2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item
)
28 static inline void count_compact_events(enum vm_event_item item
, long delta
)
30 count_vm_events(item
, delta
);
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/compaction.h>
42 static unsigned long release_freepages(struct list_head
*freelist
)
44 struct page
*page
, *next
;
45 unsigned long high_pfn
= 0;
47 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
48 unsigned long pfn
= page_to_pfn(page
);
58 static void map_pages(struct list_head
*list
)
62 list_for_each_entry(page
, list
, lru
) {
63 arch_alloc_page(page
, 0);
64 kernel_map_pages(page
, 1, 1);
65 kasan_alloc_pages(page
, 0);
69 static inline bool migrate_async_suitable(int migratetype
)
71 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
75 * Check that the whole (or subset of) a pageblock given by the interval of
76 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
77 * with the migration of free compaction scanner. The scanners then need to
78 * use only pfn_valid_within() check for arches that allow holes within
81 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
83 * It's possible on some configurations to have a setup like node0 node1 node0
84 * i.e. it's possible that all pages within a zones range of pages do not
85 * belong to a single zone. We assume that a border between node0 and node1
86 * can occur within a single pageblock, but not a node0 node1 node0
87 * interleaving within a single pageblock. It is therefore sufficient to check
88 * the first and last page of a pageblock and avoid checking each individual
89 * page in a pageblock.
91 static struct page
*pageblock_pfn_to_page(unsigned long start_pfn
,
92 unsigned long end_pfn
, struct zone
*zone
)
94 struct page
*start_page
;
95 struct page
*end_page
;
97 /* end_pfn is one past the range we are checking */
100 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
103 start_page
= pfn_to_page(start_pfn
);
105 if (page_zone(start_page
) != zone
)
108 end_page
= pfn_to_page(end_pfn
);
110 /* This gives a shorter code than deriving page_zone(end_page) */
111 if (page_zone_id(start_page
) != page_zone_id(end_page
))
117 #ifdef CONFIG_COMPACTION
119 /* Do not skip compaction more than 64 times */
120 #define COMPACT_MAX_DEFER_SHIFT 6
123 * Compaction is deferred when compaction fails to result in a page
124 * allocation success. 1 << compact_defer_limit compactions are skipped up
125 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
127 void defer_compaction(struct zone
*zone
, int order
)
129 zone
->compact_considered
= 0;
130 zone
->compact_defer_shift
++;
132 if (order
< zone
->compact_order_failed
)
133 zone
->compact_order_failed
= order
;
135 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
136 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
138 trace_mm_compaction_defer_compaction(zone
, order
);
141 /* Returns true if compaction should be skipped this time */
142 bool compaction_deferred(struct zone
*zone
, int order
)
144 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
146 if (order
< zone
->compact_order_failed
)
149 /* Avoid possible overflow */
150 if (++zone
->compact_considered
> defer_limit
)
151 zone
->compact_considered
= defer_limit
;
153 if (zone
->compact_considered
>= defer_limit
)
156 trace_mm_compaction_deferred(zone
, order
);
162 * Update defer tracking counters after successful compaction of given order,
163 * which means an allocation either succeeded (alloc_success == true) or is
164 * expected to succeed.
166 void compaction_defer_reset(struct zone
*zone
, int order
,
170 zone
->compact_considered
= 0;
171 zone
->compact_defer_shift
= 0;
173 if (order
>= zone
->compact_order_failed
)
174 zone
->compact_order_failed
= order
+ 1;
176 trace_mm_compaction_defer_reset(zone
, order
);
179 /* Returns true if restarting compaction after many failures */
180 bool compaction_restarting(struct zone
*zone
, int order
)
182 if (order
< zone
->compact_order_failed
)
185 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
186 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
189 /* Returns true if the pageblock should be scanned for pages to isolate. */
190 static inline bool isolation_suitable(struct compact_control
*cc
,
193 if (cc
->ignore_skip_hint
)
196 return !get_pageblock_skip(page
);
199 static void reset_cached_positions(struct zone
*zone
)
201 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
202 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
203 zone
->compact_cached_free_pfn
=
204 round_down(zone_end_pfn(zone
) - 1, pageblock_nr_pages
);
208 * This function is called to clear all cached information on pageblocks that
209 * should be skipped for page isolation when the migrate and free page scanner
212 static void __reset_isolation_suitable(struct zone
*zone
)
214 unsigned long start_pfn
= zone
->zone_start_pfn
;
215 unsigned long end_pfn
= zone_end_pfn(zone
);
218 zone
->compact_blockskip_flush
= false;
220 /* Walk the zone and mark every pageblock as suitable for isolation */
221 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
229 page
= pfn_to_page(pfn
);
230 if (zone
!= page_zone(page
))
233 clear_pageblock_skip(page
);
236 reset_cached_positions(zone
);
239 void reset_isolation_suitable(pg_data_t
*pgdat
)
243 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
244 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
245 if (!populated_zone(zone
))
248 /* Only flush if a full compaction finished recently */
249 if (zone
->compact_blockskip_flush
)
250 __reset_isolation_suitable(zone
);
255 * If no pages were isolated then mark this pageblock to be skipped in the
256 * future. The information is later cleared by __reset_isolation_suitable().
258 static void update_pageblock_skip(struct compact_control
*cc
,
259 struct page
*page
, unsigned long nr_isolated
,
260 bool migrate_scanner
)
262 struct zone
*zone
= cc
->zone
;
265 if (cc
->ignore_skip_hint
)
274 set_pageblock_skip(page
);
276 pfn
= page_to_pfn(page
);
278 /* Update where async and sync compaction should restart */
279 if (migrate_scanner
) {
280 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
281 zone
->compact_cached_migrate_pfn
[0] = pfn
;
282 if (cc
->mode
!= MIGRATE_ASYNC
&&
283 pfn
> zone
->compact_cached_migrate_pfn
[1])
284 zone
->compact_cached_migrate_pfn
[1] = pfn
;
286 if (pfn
< zone
->compact_cached_free_pfn
)
287 zone
->compact_cached_free_pfn
= pfn
;
291 static inline bool isolation_suitable(struct compact_control
*cc
,
297 static void update_pageblock_skip(struct compact_control
*cc
,
298 struct page
*page
, unsigned long nr_isolated
,
299 bool migrate_scanner
)
302 #endif /* CONFIG_COMPACTION */
305 * Compaction requires the taking of some coarse locks that are potentially
306 * very heavily contended. For async compaction, back out if the lock cannot
307 * be taken immediately. For sync compaction, spin on the lock if needed.
309 * Returns true if the lock is held
310 * Returns false if the lock is not held and compaction should abort
312 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
313 struct compact_control
*cc
)
315 if (cc
->mode
== MIGRATE_ASYNC
) {
316 if (!spin_trylock_irqsave(lock
, *flags
)) {
317 cc
->contended
= COMPACT_CONTENDED_LOCK
;
321 spin_lock_irqsave(lock
, *flags
);
328 * Compaction requires the taking of some coarse locks that are potentially
329 * very heavily contended. The lock should be periodically unlocked to avoid
330 * having disabled IRQs for a long time, even when there is nobody waiting on
331 * the lock. It might also be that allowing the IRQs will result in
332 * need_resched() becoming true. If scheduling is needed, async compaction
333 * aborts. Sync compaction schedules.
334 * Either compaction type will also abort if a fatal signal is pending.
335 * In either case if the lock was locked, it is dropped and not regained.
337 * Returns true if compaction should abort due to fatal signal pending, or
338 * async compaction due to need_resched()
339 * Returns false when compaction can continue (sync compaction might have
342 static bool compact_unlock_should_abort(spinlock_t
*lock
,
343 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
346 spin_unlock_irqrestore(lock
, flags
);
350 if (fatal_signal_pending(current
)) {
351 cc
->contended
= COMPACT_CONTENDED_SCHED
;
355 if (need_resched()) {
356 if (cc
->mode
== MIGRATE_ASYNC
) {
357 cc
->contended
= COMPACT_CONTENDED_SCHED
;
367 * Aside from avoiding lock contention, compaction also periodically checks
368 * need_resched() and either schedules in sync compaction or aborts async
369 * compaction. This is similar to what compact_unlock_should_abort() does, but
370 * is used where no lock is concerned.
372 * Returns false when no scheduling was needed, or sync compaction scheduled.
373 * Returns true when async compaction should abort.
375 static inline bool compact_should_abort(struct compact_control
*cc
)
377 /* async compaction aborts if contended */
378 if (need_resched()) {
379 if (cc
->mode
== MIGRATE_ASYNC
) {
380 cc
->contended
= COMPACT_CONTENDED_SCHED
;
391 * Isolate free pages onto a private freelist. If @strict is true, will abort
392 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
393 * (even though it may still end up isolating some pages).
395 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
396 unsigned long *start_pfn
,
397 unsigned long end_pfn
,
398 struct list_head
*freelist
,
401 int nr_scanned
= 0, total_isolated
= 0;
402 struct page
*cursor
, *valid_page
= NULL
;
403 unsigned long flags
= 0;
405 unsigned long blockpfn
= *start_pfn
;
407 cursor
= pfn_to_page(blockpfn
);
409 /* Isolate free pages. */
410 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
412 struct page
*page
= cursor
;
415 * Periodically drop the lock (if held) regardless of its
416 * contention, to give chance to IRQs. Abort if fatal signal
417 * pending or async compaction detects need_resched()
419 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
420 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
425 if (!pfn_valid_within(blockpfn
))
432 * For compound pages such as THP and hugetlbfs, we can save
433 * potentially a lot of iterations if we skip them at once.
434 * The check is racy, but we can consider only valid values
435 * and the only danger is skipping too much.
437 if (PageCompound(page
)) {
438 unsigned int comp_order
= compound_order(page
);
440 if (likely(comp_order
< MAX_ORDER
)) {
441 blockpfn
+= (1UL << comp_order
) - 1;
442 cursor
+= (1UL << comp_order
) - 1;
448 if (!PageBuddy(page
))
452 * If we already hold the lock, we can skip some rechecking.
453 * Note that if we hold the lock now, checked_pageblock was
454 * already set in some previous iteration (or strict is true),
455 * so it is correct to skip the suitable migration target
460 * The zone lock must be held to isolate freepages.
461 * Unfortunately this is a very coarse lock and can be
462 * heavily contended if there are parallel allocations
463 * or parallel compactions. For async compaction do not
464 * spin on the lock and we acquire the lock as late as
467 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
472 /* Recheck this is a buddy page under lock */
473 if (!PageBuddy(page
))
477 /* Found a free page, break it into order-0 pages */
478 isolated
= split_free_page(page
);
482 total_isolated
+= isolated
;
483 cc
->nr_freepages
+= isolated
;
484 for (i
= 0; i
< isolated
; i
++) {
485 list_add(&page
->lru
, freelist
);
488 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
489 blockpfn
+= isolated
;
492 /* Advance to the end of split page */
493 blockpfn
+= isolated
- 1;
494 cursor
+= isolated
- 1;
506 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
509 * There is a tiny chance that we have read bogus compound_order(),
510 * so be careful to not go outside of the pageblock.
512 if (unlikely(blockpfn
> end_pfn
))
515 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
516 nr_scanned
, total_isolated
);
518 /* Record how far we have got within the block */
519 *start_pfn
= blockpfn
;
522 * If strict isolation is requested by CMA then check that all the
523 * pages requested were isolated. If there were any failures, 0 is
524 * returned and CMA will fail.
526 if (strict
&& blockpfn
< end_pfn
)
529 /* Update the pageblock-skip if the whole pageblock was scanned */
530 if (blockpfn
== end_pfn
)
531 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
533 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
535 count_compact_events(COMPACTISOLATED
, total_isolated
);
536 return total_isolated
;
540 * isolate_freepages_range() - isolate free pages.
541 * @start_pfn: The first PFN to start isolating.
542 * @end_pfn: The one-past-last PFN.
544 * Non-free pages, invalid PFNs, or zone boundaries within the
545 * [start_pfn, end_pfn) range are considered errors, cause function to
546 * undo its actions and return zero.
548 * Otherwise, function returns one-past-the-last PFN of isolated page
549 * (which may be greater then end_pfn if end fell in a middle of
553 isolate_freepages_range(struct compact_control
*cc
,
554 unsigned long start_pfn
, unsigned long end_pfn
)
556 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
560 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
561 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
562 block_start_pfn
= cc
->zone
->zone_start_pfn
;
563 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
565 for (; pfn
< end_pfn
; pfn
+= isolated
,
566 block_start_pfn
= block_end_pfn
,
567 block_end_pfn
+= pageblock_nr_pages
) {
568 /* Protect pfn from changing by isolate_freepages_block */
569 unsigned long isolate_start_pfn
= pfn
;
571 block_end_pfn
= min(block_end_pfn
, end_pfn
);
574 * pfn could pass the block_end_pfn if isolated freepage
575 * is more than pageblock order. In this case, we adjust
576 * scanning range to right one.
578 if (pfn
>= block_end_pfn
) {
579 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
580 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
581 block_end_pfn
= min(block_end_pfn
, end_pfn
);
584 if (!pageblock_pfn_to_page(block_start_pfn
,
585 block_end_pfn
, cc
->zone
))
588 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
589 block_end_pfn
, &freelist
, true);
592 * In strict mode, isolate_freepages_block() returns 0 if
593 * there are any holes in the block (ie. invalid PFNs or
600 * If we managed to isolate pages, it is always (1 << n) *
601 * pageblock_nr_pages for some non-negative n. (Max order
602 * page may span two pageblocks).
606 /* split_free_page does not map the pages */
607 map_pages(&freelist
);
610 /* Loop terminated early, cleanup. */
611 release_freepages(&freelist
);
615 /* We don't use freelists for anything. */
619 /* Update the number of anon and file isolated pages in the zone */
620 static void acct_isolated(struct zone
*zone
, struct compact_control
*cc
)
623 unsigned int count
[2] = { 0, };
625 if (list_empty(&cc
->migratepages
))
628 list_for_each_entry(page
, &cc
->migratepages
, lru
)
629 count
[!!page_is_file_cache(page
)]++;
631 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
632 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
635 /* Similar to reclaim, but different enough that they don't share logic */
636 static bool too_many_isolated(struct zone
*zone
)
638 unsigned long active
, inactive
, isolated
;
640 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
641 zone_page_state(zone
, NR_INACTIVE_ANON
);
642 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
643 zone_page_state(zone
, NR_ACTIVE_ANON
);
644 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
645 zone_page_state(zone
, NR_ISOLATED_ANON
);
647 return isolated
> (inactive
+ active
) / 2;
651 * isolate_migratepages_block() - isolate all migrate-able pages within
653 * @cc: Compaction control structure.
654 * @low_pfn: The first PFN to isolate
655 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
656 * @isolate_mode: Isolation mode to be used.
658 * Isolate all pages that can be migrated from the range specified by
659 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
660 * Returns zero if there is a fatal signal pending, otherwise PFN of the
661 * first page that was not scanned (which may be both less, equal to or more
664 * The pages are isolated on cc->migratepages list (not required to be empty),
665 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
666 * is neither read nor updated.
669 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
670 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
672 struct zone
*zone
= cc
->zone
;
673 unsigned long nr_scanned
= 0, nr_isolated
= 0;
674 struct list_head
*migratelist
= &cc
->migratepages
;
675 struct lruvec
*lruvec
;
676 unsigned long flags
= 0;
678 struct page
*page
= NULL
, *valid_page
= NULL
;
679 unsigned long start_pfn
= low_pfn
;
682 * Ensure that there are not too many pages isolated from the LRU
683 * list by either parallel reclaimers or compaction. If there are,
684 * delay for some time until fewer pages are isolated
686 while (unlikely(too_many_isolated(zone
))) {
687 /* async migration should just abort */
688 if (cc
->mode
== MIGRATE_ASYNC
)
691 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
693 if (fatal_signal_pending(current
))
697 if (compact_should_abort(cc
))
700 /* Time to isolate some pages for migration */
701 for (; low_pfn
< end_pfn
; low_pfn
++) {
705 * Periodically drop the lock (if held) regardless of its
706 * contention, to give chance to IRQs. Abort async compaction
709 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
710 && compact_unlock_should_abort(&zone
->lru_lock
, flags
,
714 if (!pfn_valid_within(low_pfn
))
718 page
= pfn_to_page(low_pfn
);
724 * Skip if free. We read page order here without zone lock
725 * which is generally unsafe, but the race window is small and
726 * the worst thing that can happen is that we skip some
727 * potential isolation targets.
729 if (PageBuddy(page
)) {
730 unsigned long freepage_order
= page_order_unsafe(page
);
733 * Without lock, we cannot be sure that what we got is
734 * a valid page order. Consider only values in the
735 * valid order range to prevent low_pfn overflow.
737 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
738 low_pfn
+= (1UL << freepage_order
) - 1;
743 * Check may be lockless but that's ok as we recheck later.
744 * It's possible to migrate LRU pages and balloon pages
745 * Skip any other type of page
747 is_lru
= PageLRU(page
);
749 if (unlikely(balloon_page_movable(page
))) {
750 if (balloon_page_isolate(page
)) {
751 /* Successfully isolated */
752 goto isolate_success
;
758 * Regardless of being on LRU, compound pages such as THP and
759 * hugetlbfs are not to be compacted. We can potentially save
760 * a lot of iterations if we skip them at once. The check is
761 * racy, but we can consider only valid values and the only
762 * danger is skipping too much.
764 if (PageCompound(page
)) {
765 unsigned int comp_order
= compound_order(page
);
767 if (likely(comp_order
< MAX_ORDER
))
768 low_pfn
+= (1UL << comp_order
) - 1;
777 * Migration will fail if an anonymous page is pinned in memory,
778 * so avoid taking lru_lock and isolating it unnecessarily in an
779 * admittedly racy check.
781 if (!page_mapping(page
) &&
782 page_count(page
) > page_mapcount(page
))
785 /* If we already hold the lock, we can skip some rechecking */
787 locked
= compact_trylock_irqsave(&zone
->lru_lock
,
792 /* Recheck PageLRU and PageCompound under lock */
797 * Page become compound since the non-locked check,
798 * and it's on LRU. It can only be a THP so the order
799 * is safe to read and it's 0 for tail pages.
801 if (unlikely(PageCompound(page
))) {
802 low_pfn
+= (1UL << compound_order(page
)) - 1;
807 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
809 /* Try isolate the page */
810 if (__isolate_lru_page(page
, isolate_mode
) != 0)
813 VM_BUG_ON_PAGE(PageCompound(page
), page
);
815 /* Successfully isolated */
816 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
819 list_add(&page
->lru
, migratelist
);
820 cc
->nr_migratepages
++;
823 /* Avoid isolating too much */
824 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
831 * The PageBuddy() check could have potentially brought us outside
832 * the range to be scanned.
834 if (unlikely(low_pfn
> end_pfn
))
838 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
841 * Update the pageblock-skip information and cached scanner pfn,
842 * if the whole pageblock was scanned without isolating any page.
844 if (low_pfn
== end_pfn
)
845 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
847 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
848 nr_scanned
, nr_isolated
);
850 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
852 count_compact_events(COMPACTISOLATED
, nr_isolated
);
858 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
859 * @cc: Compaction control structure.
860 * @start_pfn: The first PFN to start isolating.
861 * @end_pfn: The one-past-last PFN.
863 * Returns zero if isolation fails fatally due to e.g. pending signal.
864 * Otherwise, function returns one-past-the-last PFN of isolated page
865 * (which may be greater than end_pfn if end fell in a middle of a THP page).
868 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
869 unsigned long end_pfn
)
871 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
873 /* Scan block by block. First and last block may be incomplete */
875 block_start_pfn
= pfn
& ~(pageblock_nr_pages
- 1);
876 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
877 block_start_pfn
= cc
->zone
->zone_start_pfn
;
878 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
880 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
881 block_start_pfn
= block_end_pfn
,
882 block_end_pfn
+= pageblock_nr_pages
) {
884 block_end_pfn
= min(block_end_pfn
, end_pfn
);
886 if (!pageblock_pfn_to_page(block_start_pfn
,
887 block_end_pfn
, cc
->zone
))
890 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
891 ISOLATE_UNEVICTABLE
);
896 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
899 acct_isolated(cc
->zone
, cc
);
904 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
905 #ifdef CONFIG_COMPACTION
907 /* Returns true if the page is within a block suitable for migration to */
908 static bool suitable_migration_target(struct page
*page
)
910 /* If the page is a large free page, then disallow migration */
911 if (PageBuddy(page
)) {
913 * We are checking page_order without zone->lock taken. But
914 * the only small danger is that we skip a potentially suitable
915 * pageblock, so it's not worth to check order for valid range.
917 if (page_order_unsafe(page
) >= pageblock_order
)
921 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
922 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
925 /* Otherwise skip the block */
930 * Test whether the free scanner has reached the same or lower pageblock than
931 * the migration scanner, and compaction should thus terminate.
933 static inline bool compact_scanners_met(struct compact_control
*cc
)
935 return (cc
->free_pfn
>> pageblock_order
)
936 <= (cc
->migrate_pfn
>> pageblock_order
);
940 * Based on information in the current compact_control, find blocks
941 * suitable for isolating free pages from and then isolate them.
943 static void isolate_freepages(struct compact_control
*cc
)
945 struct zone
*zone
= cc
->zone
;
947 unsigned long block_start_pfn
; /* start of current pageblock */
948 unsigned long isolate_start_pfn
; /* exact pfn we start at */
949 unsigned long block_end_pfn
; /* end of current pageblock */
950 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
951 struct list_head
*freelist
= &cc
->freepages
;
954 * Initialise the free scanner. The starting point is where we last
955 * successfully isolated from, zone-cached value, or the end of the
956 * zone when isolating for the first time. For looping we also need
957 * this pfn aligned down to the pageblock boundary, because we do
958 * block_start_pfn -= pageblock_nr_pages in the for loop.
959 * For ending point, take care when isolating in last pageblock of a
960 * a zone which ends in the middle of a pageblock.
961 * The low boundary is the end of the pageblock the migration scanner
964 isolate_start_pfn
= cc
->free_pfn
;
965 block_start_pfn
= cc
->free_pfn
& ~(pageblock_nr_pages
-1);
966 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
968 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
971 * Isolate free pages until enough are available to migrate the
972 * pages on cc->migratepages. We stop searching if the migrate
973 * and free page scanners meet or enough free pages are isolated.
975 for (; block_start_pfn
>= low_pfn
;
976 block_end_pfn
= block_start_pfn
,
977 block_start_pfn
-= pageblock_nr_pages
,
978 isolate_start_pfn
= block_start_pfn
) {
980 * This can iterate a massively long zone without finding any
981 * suitable migration targets, so periodically check if we need
982 * to schedule, or even abort async compaction.
984 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
985 && compact_should_abort(cc
))
988 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
993 /* Check the block is suitable for migration */
994 if (!suitable_migration_target(page
))
997 /* If isolation recently failed, do not retry */
998 if (!isolation_suitable(cc
, page
))
1001 /* Found a block suitable for isolating free pages from. */
1002 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1006 * If we isolated enough freepages, or aborted due to lock
1007 * contention, terminate.
1009 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1011 if (isolate_start_pfn
>= block_end_pfn
) {
1013 * Restart at previous pageblock if more
1014 * freepages can be isolated next time.
1017 block_start_pfn
- pageblock_nr_pages
;
1020 } else if (isolate_start_pfn
< block_end_pfn
) {
1022 * If isolation failed early, do not continue
1029 /* split_free_page does not map the pages */
1030 map_pages(freelist
);
1033 * Record where the free scanner will restart next time. Either we
1034 * broke from the loop and set isolate_start_pfn based on the last
1035 * call to isolate_freepages_block(), or we met the migration scanner
1036 * and the loop terminated due to isolate_start_pfn < low_pfn
1038 cc
->free_pfn
= isolate_start_pfn
;
1042 * This is a migrate-callback that "allocates" freepages by taking pages
1043 * from the isolated freelists in the block we are migrating to.
1045 static struct page
*compaction_alloc(struct page
*migratepage
,
1049 struct compact_control
*cc
= (struct compact_control
*)data
;
1050 struct page
*freepage
;
1053 * Isolate free pages if necessary, and if we are not aborting due to
1056 if (list_empty(&cc
->freepages
)) {
1058 isolate_freepages(cc
);
1060 if (list_empty(&cc
->freepages
))
1064 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1065 list_del(&freepage
->lru
);
1072 * This is a migrate-callback that "frees" freepages back to the isolated
1073 * freelist. All pages on the freelist are from the same zone, so there is no
1074 * special handling needed for NUMA.
1076 static void compaction_free(struct page
*page
, unsigned long data
)
1078 struct compact_control
*cc
= (struct compact_control
*)data
;
1080 list_add(&page
->lru
, &cc
->freepages
);
1084 /* possible outcome of isolate_migratepages */
1086 ISOLATE_ABORT
, /* Abort compaction now */
1087 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1088 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1089 } isolate_migrate_t
;
1092 * Allow userspace to control policy on scanning the unevictable LRU for
1093 * compactable pages.
1095 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1098 * Isolate all pages that can be migrated from the first suitable block,
1099 * starting at the block pointed to by the migrate scanner pfn within
1102 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1103 struct compact_control
*cc
)
1105 unsigned long block_start_pfn
;
1106 unsigned long block_end_pfn
;
1107 unsigned long low_pfn
;
1108 unsigned long isolate_start_pfn
;
1110 const isolate_mode_t isolate_mode
=
1111 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1112 (cc
->mode
== MIGRATE_ASYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1115 * Start at where we last stopped, or beginning of the zone as
1116 * initialized by compact_zone()
1118 low_pfn
= cc
->migrate_pfn
;
1119 block_start_pfn
= cc
->migrate_pfn
& ~(pageblock_nr_pages
- 1);
1120 if (block_start_pfn
< zone
->zone_start_pfn
)
1121 block_start_pfn
= zone
->zone_start_pfn
;
1123 /* Only scan within a pageblock boundary */
1124 block_end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
1127 * Iterate over whole pageblocks until we find the first suitable.
1128 * Do not cross the free scanner.
1130 for (; block_end_pfn
<= cc
->free_pfn
;
1131 low_pfn
= block_end_pfn
,
1132 block_start_pfn
= block_end_pfn
,
1133 block_end_pfn
+= pageblock_nr_pages
) {
1136 * This can potentially iterate a massively long zone with
1137 * many pageblocks unsuitable, so periodically check if we
1138 * need to schedule, or even abort async compaction.
1140 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1141 && compact_should_abort(cc
))
1144 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1149 /* If isolation recently failed, do not retry */
1150 if (!isolation_suitable(cc
, page
))
1154 * For async compaction, also only scan in MOVABLE blocks.
1155 * Async compaction is optimistic to see if the minimum amount
1156 * of work satisfies the allocation.
1158 if (cc
->mode
== MIGRATE_ASYNC
&&
1159 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1162 /* Perform the isolation */
1163 isolate_start_pfn
= low_pfn
;
1164 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1165 block_end_pfn
, isolate_mode
);
1167 if (!low_pfn
|| cc
->contended
) {
1168 acct_isolated(zone
, cc
);
1169 return ISOLATE_ABORT
;
1173 * Record where we could have freed pages by migration and not
1174 * yet flushed them to buddy allocator.
1175 * - this is the lowest page that could have been isolated and
1176 * then freed by migration.
1178 if (cc
->nr_migratepages
&& !cc
->last_migrated_pfn
)
1179 cc
->last_migrated_pfn
= isolate_start_pfn
;
1182 * Either we isolated something and proceed with migration. Or
1183 * we failed and compact_zone should decide if we should
1189 acct_isolated(zone
, cc
);
1190 /* Record where migration scanner will be restarted. */
1191 cc
->migrate_pfn
= low_pfn
;
1193 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1197 * order == -1 is expected when compacting via
1198 * /proc/sys/vm/compact_memory
1200 static inline bool is_via_compact_memory(int order
)
1205 static int __compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1206 const int migratetype
)
1209 unsigned long watermark
;
1211 if (cc
->contended
|| fatal_signal_pending(current
))
1212 return COMPACT_CONTENDED
;
1214 /* Compaction run completes if the migrate and free scanner meet */
1215 if (compact_scanners_met(cc
)) {
1216 /* Let the next compaction start anew. */
1217 reset_cached_positions(zone
);
1220 * Mark that the PG_migrate_skip information should be cleared
1221 * by kswapd when it goes to sleep. kswapd does not set the
1222 * flag itself as the decision to be clear should be directly
1223 * based on an allocation request.
1225 if (!current_is_kswapd())
1226 zone
->compact_blockskip_flush
= true;
1228 return COMPACT_COMPLETE
;
1231 if (is_via_compact_memory(cc
->order
))
1232 return COMPACT_CONTINUE
;
1234 /* Compaction run is not finished if the watermark is not met */
1235 watermark
= low_wmark_pages(zone
);
1237 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1239 return COMPACT_CONTINUE
;
1241 /* Direct compactor: Is a suitable page free? */
1242 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1243 struct free_area
*area
= &zone
->free_area
[order
];
1246 /* Job done if page is free of the right migratetype */
1247 if (!list_empty(&area
->free_list
[migratetype
]))
1248 return COMPACT_PARTIAL
;
1251 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1252 if (migratetype
== MIGRATE_MOVABLE
&&
1253 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1254 return COMPACT_PARTIAL
;
1257 * Job done if allocation would steal freepages from
1258 * other migratetype buddy lists.
1260 if (find_suitable_fallback(area
, order
, migratetype
,
1261 true, &can_steal
) != -1)
1262 return COMPACT_PARTIAL
;
1265 return COMPACT_NO_SUITABLE_PAGE
;
1268 static int compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1269 const int migratetype
)
1273 ret
= __compact_finished(zone
, cc
, migratetype
);
1274 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1275 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1276 ret
= COMPACT_CONTINUE
;
1282 * compaction_suitable: Is this suitable to run compaction on this zone now?
1284 * COMPACT_SKIPPED - If there are too few free pages for compaction
1285 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1286 * COMPACT_CONTINUE - If compaction should run now
1288 static unsigned long __compaction_suitable(struct zone
*zone
, int order
,
1289 int alloc_flags
, int classzone_idx
)
1292 unsigned long watermark
;
1294 if (is_via_compact_memory(order
))
1295 return COMPACT_CONTINUE
;
1297 watermark
= low_wmark_pages(zone
);
1299 * If watermarks for high-order allocation are already met, there
1300 * should be no need for compaction at all.
1302 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1304 return COMPACT_PARTIAL
;
1307 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1308 * This is because during migration, copies of pages need to be
1309 * allocated and for a short time, the footprint is higher
1311 watermark
+= (2UL << order
);
1312 if (!zone_watermark_ok(zone
, 0, watermark
, classzone_idx
, alloc_flags
))
1313 return COMPACT_SKIPPED
;
1316 * fragmentation index determines if allocation failures are due to
1317 * low memory or external fragmentation
1319 * index of -1000 would imply allocations might succeed depending on
1320 * watermarks, but we already failed the high-order watermark check
1321 * index towards 0 implies failure is due to lack of memory
1322 * index towards 1000 implies failure is due to fragmentation
1324 * Only compact if a failure would be due to fragmentation.
1326 fragindex
= fragmentation_index(zone
, order
);
1327 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1328 return COMPACT_NOT_SUITABLE_ZONE
;
1330 return COMPACT_CONTINUE
;
1333 unsigned long compaction_suitable(struct zone
*zone
, int order
,
1334 int alloc_flags
, int classzone_idx
)
1338 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
);
1339 trace_mm_compaction_suitable(zone
, order
, ret
);
1340 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1341 ret
= COMPACT_SKIPPED
;
1346 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1349 unsigned long start_pfn
= zone
->zone_start_pfn
;
1350 unsigned long end_pfn
= zone_end_pfn(zone
);
1351 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1352 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1354 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1357 case COMPACT_PARTIAL
:
1358 case COMPACT_SKIPPED
:
1359 /* Compaction is likely to fail */
1361 case COMPACT_CONTINUE
:
1362 /* Fall through to compaction */
1367 * Clear pageblock skip if there were failures recently and compaction
1368 * is about to be retried after being deferred. kswapd does not do
1369 * this reset as it'll reset the cached information when going to sleep.
1371 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
1372 __reset_isolation_suitable(zone
);
1375 * Setup to move all movable pages to the end of the zone. Used cached
1376 * information on where the scanners should start but check that it
1377 * is initialised by ensuring the values are within zone boundaries.
1379 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1380 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1381 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1382 cc
->free_pfn
= round_down(end_pfn
- 1, pageblock_nr_pages
);
1383 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1385 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1386 cc
->migrate_pfn
= start_pfn
;
1387 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1388 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1390 cc
->last_migrated_pfn
= 0;
1392 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1393 cc
->free_pfn
, end_pfn
, sync
);
1395 migrate_prep_local();
1397 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1401 switch (isolate_migratepages(zone
, cc
)) {
1403 ret
= COMPACT_CONTENDED
;
1404 putback_movable_pages(&cc
->migratepages
);
1405 cc
->nr_migratepages
= 0;
1409 * We haven't isolated and migrated anything, but
1410 * there might still be unflushed migrations from
1411 * previous cc->order aligned block.
1414 case ISOLATE_SUCCESS
:
1418 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1419 compaction_free
, (unsigned long)cc
, cc
->mode
,
1422 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1425 /* All pages were either migrated or will be released */
1426 cc
->nr_migratepages
= 0;
1428 putback_movable_pages(&cc
->migratepages
);
1430 * migrate_pages() may return -ENOMEM when scanners meet
1431 * and we want compact_finished() to detect it
1433 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1434 ret
= COMPACT_CONTENDED
;
1441 * Has the migration scanner moved away from the previous
1442 * cc->order aligned block where we migrated from? If yes,
1443 * flush the pages that were freed, so that they can merge and
1444 * compact_finished() can detect immediately if allocation
1447 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1449 unsigned long current_block_start
=
1450 cc
->migrate_pfn
& ~((1UL << cc
->order
) - 1);
1452 if (cc
->last_migrated_pfn
< current_block_start
) {
1454 lru_add_drain_cpu(cpu
);
1455 drain_local_pages(zone
);
1457 /* No more flushing until we migrate again */
1458 cc
->last_migrated_pfn
= 0;
1466 * Release free pages and update where the free scanner should restart,
1467 * so we don't leave any returned pages behind in the next attempt.
1469 if (cc
->nr_freepages
> 0) {
1470 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1472 cc
->nr_freepages
= 0;
1473 VM_BUG_ON(free_pfn
== 0);
1474 /* The cached pfn is always the first in a pageblock */
1475 free_pfn
&= ~(pageblock_nr_pages
-1);
1477 * Only go back, not forward. The cached pfn might have been
1478 * already reset to zone end in compact_finished()
1480 if (free_pfn
> zone
->compact_cached_free_pfn
)
1481 zone
->compact_cached_free_pfn
= free_pfn
;
1484 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1485 cc
->free_pfn
, end_pfn
, sync
, ret
);
1487 if (ret
== COMPACT_CONTENDED
)
1488 ret
= COMPACT_PARTIAL
;
1493 static unsigned long compact_zone_order(struct zone
*zone
, int order
,
1494 gfp_t gfp_mask
, enum migrate_mode mode
, int *contended
,
1495 int alloc_flags
, int classzone_idx
)
1498 struct compact_control cc
= {
1500 .nr_migratepages
= 0,
1502 .gfp_mask
= gfp_mask
,
1505 .alloc_flags
= alloc_flags
,
1506 .classzone_idx
= classzone_idx
,
1508 INIT_LIST_HEAD(&cc
.freepages
);
1509 INIT_LIST_HEAD(&cc
.migratepages
);
1511 ret
= compact_zone(zone
, &cc
);
1513 VM_BUG_ON(!list_empty(&cc
.freepages
));
1514 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1516 *contended
= cc
.contended
;
1520 int sysctl_extfrag_threshold
= 500;
1523 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1524 * @gfp_mask: The GFP mask of the current allocation
1525 * @order: The order of the current allocation
1526 * @alloc_flags: The allocation flags of the current allocation
1527 * @ac: The context of current allocation
1528 * @mode: The migration mode for async, sync light, or sync migration
1529 * @contended: Return value that determines if compaction was aborted due to
1530 * need_resched() or lock contention
1532 * This is the main entry point for direct page compaction.
1534 unsigned long try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1535 int alloc_flags
, const struct alloc_context
*ac
,
1536 enum migrate_mode mode
, int *contended
)
1538 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1539 int may_perform_io
= gfp_mask
& __GFP_IO
;
1542 int rc
= COMPACT_DEFERRED
;
1543 int all_zones_contended
= COMPACT_CONTENDED_LOCK
; /* init for &= op */
1545 *contended
= COMPACT_CONTENDED_NONE
;
1547 /* Check if the GFP flags allow compaction */
1548 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1549 return COMPACT_SKIPPED
;
1551 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, mode
);
1553 /* Compact each zone in the list */
1554 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1559 if (compaction_deferred(zone
, order
))
1562 status
= compact_zone_order(zone
, order
, gfp_mask
, mode
,
1563 &zone_contended
, alloc_flags
,
1565 rc
= max(status
, rc
);
1567 * It takes at least one zone that wasn't lock contended
1568 * to clear all_zones_contended.
1570 all_zones_contended
&= zone_contended
;
1572 /* If a normal allocation would succeed, stop compacting */
1573 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
),
1574 ac
->classzone_idx
, alloc_flags
)) {
1576 * We think the allocation will succeed in this zone,
1577 * but it is not certain, hence the false. The caller
1578 * will repeat this with true if allocation indeed
1579 * succeeds in this zone.
1581 compaction_defer_reset(zone
, order
, false);
1583 * It is possible that async compaction aborted due to
1584 * need_resched() and the watermarks were ok thanks to
1585 * somebody else freeing memory. The allocation can
1586 * however still fail so we better signal the
1587 * need_resched() contention anyway (this will not
1588 * prevent the allocation attempt).
1590 if (zone_contended
== COMPACT_CONTENDED_SCHED
)
1591 *contended
= COMPACT_CONTENDED_SCHED
;
1596 if (mode
!= MIGRATE_ASYNC
&& status
== COMPACT_COMPLETE
) {
1598 * We think that allocation won't succeed in this zone
1599 * so we defer compaction there. If it ends up
1600 * succeeding after all, it will be reset.
1602 defer_compaction(zone
, order
);
1606 * We might have stopped compacting due to need_resched() in
1607 * async compaction, or due to a fatal signal detected. In that
1608 * case do not try further zones and signal need_resched()
1611 if ((zone_contended
== COMPACT_CONTENDED_SCHED
)
1612 || fatal_signal_pending(current
)) {
1613 *contended
= COMPACT_CONTENDED_SCHED
;
1620 * We might not have tried all the zones, so be conservative
1621 * and assume they are not all lock contended.
1623 all_zones_contended
= 0;
1628 * If at least one zone wasn't deferred or skipped, we report if all
1629 * zones that were tried were lock contended.
1631 if (rc
> COMPACT_SKIPPED
&& all_zones_contended
)
1632 *contended
= COMPACT_CONTENDED_LOCK
;
1638 /* Compact all zones within a node */
1639 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1644 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1646 zone
= &pgdat
->node_zones
[zoneid
];
1647 if (!populated_zone(zone
))
1650 cc
->nr_freepages
= 0;
1651 cc
->nr_migratepages
= 0;
1653 INIT_LIST_HEAD(&cc
->freepages
);
1654 INIT_LIST_HEAD(&cc
->migratepages
);
1657 * When called via /proc/sys/vm/compact_memory
1658 * this makes sure we compact the whole zone regardless of
1659 * cached scanner positions.
1661 if (is_via_compact_memory(cc
->order
))
1662 __reset_isolation_suitable(zone
);
1664 if (is_via_compact_memory(cc
->order
) ||
1665 !compaction_deferred(zone
, cc
->order
))
1666 compact_zone(zone
, cc
);
1668 if (cc
->order
> 0) {
1669 if (zone_watermark_ok(zone
, cc
->order
,
1670 low_wmark_pages(zone
), 0, 0))
1671 compaction_defer_reset(zone
, cc
->order
, false);
1674 VM_BUG_ON(!list_empty(&cc
->freepages
));
1675 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1679 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1681 struct compact_control cc
= {
1683 .mode
= MIGRATE_ASYNC
,
1689 __compact_pgdat(pgdat
, &cc
);
1692 static void compact_node(int nid
)
1694 struct compact_control cc
= {
1696 .mode
= MIGRATE_SYNC
,
1697 .ignore_skip_hint
= true,
1700 __compact_pgdat(NODE_DATA(nid
), &cc
);
1703 /* Compact all nodes in the system */
1704 static void compact_nodes(void)
1708 /* Flush pending updates to the LRU lists */
1709 lru_add_drain_all();
1711 for_each_online_node(nid
)
1715 /* The written value is actually unused, all memory is compacted */
1716 int sysctl_compact_memory
;
1718 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1719 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1720 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1728 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1729 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1731 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1736 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1737 static ssize_t
sysfs_compact_node(struct device
*dev
,
1738 struct device_attribute
*attr
,
1739 const char *buf
, size_t count
)
1743 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1744 /* Flush pending updates to the LRU lists */
1745 lru_add_drain_all();
1752 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1754 int compaction_register_node(struct node
*node
)
1756 return device_create_file(&node
->dev
, &dev_attr_compact
);
1759 void compaction_unregister_node(struct node
*node
)
1761 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1763 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1765 #endif /* CONFIG_COMPACTION */