- | >0 | 0/1 | Valid
947 * [3] Found | NULL | -- | Any | 0/1 | Invalid
949 * [4] Found | Found | NULL | 0 | 1 | Valid
950 * [5] Found | Found | NULL | >0 | 1 | Invalid
952 * [6] Found | Found | task | 0 | 1 | Valid
954 * [7] Found | Found | NULL | Any | 0 | Invalid
956 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
957 * [9] Found | Found | task | 0 | 0 | Invalid
958 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
960 * [1] Indicates that the kernel can acquire the futex atomically. We
961 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
963 * [2] Valid, if TID does not belong to a kernel thread. If no matching
964 * thread is found then it indicates that the owner TID has died.
966 * [3] Invalid. The waiter is queued on a non PI futex
968 * [4] Valid state after exit_robust_list(), which sets the user space
969 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
971 * [5] The user space value got manipulated between exit_robust_list()
972 * and exit_pi_state_list()
974 * [6] Valid state after exit_pi_state_list() which sets the new owner in
975 * the pi_state but cannot access the user space value.
977 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
979 * [8] Owner and user space value match
981 * [9] There is no transient state which sets the user space TID to 0
982 * except exit_robust_list(), but this is indicated by the
983 * FUTEX_OWNER_DIED bit. See [4]
985 * [10] There is no transient state which leaves owner and user space
986 * TID out of sync.
990 * Validate that the existing waiter has a pi_state and sanity check
991 * the pi_state against the user space value. If correct, attach to
992 * it.
994 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
995 struct futex_pi_state **ps)
997 pid_t pid = uval & FUTEX_TID_MASK;
1000 * Userspace might have messed up non-PI and PI futexes [3]
1002 if (unlikely(!pi_state))
1003 return -EINVAL;
1005 WARN_ON(!atomic_read(&pi_state->refcount));
1008 * Handle the owner died case:
1010 if (uval & FUTEX_OWNER_DIED) {
1012 * exit_pi_state_list sets owner to NULL and wakes the
1013 * topmost waiter. The task which acquires the
1014 * pi_state->rt_mutex will fixup owner.
1016 if (!pi_state->owner) {
1018 * No pi state owner, but the user space TID
1019 * is not 0. Inconsistent state. [5]
1021 if (pid)
1022 return -EINVAL;
1024 * Take a ref on the state and return success. [4]
1026 goto out_state;
1030 * If TID is 0, then either the dying owner has not
1031 * yet executed exit_pi_state_list() or some waiter
1032 * acquired the rtmutex in the pi state, but did not
1033 * yet fixup the TID in user space.
1035 * Take a ref on the state and return success. [6]
1037 if (!pid)
1038 goto out_state;
1039 } else {
1041 * If the owner died bit is not set, then the pi_state
1042 * must have an owner. [7]
1044 if (!pi_state->owner)
1045 return -EINVAL;
1049 * Bail out if user space manipulated the futex value. If pi
1050 * state exists then the owner TID must be the same as the
1051 * user space TID. [9/10]
1053 if (pid != task_pid_vnr(pi_state->owner))
1054 return -EINVAL;
1055 out_state:
1056 atomic_inc(&pi_state->refcount);
1057 *ps = pi_state;
1058 return 0;
1062 * Lookup the task for the TID provided from user space and attach to
1063 * it after doing proper sanity checks.
1065 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1066 struct futex_pi_state **ps)
1068 pid_t pid = uval & FUTEX_TID_MASK;
1069 struct futex_pi_state *pi_state;
1070 struct task_struct *p;
1073 * We are the first waiter - try to look up the real owner and attach
1074 * the new pi_state to it, but bail out when TID = 0 [1]
1076 if (!pid)
1077 return -ESRCH;
1078 p = futex_find_get_task(pid);
1079 if (!p)
1080 return -ESRCH;
1082 if (unlikely(p->flags & PF_KTHREAD)) {
1083 put_task_struct(p);
1084 return -EPERM;
1088 * We need to look at the task state flags to figure out,
1089 * whether the task is exiting. To protect against the do_exit
1090 * change of the task flags, we do this protected by
1091 * p->pi_lock:
1093 raw_spin_lock_irq(&p->pi_lock);
1094 if (unlikely(p->flags & PF_EXITING)) {
1096 * The task is on the way out. When PF_EXITPIDONE is
1097 * set, we know that the task has finished the
1098 * cleanup:
1100 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1102 raw_spin_unlock_irq(&p->pi_lock);
1103 put_task_struct(p);
1104 return ret;
1108 * No existing pi state. First waiter. [2]
1110 pi_state = alloc_pi_state();
1113 * Initialize the pi_mutex in locked state and make @p
1114 * the owner of it:
1116 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1118 /* Store the key for possible exit cleanups: */
1119 pi_state->key = *key;
1121 WARN_ON(!list_empty(&pi_state->list));
1122 list_add(&pi_state->list, &p->pi_state_list);
1123 pi_state->owner = p;
1124 raw_spin_unlock_irq(&p->pi_lock);
1126 put_task_struct(p);
1128 *ps = pi_state;
1130 return 0;
1133 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1134 union futex_key *key, struct futex_pi_state **ps)
1136 struct futex_q *match = futex_top_waiter(hb, key);
1139 * If there is a waiter on that futex, validate it and
1140 * attach to the pi_state when the validation succeeds.
1142 if (match)
1143 return attach_to_pi_state(uval, match->pi_state, ps);
1146 * We are the first waiter - try to look up the owner based on
1147 * @uval and attach to it.
1149 return attach_to_pi_owner(uval, key, ps);
1152 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1154 u32 uninitialized_var(curval);
1156 if (unlikely(should_fail_futex(true)))
1157 return -EFAULT;
1159 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1160 return -EFAULT;
1162 /*If user space value changed, let the caller retry */
1163 return curval != uval ? -EAGAIN : 0;
1167 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1168 * @uaddr: the pi futex user address
1169 * @hb: the pi futex hash bucket
1170 * @key: the futex key associated with uaddr and hb
1171 * @ps: the pi_state pointer where we store the result of the
1172 * lookup
1173 * @task: the task to perform the atomic lock work for. This will
1174 * be "current" except in the case of requeue pi.
1175 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1177 * Return:
1178 * 0 - ready to wait;
1179 * 1 - acquired the lock;
1180 * <0 - error
1182 * The hb->lock and futex_key refs shall be held by the caller.
1184 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1185 union futex_key *key,
1186 struct futex_pi_state **ps,
1187 struct task_struct *task, int set_waiters)
1189 u32 uval, newval, vpid = task_pid_vnr(task);
1190 struct futex_q *match;
1191 int ret;
1194 * Read the user space value first so we can validate a few
1195 * things before proceeding further.
1197 if (get_futex_value_locked(&uval, uaddr))
1198 return -EFAULT;
1200 if (unlikely(should_fail_futex(true)))
1201 return -EFAULT;
1204 * Detect deadlocks.
1206 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1207 return -EDEADLK;
1209 if ((unlikely(should_fail_futex(true))))
1210 return -EDEADLK;
1213 * Lookup existing state first. If it exists, try to attach to
1214 * its pi_state.
1216 match = futex_top_waiter(hb, key);
1217 if (match)
1218 return attach_to_pi_state(uval, match->pi_state, ps);
1221 * No waiter and user TID is 0. We are here because the
1222 * waiters or the owner died bit is set or called from
1223 * requeue_cmp_pi or for whatever reason something took the
1224 * syscall.
1226 if (!(uval & FUTEX_TID_MASK)) {
1228 * We take over the futex. No other waiters and the user space
1229 * TID is 0. We preserve the owner died bit.
1231 newval = uval & FUTEX_OWNER_DIED;
1232 newval |= vpid;
1234 /* The futex requeue_pi code can enforce the waiters bit */
1235 if (set_waiters)
1236 newval |= FUTEX_WAITERS;
1238 ret = lock_pi_update_atomic(uaddr, uval, newval);
1239 /* If the take over worked, return 1 */
1240 return ret < 0 ? ret : 1;
1244 * First waiter. Set the waiters bit before attaching ourself to
1245 * the owner. If owner tries to unlock, it will be forced into
1246 * the kernel and blocked on hb->lock.
1248 newval = uval | FUTEX_WAITERS;
1249 ret = lock_pi_update_atomic(uaddr, uval, newval);
1250 if (ret)
1251 return ret;
1253 * If the update of the user space value succeeded, we try to
1254 * attach to the owner. If that fails, no harm done, we only
1255 * set the FUTEX_WAITERS bit in the user space variable.
1257 return attach_to_pi_owner(uval, key, ps);
1261 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1262 * @q: The futex_q to unqueue
1264 * The q->lock_ptr must not be NULL and must be held by the caller.
1266 static void __unqueue_futex(struct futex_q *q)
1268 struct futex_hash_bucket *hb;
1270 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1271 || WARN_ON(plist_node_empty(&q->list)))
1272 return;
1274 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1275 plist_del(&q->list, &hb->chain);
1276 hb_waiters_dec(hb);
1280 * The hash bucket lock must be held when this is called.
1281 * Afterwards, the futex_q must not be accessed. Callers
1282 * must ensure to later call wake_up_q() for the actual
1283 * wakeups to occur.
1285 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1287 struct task_struct *p = q->task;
1289 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1290 return;
1293 * Queue the task for later wakeup for after we've released
1294 * the hb->lock. wake_q_add() grabs reference to p.
1296 wake_q_add(wake_q, p);
1297 __unqueue_futex(q);
1299 * The waiting task can free the futex_q as soon as
1300 * q->lock_ptr = NULL is written, without taking any locks. A
1301 * memory barrier is required here to prevent the following
1302 * store to lock_ptr from getting ahead of the plist_del.
1304 smp_wmb();
1305 q->lock_ptr = NULL;
1308 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1309 struct futex_hash_bucket *hb)
1311 struct task_struct *new_owner;
1312 struct futex_pi_state *pi_state = this->pi_state;
1313 u32 uninitialized_var(curval), newval;
1314 WAKE_Q(wake_q);
1315 bool deboost;
1316 int ret = 0;
1318 if (!pi_state)
1319 return -EINVAL;
1322 * If current does not own the pi_state then the futex is
1323 * inconsistent and user space fiddled with the futex value.
1325 if (pi_state->owner != current)
1326 return -EINVAL;
1328 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1329 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1332 * It is possible that the next waiter (the one that brought
1333 * this owner to the kernel) timed out and is no longer
1334 * waiting on the lock.
1336 if (!new_owner)
1337 new_owner = this->task;
1340 * We pass it to the next owner. The WAITERS bit is always
1341 * kept enabled while there is PI state around. We cleanup the
1342 * owner died bit, because we are the owner.
1344 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1346 if (unlikely(should_fail_futex(true)))
1347 ret = -EFAULT;
1349 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1350 ret = -EFAULT;
1351 } else if (curval != uval) {
1353 * If a unconditional UNLOCK_PI operation (user space did not
1354 * try the TID->0 transition) raced with a waiter setting the
1355 * FUTEX_WAITERS flag between get_user() and locking the hash
1356 * bucket lock, retry the operation.
1358 if ((FUTEX_TID_MASK & curval) == uval)
1359 ret = -EAGAIN;
1360 else
1361 ret = -EINVAL;
1363 if (ret) {
1364 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1365 return ret;
1368 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1369 WARN_ON(list_empty(&pi_state->list));
1370 list_del_init(&pi_state->list);
1371 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1373 raw_spin_lock_irq(&new_owner->pi_lock);
1374 WARN_ON(!list_empty(&pi_state->list));
1375 list_add(&pi_state->list, &new_owner->pi_state_list);
1376 pi_state->owner = new_owner;
1377 raw_spin_unlock_irq(&new_owner->pi_lock);
1379 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1381 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1384 * First unlock HB so the waiter does not spin on it once he got woken
1385 * up. Second wake up the waiter before the priority is adjusted. If we
1386 * deboost first (and lose our higher priority), then the task might get
1387 * scheduled away before the wake up can take place.
1389 spin_unlock(&hb->lock);
1390 wake_up_q(&wake_q);
1391 if (deboost)
1392 rt_mutex_adjust_prio(current);
1394 return 0;
1398 * Express the locking dependencies for lockdep:
1400 static inline void
1401 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1403 if (hb1 <= hb2) {
1404 spin_lock(&hb1->lock);
1405 if (hb1 < hb2)
1406 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1407 } else { /* hb1 > hb2 */
1408 spin_lock(&hb2->lock);
1409 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1413 static inline void
1414 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1416 spin_unlock(&hb1->lock);
1417 if (hb1 != hb2)
1418 spin_unlock(&hb2->lock);
1422 * Wake up waiters matching bitset queued on this futex (uaddr).
1424 static int
1425 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1427 struct futex_hash_bucket *hb;
1428 struct futex_q *this, *next;
1429 union futex_key key = FUTEX_KEY_INIT;
1430 int ret;
1431 WAKE_Q(wake_q);
1433 if (!bitset)
1434 return -EINVAL;
1436 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1437 if (unlikely(ret != 0))
1438 goto out;
1440 hb = hash_futex(&key);
1442 /* Make sure we really have tasks to wakeup */
1443 if (!hb_waiters_pending(hb))
1444 goto out_put_key;
1446 spin_lock(&hb->lock);
1448 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1449 if (match_futex (&this->key, &key)) {
1450 if (this->pi_state || this->rt_waiter) {
1451 ret = -EINVAL;
1452 break;
1455 /* Check if one of the bits is set in both bitsets */
1456 if (!(this->bitset & bitset))
1457 continue;
1459 mark_wake_futex(&wake_q, this);
1460 if (++ret >= nr_wake)
1461 break;
1465 spin_unlock(&hb->lock);
1466 wake_up_q(&wake_q);
1467 out_put_key:
1468 put_futex_key(&key);
1469 out:
1470 return ret;
1473 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1475 unsigned int op = (encoded_op & 0x70000000) >> 28;
1476 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1477 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1478 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1479 int oldval, ret;
1481 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1482 if (oparg < 0 || oparg > 31) {
1483 char comm[sizeof(current->comm)];
1485 * kill this print and return -EINVAL when userspace
1486 * is sane again
1488 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1489 get_task_comm(comm, current), oparg);
1490 oparg &= 31;
1492 oparg = 1 << oparg;
1495 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1496 return -EFAULT;
1498 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1499 if (ret)
1500 return ret;
1502 switch (cmp) {
1503 case FUTEX_OP_CMP_EQ:
1504 return oldval == cmparg;
1505 case FUTEX_OP_CMP_NE:
1506 return oldval != cmparg;
1507 case FUTEX_OP_CMP_LT:
1508 return oldval < cmparg;
1509 case FUTEX_OP_CMP_GE:
1510 return oldval >= cmparg;
1511 case FUTEX_OP_CMP_LE:
1512 return oldval <= cmparg;
1513 case FUTEX_OP_CMP_GT:
1514 return oldval > cmparg;
1515 default:
1516 return -ENOSYS;
1521 * Wake up all waiters hashed on the physical page that is mapped
1522 * to this virtual address:
1524 static int
1525 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1526 int nr_wake, int nr_wake2, int op)
1528 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1529 struct futex_hash_bucket *hb1, *hb2;
1530 struct futex_q *this, *next;
1531 int ret, op_ret;
1532 WAKE_Q(wake_q);
1534 retry:
1535 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1536 if (unlikely(ret != 0))
1537 goto out;
1538 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1539 if (unlikely(ret != 0))
1540 goto out_put_key1;
1542 hb1 = hash_futex(&key1);
1543 hb2 = hash_futex(&key2);
1545 retry_private:
1546 double_lock_hb(hb1, hb2);
1547 op_ret = futex_atomic_op_inuser(op, uaddr2);
1548 if (unlikely(op_ret < 0)) {
1550 double_unlock_hb(hb1, hb2);
1552 #ifndef CONFIG_MMU
1554 * we don't get EFAULT from MMU faults if we don't have an MMU,
1555 * but we might get them from range checking
1557 ret = op_ret;
1558 goto out_put_keys;
1559 #endif
1561 if (unlikely(op_ret != -EFAULT)) {
1562 ret = op_ret;
1563 goto out_put_keys;
1566 ret = fault_in_user_writeable(uaddr2);
1567 if (ret)
1568 goto out_put_keys;
1570 if (!(flags & FLAGS_SHARED))
1571 goto retry_private;
1573 put_futex_key(&key2);
1574 put_futex_key(&key1);
1575 goto retry;
1578 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1579 if (match_futex (&this->key, &key1)) {
1580 if (this->pi_state || this->rt_waiter) {
1581 ret = -EINVAL;
1582 goto out_unlock;
1584 mark_wake_futex(&wake_q, this);
1585 if (++ret >= nr_wake)
1586 break;
1590 if (op_ret > 0) {
1591 op_ret = 0;
1592 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1593 if (match_futex (&this->key, &key2)) {
1594 if (this->pi_state || this->rt_waiter) {
1595 ret = -EINVAL;
1596 goto out_unlock;
1598 mark_wake_futex(&wake_q, this);
1599 if (++op_ret >= nr_wake2)
1600 break;
1603 ret += op_ret;
1606 out_unlock:
1607 double_unlock_hb(hb1, hb2);
1608 wake_up_q(&wake_q);
1609 out_put_keys:
1610 put_futex_key(&key2);
1611 out_put_key1:
1612 put_futex_key(&key1);
1613 out:
1614 return ret;
1618 * requeue_futex() - Requeue a futex_q from one hb to another
1619 * @q: the futex_q to requeue
1620 * @hb1: the source hash_bucket
1621 * @hb2: the target hash_bucket
1622 * @key2: the new key for the requeued futex_q
1624 static inline
1625 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1626 struct futex_hash_bucket *hb2, union futex_key *key2)
1630 * If key1 and key2 hash to the same bucket, no need to
1631 * requeue.
1633 if (likely(&hb1->chain != &hb2->chain)) {
1634 plist_del(&q->list, &hb1->chain);
1635 hb_waiters_dec(hb1);
1636 hb_waiters_inc(hb2);
1637 plist_add(&q->list, &hb2->chain);
1638 q->lock_ptr = &hb2->lock;
1640 get_futex_key_refs(key2);
1641 q->key = *key2;
1645 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1646 * @q: the futex_q
1647 * @key: the key of the requeue target futex
1648 * @hb: the hash_bucket of the requeue target futex
1650 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1651 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1652 * to the requeue target futex so the waiter can detect the wakeup on the right
1653 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1654 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1655 * to protect access to the pi_state to fixup the owner later. Must be called
1656 * with both q->lock_ptr and hb->lock held.
1658 static inline
1659 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1660 struct futex_hash_bucket *hb)
1662 get_futex_key_refs(key);
1663 q->key = *key;
1665 __unqueue_futex(q);
1667 WARN_ON(!q->rt_waiter);
1668 q->rt_waiter = NULL;
1670 q->lock_ptr = &hb->lock;
1672 wake_up_state(q->task, TASK_NORMAL);
1676 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1677 * @pifutex: the user address of the to futex
1678 * @hb1: the from futex hash bucket, must be locked by the caller
1679 * @hb2: the to futex hash bucket, must be locked by the caller
1680 * @key1: the from futex key
1681 * @key2: the to futex key
1682 * @ps: address to store the pi_state pointer
1683 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1685 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1686 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1687 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1688 * hb1 and hb2 must be held by the caller.
1690 * Return:
1691 * 0 - failed to acquire the lock atomically;
1692 * >0 - acquired the lock, return value is vpid of the top_waiter
1693 * <0 - error
1695 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1696 struct futex_hash_bucket *hb1,
1697 struct futex_hash_bucket *hb2,
1698 union futex_key *key1, union futex_key *key2,
1699 struct futex_pi_state **ps, int set_waiters)
1701 struct futex_q *top_waiter = NULL;
1702 u32 curval;
1703 int ret, vpid;
1705 if (get_futex_value_locked(&curval, pifutex))
1706 return -EFAULT;
1708 if (unlikely(should_fail_futex(true)))
1709 return -EFAULT;
1712 * Find the top_waiter and determine if there are additional waiters.
1713 * If the caller intends to requeue more than 1 waiter to pifutex,
1714 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1715 * as we have means to handle the possible fault. If not, don't set
1716 * the bit unecessarily as it will force the subsequent unlock to enter
1717 * the kernel.
1719 top_waiter = futex_top_waiter(hb1, key1);
1721 /* There are no waiters, nothing for us to do. */
1722 if (!top_waiter)
1723 return 0;
1725 /* Ensure we requeue to the expected futex. */
1726 if (!match_futex(top_waiter->requeue_pi_key, key2))
1727 return -EINVAL;
1730 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1731 * the contended case or if set_waiters is 1. The pi_state is returned
1732 * in ps in contended cases.
1734 vpid = task_pid_vnr(top_waiter->task);
1735 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1736 set_waiters);
1737 if (ret == 1) {
1738 requeue_pi_wake_futex(top_waiter, key2, hb2);
1739 return vpid;
1741 return ret;
1745 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1746 * @uaddr1: source futex user address
1747 * @flags: futex flags (FLAGS_SHARED, etc.)
1748 * @uaddr2: target futex user address
1749 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1750 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1751 * @cmpval: @uaddr1 expected value (or %NULL)
1752 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1753 * pi futex (pi to pi requeue is not supported)
1755 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1756 * uaddr2 atomically on behalf of the top waiter.
1758 * Return:
1759 * >=0 - on success, the number of tasks requeued or woken;
1760 * <0 - on error
1762 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1763 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1764 u32 *cmpval, int requeue_pi)
1766 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1767 int drop_count = 0, task_count = 0, ret;
1768 struct futex_pi_state *pi_state = NULL;
1769 struct futex_hash_bucket *hb1, *hb2;
1770 struct futex_q *this, *next;
1771 WAKE_Q(wake_q);
1773 if (nr_wake < 0 || nr_requeue < 0)
1774 return -EINVAL;
1776 if (requeue_pi) {
1778 * Requeue PI only works on two distinct uaddrs. This
1779 * check is only valid for private futexes. See below.
1781 if (uaddr1 == uaddr2)
1782 return -EINVAL;
1785 * requeue_pi requires a pi_state, try to allocate it now
1786 * without any locks in case it fails.
1788 if (refill_pi_state_cache())
1789 return -ENOMEM;
1791 * requeue_pi must wake as many tasks as it can, up to nr_wake
1792 * + nr_requeue, since it acquires the rt_mutex prior to
1793 * returning to userspace, so as to not leave the rt_mutex with
1794 * waiters and no owner. However, second and third wake-ups
1795 * cannot be predicted as they involve race conditions with the
1796 * first wake and a fault while looking up the pi_state. Both
1797 * pthread_cond_signal() and pthread_cond_broadcast() should
1798 * use nr_wake=1.
1800 if (nr_wake != 1)
1801 return -EINVAL;
1804 retry:
1805 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1806 if (unlikely(ret != 0))
1807 goto out;
1808 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1809 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1810 if (unlikely(ret != 0))
1811 goto out_put_key1;
1814 * The check above which compares uaddrs is not sufficient for
1815 * shared futexes. We need to compare the keys:
1817 if (requeue_pi && match_futex(&key1, &key2)) {
1818 ret = -EINVAL;
1819 goto out_put_keys;
1822 hb1 = hash_futex(&key1);
1823 hb2 = hash_futex(&key2);
1825 retry_private:
1826 hb_waiters_inc(hb2);
1827 double_lock_hb(hb1, hb2);
1829 if (likely(cmpval != NULL)) {
1830 u32 curval;
1832 ret = get_futex_value_locked(&curval, uaddr1);
1834 if (unlikely(ret)) {
1835 double_unlock_hb(hb1, hb2);
1836 hb_waiters_dec(hb2);
1838 ret = get_user(curval, uaddr1);
1839 if (ret)
1840 goto out_put_keys;
1842 if (!(flags & FLAGS_SHARED))
1843 goto retry_private;
1845 put_futex_key(&key2);
1846 put_futex_key(&key1);
1847 goto retry;
1849 if (curval != *cmpval) {
1850 ret = -EAGAIN;
1851 goto out_unlock;
1855 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1857 * Attempt to acquire uaddr2 and wake the top waiter. If we
1858 * intend to requeue waiters, force setting the FUTEX_WAITERS
1859 * bit. We force this here where we are able to easily handle
1860 * faults rather in the requeue loop below.
1862 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1863 &key2, &pi_state, nr_requeue);
1866 * At this point the top_waiter has either taken uaddr2 or is
1867 * waiting on it. If the former, then the pi_state will not
1868 * exist yet, look it up one more time to ensure we have a
1869 * reference to it. If the lock was taken, ret contains the
1870 * vpid of the top waiter task.
1872 if (ret > 0) {
1873 WARN_ON(pi_state);
1874 drop_count++;
1875 task_count++;
1877 * If we acquired the lock, then the user
1878 * space value of uaddr2 should be vpid. It
1879 * cannot be changed by the top waiter as it
1880 * is blocked on hb2 lock if it tries to do
1881 * so. If something fiddled with it behind our
1882 * back the pi state lookup might unearth
1883 * it. So we rather use the known value than
1884 * rereading and handing potential crap to
1885 * lookup_pi_state.
1887 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1890 switch (ret) {
1891 case 0:
1892 break;
1893 case -EFAULT:
1894 free_pi_state(pi_state);
1895 pi_state = NULL;
1896 double_unlock_hb(hb1, hb2);
1897 hb_waiters_dec(hb2);
1898 put_futex_key(&key2);
1899 put_futex_key(&key1);
1900 ret = fault_in_user_writeable(uaddr2);
1901 if (!ret)
1902 goto retry;
1903 goto out;
1904 case -EAGAIN:
1906 * Two reasons for this:
1907 * - Owner is exiting and we just wait for the
1908 * exit to complete.
1909 * - The user space value changed.
1911 free_pi_state(pi_state);
1912 pi_state = NULL;
1913 double_unlock_hb(hb1, hb2);
1914 hb_waiters_dec(hb2);
1915 put_futex_key(&key2);
1916 put_futex_key(&key1);
1917 cond_resched();
1918 goto retry;
1919 default:
1920 goto out_unlock;
1924 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1925 if (task_count - nr_wake >= nr_requeue)
1926 break;
1928 if (!match_futex(&this->key, &key1))
1929 continue;
1932 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1933 * be paired with each other and no other futex ops.
1935 * We should never be requeueing a futex_q with a pi_state,
1936 * which is awaiting a futex_unlock_pi().
1938 if ((requeue_pi && !this->rt_waiter) ||
1939 (!requeue_pi && this->rt_waiter) ||
1940 this->pi_state) {
1941 ret = -EINVAL;
1942 break;
1946 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1947 * lock, we already woke the top_waiter. If not, it will be
1948 * woken by futex_unlock_pi().
1950 if (++task_count <= nr_wake && !requeue_pi) {
1951 mark_wake_futex(&wake_q, this);
1952 continue;
1955 /* Ensure we requeue to the expected futex for requeue_pi. */
1956 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1957 ret = -EINVAL;
1958 break;
1962 * Requeue nr_requeue waiters and possibly one more in the case
1963 * of requeue_pi if we couldn't acquire the lock atomically.
1965 if (requeue_pi) {
1966 /* Prepare the waiter to take the rt_mutex. */
1967 atomic_inc(&pi_state->refcount);
1968 this->pi_state = pi_state;
1969 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1970 this->rt_waiter,
1971 this->task);
1972 if (ret == 1) {
1973 /* We got the lock. */
1974 requeue_pi_wake_futex(this, &key2, hb2);
1975 drop_count++;
1976 continue;
1977 } else if (ret) {
1978 /* -EDEADLK */
1979 this->pi_state = NULL;
1980 free_pi_state(pi_state);
1981 goto out_unlock;
1984 requeue_futex(this, hb1, hb2, &key2);
1985 drop_count++;
1988 out_unlock:
1989 free_pi_state(pi_state);
1990 double_unlock_hb(hb1, hb2);
1991 wake_up_q(&wake_q);
1992 hb_waiters_dec(hb2);
1995 * drop_futex_key_refs() must be called outside the spinlocks. During
1996 * the requeue we moved futex_q's from the hash bucket at key1 to the
1997 * one at key2 and updated their key pointer. We no longer need to
1998 * hold the references to key1.
2000 while (--drop_count >= 0)
2001 drop_futex_key_refs(&key1);
2003 out_put_keys:
2004 put_futex_key(&key2);
2005 out_put_key1:
2006 put_futex_key(&key1);
2007 out:
2008 return ret ? ret : task_count;
2011 /* The key must be already stored in q->key. */
2012 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2013 __acquires(&hb->lock)
2015 struct futex_hash_bucket *hb;
2017 hb = hash_futex(&q->key);
2020 * Increment the counter before taking the lock so that
2021 * a potential waker won't miss a to-be-slept task that is
2022 * waiting for the spinlock. This is safe as all queue_lock()
2023 * users end up calling queue_me(). Similarly, for housekeeping,
2024 * decrement the counter at queue_unlock() when some error has
2025 * occurred and we don't end up adding the task to the list.
2027 hb_waiters_inc(hb);
2029 q->lock_ptr = &hb->lock;
2031 spin_lock(&hb->lock); /* implies MB (A) */
2032 return hb;
2035 static inline void
2036 queue_unlock(struct futex_hash_bucket *hb)
2037 __releases(&hb->lock)
2039 spin_unlock(&hb->lock);
2040 hb_waiters_dec(hb);
2044 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2045 * @q: The futex_q to enqueue
2046 * @hb: The destination hash bucket
2048 * The hb->lock must be held by the caller, and is released here. A call to
2049 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2050 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2051 * or nothing if the unqueue is done as part of the wake process and the unqueue
2052 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2053 * an example).
2055 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2056 __releases(&hb->lock)
2058 int prio;
2061 * The priority used to register this element is
2062 * - either the real thread-priority for the real-time threads
2063 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2064 * - or MAX_RT_PRIO for non-RT threads.
2065 * Thus, all RT-threads are woken first in priority order, and
2066 * the others are woken last, in FIFO order.
2068 prio = min(current->normal_prio, MAX_RT_PRIO);
2070 plist_node_init(&q->list, prio);
2071 plist_add(&q->list, &hb->chain);
2072 q->task = current;
2073 spin_unlock(&hb->lock);
2077 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2078 * @q: The futex_q to unqueue
2080 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2081 * be paired with exactly one earlier call to queue_me().
2083 * Return:
2084 * 1 - if the futex_q was still queued (and we removed unqueued it);
2085 * 0 - if the futex_q was already removed by the waking thread
2087 static int unqueue_me(struct futex_q *q)
2089 spinlock_t *lock_ptr;
2090 int ret = 0;
2092 /* In the common case we don't take the spinlock, which is nice. */
2093 retry:
2095 * q->lock_ptr can change between this read and the following spin_lock.
2096 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2097 * optimizing lock_ptr out of the logic below.
2099 lock_ptr = READ_ONCE(q->lock_ptr);
2100 if (lock_ptr != NULL) {
2101 spin_lock(lock_ptr);
2103 * q->lock_ptr can change between reading it and
2104 * spin_lock(), causing us to take the wrong lock. This
2105 * corrects the race condition.
2107 * Reasoning goes like this: if we have the wrong lock,
2108 * q->lock_ptr must have changed (maybe several times)
2109 * between reading it and the spin_lock(). It can
2110 * change again after the spin_lock() but only if it was
2111 * already changed before the spin_lock(). It cannot,
2112 * however, change back to the original value. Therefore
2113 * we can detect whether we acquired the correct lock.
2115 if (unlikely(lock_ptr != q->lock_ptr)) {
2116 spin_unlock(lock_ptr);
2117 goto retry;
2119 __unqueue_futex(q);
2121 BUG_ON(q->pi_state);
2123 spin_unlock(lock_ptr);
2124 ret = 1;
2127 drop_futex_key_refs(&q->key);
2128 return ret;
2132 * PI futexes can not be requeued and must remove themself from the
2133 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2134 * and dropped here.
2136 static void unqueue_me_pi(struct futex_q *q)
2137 __releases(q->lock_ptr)
2139 __unqueue_futex(q);
2141 BUG_ON(!q->pi_state);
2142 free_pi_state(q->pi_state);
2143 q->pi_state = NULL;
2145 spin_unlock(q->lock_ptr);
2149 * Fixup the pi_state owner with the new owner.
2151 * Must be called with hash bucket lock held and mm->sem held for non
2152 * private futexes.
2154 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2155 struct task_struct *newowner)
2157 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2158 struct futex_pi_state *pi_state = q->pi_state;
2159 struct task_struct *oldowner = pi_state->owner;
2160 u32 uval, uninitialized_var(curval), newval;
2161 int ret;
2163 /* Owner died? */
2164 if (!pi_state->owner)
2165 newtid |= FUTEX_OWNER_DIED;
2168 * We are here either because we stole the rtmutex from the
2169 * previous highest priority waiter or we are the highest priority
2170 * waiter but failed to get the rtmutex the first time.
2171 * We have to replace the newowner TID in the user space variable.
2172 * This must be atomic as we have to preserve the owner died bit here.
2174 * Note: We write the user space value _before_ changing the pi_state
2175 * because we can fault here. Imagine swapped out pages or a fork
2176 * that marked all the anonymous memory readonly for cow.
2178 * Modifying pi_state _before_ the user space value would
2179 * leave the pi_state in an inconsistent state when we fault
2180 * here, because we need to drop the hash bucket lock to
2181 * handle the fault. This might be observed in the PID check
2182 * in lookup_pi_state.
2184 retry:
2185 if (get_futex_value_locked(&uval, uaddr))
2186 goto handle_fault;
2188 while (1) {
2189 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2191 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2192 goto handle_fault;
2193 if (curval == uval)
2194 break;
2195 uval = curval;
2199 * We fixed up user space. Now we need to fix the pi_state
2200 * itself.
2202 if (pi_state->owner != NULL) {
2203 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2204 WARN_ON(list_empty(&pi_state->list));
2205 list_del_init(&pi_state->list);
2206 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2209 pi_state->owner = newowner;
2211 raw_spin_lock_irq(&newowner->pi_lock);
2212 WARN_ON(!list_empty(&pi_state->list));
2213 list_add(&pi_state->list, &newowner->pi_state_list);
2214 raw_spin_unlock_irq(&newowner->pi_lock);
2215 return 0;
2218 * To handle the page fault we need to drop the hash bucket
2219 * lock here. That gives the other task (either the highest priority
2220 * waiter itself or the task which stole the rtmutex) the
2221 * chance to try the fixup of the pi_state. So once we are
2222 * back from handling the fault we need to check the pi_state
2223 * after reacquiring the hash bucket lock and before trying to
2224 * do another fixup. When the fixup has been done already we
2225 * simply return.
2227 handle_fault:
2228 spin_unlock(q->lock_ptr);
2230 ret = fault_in_user_writeable(uaddr);
2232 spin_lock(q->lock_ptr);
2235 * Check if someone else fixed it for us:
2237 if (pi_state->owner != oldowner)
2238 return 0;
2240 if (ret)
2241 return ret;
2243 goto retry;
2246 static long futex_wait_restart(struct restart_block *restart);
2249 * fixup_owner() - Post lock pi_state and corner case management
2250 * @uaddr: user address of the futex
2251 * @q: futex_q (contains pi_state and access to the rt_mutex)
2252 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2254 * After attempting to lock an rt_mutex, this function is called to cleanup
2255 * the pi_state owner as well as handle race conditions that may allow us to
2256 * acquire the lock. Must be called with the hb lock held.
2258 * Return:
2259 * 1 - success, lock taken;
2260 * 0 - success, lock not taken;
2261 * <0 - on error (-EFAULT)
2263 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2265 struct task_struct *owner;
2266 int ret = 0;
2268 if (locked) {
2270 * Got the lock. We might not be the anticipated owner if we
2271 * did a lock-steal - fix up the PI-state in that case:
2273 if (q->pi_state->owner != current)
2274 ret = fixup_pi_state_owner(uaddr, q, current);
2275 goto out;
2279 * Catch the rare case, where the lock was released when we were on the
2280 * way back before we locked the hash bucket.
2282 if (q->pi_state->owner == current) {
2284 * Try to get the rt_mutex now. This might fail as some other
2285 * task acquired the rt_mutex after we removed ourself from the
2286 * rt_mutex waiters list.
2288 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2289 locked = 1;
2290 goto out;
2294 * pi_state is incorrect, some other task did a lock steal and
2295 * we returned due to timeout or signal without taking the
2296 * rt_mutex. Too late.
2298 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2299 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2300 if (!owner)
2301 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2302 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2303 ret = fixup_pi_state_owner(uaddr, q, owner);
2304 goto out;
2308 * Paranoia check. If we did not take the lock, then we should not be
2309 * the owner of the rt_mutex.
2311 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2312 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2313 "pi-state %p\n", ret,
2314 q->pi_state->pi_mutex.owner,
2315 q->pi_state->owner);
2317 out:
2318 return ret ? ret : locked;
2322 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2323 * @hb: the futex hash bucket, must be locked by the caller
2324 * @q: the futex_q to queue up on
2325 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2327 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2328 struct hrtimer_sleeper *timeout)
2331 * The task state is guaranteed to be set before another task can
2332 * wake it. set_current_state() is implemented using smp_store_mb() and
2333 * queue_me() calls spin_unlock() upon completion, both serializing
2334 * access to the hash list and forcing another memory barrier.
2336 set_current_state(TASK_INTERRUPTIBLE);
2337 queue_me(q, hb);
2339 /* Arm the timer */
2340 if (timeout)
2341 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2344 * If we have been removed from the hash list, then another task
2345 * has tried to wake us, and we can skip the call to schedule().
2347 if (likely(!plist_node_empty(&q->list))) {
2349 * If the timer has already expired, current will already be
2350 * flagged for rescheduling. Only call schedule if there
2351 * is no timeout, or if it has yet to expire.
2353 if (!timeout || timeout->task)
2354 freezable_schedule();
2356 __set_current_state(TASK_RUNNING);
2360 * futex_wait_setup() - Prepare to wait on a futex
2361 * @uaddr: the futex userspace address
2362 * @val: the expected value
2363 * @flags: futex flags (FLAGS_SHARED, etc.)
2364 * @q: the associated futex_q
2365 * @hb: storage for hash_bucket pointer to be returned to caller
2367 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2368 * compare it with the expected value. Handle atomic faults internally.
2369 * Return with the hb lock held and a q.key reference on success, and unlocked
2370 * with no q.key reference on failure.
2372 * Return:
2373 * 0 - uaddr contains val and hb has been locked;
2374 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2376 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2377 struct futex_q *q, struct futex_hash_bucket **hb)
2379 u32 uval;
2380 int ret;
2383 * Access the page AFTER the hash-bucket is locked.
2384 * Order is important:
2386 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2387 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2389 * The basic logical guarantee of a futex is that it blocks ONLY
2390 * if cond(var) is known to be true at the time of blocking, for
2391 * any cond. If we locked the hash-bucket after testing *uaddr, that
2392 * would open a race condition where we could block indefinitely with
2393 * cond(var) false, which would violate the guarantee.
2395 * On the other hand, we insert q and release the hash-bucket only
2396 * after testing *uaddr. This guarantees that futex_wait() will NOT
2397 * absorb a wakeup if *uaddr does not match the desired values
2398 * while the syscall executes.
2400 retry:
2401 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2402 if (unlikely(ret != 0))
2403 return ret;
2405 retry_private:
2406 *hb = queue_lock(q);
2408 ret = get_futex_value_locked(&uval, uaddr);
2410 if (ret) {
2411 queue_unlock(*hb);
2413 ret = get_user(uval, uaddr);
2414 if (ret)
2415 goto out;
2417 if (!(flags & FLAGS_SHARED))
2418 goto retry_private;
2420 put_futex_key(&q->key);
2421 goto retry;
2424 if (uval != val) {
2425 queue_unlock(*hb);
2426 ret = -EWOULDBLOCK;
2429 out:
2430 if (ret)
2431 put_futex_key(&q->key);
2432 return ret;
2435 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2436 ktime_t *abs_time, u32 bitset)
2438 struct hrtimer_sleeper timeout, *to = NULL;
2439 struct restart_block *restart;
2440 struct futex_hash_bucket *hb;
2441 struct futex_q q = futex_q_init;
2442 int ret;
2444 if (!bitset)
2445 return -EINVAL;
2446 q.bitset = bitset;
2448 if (abs_time) {
2449 to = &timeout;
2451 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2452 CLOCK_REALTIME : CLOCK_MONOTONIC,
2453 HRTIMER_MODE_ABS);
2454 hrtimer_init_sleeper(to, current);
2455 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2456 current->timer_slack_ns);
2459 retry:
2461 * Prepare to wait on uaddr. On success, holds hb lock and increments
2462 * q.key refs.
2464 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2465 if (ret)
2466 goto out;
2468 /* queue_me and wait for wakeup, timeout, or a signal. */
2469 futex_wait_queue_me(hb, &q, to);
2471 /* If we were woken (and unqueued), we succeeded, whatever. */
2472 ret = 0;
2473 /* unqueue_me() drops q.key ref */
2474 if (!unqueue_me(&q))
2475 goto out;
2476 ret = -ETIMEDOUT;
2477 if (to && !to->task)
2478 goto out;
2481 * We expect signal_pending(current), but we might be the
2482 * victim of a spurious wakeup as well.
2484 if (!signal_pending(current))
2485 goto retry;
2487 ret = -ERESTARTSYS;
2488 if (!abs_time)
2489 goto out;
2491 restart = &current->restart_block;
2492 restart->fn = futex_wait_restart;
2493 restart->futex.uaddr = uaddr;
2494 restart->futex.val = val;
2495 restart->futex.time = abs_time->tv64;
2496 restart->futex.bitset = bitset;
2497 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2499 ret = -ERESTART_RESTARTBLOCK;
2501 out:
2502 if (to) {
2503 hrtimer_cancel(&to->timer);
2504 destroy_hrtimer_on_stack(&to->timer);
2506 return ret;
2510 static long futex_wait_restart(struct restart_block *restart)
2512 u32 __user *uaddr = restart->futex.uaddr;
2513 ktime_t t, *tp = NULL;
2515 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2516 t.tv64 = restart->futex.time;
2517 tp = &t;
2519 restart->fn = do_no_restart_syscall;
2521 return (long)futex_wait(uaddr, restart->futex.flags,
2522 restart->futex.val, tp, restart->futex.bitset);
2527 * Userspace tried a 0 -> TID atomic transition of the futex value
2528 * and failed. The kernel side here does the whole locking operation:
2529 * if there are waiters then it will block as a consequence of relying
2530 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2531 * a 0 value of the futex too.).
2533 * Also serves as futex trylock_pi()'ing, and due semantics.
2535 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2536 ktime_t *time, int trylock)
2538 struct hrtimer_sleeper timeout, *to = NULL;
2539 struct futex_hash_bucket *hb;
2540 struct futex_q q = futex_q_init;
2541 int res, ret;
2543 if (refill_pi_state_cache())
2544 return -ENOMEM;
2546 if (time) {
2547 to = &timeout;
2548 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2549 HRTIMER_MODE_ABS);
2550 hrtimer_init_sleeper(to, current);
2551 hrtimer_set_expires(&to->timer, *time);
2554 retry:
2555 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2556 if (unlikely(ret != 0))
2557 goto out;
2559 retry_private:
2560 hb = queue_lock(&q);
2562 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2563 if (unlikely(ret)) {
2565 * Atomic work succeeded and we got the lock,
2566 * or failed. Either way, we do _not_ block.
2568 switch (ret) {
2569 case 1:
2570 /* We got the lock. */
2571 ret = 0;
2572 goto out_unlock_put_key;
2573 case -EFAULT:
2574 goto uaddr_faulted;
2575 case -EAGAIN:
2577 * Two reasons for this:
2578 * - Task is exiting and we just wait for the
2579 * exit to complete.
2580 * - The user space value changed.
2582 queue_unlock(hb);
2583 put_futex_key(&q.key);
2584 cond_resched();
2585 goto retry;
2586 default:
2587 goto out_unlock_put_key;
2592 * Only actually queue now that the atomic ops are done:
2594 queue_me(&q, hb);
2596 WARN_ON(!q.pi_state);
2598 * Block on the PI mutex:
2600 if (!trylock) {
2601 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2602 } else {
2603 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2604 /* Fixup the trylock return value: */
2605 ret = ret ? 0 : -EWOULDBLOCK;
2608 spin_lock(q.lock_ptr);
2610 * Fixup the pi_state owner and possibly acquire the lock if we
2611 * haven't already.
2613 res = fixup_owner(uaddr, &q, !ret);
2615 * If fixup_owner() returned an error, proprogate that. If it acquired
2616 * the lock, clear our -ETIMEDOUT or -EINTR.
2618 if (res)
2619 ret = (res < 0) ? res : 0;
2622 * If fixup_owner() faulted and was unable to handle the fault, unlock
2623 * it and return the fault to userspace.
2625 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2626 rt_mutex_unlock(&q.pi_state->pi_mutex);
2628 /* Unqueue and drop the lock */
2629 unqueue_me_pi(&q);
2631 goto out_put_key;
2633 out_unlock_put_key:
2634 queue_unlock(hb);
2636 out_put_key:
2637 put_futex_key(&q.key);
2638 out:
2639 if (to)
2640 destroy_hrtimer_on_stack(&to->timer);
2641 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2643 uaddr_faulted:
2644 queue_unlock(hb);
2646 ret = fault_in_user_writeable(uaddr);
2647 if (ret)
2648 goto out_put_key;
2650 if (!(flags & FLAGS_SHARED))
2651 goto retry_private;
2653 put_futex_key(&q.key);
2654 goto retry;
2658 * Userspace attempted a TID -> 0 atomic transition, and failed.
2659 * This is the in-kernel slowpath: we look up the PI state (if any),
2660 * and do the rt-mutex unlock.
2662 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2664 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2665 union futex_key key = FUTEX_KEY_INIT;
2666 struct futex_hash_bucket *hb;
2667 struct futex_q *match;
2668 int ret;
2670 retry:
2671 if (get_user(uval, uaddr))
2672 return -EFAULT;
2674 * We release only a lock we actually own:
2676 if ((uval & FUTEX_TID_MASK) != vpid)
2677 return -EPERM;
2679 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2680 if (ret)
2681 return ret;
2683 hb = hash_futex(&key);
2684 spin_lock(&hb->lock);
2687 * Check waiters first. We do not trust user space values at
2688 * all and we at least want to know if user space fiddled
2689 * with the futex value instead of blindly unlocking.
2691 match = futex_top_waiter(hb, &key);
2692 if (match) {
2693 ret = wake_futex_pi(uaddr, uval, match, hb);
2695 * In case of success wake_futex_pi dropped the hash
2696 * bucket lock.
2698 if (!ret)
2699 goto out_putkey;
2701 * The atomic access to the futex value generated a
2702 * pagefault, so retry the user-access and the wakeup:
2704 if (ret == -EFAULT)
2705 goto pi_faulted;
2707 * A unconditional UNLOCK_PI op raced against a waiter
2708 * setting the FUTEX_WAITERS bit. Try again.
2710 if (ret == -EAGAIN) {
2711 spin_unlock(&hb->lock);
2712 put_futex_key(&key);
2713 goto retry;
2716 * wake_futex_pi has detected invalid state. Tell user
2717 * space.
2719 goto out_unlock;
2723 * We have no kernel internal state, i.e. no waiters in the
2724 * kernel. Waiters which are about to queue themselves are stuck
2725 * on hb->lock. So we can safely ignore them. We do neither
2726 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2727 * owner.
2729 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2730 goto pi_faulted;
2733 * If uval has changed, let user space handle it.
2735 ret = (curval == uval) ? 0 : -EAGAIN;
2737 out_unlock:
2738 spin_unlock(&hb->lock);
2739 out_putkey:
2740 put_futex_key(&key);
2741 return ret;
2743 pi_faulted:
2744 spin_unlock(&hb->lock);
2745 put_futex_key(&key);
2747 ret = fault_in_user_writeable(uaddr);
2748 if (!ret)
2749 goto retry;
2751 return ret;
2755 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2756 * @hb: the hash_bucket futex_q was original enqueued on
2757 * @q: the futex_q woken while waiting to be requeued
2758 * @key2: the futex_key of the requeue target futex
2759 * @timeout: the timeout associated with the wait (NULL if none)
2761 * Detect if the task was woken on the initial futex as opposed to the requeue
2762 * target futex. If so, determine if it was a timeout or a signal that caused
2763 * the wakeup and return the appropriate error code to the caller. Must be
2764 * called with the hb lock held.
2766 * Return:
2767 * 0 = no early wakeup detected;
2768 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2770 static inline
2771 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2772 struct futex_q *q, union futex_key *key2,
2773 struct hrtimer_sleeper *timeout)
2775 int ret = 0;
2778 * With the hb lock held, we avoid races while we process the wakeup.
2779 * We only need to hold hb (and not hb2) to ensure atomicity as the
2780 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2781 * It can't be requeued from uaddr2 to something else since we don't
2782 * support a PI aware source futex for requeue.
2784 if (!match_futex(&q->key, key2)) {
2785 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2787 * We were woken prior to requeue by a timeout or a signal.
2788 * Unqueue the futex_q and determine which it was.
2790 plist_del(&q->list, &hb->chain);
2791 hb_waiters_dec(hb);
2793 /* Handle spurious wakeups gracefully */
2794 ret = -EWOULDBLOCK;
2795 if (timeout && !timeout->task)
2796 ret = -ETIMEDOUT;
2797 else if (signal_pending(current))
2798 ret = -ERESTARTNOINTR;
2800 return ret;
2804 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2805 * @uaddr: the futex we initially wait on (non-pi)
2806 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2807 * the same type, no requeueing from private to shared, etc.
2808 * @val: the expected value of uaddr
2809 * @abs_time: absolute timeout
2810 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2811 * @uaddr2: the pi futex we will take prior to returning to user-space
2813 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2814 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2815 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2816 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2817 * without one, the pi logic would not know which task to boost/deboost, if
2818 * there was a need to.
2820 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2821 * via the following--
2822 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2823 * 2) wakeup on uaddr2 after a requeue
2824 * 3) signal
2825 * 4) timeout
2827 * If 3, cleanup and return -ERESTARTNOINTR.
2829 * If 2, we may then block on trying to take the rt_mutex and return via:
2830 * 5) successful lock
2831 * 6) signal
2832 * 7) timeout
2833 * 8) other lock acquisition failure
2835 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2837 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2839 * Return:
2840 * 0 - On success;
2841 * <0 - On error
2843 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2844 u32 val, ktime_t *abs_time, u32 bitset,
2845 u32 __user *uaddr2)
2847 struct hrtimer_sleeper timeout, *to = NULL;
2848 struct rt_mutex_waiter rt_waiter;
2849 struct futex_hash_bucket *hb;
2850 union futex_key key2 = FUTEX_KEY_INIT;
2851 struct futex_q q = futex_q_init;
2852 int res, ret;
2854 if (uaddr == uaddr2)
2855 return -EINVAL;
2857 if (!bitset)
2858 return -EINVAL;
2860 if (abs_time) {
2861 to = &timeout;
2862 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2863 CLOCK_REALTIME : CLOCK_MONOTONIC,
2864 HRTIMER_MODE_ABS);
2865 hrtimer_init_sleeper(to, current);
2866 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2867 current->timer_slack_ns);
2871 * The waiter is allocated on our stack, manipulated by the requeue
2872 * code while we sleep on uaddr.
2874 debug_rt_mutex_init_waiter(&rt_waiter);
2875 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2876 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2877 rt_waiter.task = NULL;
2879 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2880 if (unlikely(ret != 0))
2881 goto out;
2883 q.bitset = bitset;
2884 q.rt_waiter = &rt_waiter;
2885 q.requeue_pi_key = &key2;
2888 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2889 * count.
2891 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2892 if (ret)
2893 goto out_key2;
2896 * The check above which compares uaddrs is not sufficient for
2897 * shared futexes. We need to compare the keys:
2899 if (match_futex(&q.key, &key2)) {
2900 queue_unlock(hb);
2901 ret = -EINVAL;
2902 goto out_put_keys;
2905 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2906 futex_wait_queue_me(hb, &q, to);
2908 spin_lock(&hb->lock);
2909 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2910 spin_unlock(&hb->lock);
2911 if (ret)
2912 goto out_put_keys;
2915 * In order for us to be here, we know our q.key == key2, and since
2916 * we took the hb->lock above, we also know that futex_requeue() has
2917 * completed and we no longer have to concern ourselves with a wakeup
2918 * race with the atomic proxy lock acquisition by the requeue code. The
2919 * futex_requeue dropped our key1 reference and incremented our key2
2920 * reference count.
2923 /* Check if the requeue code acquired the second futex for us. */
2924 if (!q.rt_waiter) {
2926 * Got the lock. We might not be the anticipated owner if we
2927 * did a lock-steal - fix up the PI-state in that case.
2929 if (q.pi_state && (q.pi_state->owner != current)) {
2930 spin_lock(q.lock_ptr);
2931 ret = fixup_pi_state_owner(uaddr2, &q, current);
2932 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2933 rt_mutex_unlock(&q.pi_state->pi_mutex);
2935 * Drop the reference to the pi state which
2936 * the requeue_pi() code acquired for us.
2938 free_pi_state(q.pi_state);
2939 spin_unlock(q.lock_ptr);
2941 } else {
2942 struct rt_mutex *pi_mutex;
2945 * We have been woken up by futex_unlock_pi(), a timeout, or a
2946 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2947 * the pi_state.
2949 WARN_ON(!q.pi_state);
2950 pi_mutex = &q.pi_state->pi_mutex;
2951 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
2953 spin_lock(q.lock_ptr);
2954 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
2955 ret = 0;
2957 debug_rt_mutex_free_waiter(&rt_waiter);
2959 * Fixup the pi_state owner and possibly acquire the lock if we
2960 * haven't already.
2962 res = fixup_owner(uaddr2, &q, !ret);
2964 * If fixup_owner() returned an error, proprogate that. If it
2965 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2967 if (res)
2968 ret = (res < 0) ? res : 0;
2971 * If fixup_pi_state_owner() faulted and was unable to handle
2972 * the fault, unlock the rt_mutex and return the fault to
2973 * userspace.
2975 if (ret && rt_mutex_owner(pi_mutex) == current)
2976 rt_mutex_unlock(pi_mutex);
2978 /* Unqueue and drop the lock. */
2979 unqueue_me_pi(&q);
2982 if (ret == -EINTR) {
2984 * We've already been requeued, but cannot restart by calling
2985 * futex_lock_pi() directly. We could restart this syscall, but
2986 * it would detect that the user space "val" changed and return
2987 * -EWOULDBLOCK. Save the overhead of the restart and return
2988 * -EWOULDBLOCK directly.
2990 ret = -EWOULDBLOCK;
2993 out_put_keys:
2994 put_futex_key(&q.key);
2995 out_key2:
2996 put_futex_key(&key2);
2998 out:
2999 if (to) {
3000 hrtimer_cancel(&to->timer);
3001 destroy_hrtimer_on_stack(&to->timer);
3003 return ret;
3007 * Support for robust futexes: the kernel cleans up held futexes at
3008 * thread exit time.
3010 * Implementation: user-space maintains a per-thread list of locks it
3011 * is holding. Upon do_exit(), the kernel carefully walks this list,
3012 * and marks all locks that are owned by this thread with the
3013 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3014 * always manipulated with the lock held, so the list is private and
3015 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3016 * field, to allow the kernel to clean up if the thread dies after
3017 * acquiring the lock, but just before it could have added itself to
3018 * the list. There can only be one such pending lock.
3022 * sys_set_robust_list() - Set the robust-futex list head of a task
3023 * @head: pointer to the list-head
3024 * @len: length of the list-head, as userspace expects
3026 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3027 size_t, len)
3029 if (!futex_cmpxchg_enabled)
3030 return -ENOSYS;
3032 * The kernel knows only one size for now:
3034 if (unlikely(len != sizeof(*head)))
3035 return -EINVAL;
3037 current->robust_list = head;
3039 return 0;
3043 * sys_get_robust_list() - Get the robust-futex list head of a task
3044 * @pid: pid of the process [zero for current task]
3045 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3046 * @len_ptr: pointer to a length field, the kernel fills in the header size
3048 SYSCALL_DEFINE3(get_robust_list, int, pid,
3049 struct robust_list_head __user * __user *, head_ptr,
3050 size_t __user *, len_ptr)
3052 struct robust_list_head __user *head;
3053 unsigned long ret;
3054 struct task_struct *p;
3056 if (!futex_cmpxchg_enabled)
3057 return -ENOSYS;
3059 rcu_read_lock();
3061 ret = -ESRCH;
3062 if (!pid)
3063 p = current;
3064 else {
3065 p = find_task_by_vpid(pid);
3066 if (!p)
3067 goto err_unlock;
3070 ret = -EPERM;
3071 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3072 goto err_unlock;
3074 head = p->robust_list;
3075 rcu_read_unlock();
3077 if (put_user(sizeof(*head), len_ptr))
3078 return -EFAULT;
3079 return put_user(head, head_ptr);
3081 err_unlock:
3082 rcu_read_unlock();
3084 return ret;
3088 * Process a futex-list entry, check whether it's owned by the
3089 * dying task, and do notification if so:
3091 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3093 u32 uval, uninitialized_var(nval), mval;
3095 /* Futex address must be 32bit aligned */
3096 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3097 return -1;
3099 retry:
3100 if (get_user(uval, uaddr))
3101 return -1;
3103 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3105 * Ok, this dying thread is truly holding a futex
3106 * of interest. Set the OWNER_DIED bit atomically
3107 * via cmpxchg, and if the value had FUTEX_WAITERS
3108 * set, wake up a waiter (if any). (We have to do a
3109 * futex_wake() even if OWNER_DIED is already set -
3110 * to handle the rare but possible case of recursive
3111 * thread-death.) The rest of the cleanup is done in
3112 * userspace.
3114 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3116 * We are not holding a lock here, but we want to have
3117 * the pagefault_disable/enable() protection because
3118 * we want to handle the fault gracefully. If the
3119 * access fails we try to fault in the futex with R/W
3120 * verification via get_user_pages. get_user() above
3121 * does not guarantee R/W access. If that fails we
3122 * give up and leave the futex locked.
3124 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3125 if (fault_in_user_writeable(uaddr))
3126 return -1;
3127 goto retry;
3129 if (nval != uval)
3130 goto retry;
3133 * Wake robust non-PI futexes here. The wakeup of
3134 * PI futexes happens in exit_pi_state():
3136 if (!pi && (uval & FUTEX_WAITERS))
3137 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3139 return 0;
3143 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3145 static inline int fetch_robust_entry(struct robust_list __user **entry,
3146 struct robust_list __user * __user *head,
3147 unsigned int *pi)
3149 unsigned long uentry;
3151 if (get_user(uentry, (unsigned long __user *)head))
3152 return -EFAULT;
3154 *entry = (void __user *)(uentry & ~1UL);
3155 *pi = uentry & 1;
3157 return 0;
3161 * Walk curr->robust_list (very carefully, it's a userspace list!)
3162 * and mark any locks found there dead, and notify any waiters.
3164 * We silently return on any sign of list-walking problem.
3166 void exit_robust_list(struct task_struct *curr)
3168 struct robust_list_head __user *head = curr->robust_list;
3169 struct robust_list __user *entry, *next_entry, *pending;
3170 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3171 unsigned int uninitialized_var(next_pi);
3172 unsigned long futex_offset;
3173 int rc;
3175 if (!futex_cmpxchg_enabled)
3176 return;
3179 * Fetch the list head (which was registered earlier, via
3180 * sys_set_robust_list()):
3182 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3183 return;
3185 * Fetch the relative futex offset:
3187 if (get_user(futex_offset, &head->futex_offset))
3188 return;
3190 * Fetch any possibly pending lock-add first, and handle it
3191 * if it exists:
3193 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3194 return;
3196 next_entry = NULL; /* avoid warning with gcc */
3197 while (entry != &head->list) {
3199 * Fetch the next entry in the list before calling
3200 * handle_futex_death:
3202 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3204 * A pending lock might already be on the list, so
3205 * don't process it twice:
3207 if (entry != pending)
3208 if (handle_futex_death((void __user *)entry + futex_offset,
3209 curr, pi))
3210 return;
3211 if (rc)
3212 return;
3213 entry = next_entry;
3214 pi = next_pi;
3216 * Avoid excessively long or circular lists:
3218 if (!--limit)
3219 break;
3221 cond_resched();
3224 if (pending)
3225 handle_futex_death((void __user *)pending + futex_offset,
3226 curr, pip);
3229 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3230 u32 __user *uaddr2, u32 val2, u32 val3)
3232 int cmd = op & FUTEX_CMD_MASK;
3233 unsigned int flags = 0;
3235 if (!(op & FUTEX_PRIVATE_FLAG))
3236 flags |= FLAGS_SHARED;
3238 if (op & FUTEX_CLOCK_REALTIME) {
3239 flags |= FLAGS_CLOCKRT;
3240 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3241 return -ENOSYS;
3244 switch (cmd) {
3245 case FUTEX_LOCK_PI:
3246 case FUTEX_UNLOCK_PI:
3247 case FUTEX_TRYLOCK_PI:
3248 case FUTEX_WAIT_REQUEUE_PI:
3249 case FUTEX_CMP_REQUEUE_PI:
3250 if (!futex_cmpxchg_enabled)
3251 return -ENOSYS;
3254 switch (cmd) {
3255 case FUTEX_WAIT:
3256 val3 = FUTEX_BITSET_MATCH_ANY;
3257 case FUTEX_WAIT_BITSET:
3258 return futex_wait(uaddr, flags, val, timeout, val3);
3259 case FUTEX_WAKE:
3260 val3 = FUTEX_BITSET_MATCH_ANY;
3261 case FUTEX_WAKE_BITSET:
3262 return futex_wake(uaddr, flags, val, val3);
3263 case FUTEX_REQUEUE:
3264 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3265 case FUTEX_CMP_REQUEUE:
3266 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3267 case FUTEX_WAKE_OP:
3268 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3269 case FUTEX_LOCK_PI:
3270 return futex_lock_pi(uaddr, flags, timeout, 0);
3271 case FUTEX_UNLOCK_PI:
3272 return futex_unlock_pi(uaddr, flags);
3273 case FUTEX_TRYLOCK_PI:
3274 return futex_lock_pi(uaddr, flags, NULL, 1);
3275 case FUTEX_WAIT_REQUEUE_PI:
3276 val3 = FUTEX_BITSET_MATCH_ANY;
3277 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3278 uaddr2);
3279 case FUTEX_CMP_REQUEUE_PI:
3280 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3282 return -ENOSYS;
3286 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3287 struct timespec __user *, utime, u32 __user *, uaddr2,
3288 u32, val3)
3290 struct timespec ts;
3291 ktime_t t, *tp = NULL;
3292 u32 val2 = 0;
3293 int cmd = op & FUTEX_CMD_MASK;
3295 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3296 cmd == FUTEX_WAIT_BITSET ||
3297 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3298 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3299 return -EFAULT;
3300 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3301 return -EFAULT;
3302 if (!timespec_valid(&ts))
3303 return -EINVAL;
3305 t = timespec_to_ktime(ts);
3306 if (cmd == FUTEX_WAIT)
3307 t = ktime_add_safe(ktime_get(), t);
3308 tp = &t;
3311 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3312 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3314 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3315 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3316 val2 = (u32) (unsigned long) utime;
3318 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3321 static void __init futex_detect_cmpxchg(void)
3323 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3324 u32 curval;
3327 * This will fail and we want it. Some arch implementations do
3328 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3329 * functionality. We want to know that before we call in any
3330 * of the complex code paths. Also we want to prevent
3331 * registration of robust lists in that case. NULL is
3332 * guaranteed to fault and we get -EFAULT on functional
3333 * implementation, the non-functional ones will return
3334 * -ENOSYS.
3336 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3337 futex_cmpxchg_enabled = 1;
3338 #endif
3341 static int __init futex_init(void)
3343 unsigned int futex_shift;
3344 unsigned long i;
3346 #if CONFIG_BASE_SMALL
3347 futex_hashsize = 16;
3348 #else
3349 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3350 #endif
3352 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3353 futex_hashsize, 0,
3354 futex_hashsize < 256 ? HASH_SMALL : 0,
3355 &futex_shift, NULL,
3356 futex_hashsize, futex_hashsize);
3357 futex_hashsize = 1UL << futex_shift;
3359 futex_detect_cmpxchg();
3361 for (i = 0; i < futex_hashsize; i++) {
3362 atomic_set(&futex_queues[i].waiters, 0);
3363 plist_head_init(&futex_queues[i].chain);
3364 spin_lock_init(&futex_queues[i].lock);
3367 return 0;
3369 core_initcall(futex_init);