1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
21 static struct page
*no_page_table(struct vm_area_struct
*vma
,
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
33 return ERR_PTR(-EFAULT
);
37 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
38 pte_t
*pte
, unsigned int flags
)
40 /* No page to get reference */
44 if (flags
& FOLL_TOUCH
) {
47 if (flags
& FOLL_WRITE
)
48 entry
= pte_mkdirty(entry
);
49 entry
= pte_mkyoung(entry
);
51 if (!pte_same(*pte
, entry
)) {
52 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
53 update_mmu_cache(vma
, address
, pte
);
57 /* Proper page table entry exists, but no corresponding struct page */
62 * FOLL_FORCE can write to even unwritable pte's, but only
63 * after we've gone through a COW cycle and they are dirty.
65 static inline bool can_follow_write_pte(pte_t pte
, unsigned int flags
)
67 return pte_write(pte
) ||
68 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pte_dirty(pte
));
71 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
72 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
74 struct mm_struct
*mm
= vma
->vm_mm
;
80 if (unlikely(pmd_bad(*pmd
)))
81 return no_page_table(vma
, flags
);
83 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
85 if (!pte_present(pte
)) {
88 * KSM's break_ksm() relies upon recognizing a ksm page
89 * even while it is being migrated, so for that case we
90 * need migration_entry_wait().
92 if (likely(!(flags
& FOLL_MIGRATION
)))
96 entry
= pte_to_swp_entry(pte
);
97 if (!is_migration_entry(entry
))
99 pte_unmap_unlock(ptep
, ptl
);
100 migration_entry_wait(mm
, pmd
, address
);
103 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
105 if ((flags
& FOLL_WRITE
) && !can_follow_write_pte(pte
, flags
)) {
106 pte_unmap_unlock(ptep
, ptl
);
110 page
= vm_normal_page(vma
, address
, pte
);
111 if (unlikely(!page
)) {
112 if (flags
& FOLL_DUMP
) {
113 /* Avoid special (like zero) pages in core dumps */
114 page
= ERR_PTR(-EFAULT
);
118 if (is_zero_pfn(pte_pfn(pte
))) {
119 page
= pte_page(pte
);
123 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
129 if (flags
& FOLL_GET
) {
130 if (unlikely(!try_get_page_foll(page
))) {
131 page
= ERR_PTR(-ENOMEM
);
135 if (flags
& FOLL_TOUCH
) {
136 if ((flags
& FOLL_WRITE
) &&
137 !pte_dirty(pte
) && !PageDirty(page
))
138 set_page_dirty(page
);
140 * pte_mkyoung() would be more correct here, but atomic care
141 * is needed to avoid losing the dirty bit: it is easier to use
142 * mark_page_accessed().
144 mark_page_accessed(page
);
146 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
148 * The preliminary mapping check is mainly to avoid the
149 * pointless overhead of lock_page on the ZERO_PAGE
150 * which might bounce very badly if there is contention.
152 * If the page is already locked, we don't need to
153 * handle it now - vmscan will handle it later if and
154 * when it attempts to reclaim the page.
156 if (page
->mapping
&& trylock_page(page
)) {
157 lru_add_drain(); /* push cached pages to LRU */
159 * Because we lock page here, and migration is
160 * blocked by the pte's page reference, and we
161 * know the page is still mapped, we don't even
162 * need to check for file-cache page truncation.
164 mlock_vma_page(page
);
169 pte_unmap_unlock(ptep
, ptl
);
172 pte_unmap_unlock(ptep
, ptl
);
175 return no_page_table(vma
, flags
);
179 * follow_page_mask - look up a page descriptor from a user-virtual address
180 * @vma: vm_area_struct mapping @address
181 * @address: virtual address to look up
182 * @flags: flags modifying lookup behaviour
183 * @page_mask: on output, *page_mask is set according to the size of the page
185 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
187 * Returns the mapped (struct page *), %NULL if no mapping exists, or
188 * an error pointer if there is a mapping to something not represented
189 * by a page descriptor (see also vm_normal_page()).
191 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
192 unsigned long address
, unsigned int flags
,
193 unsigned int *page_mask
)
200 struct mm_struct
*mm
= vma
->vm_mm
;
204 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
206 BUG_ON(flags
& FOLL_GET
);
210 pgd
= pgd_offset(mm
, address
);
211 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
212 return no_page_table(vma
, flags
);
214 pud
= pud_offset(pgd
, address
);
216 return no_page_table(vma
, flags
);
217 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
218 page
= follow_huge_pud(mm
, address
, pud
, flags
);
221 return no_page_table(vma
, flags
);
223 if (unlikely(pud_bad(*pud
)))
224 return no_page_table(vma
, flags
);
226 pmd
= pmd_offset(pud
, address
);
228 return no_page_table(vma
, flags
);
229 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
230 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
233 return no_page_table(vma
, flags
);
235 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
236 return no_page_table(vma
, flags
);
237 if (pmd_trans_huge(*pmd
)) {
238 if (flags
& FOLL_SPLIT
) {
239 split_huge_page_pmd(vma
, address
, pmd
);
240 return follow_page_pte(vma
, address
, pmd
, flags
);
242 ptl
= pmd_lock(mm
, pmd
);
243 if (likely(pmd_trans_huge(*pmd
))) {
244 if (unlikely(pmd_trans_splitting(*pmd
))) {
246 wait_split_huge_page(vma
->anon_vma
, pmd
);
248 page
= follow_trans_huge_pmd(vma
, address
,
251 *page_mask
= HPAGE_PMD_NR
- 1;
257 return follow_page_pte(vma
, address
, pmd
, flags
);
260 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
261 unsigned int gup_flags
, struct vm_area_struct
**vma
,
270 /* user gate pages are read-only */
271 if (gup_flags
& FOLL_WRITE
)
273 if (address
> TASK_SIZE
)
274 pgd
= pgd_offset_k(address
);
276 pgd
= pgd_offset_gate(mm
, address
);
277 BUG_ON(pgd_none(*pgd
));
278 pud
= pud_offset(pgd
, address
);
279 BUG_ON(pud_none(*pud
));
280 pmd
= pmd_offset(pud
, address
);
283 VM_BUG_ON(pmd_trans_huge(*pmd
));
284 pte
= pte_offset_map(pmd
, address
);
287 *vma
= get_gate_vma(mm
);
290 *page
= vm_normal_page(*vma
, address
, *pte
);
292 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
294 *page
= pte_page(*pte
);
296 if (unlikely(!try_get_page(*page
))) {
308 * mmap_sem must be held on entry. If @nonblocking != NULL and
309 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
310 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
312 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
313 unsigned long address
, unsigned int *flags
, int *nonblocking
)
315 struct mm_struct
*mm
= vma
->vm_mm
;
316 unsigned int fault_flags
= 0;
319 /* mlock all present pages, but do not fault in new pages */
320 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
322 if (*flags
& FOLL_WRITE
)
323 fault_flags
|= FAULT_FLAG_WRITE
;
325 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
326 if (*flags
& FOLL_NOWAIT
)
327 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
328 if (*flags
& FOLL_TRIED
) {
329 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
330 fault_flags
|= FAULT_FLAG_TRIED
;
333 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
334 if (ret
& VM_FAULT_ERROR
) {
335 if (ret
& VM_FAULT_OOM
)
337 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
338 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
339 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
345 if (ret
& VM_FAULT_MAJOR
)
351 if (ret
& VM_FAULT_RETRY
) {
358 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
359 * necessary, even if maybe_mkwrite decided not to set pte_write. We
360 * can thus safely do subsequent page lookups as if they were reads.
361 * But only do so when looping for pte_write is futile: in some cases
362 * userspace may also be wanting to write to the gotten user page,
363 * which a read fault here might prevent (a readonly page might get
364 * reCOWed by userspace write).
366 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
371 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
373 vm_flags_t vm_flags
= vma
->vm_flags
;
375 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
378 if (gup_flags
& FOLL_ANON
&& !vma_is_anonymous(vma
))
381 if (gup_flags
& FOLL_WRITE
) {
382 if (!(vm_flags
& VM_WRITE
)) {
383 if (!(gup_flags
& FOLL_FORCE
))
386 * We used to let the write,force case do COW in a
387 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
388 * set a breakpoint in a read-only mapping of an
389 * executable, without corrupting the file (yet only
390 * when that file had been opened for writing!).
391 * Anon pages in shared mappings are surprising: now
394 if (!is_cow_mapping(vm_flags
)) {
395 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
399 } else if (!(vm_flags
& VM_READ
)) {
400 if (!(gup_flags
& FOLL_FORCE
))
403 * Is there actually any vma we can reach here which does not
404 * have VM_MAYREAD set?
406 if (!(vm_flags
& VM_MAYREAD
))
413 * __get_user_pages() - pin user pages in memory
414 * @tsk: task_struct of target task
415 * @mm: mm_struct of target mm
416 * @start: starting user address
417 * @nr_pages: number of pages from start to pin
418 * @gup_flags: flags modifying pin behaviour
419 * @pages: array that receives pointers to the pages pinned.
420 * Should be at least nr_pages long. Or NULL, if caller
421 * only intends to ensure the pages are faulted in.
422 * @vmas: array of pointers to vmas corresponding to each page.
423 * Or NULL if the caller does not require them.
424 * @nonblocking: whether waiting for disk IO or mmap_sem contention
426 * Returns number of pages pinned. This may be fewer than the number
427 * requested. If nr_pages is 0 or negative, returns 0. If no pages
428 * were pinned, returns -errno. Each page returned must be released
429 * with a put_page() call when it is finished with. vmas will only
430 * remain valid while mmap_sem is held.
432 * Must be called with mmap_sem held. It may be released. See below.
434 * __get_user_pages walks a process's page tables and takes a reference to
435 * each struct page that each user address corresponds to at a given
436 * instant. That is, it takes the page that would be accessed if a user
437 * thread accesses the given user virtual address at that instant.
439 * This does not guarantee that the page exists in the user mappings when
440 * __get_user_pages returns, and there may even be a completely different
441 * page there in some cases (eg. if mmapped pagecache has been invalidated
442 * and subsequently re faulted). However it does guarantee that the page
443 * won't be freed completely. And mostly callers simply care that the page
444 * contains data that was valid *at some point in time*. Typically, an IO
445 * or similar operation cannot guarantee anything stronger anyway because
446 * locks can't be held over the syscall boundary.
448 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
449 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
450 * appropriate) must be called after the page is finished with, and
451 * before put_page is called.
453 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
454 * or mmap_sem contention, and if waiting is needed to pin all pages,
455 * *@nonblocking will be set to 0. Further, if @gup_flags does not
456 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
459 * A caller using such a combination of @nonblocking and @gup_flags
460 * must therefore hold the mmap_sem for reading only, and recognize
461 * when it's been released. Otherwise, it must be held for either
462 * reading or writing and will not be released.
464 * In most cases, get_user_pages or get_user_pages_fast should be used
465 * instead of __get_user_pages. __get_user_pages should be used only if
466 * you need some special @gup_flags.
468 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
469 unsigned long start
, unsigned long nr_pages
,
470 unsigned int gup_flags
, struct page
**pages
,
471 struct vm_area_struct
**vmas
, int *nonblocking
)
474 unsigned int page_mask
;
475 struct vm_area_struct
*vma
= NULL
;
480 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
483 * If FOLL_FORCE is set then do not force a full fault as the hinting
484 * fault information is unrelated to the reference behaviour of a task
485 * using the address space
487 if (!(gup_flags
& FOLL_FORCE
))
488 gup_flags
|= FOLL_NUMA
;
492 unsigned int foll_flags
= gup_flags
;
493 unsigned int page_increm
;
495 /* first iteration or cross vma bound */
496 if (!vma
|| start
>= vma
->vm_end
) {
497 vma
= find_extend_vma(mm
, start
);
498 if (!vma
&& in_gate_area(mm
, start
)) {
500 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
502 pages
? &pages
[i
] : NULL
);
509 if (!vma
|| check_vma_flags(vma
, gup_flags
))
510 return i
? : -EFAULT
;
511 if (is_vm_hugetlb_page(vma
)) {
512 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
513 &start
, &nr_pages
, i
,
520 * If we have a pending SIGKILL, don't keep faulting pages and
521 * potentially allocating memory.
523 if (unlikely(fatal_signal_pending(current
)))
524 return i
? i
: -ERESTARTSYS
;
526 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
529 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
544 } else if (PTR_ERR(page
) == -EEXIST
) {
546 * Proper page table entry exists, but no corresponding
550 } else if (IS_ERR(page
)) {
551 return i
? i
: PTR_ERR(page
);
555 flush_anon_page(vma
, page
, start
);
556 flush_dcache_page(page
);
564 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
565 if (page_increm
> nr_pages
)
566 page_increm
= nr_pages
;
568 start
+= page_increm
* PAGE_SIZE
;
569 nr_pages
-= page_increm
;
573 EXPORT_SYMBOL(__get_user_pages
);
576 * fixup_user_fault() - manually resolve a user page fault
577 * @tsk: the task_struct to use for page fault accounting, or
578 * NULL if faults are not to be recorded.
579 * @mm: mm_struct of target mm
580 * @address: user address
581 * @fault_flags:flags to pass down to handle_mm_fault()
583 * This is meant to be called in the specific scenario where for locking reasons
584 * we try to access user memory in atomic context (within a pagefault_disable()
585 * section), this returns -EFAULT, and we want to resolve the user fault before
588 * Typically this is meant to be used by the futex code.
590 * The main difference with get_user_pages() is that this function will
591 * unconditionally call handle_mm_fault() which will in turn perform all the
592 * necessary SW fixup of the dirty and young bits in the PTE, while
593 * handle_mm_fault() only guarantees to update these in the struct page.
595 * This is important for some architectures where those bits also gate the
596 * access permission to the page because they are maintained in software. On
597 * such architectures, gup() will not be enough to make a subsequent access
600 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
602 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
603 unsigned long address
, unsigned int fault_flags
)
605 struct vm_area_struct
*vma
;
609 vma
= find_extend_vma(mm
, address
);
610 if (!vma
|| address
< vma
->vm_start
)
613 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
614 if (!(vm_flags
& vma
->vm_flags
))
617 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
618 if (ret
& VM_FAULT_ERROR
) {
619 if (ret
& VM_FAULT_OOM
)
621 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
623 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
628 if (ret
& VM_FAULT_MAJOR
)
636 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
637 struct mm_struct
*mm
,
639 unsigned long nr_pages
,
641 struct vm_area_struct
**vmas
,
642 int *locked
, bool notify_drop
,
645 long ret
, pages_done
;
649 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
651 /* check caller initialized locked */
652 BUG_ON(*locked
!= 1);
659 lock_dropped
= false;
661 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
664 /* VM_FAULT_RETRY couldn't trigger, bypass */
667 /* VM_FAULT_RETRY cannot return errors */
670 BUG_ON(ret
>= nr_pages
);
674 /* If it's a prefault don't insist harder */
684 /* VM_FAULT_RETRY didn't trigger */
689 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
691 start
+= ret
<< PAGE_SHIFT
;
694 * Repeat on the address that fired VM_FAULT_RETRY
695 * without FAULT_FLAG_ALLOW_RETRY but with
700 down_read(&mm
->mmap_sem
);
701 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
716 if (notify_drop
&& lock_dropped
&& *locked
) {
718 * We must let the caller know we temporarily dropped the lock
719 * and so the critical section protected by it was lost.
721 up_read(&mm
->mmap_sem
);
728 * We can leverage the VM_FAULT_RETRY functionality in the page fault
729 * paths better by using either get_user_pages_locked() or
730 * get_user_pages_unlocked().
732 * get_user_pages_locked() is suitable to replace the form:
734 * down_read(&mm->mmap_sem);
736 * get_user_pages(tsk, mm, ..., pages, NULL);
737 * up_read(&mm->mmap_sem);
742 * down_read(&mm->mmap_sem);
744 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
746 * up_read(&mm->mmap_sem);
748 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
749 unsigned long start
, unsigned long nr_pages
,
750 unsigned int gup_flags
, struct page
**pages
,
753 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
,
754 pages
, NULL
, locked
, true,
755 gup_flags
| FOLL_TOUCH
);
757 EXPORT_SYMBOL(get_user_pages_locked
);
760 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
761 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
763 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
764 * caller if required (just like with __get_user_pages). "FOLL_GET",
765 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
766 * according to the parameters "pages", "write", "force"
769 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
770 unsigned long start
, unsigned long nr_pages
,
771 struct page
**pages
, unsigned int gup_flags
)
776 down_read(&mm
->mmap_sem
);
777 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, pages
, NULL
,
778 &locked
, false, gup_flags
);
780 up_read(&mm
->mmap_sem
);
783 EXPORT_SYMBOL(__get_user_pages_unlocked
);
786 * get_user_pages_unlocked() is suitable to replace the form:
788 * down_read(&mm->mmap_sem);
789 * get_user_pages(tsk, mm, ..., pages, NULL);
790 * up_read(&mm->mmap_sem);
794 * get_user_pages_unlocked(tsk, mm, ..., pages);
796 * It is functionally equivalent to get_user_pages_fast so
797 * get_user_pages_fast should be used instead, if the two parameters
798 * "tsk" and "mm" are respectively equal to current and current->mm,
799 * or if "force" shall be set to 1 (get_user_pages_fast misses the
800 * "force" parameter).
802 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
803 unsigned long start
, unsigned long nr_pages
,
804 struct page
**pages
, unsigned int gup_flags
)
806 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
,
807 pages
, gup_flags
| FOLL_TOUCH
);
809 EXPORT_SYMBOL(get_user_pages_unlocked
);
812 * get_user_pages() - pin user pages in memory
813 * @tsk: the task_struct to use for page fault accounting, or
814 * NULL if faults are not to be recorded.
815 * @mm: mm_struct of target mm
816 * @start: starting user address
817 * @nr_pages: number of pages from start to pin
818 * @write: whether pages will be written to by the caller
819 * @force: whether to force access even when user mapping is currently
820 * protected (but never forces write access to shared mapping).
821 * @pages: array that receives pointers to the pages pinned.
822 * Should be at least nr_pages long. Or NULL, if caller
823 * only intends to ensure the pages are faulted in.
824 * @vmas: array of pointers to vmas corresponding to each page.
825 * Or NULL if the caller does not require them.
827 * Returns number of pages pinned. This may be fewer than the number
828 * requested. If nr_pages is 0 or negative, returns 0. If no pages
829 * were pinned, returns -errno. Each page returned must be released
830 * with a put_page() call when it is finished with. vmas will only
831 * remain valid while mmap_sem is held.
833 * Must be called with mmap_sem held for read or write.
835 * get_user_pages walks a process's page tables and takes a reference to
836 * each struct page that each user address corresponds to at a given
837 * instant. That is, it takes the page that would be accessed if a user
838 * thread accesses the given user virtual address at that instant.
840 * This does not guarantee that the page exists in the user mappings when
841 * get_user_pages returns, and there may even be a completely different
842 * page there in some cases (eg. if mmapped pagecache has been invalidated
843 * and subsequently re faulted). However it does guarantee that the page
844 * won't be freed completely. And mostly callers simply care that the page
845 * contains data that was valid *at some point in time*. Typically, an IO
846 * or similar operation cannot guarantee anything stronger anyway because
847 * locks can't be held over the syscall boundary.
849 * If write=0, the page must not be written to. If the page is written to,
850 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
851 * after the page is finished with, and before put_page is called.
853 * get_user_pages is typically used for fewer-copy IO operations, to get a
854 * handle on the memory by some means other than accesses via the user virtual
855 * addresses. The pages may be submitted for DMA to devices or accessed via
856 * their kernel linear mapping (via the kmap APIs). Care should be taken to
857 * use the correct cache flushing APIs.
859 * See also get_user_pages_fast, for performance critical applications.
861 * get_user_pages should be phased out in favor of
862 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
863 * should use get_user_pages because it cannot pass
864 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
866 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
867 unsigned long start
, unsigned long nr_pages
,
868 unsigned int gup_flags
, struct page
**pages
,
869 struct vm_area_struct
**vmas
)
871 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
,
872 pages
, vmas
, NULL
, false,
873 gup_flags
| FOLL_TOUCH
);
875 EXPORT_SYMBOL(get_user_pages
);
878 * populate_vma_page_range() - populate a range of pages in the vma.
880 * @start: start address
884 * This takes care of mlocking the pages too if VM_LOCKED is set.
886 * return 0 on success, negative error code on error.
888 * vma->vm_mm->mmap_sem must be held.
890 * If @nonblocking is NULL, it may be held for read or write and will
893 * If @nonblocking is non-NULL, it must held for read only and may be
894 * released. If it's released, *@nonblocking will be set to 0.
896 long populate_vma_page_range(struct vm_area_struct
*vma
,
897 unsigned long start
, unsigned long end
, int *nonblocking
)
899 struct mm_struct
*mm
= vma
->vm_mm
;
900 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
903 VM_BUG_ON(start
& ~PAGE_MASK
);
904 VM_BUG_ON(end
& ~PAGE_MASK
);
905 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
906 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
907 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
909 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
910 if (vma
->vm_flags
& VM_LOCKONFAULT
)
911 gup_flags
&= ~FOLL_POPULATE
;
914 * We want to touch writable mappings with a write fault in order
915 * to break COW, except for shared mappings because these don't COW
916 * and we would not want to dirty them for nothing.
918 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
919 gup_flags
|= FOLL_WRITE
;
922 * We want mlock to succeed for regions that have any permissions
923 * other than PROT_NONE.
925 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
926 gup_flags
|= FOLL_FORCE
;
929 * We made sure addr is within a VMA, so the following will
930 * not result in a stack expansion that recurses back here.
932 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
933 NULL
, NULL
, nonblocking
);
937 * __mm_populate - populate and/or mlock pages within a range of address space.
939 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
940 * flags. VMAs must be already marked with the desired vm_flags, and
941 * mmap_sem must not be held.
943 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
945 struct mm_struct
*mm
= current
->mm
;
946 unsigned long end
, nstart
, nend
;
947 struct vm_area_struct
*vma
= NULL
;
953 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
955 * We want to fault in pages for [nstart; end) address range.
956 * Find first corresponding VMA.
960 down_read(&mm
->mmap_sem
);
961 vma
= find_vma(mm
, nstart
);
962 } else if (nstart
>= vma
->vm_end
)
964 if (!vma
|| vma
->vm_start
>= end
)
967 * Set [nstart; nend) to intersection of desired address
968 * range with the first VMA. Also, skip undesirable VMA types.
970 nend
= min(end
, vma
->vm_end
);
971 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
973 if (nstart
< vma
->vm_start
)
974 nstart
= vma
->vm_start
;
976 * Now fault in a range of pages. populate_vma_page_range()
977 * double checks the vma flags, so that it won't mlock pages
978 * if the vma was already munlocked.
980 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
984 continue; /* continue at next VMA */
988 nend
= nstart
+ ret
* PAGE_SIZE
;
992 up_read(&mm
->mmap_sem
);
993 return ret
; /* 0 or negative error code */
997 * get_dump_page() - pin user page in memory while writing it to core dump
998 * @addr: user address
1000 * Returns struct page pointer of user page pinned for dump,
1001 * to be freed afterwards by page_cache_release() or put_page().
1003 * Returns NULL on any kind of failure - a hole must then be inserted into
1004 * the corefile, to preserve alignment with its headers; and also returns
1005 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1006 * allowing a hole to be left in the corefile to save diskspace.
1008 * Called without mmap_sem, but after all other threads have been killed.
1010 #ifdef CONFIG_ELF_CORE
1011 struct page
*get_dump_page(unsigned long addr
)
1013 struct vm_area_struct
*vma
;
1016 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1017 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1020 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1023 #endif /* CONFIG_ELF_CORE */
1026 * Generic RCU Fast GUP
1028 * get_user_pages_fast attempts to pin user pages by walking the page
1029 * tables directly and avoids taking locks. Thus the walker needs to be
1030 * protected from page table pages being freed from under it, and should
1031 * block any THP splits.
1033 * One way to achieve this is to have the walker disable interrupts, and
1034 * rely on IPIs from the TLB flushing code blocking before the page table
1035 * pages are freed. This is unsuitable for architectures that do not need
1036 * to broadcast an IPI when invalidating TLBs.
1038 * Another way to achieve this is to batch up page table containing pages
1039 * belonging to more than one mm_user, then rcu_sched a callback to free those
1040 * pages. Disabling interrupts will allow the fast_gup walker to both block
1041 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1042 * (which is a relatively rare event). The code below adopts this strategy.
1044 * Before activating this code, please be aware that the following assumptions
1045 * are currently made:
1047 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1048 * pages containing page tables.
1050 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1051 * pmdp_splitting_flush.
1053 * *) ptes can be read atomically by the architecture.
1055 * *) access_ok is sufficient to validate userspace address ranges.
1057 * The last two assumptions can be relaxed by the addition of helper functions.
1059 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1061 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1064 * Return the compund head page with ref appropriately incremented,
1065 * or NULL if that failed.
1067 static inline struct page
*try_get_compound_head(struct page
*page
, int refs
)
1069 struct page
*head
= compound_head(page
);
1070 if (WARN_ON_ONCE(atomic_read(&head
->_count
) < 0))
1072 if (unlikely(!page_cache_add_speculative(head
, refs
)))
1077 #ifdef __HAVE_ARCH_PTE_SPECIAL
1078 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1079 int write
, struct page
**pages
, int *nr
)
1084 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1087 * In the line below we are assuming that the pte can be read
1088 * atomically. If this is not the case for your architecture,
1089 * please wrap this in a helper function!
1091 * for an example see gup_get_pte in arch/x86/mm/gup.c
1093 pte_t pte
= READ_ONCE(*ptep
);
1097 * Similar to the PMD case below, NUMA hinting must take slow
1098 * path using the pte_protnone check.
1100 if (!pte_present(pte
) || pte_special(pte
) ||
1101 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1104 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1105 page
= pte_page(pte
);
1107 if (WARN_ON_ONCE(page_ref_count(page
) < 0))
1110 if (!page_cache_get_speculative(page
))
1113 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1121 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1132 * If we can't determine whether or not a pte is special, then fail immediately
1133 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1136 * For a futex to be placed on a THP tail page, get_futex_key requires a
1137 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1138 * useful to have gup_huge_pmd even if we can't operate on ptes.
1140 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1141 int write
, struct page
**pages
, int *nr
)
1145 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1147 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1148 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1150 struct page
*head
, *page
, *tail
;
1153 if (write
&& !pmd_write(orig
))
1157 page
= pmd_page(orig
) + ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1164 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1166 head
= try_get_compound_head(pmd_page(orig
), refs
);
1172 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1180 * Any tail pages need their mapcount reference taken before we
1181 * return. (This allows the THP code to bump their ref count when
1182 * they are split into base pages).
1186 get_huge_page_tail(tail
);
1193 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1194 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1196 struct page
*head
, *page
, *tail
;
1199 if (write
&& !pud_write(orig
))
1203 page
= pud_page(orig
) + ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1210 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1212 head
= try_get_compound_head(pud_page(orig
), refs
);
1218 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1227 get_huge_page_tail(tail
);
1234 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1235 unsigned long end
, int write
,
1236 struct page
**pages
, int *nr
)
1239 struct page
*head
, *page
, *tail
;
1241 if (write
&& !pgd_write(orig
))
1245 page
= pgd_page(orig
) + ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1252 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1254 head
= try_get_compound_head(pgd_page(orig
), refs
);
1260 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1269 get_huge_page_tail(tail
);
1276 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1277 int write
, struct page
**pages
, int *nr
)
1282 pmdp
= pmd_offset(&pud
, addr
);
1284 pmd_t pmd
= READ_ONCE(*pmdp
);
1286 next
= pmd_addr_end(addr
, end
);
1287 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
1290 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1292 * NUMA hinting faults need to be handled in the GUP
1293 * slowpath for accounting purposes and so that they
1294 * can be serialised against THP migration.
1296 if (pmd_protnone(pmd
))
1299 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1303 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1305 * architecture have different format for hugetlbfs
1306 * pmd format and THP pmd format
1308 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1309 PMD_SHIFT
, next
, write
, pages
, nr
))
1311 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1313 } while (pmdp
++, addr
= next
, addr
!= end
);
1318 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1319 int write
, struct page
**pages
, int *nr
)
1324 pudp
= pud_offset(&pgd
, addr
);
1326 pud_t pud
= READ_ONCE(*pudp
);
1328 next
= pud_addr_end(addr
, end
);
1331 if (unlikely(pud_huge(pud
))) {
1332 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1335 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1336 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1337 PUD_SHIFT
, next
, write
, pages
, nr
))
1339 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1341 } while (pudp
++, addr
= next
, addr
!= end
);
1347 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1348 * the regular GUP. It will only return non-negative values.
1350 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1351 struct page
**pages
)
1353 struct mm_struct
*mm
= current
->mm
;
1354 unsigned long addr
, len
, end
;
1355 unsigned long next
, flags
;
1361 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1364 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1369 * Disable interrupts. We use the nested form as we can already have
1370 * interrupts disabled by get_futex_key.
1372 * With interrupts disabled, we block page table pages from being
1373 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1376 * We do not adopt an rcu_read_lock(.) here as we also want to
1377 * block IPIs that come from THPs splitting.
1380 local_irq_save(flags
);
1381 pgdp
= pgd_offset(mm
, addr
);
1383 pgd_t pgd
= READ_ONCE(*pgdp
);
1385 next
= pgd_addr_end(addr
, end
);
1388 if (unlikely(pgd_huge(pgd
))) {
1389 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1392 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1393 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1394 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1396 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1398 } while (pgdp
++, addr
= next
, addr
!= end
);
1399 local_irq_restore(flags
);
1405 * get_user_pages_fast() - pin user pages in memory
1406 * @start: starting user address
1407 * @nr_pages: number of pages from start to pin
1408 * @write: whether pages will be written to
1409 * @pages: array that receives pointers to the pages pinned.
1410 * Should be at least nr_pages long.
1412 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1413 * If not successful, it will fall back to taking the lock and
1414 * calling get_user_pages().
1416 * Returns number of pages pinned. This may be fewer than the number
1417 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1418 * were pinned, returns -errno.
1420 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1421 struct page
**pages
)
1423 struct mm_struct
*mm
= current
->mm
;
1427 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1430 if (nr
< nr_pages
) {
1431 /* Try to get the remaining pages with get_user_pages */
1432 start
+= nr
<< PAGE_SHIFT
;
1435 ret
= get_user_pages_unlocked(current
, mm
, start
,
1436 nr_pages
- nr
, pages
,
1437 write
? FOLL_WRITE
: 0);
1439 /* Have to be a bit careful with return values */
1451 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */