Linux 4.4.252
[linux/fpc-iii.git] / mm / huge_memory.c
blob6404e4fcb4ed6960329c0ae5442e363aab92a11f
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/dax.h>
20 #include <linux/kthread.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/migrate.h>
26 #include <linux/hashtable.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/page_idle.h>
30 #include <asm/tlb.h>
31 #include <asm/pgalloc.h>
32 #include "internal.h"
35 * By default transparent hugepage support is disabled in order that avoid
36 * to risk increase the memory footprint of applications without a guaranteed
37 * benefit. When transparent hugepage support is enabled, is for all mappings,
38 * and khugepaged scans all mappings.
39 * Defrag is invoked by khugepaged hugepage allocations and by page faults
40 * for all hugepage allocations.
42 unsigned long transparent_hugepage_flags __read_mostly =
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
44 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
45 #endif
46 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
47 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
48 #endif
49 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
50 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
51 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static struct task_struct *khugepaged_thread __read_mostly;
61 static DEFINE_MUTEX(khugepaged_mutex);
62 static DEFINE_SPINLOCK(khugepaged_mm_lock);
63 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
65 * default collapse hugepages if there is at least one pte mapped like
66 * it would have happened if the vma was large enough during page
67 * fault.
69 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
71 static int khugepaged(void *none);
72 static int khugepaged_slab_init(void);
73 static void khugepaged_slab_exit(void);
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
78 static struct kmem_cache *mm_slot_cache __read_mostly;
80 /**
81 * struct mm_slot - hash lookup from mm to mm_slot
82 * @hash: hash collision list
83 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
84 * @mm: the mm that this information is valid for
86 struct mm_slot {
87 struct hlist_node hash;
88 struct list_head mm_node;
89 struct mm_struct *mm;
92 /**
93 * struct khugepaged_scan - cursor for scanning
94 * @mm_head: the head of the mm list to scan
95 * @mm_slot: the current mm_slot we are scanning
96 * @address: the next address inside that to be scanned
98 * There is only the one khugepaged_scan instance of this cursor structure.
100 struct khugepaged_scan {
101 struct list_head mm_head;
102 struct mm_slot *mm_slot;
103 unsigned long address;
105 static struct khugepaged_scan khugepaged_scan = {
106 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
110 static void set_recommended_min_free_kbytes(void)
112 struct zone *zone;
113 int nr_zones = 0;
114 unsigned long recommended_min;
116 for_each_populated_zone(zone)
117 nr_zones++;
119 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
120 recommended_min = pageblock_nr_pages * nr_zones * 2;
123 * Make sure that on average at least two pageblocks are almost free
124 * of another type, one for a migratetype to fall back to and a
125 * second to avoid subsequent fallbacks of other types There are 3
126 * MIGRATE_TYPES we care about.
128 recommended_min += pageblock_nr_pages * nr_zones *
129 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
131 /* don't ever allow to reserve more than 5% of the lowmem */
132 recommended_min = min(recommended_min,
133 (unsigned long) nr_free_buffer_pages() / 20);
134 recommended_min <<= (PAGE_SHIFT-10);
136 if (recommended_min > min_free_kbytes) {
137 if (user_min_free_kbytes >= 0)
138 pr_info("raising min_free_kbytes from %d to %lu "
139 "to help transparent hugepage allocations\n",
140 min_free_kbytes, recommended_min);
142 min_free_kbytes = recommended_min;
144 setup_per_zone_wmarks();
147 static int start_stop_khugepaged(void)
149 int err = 0;
150 if (khugepaged_enabled()) {
151 if (!khugepaged_thread)
152 khugepaged_thread = kthread_run(khugepaged, NULL,
153 "khugepaged");
154 if (IS_ERR(khugepaged_thread)) {
155 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
158 goto fail;
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
169 fail:
170 return err;
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
176 struct page *get_huge_zero_page(void)
178 struct page *zero_page;
179 retry:
180 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
181 return READ_ONCE(huge_zero_page);
183 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
184 HPAGE_PMD_ORDER);
185 if (!zero_page) {
186 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
187 return NULL;
189 count_vm_event(THP_ZERO_PAGE_ALLOC);
190 preempt_disable();
191 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
192 preempt_enable();
193 __free_pages(zero_page, compound_order(zero_page));
194 goto retry;
197 /* We take additional reference here. It will be put back by shrinker */
198 atomic_set(&huge_zero_refcount, 2);
199 preempt_enable();
200 return READ_ONCE(huge_zero_page);
203 static void put_huge_zero_page(void)
206 * Counter should never go to zero here. Only shrinker can put
207 * last reference.
209 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
213 struct shrink_control *sc)
215 /* we can free zero page only if last reference remains */
216 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
220 struct shrink_control *sc)
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 struct page *zero_page = xchg(&huge_zero_page, NULL);
224 BUG_ON(zero_page == NULL);
225 __free_pages(zero_page, compound_order(zero_page));
226 return HPAGE_PMD_NR;
229 return 0;
232 static struct shrinker huge_zero_page_shrinker = {
233 .count_objects = shrink_huge_zero_page_count,
234 .scan_objects = shrink_huge_zero_page_scan,
235 .seeks = DEFAULT_SEEKS,
238 #ifdef CONFIG_SYSFS
240 static ssize_t double_flag_show(struct kobject *kobj,
241 struct kobj_attribute *attr, char *buf,
242 enum transparent_hugepage_flag enabled,
243 enum transparent_hugepage_flag req_madv)
245 if (test_bit(enabled, &transparent_hugepage_flags)) {
246 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
247 return sprintf(buf, "[always] madvise never\n");
248 } else if (test_bit(req_madv, &transparent_hugepage_flags))
249 return sprintf(buf, "always [madvise] never\n");
250 else
251 return sprintf(buf, "always madvise [never]\n");
253 static ssize_t double_flag_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t count,
256 enum transparent_hugepage_flag enabled,
257 enum transparent_hugepage_flag req_madv)
259 if (!memcmp("always", buf,
260 min(sizeof("always")-1, count))) {
261 set_bit(enabled, &transparent_hugepage_flags);
262 clear_bit(req_madv, &transparent_hugepage_flags);
263 } else if (!memcmp("madvise", buf,
264 min(sizeof("madvise")-1, count))) {
265 clear_bit(enabled, &transparent_hugepage_flags);
266 set_bit(req_madv, &transparent_hugepage_flags);
267 } else if (!memcmp("never", buf,
268 min(sizeof("never")-1, count))) {
269 clear_bit(enabled, &transparent_hugepage_flags);
270 clear_bit(req_madv, &transparent_hugepage_flags);
271 } else
272 return -EINVAL;
274 return count;
277 static ssize_t enabled_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
280 return double_flag_show(kobj, attr, buf,
281 TRANSPARENT_HUGEPAGE_FLAG,
282 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
284 static ssize_t enabled_store(struct kobject *kobj,
285 struct kobj_attribute *attr,
286 const char *buf, size_t count)
288 ssize_t ret;
290 ret = double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
294 if (ret > 0) {
295 int err;
297 mutex_lock(&khugepaged_mutex);
298 err = start_stop_khugepaged();
299 mutex_unlock(&khugepaged_mutex);
301 if (err)
302 ret = err;
305 return ret;
307 static struct kobj_attribute enabled_attr =
308 __ATTR(enabled, 0644, enabled_show, enabled_store);
310 static ssize_t single_flag_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf,
312 enum transparent_hugepage_flag flag)
314 return sprintf(buf, "%d\n",
315 !!test_bit(flag, &transparent_hugepage_flags));
318 static ssize_t single_flag_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count,
321 enum transparent_hugepage_flag flag)
323 unsigned long value;
324 int ret;
326 ret = kstrtoul(buf, 10, &value);
327 if (ret < 0)
328 return ret;
329 if (value > 1)
330 return -EINVAL;
332 if (value)
333 set_bit(flag, &transparent_hugepage_flags);
334 else
335 clear_bit(flag, &transparent_hugepage_flags);
337 return count;
341 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
342 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
343 * memory just to allocate one more hugepage.
345 static ssize_t defrag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf)
348 return double_flag_show(kobj, attr, buf,
349 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
350 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
352 static ssize_t defrag_store(struct kobject *kobj,
353 struct kobj_attribute *attr,
354 const char *buf, size_t count)
356 return double_flag_store(kobj, attr, buf, count,
357 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
358 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
360 static struct kobj_attribute defrag_attr =
361 __ATTR(defrag, 0644, defrag_show, defrag_store);
363 static ssize_t use_zero_page_show(struct kobject *kobj,
364 struct kobj_attribute *attr, char *buf)
366 return single_flag_show(kobj, attr, buf,
367 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
369 static ssize_t use_zero_page_store(struct kobject *kobj,
370 struct kobj_attribute *attr, const char *buf, size_t count)
372 return single_flag_store(kobj, attr, buf, count,
373 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
375 static struct kobj_attribute use_zero_page_attr =
376 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
377 #ifdef CONFIG_DEBUG_VM
378 static ssize_t debug_cow_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
381 return single_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
384 static ssize_t debug_cow_store(struct kobject *kobj,
385 struct kobj_attribute *attr,
386 const char *buf, size_t count)
388 return single_flag_store(kobj, attr, buf, count,
389 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
391 static struct kobj_attribute debug_cow_attr =
392 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
393 #endif /* CONFIG_DEBUG_VM */
395 static struct attribute *hugepage_attr[] = {
396 &enabled_attr.attr,
397 &defrag_attr.attr,
398 &use_zero_page_attr.attr,
399 #ifdef CONFIG_DEBUG_VM
400 &debug_cow_attr.attr,
401 #endif
402 NULL,
405 static struct attribute_group hugepage_attr_group = {
406 .attrs = hugepage_attr,
409 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
410 struct kobj_attribute *attr,
411 char *buf)
413 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 const char *buf, size_t count)
420 unsigned long msecs;
421 int err;
423 err = kstrtoul(buf, 10, &msecs);
424 if (err || msecs > UINT_MAX)
425 return -EINVAL;
427 khugepaged_scan_sleep_millisecs = msecs;
428 wake_up_interruptible(&khugepaged_wait);
430 return count;
432 static struct kobj_attribute scan_sleep_millisecs_attr =
433 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
434 scan_sleep_millisecs_store);
436 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
437 struct kobj_attribute *attr,
438 char *buf)
440 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
444 struct kobj_attribute *attr,
445 const char *buf, size_t count)
447 unsigned long msecs;
448 int err;
450 err = kstrtoul(buf, 10, &msecs);
451 if (err || msecs > UINT_MAX)
452 return -EINVAL;
454 khugepaged_alloc_sleep_millisecs = msecs;
455 wake_up_interruptible(&khugepaged_wait);
457 return count;
459 static struct kobj_attribute alloc_sleep_millisecs_attr =
460 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
461 alloc_sleep_millisecs_store);
463 static ssize_t pages_to_scan_show(struct kobject *kobj,
464 struct kobj_attribute *attr,
465 char *buf)
467 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
469 static ssize_t pages_to_scan_store(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 const char *buf, size_t count)
473 int err;
474 unsigned long pages;
476 err = kstrtoul(buf, 10, &pages);
477 if (err || !pages || pages > UINT_MAX)
478 return -EINVAL;
480 khugepaged_pages_to_scan = pages;
482 return count;
484 static struct kobj_attribute pages_to_scan_attr =
485 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
486 pages_to_scan_store);
488 static ssize_t pages_collapsed_show(struct kobject *kobj,
489 struct kobj_attribute *attr,
490 char *buf)
492 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
494 static struct kobj_attribute pages_collapsed_attr =
495 __ATTR_RO(pages_collapsed);
497 static ssize_t full_scans_show(struct kobject *kobj,
498 struct kobj_attribute *attr,
499 char *buf)
501 return sprintf(buf, "%u\n", khugepaged_full_scans);
503 static struct kobj_attribute full_scans_attr =
504 __ATTR_RO(full_scans);
506 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
507 struct kobj_attribute *attr, char *buf)
509 return single_flag_show(kobj, attr, buf,
510 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
512 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
513 struct kobj_attribute *attr,
514 const char *buf, size_t count)
516 return single_flag_store(kobj, attr, buf, count,
517 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
519 static struct kobj_attribute khugepaged_defrag_attr =
520 __ATTR(defrag, 0644, khugepaged_defrag_show,
521 khugepaged_defrag_store);
524 * max_ptes_none controls if khugepaged should collapse hugepages over
525 * any unmapped ptes in turn potentially increasing the memory
526 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
527 * reduce the available free memory in the system as it
528 * runs. Increasing max_ptes_none will instead potentially reduce the
529 * free memory in the system during the khugepaged scan.
531 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
535 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
537 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
538 struct kobj_attribute *attr,
539 const char *buf, size_t count)
541 int err;
542 unsigned long max_ptes_none;
544 err = kstrtoul(buf, 10, &max_ptes_none);
545 if (err || max_ptes_none > HPAGE_PMD_NR-1)
546 return -EINVAL;
548 khugepaged_max_ptes_none = max_ptes_none;
550 return count;
552 static struct kobj_attribute khugepaged_max_ptes_none_attr =
553 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
554 khugepaged_max_ptes_none_store);
556 static struct attribute *khugepaged_attr[] = {
557 &khugepaged_defrag_attr.attr,
558 &khugepaged_max_ptes_none_attr.attr,
559 &pages_to_scan_attr.attr,
560 &pages_collapsed_attr.attr,
561 &full_scans_attr.attr,
562 &scan_sleep_millisecs_attr.attr,
563 &alloc_sleep_millisecs_attr.attr,
564 NULL,
567 static struct attribute_group khugepaged_attr_group = {
568 .attrs = khugepaged_attr,
569 .name = "khugepaged",
572 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
574 int err;
576 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
577 if (unlikely(!*hugepage_kobj)) {
578 pr_err("failed to create transparent hugepage kobject\n");
579 return -ENOMEM;
582 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
583 if (err) {
584 pr_err("failed to register transparent hugepage group\n");
585 goto delete_obj;
588 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
589 if (err) {
590 pr_err("failed to register transparent hugepage group\n");
591 goto remove_hp_group;
594 return 0;
596 remove_hp_group:
597 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
598 delete_obj:
599 kobject_put(*hugepage_kobj);
600 return err;
603 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
605 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
606 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
607 kobject_put(hugepage_kobj);
609 #else
610 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
612 return 0;
615 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 #endif /* CONFIG_SYSFS */
620 static int __init hugepage_init(void)
622 int err;
623 struct kobject *hugepage_kobj;
625 if (!has_transparent_hugepage()) {
626 transparent_hugepage_flags = 0;
627 return -EINVAL;
630 err = hugepage_init_sysfs(&hugepage_kobj);
631 if (err)
632 goto err_sysfs;
634 err = khugepaged_slab_init();
635 if (err)
636 goto err_slab;
638 err = register_shrinker(&huge_zero_page_shrinker);
639 if (err)
640 goto err_hzp_shrinker;
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
648 transparent_hugepage_flags = 0;
649 return 0;
652 err = start_stop_khugepaged();
653 if (err)
654 goto err_khugepaged;
656 return 0;
657 err_khugepaged:
658 unregister_shrinker(&huge_zero_page_shrinker);
659 err_hzp_shrinker:
660 khugepaged_slab_exit();
661 err_slab:
662 hugepage_exit_sysfs(hugepage_kobj);
663 err_sysfs:
664 return err;
666 subsys_initcall(hugepage_init);
668 static int __init setup_transparent_hugepage(char *str)
670 int ret = 0;
671 if (!str)
672 goto out;
673 if (!strcmp(str, "always")) {
674 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "madvise")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 } else if (!strcmp(str, "never")) {
686 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
687 &transparent_hugepage_flags);
688 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
689 &transparent_hugepage_flags);
690 ret = 1;
692 out:
693 if (!ret)
694 pr_warn("transparent_hugepage= cannot parse, ignored\n");
695 return ret;
697 __setup("transparent_hugepage=", setup_transparent_hugepage);
699 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
701 if (likely(vma->vm_flags & VM_WRITE))
702 pmd = pmd_mkwrite(pmd);
703 return pmd;
706 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
708 pmd_t entry;
709 entry = mk_pmd(page, prot);
710 entry = pmd_mkhuge(entry);
711 return entry;
714 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
715 struct vm_area_struct *vma,
716 unsigned long address, pmd_t *pmd,
717 struct page *page, gfp_t gfp,
718 unsigned int flags)
720 struct mem_cgroup *memcg;
721 pgtable_t pgtable;
722 spinlock_t *ptl;
723 unsigned long haddr = address & HPAGE_PMD_MASK;
725 VM_BUG_ON_PAGE(!PageCompound(page), page);
727 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
728 put_page(page);
729 count_vm_event(THP_FAULT_FALLBACK);
730 return VM_FAULT_FALLBACK;
733 pgtable = pte_alloc_one(mm, haddr);
734 if (unlikely(!pgtable)) {
735 mem_cgroup_cancel_charge(page, memcg);
736 put_page(page);
737 return VM_FAULT_OOM;
740 clear_huge_page(page, haddr, HPAGE_PMD_NR);
742 * The memory barrier inside __SetPageUptodate makes sure that
743 * clear_huge_page writes become visible before the set_pmd_at()
744 * write.
746 __SetPageUptodate(page);
748 ptl = pmd_lock(mm, pmd);
749 if (unlikely(!pmd_none(*pmd))) {
750 spin_unlock(ptl);
751 mem_cgroup_cancel_charge(page, memcg);
752 put_page(page);
753 pte_free(mm, pgtable);
754 } else {
755 pmd_t entry;
757 /* Deliver the page fault to userland */
758 if (userfaultfd_missing(vma)) {
759 int ret;
761 spin_unlock(ptl);
762 mem_cgroup_cancel_charge(page, memcg);
763 put_page(page);
764 pte_free(mm, pgtable);
765 ret = handle_userfault(vma, address, flags,
766 VM_UFFD_MISSING);
767 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
768 return ret;
771 entry = mk_huge_pmd(page, vma->vm_page_prot);
772 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
773 page_add_new_anon_rmap(page, vma, haddr);
774 mem_cgroup_commit_charge(page, memcg, false);
775 lru_cache_add_active_or_unevictable(page, vma);
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
777 set_pmd_at(mm, haddr, pmd, entry);
778 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
779 atomic_long_inc(&mm->nr_ptes);
780 spin_unlock(ptl);
781 count_vm_event(THP_FAULT_ALLOC);
784 return 0;
787 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
789 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
792 /* Caller must hold page table lock. */
793 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
794 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
795 struct page *zero_page)
797 pmd_t entry;
798 if (!pmd_none(*pmd))
799 return false;
800 entry = mk_pmd(zero_page, vma->vm_page_prot);
801 entry = pmd_mkhuge(entry);
802 pgtable_trans_huge_deposit(mm, pmd, pgtable);
803 set_pmd_at(mm, haddr, pmd, entry);
804 atomic_long_inc(&mm->nr_ptes);
805 return true;
808 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
809 unsigned long address, pmd_t *pmd,
810 unsigned int flags)
812 gfp_t gfp;
813 struct page *page;
814 unsigned long haddr = address & HPAGE_PMD_MASK;
816 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
817 return VM_FAULT_FALLBACK;
818 if (unlikely(anon_vma_prepare(vma)))
819 return VM_FAULT_OOM;
820 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
821 return VM_FAULT_OOM;
822 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
823 transparent_hugepage_use_zero_page()) {
824 spinlock_t *ptl;
825 pgtable_t pgtable;
826 struct page *zero_page;
827 int ret;
828 pgtable = pte_alloc_one(mm, haddr);
829 if (unlikely(!pgtable))
830 return VM_FAULT_OOM;
831 zero_page = get_huge_zero_page();
832 if (unlikely(!zero_page)) {
833 pte_free(mm, pgtable);
834 count_vm_event(THP_FAULT_FALLBACK);
835 return VM_FAULT_FALLBACK;
837 ptl = pmd_lock(mm, pmd);
838 ret = 0;
839 if (pmd_none(*pmd)) {
840 if (userfaultfd_missing(vma)) {
841 spin_unlock(ptl);
842 pte_free(mm, pgtable);
843 put_huge_zero_page();
844 ret = handle_userfault(vma, address, flags,
845 VM_UFFD_MISSING);
846 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
847 } else {
848 set_huge_zero_page(pgtable, mm, vma,
849 haddr, pmd,
850 zero_page);
851 spin_unlock(ptl);
853 } else {
854 spin_unlock(ptl);
855 pte_free(mm, pgtable);
856 put_huge_zero_page();
858 return ret;
860 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
861 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
862 if (unlikely(!page)) {
863 count_vm_event(THP_FAULT_FALLBACK);
864 return VM_FAULT_FALLBACK;
866 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
867 flags);
870 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
871 pmd_t *pmd, unsigned long pfn, pgprot_t prot, bool write)
873 struct mm_struct *mm = vma->vm_mm;
874 pmd_t entry;
875 spinlock_t *ptl;
877 ptl = pmd_lock(mm, pmd);
878 if (pmd_none(*pmd)) {
879 entry = pmd_mkhuge(pfn_pmd(pfn, prot));
880 if (write) {
881 entry = pmd_mkyoung(pmd_mkdirty(entry));
882 entry = maybe_pmd_mkwrite(entry, vma);
884 set_pmd_at(mm, addr, pmd, entry);
885 update_mmu_cache_pmd(vma, addr, pmd);
887 spin_unlock(ptl);
890 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
891 pmd_t *pmd, unsigned long pfn, bool write)
893 pgprot_t pgprot = vma->vm_page_prot;
895 * If we had pmd_special, we could avoid all these restrictions,
896 * but we need to be consistent with PTEs and architectures that
897 * can't support a 'special' bit.
899 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
900 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
901 (VM_PFNMAP|VM_MIXEDMAP));
902 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
903 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
905 if (addr < vma->vm_start || addr >= vma->vm_end)
906 return VM_FAULT_SIGBUS;
907 if (track_pfn_insert(vma, &pgprot, pfn))
908 return VM_FAULT_SIGBUS;
909 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
910 return VM_FAULT_NOPAGE;
913 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
915 struct vm_area_struct *vma)
917 spinlock_t *dst_ptl, *src_ptl;
918 struct page *src_page;
919 pmd_t pmd;
920 pgtable_t pgtable;
921 int ret;
923 ret = -ENOMEM;
924 pgtable = pte_alloc_one(dst_mm, addr);
925 if (unlikely(!pgtable))
926 goto out;
928 dst_ptl = pmd_lock(dst_mm, dst_pmd);
929 src_ptl = pmd_lockptr(src_mm, src_pmd);
930 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
932 ret = -EAGAIN;
933 pmd = *src_pmd;
934 if (unlikely(!pmd_trans_huge(pmd))) {
935 pte_free(dst_mm, pgtable);
936 goto out_unlock;
939 * When page table lock is held, the huge zero pmd should not be
940 * under splitting since we don't split the page itself, only pmd to
941 * a page table.
943 if (is_huge_zero_pmd(pmd)) {
944 struct page *zero_page;
946 * get_huge_zero_page() will never allocate a new page here,
947 * since we already have a zero page to copy. It just takes a
948 * reference.
950 zero_page = get_huge_zero_page();
951 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
952 zero_page);
953 ret = 0;
954 goto out_unlock;
957 if (unlikely(pmd_trans_splitting(pmd))) {
958 /* split huge page running from under us */
959 spin_unlock(src_ptl);
960 spin_unlock(dst_ptl);
961 pte_free(dst_mm, pgtable);
963 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
964 goto out;
966 src_page = pmd_page(pmd);
967 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
968 get_page(src_page);
969 page_dup_rmap(src_page);
970 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
972 pmdp_set_wrprotect(src_mm, addr, src_pmd);
973 pmd = pmd_mkold(pmd_wrprotect(pmd));
974 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
975 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
976 atomic_long_inc(&dst_mm->nr_ptes);
978 ret = 0;
979 out_unlock:
980 spin_unlock(src_ptl);
981 spin_unlock(dst_ptl);
982 out:
983 return ret;
986 void huge_pmd_set_accessed(struct mm_struct *mm,
987 struct vm_area_struct *vma,
988 unsigned long address,
989 pmd_t *pmd, pmd_t orig_pmd,
990 int dirty)
992 spinlock_t *ptl;
993 pmd_t entry;
994 unsigned long haddr;
996 ptl = pmd_lock(mm, pmd);
997 if (unlikely(!pmd_same(*pmd, orig_pmd)))
998 goto unlock;
1000 entry = pmd_mkyoung(orig_pmd);
1001 haddr = address & HPAGE_PMD_MASK;
1002 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1003 update_mmu_cache_pmd(vma, address, pmd);
1005 unlock:
1006 spin_unlock(ptl);
1010 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
1011 * during copy_user_huge_page()'s copy_page_rep(): in the case when
1012 * the source page gets split and a tail freed before copy completes.
1013 * Called under pmd_lock of checked pmd, so safe from splitting itself.
1015 static void get_user_huge_page(struct page *page)
1017 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1018 struct page *endpage = page + HPAGE_PMD_NR;
1020 atomic_add(HPAGE_PMD_NR, &page->_count);
1021 while (++page < endpage)
1022 get_huge_page_tail(page);
1023 } else {
1024 get_page(page);
1028 static void put_user_huge_page(struct page *page)
1030 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
1031 struct page *endpage = page + HPAGE_PMD_NR;
1033 while (page < endpage)
1034 put_page(page++);
1035 } else {
1036 put_page(page);
1040 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1041 struct vm_area_struct *vma,
1042 unsigned long address,
1043 pmd_t *pmd, pmd_t orig_pmd,
1044 struct page *page,
1045 unsigned long haddr)
1047 struct mem_cgroup *memcg;
1048 spinlock_t *ptl;
1049 pgtable_t pgtable;
1050 pmd_t _pmd;
1051 int ret = 0, i;
1052 struct page **pages;
1053 unsigned long mmun_start; /* For mmu_notifiers */
1054 unsigned long mmun_end; /* For mmu_notifiers */
1056 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1057 GFP_KERNEL);
1058 if (unlikely(!pages)) {
1059 ret |= VM_FAULT_OOM;
1060 goto out;
1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
1064 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1065 __GFP_OTHER_NODE,
1066 vma, address, page_to_nid(page));
1067 if (unlikely(!pages[i] ||
1068 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1069 &memcg))) {
1070 if (pages[i])
1071 put_page(pages[i]);
1072 while (--i >= 0) {
1073 memcg = (void *)page_private(pages[i]);
1074 set_page_private(pages[i], 0);
1075 mem_cgroup_cancel_charge(pages[i], memcg);
1076 put_page(pages[i]);
1078 kfree(pages);
1079 ret |= VM_FAULT_OOM;
1080 goto out;
1082 set_page_private(pages[i], (unsigned long)memcg);
1085 for (i = 0; i < HPAGE_PMD_NR; i++) {
1086 copy_user_highpage(pages[i], page + i,
1087 haddr + PAGE_SIZE * i, vma);
1088 __SetPageUptodate(pages[i]);
1089 cond_resched();
1092 mmun_start = haddr;
1093 mmun_end = haddr + HPAGE_PMD_SIZE;
1094 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1096 ptl = pmd_lock(mm, pmd);
1097 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1098 goto out_free_pages;
1099 VM_BUG_ON_PAGE(!PageHead(page), page);
1101 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1102 /* leave pmd empty until pte is filled */
1104 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1105 pmd_populate(mm, &_pmd, pgtable);
1107 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1108 pte_t *pte, entry;
1109 entry = mk_pte(pages[i], vma->vm_page_prot);
1110 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1111 memcg = (void *)page_private(pages[i]);
1112 set_page_private(pages[i], 0);
1113 page_add_new_anon_rmap(pages[i], vma, haddr);
1114 mem_cgroup_commit_charge(pages[i], memcg, false);
1115 lru_cache_add_active_or_unevictable(pages[i], vma);
1116 pte = pte_offset_map(&_pmd, haddr);
1117 VM_BUG_ON(!pte_none(*pte));
1118 set_pte_at(mm, haddr, pte, entry);
1119 pte_unmap(pte);
1121 kfree(pages);
1123 smp_wmb(); /* make pte visible before pmd */
1124 pmd_populate(mm, pmd, pgtable);
1125 page_remove_rmap(page);
1126 spin_unlock(ptl);
1128 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1130 ret |= VM_FAULT_WRITE;
1131 put_page(page);
1133 out:
1134 return ret;
1136 out_free_pages:
1137 spin_unlock(ptl);
1138 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1139 for (i = 0; i < HPAGE_PMD_NR; i++) {
1140 memcg = (void *)page_private(pages[i]);
1141 set_page_private(pages[i], 0);
1142 mem_cgroup_cancel_charge(pages[i], memcg);
1143 put_page(pages[i]);
1145 kfree(pages);
1146 goto out;
1149 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1150 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1152 spinlock_t *ptl;
1153 int ret = 0;
1154 struct page *page = NULL, *new_page;
1155 struct mem_cgroup *memcg;
1156 unsigned long haddr;
1157 unsigned long mmun_start; /* For mmu_notifiers */
1158 unsigned long mmun_end; /* For mmu_notifiers */
1159 gfp_t huge_gfp; /* for allocation and charge */
1161 ptl = pmd_lockptr(mm, pmd);
1162 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1163 haddr = address & HPAGE_PMD_MASK;
1164 if (is_huge_zero_pmd(orig_pmd))
1165 goto alloc;
1166 spin_lock(ptl);
1167 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1168 goto out_unlock;
1170 page = pmd_page(orig_pmd);
1171 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1172 if (page_mapcount(page) == 1) {
1173 pmd_t entry;
1174 entry = pmd_mkyoung(orig_pmd);
1175 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1176 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1177 update_mmu_cache_pmd(vma, address, pmd);
1178 ret |= VM_FAULT_WRITE;
1179 goto out_unlock;
1181 get_user_huge_page(page);
1182 spin_unlock(ptl);
1183 alloc:
1184 if (transparent_hugepage_enabled(vma) &&
1185 !transparent_hugepage_debug_cow()) {
1186 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1187 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1188 } else
1189 new_page = NULL;
1191 if (unlikely(!new_page)) {
1192 if (!page) {
1193 split_huge_page_pmd(vma, address, pmd);
1194 ret |= VM_FAULT_FALLBACK;
1195 } else {
1196 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1197 pmd, orig_pmd, page, haddr);
1198 if (ret & VM_FAULT_OOM) {
1199 split_huge_page(page);
1200 ret |= VM_FAULT_FALLBACK;
1202 put_user_huge_page(page);
1204 count_vm_event(THP_FAULT_FALLBACK);
1205 goto out;
1208 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1209 put_page(new_page);
1210 if (page) {
1211 split_huge_page(page);
1212 put_user_huge_page(page);
1213 } else
1214 split_huge_page_pmd(vma, address, pmd);
1215 ret |= VM_FAULT_FALLBACK;
1216 count_vm_event(THP_FAULT_FALLBACK);
1217 goto out;
1220 count_vm_event(THP_FAULT_ALLOC);
1222 if (!page)
1223 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1224 else
1225 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1226 __SetPageUptodate(new_page);
1228 mmun_start = haddr;
1229 mmun_end = haddr + HPAGE_PMD_SIZE;
1230 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1232 spin_lock(ptl);
1233 if (page)
1234 put_user_huge_page(page);
1235 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1236 spin_unlock(ptl);
1237 mem_cgroup_cancel_charge(new_page, memcg);
1238 put_page(new_page);
1239 goto out_mn;
1240 } else {
1241 pmd_t entry;
1242 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1244 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1245 page_add_new_anon_rmap(new_page, vma, haddr);
1246 mem_cgroup_commit_charge(new_page, memcg, false);
1247 lru_cache_add_active_or_unevictable(new_page, vma);
1248 set_pmd_at(mm, haddr, pmd, entry);
1249 update_mmu_cache_pmd(vma, address, pmd);
1250 if (!page) {
1251 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1252 put_huge_zero_page();
1253 } else {
1254 VM_BUG_ON_PAGE(!PageHead(page), page);
1255 page_remove_rmap(page);
1256 put_page(page);
1258 ret |= VM_FAULT_WRITE;
1260 spin_unlock(ptl);
1261 out_mn:
1262 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1263 out:
1264 return ret;
1265 out_unlock:
1266 spin_unlock(ptl);
1267 return ret;
1271 * FOLL_FORCE can write to even unwritable pmd's, but only
1272 * after we've gone through a COW cycle and they are dirty.
1274 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1276 return pmd_write(pmd) ||
1277 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1280 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1281 unsigned long addr,
1282 pmd_t *pmd,
1283 unsigned int flags)
1285 struct mm_struct *mm = vma->vm_mm;
1286 struct page *page = NULL;
1288 assert_spin_locked(pmd_lockptr(mm, pmd));
1290 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1291 goto out;
1293 /* Avoid dumping huge zero page */
1294 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1295 return ERR_PTR(-EFAULT);
1297 /* Full NUMA hinting faults to serialise migration in fault paths */
1298 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1299 goto out;
1301 page = pmd_page(*pmd);
1302 VM_BUG_ON_PAGE(!PageHead(page), page);
1303 if (flags & FOLL_TOUCH) {
1304 pmd_t _pmd;
1305 _pmd = pmd_mkyoung(*pmd);
1306 if (flags & FOLL_WRITE)
1307 _pmd = pmd_mkdirty(_pmd);
1308 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1309 pmd, _pmd, flags & FOLL_WRITE))
1310 update_mmu_cache_pmd(vma, addr, pmd);
1312 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1313 if (page->mapping && trylock_page(page)) {
1314 lru_add_drain();
1315 if (page->mapping)
1316 mlock_vma_page(page);
1317 unlock_page(page);
1320 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1321 VM_BUG_ON_PAGE(!PageCompound(page), page);
1322 if (flags & FOLL_GET)
1323 get_page_foll(page);
1325 out:
1326 return page;
1329 /* NUMA hinting page fault entry point for trans huge pmds */
1330 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1331 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1333 spinlock_t *ptl;
1334 struct anon_vma *anon_vma = NULL;
1335 struct page *page;
1336 unsigned long haddr = addr & HPAGE_PMD_MASK;
1337 int page_nid = -1, this_nid = numa_node_id();
1338 int target_nid, last_cpupid = -1;
1339 bool page_locked;
1340 bool migrated = false;
1341 bool was_writable;
1342 int flags = 0;
1344 /* A PROT_NONE fault should not end up here */
1345 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1347 ptl = pmd_lock(mm, pmdp);
1348 if (unlikely(!pmd_same(pmd, *pmdp)))
1349 goto out_unlock;
1352 * If there are potential migrations, wait for completion and retry
1353 * without disrupting NUMA hinting information. Do not relock and
1354 * check_same as the page may no longer be mapped.
1356 if (unlikely(pmd_trans_migrating(*pmdp))) {
1357 page = pmd_page(*pmdp);
1358 if (!get_page_unless_zero(page))
1359 goto out_unlock;
1360 spin_unlock(ptl);
1361 wait_on_page_locked(page);
1362 put_page(page);
1363 goto out;
1366 page = pmd_page(pmd);
1367 BUG_ON(is_huge_zero_page(page));
1368 page_nid = page_to_nid(page);
1369 last_cpupid = page_cpupid_last(page);
1370 count_vm_numa_event(NUMA_HINT_FAULTS);
1371 if (page_nid == this_nid) {
1372 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1373 flags |= TNF_FAULT_LOCAL;
1376 /* See similar comment in do_numa_page for explanation */
1377 if (!(vma->vm_flags & VM_WRITE))
1378 flags |= TNF_NO_GROUP;
1381 * Acquire the page lock to serialise THP migrations but avoid dropping
1382 * page_table_lock if at all possible
1384 page_locked = trylock_page(page);
1385 target_nid = mpol_misplaced(page, vma, haddr);
1386 if (target_nid == -1) {
1387 /* If the page was locked, there are no parallel migrations */
1388 if (page_locked)
1389 goto clear_pmdnuma;
1392 /* Migration could have started since the pmd_trans_migrating check */
1393 if (!page_locked) {
1394 page_nid = -1;
1395 if (!get_page_unless_zero(page))
1396 goto out_unlock;
1397 spin_unlock(ptl);
1398 wait_on_page_locked(page);
1399 put_page(page);
1400 goto out;
1404 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1405 * to serialises splits
1407 get_page(page);
1408 spin_unlock(ptl);
1409 anon_vma = page_lock_anon_vma_read(page);
1411 /* Confirm the PMD did not change while page_table_lock was released */
1412 spin_lock(ptl);
1413 if (unlikely(!pmd_same(pmd, *pmdp))) {
1414 unlock_page(page);
1415 put_page(page);
1416 page_nid = -1;
1417 goto out_unlock;
1420 /* Bail if we fail to protect against THP splits for any reason */
1421 if (unlikely(!anon_vma)) {
1422 put_page(page);
1423 page_nid = -1;
1424 goto clear_pmdnuma;
1428 * Migrate the THP to the requested node, returns with page unlocked
1429 * and access rights restored.
1431 spin_unlock(ptl);
1432 migrated = migrate_misplaced_transhuge_page(mm, vma,
1433 pmdp, pmd, addr, page, target_nid);
1434 if (migrated) {
1435 flags |= TNF_MIGRATED;
1436 page_nid = target_nid;
1437 } else
1438 flags |= TNF_MIGRATE_FAIL;
1440 goto out;
1441 clear_pmdnuma:
1442 BUG_ON(!PageLocked(page));
1443 was_writable = pmd_write(pmd);
1444 pmd = pmd_modify(pmd, vma->vm_page_prot);
1445 pmd = pmd_mkyoung(pmd);
1446 if (was_writable)
1447 pmd = pmd_mkwrite(pmd);
1448 set_pmd_at(mm, haddr, pmdp, pmd);
1449 update_mmu_cache_pmd(vma, addr, pmdp);
1450 unlock_page(page);
1451 out_unlock:
1452 spin_unlock(ptl);
1454 out:
1455 if (anon_vma)
1456 page_unlock_anon_vma_read(anon_vma);
1458 if (page_nid != -1)
1459 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1461 return 0;
1464 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1465 pmd_t *pmd, unsigned long addr)
1467 pmd_t orig_pmd;
1468 spinlock_t *ptl;
1470 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1471 return 0;
1473 * For architectures like ppc64 we look at deposited pgtable
1474 * when calling pmdp_huge_get_and_clear. So do the
1475 * pgtable_trans_huge_withdraw after finishing pmdp related
1476 * operations.
1478 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1479 tlb->fullmm);
1480 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1481 if (vma_is_dax(vma)) {
1482 spin_unlock(ptl);
1483 if (is_huge_zero_pmd(orig_pmd))
1484 put_huge_zero_page();
1485 } else if (is_huge_zero_pmd(orig_pmd)) {
1486 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1487 atomic_long_dec(&tlb->mm->nr_ptes);
1488 spin_unlock(ptl);
1489 put_huge_zero_page();
1490 } else {
1491 struct page *page = pmd_page(orig_pmd);
1492 page_remove_rmap(page);
1493 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1494 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1495 VM_BUG_ON_PAGE(!PageHead(page), page);
1496 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1497 atomic_long_dec(&tlb->mm->nr_ptes);
1498 spin_unlock(ptl);
1499 tlb_remove_page(tlb, page);
1501 return 1;
1504 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1505 unsigned long old_addr,
1506 unsigned long new_addr, unsigned long old_end,
1507 pmd_t *old_pmd, pmd_t *new_pmd)
1509 spinlock_t *old_ptl, *new_ptl;
1510 int ret = 0;
1511 pmd_t pmd;
1512 bool force_flush = false;
1513 struct mm_struct *mm = vma->vm_mm;
1515 if ((old_addr & ~HPAGE_PMD_MASK) ||
1516 (new_addr & ~HPAGE_PMD_MASK) ||
1517 old_end - old_addr < HPAGE_PMD_SIZE ||
1518 (new_vma->vm_flags & VM_NOHUGEPAGE))
1519 goto out;
1522 * The destination pmd shouldn't be established, free_pgtables()
1523 * should have release it.
1525 if (WARN_ON(!pmd_none(*new_pmd))) {
1526 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1527 goto out;
1531 * We don't have to worry about the ordering of src and dst
1532 * ptlocks because exclusive mmap_sem prevents deadlock.
1534 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1535 if (ret == 1) {
1536 new_ptl = pmd_lockptr(mm, new_pmd);
1537 if (new_ptl != old_ptl)
1538 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1539 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1540 if (pmd_present(pmd))
1541 force_flush = true;
1542 VM_BUG_ON(!pmd_none(*new_pmd));
1544 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1545 pgtable_t pgtable;
1546 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1547 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1549 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1550 if (force_flush)
1551 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1552 if (new_ptl != old_ptl)
1553 spin_unlock(new_ptl);
1554 spin_unlock(old_ptl);
1556 out:
1557 return ret;
1561 * Returns
1562 * - 0 if PMD could not be locked
1563 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1564 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1566 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1567 unsigned long addr, pgprot_t newprot, int prot_numa)
1569 struct mm_struct *mm = vma->vm_mm;
1570 spinlock_t *ptl;
1571 pmd_t entry;
1572 bool preserve_write;
1574 int ret = 0;
1576 if (__pmd_trans_huge_lock(pmd, vma, &ptl) != 1)
1577 return 0;
1579 preserve_write = prot_numa && pmd_write(*pmd);
1580 ret = 1;
1583 * Avoid trapping faults against the zero page. The read-only
1584 * data is likely to be read-cached on the local CPU and
1585 * local/remote hits to the zero page are not interesting.
1587 if (prot_numa && is_huge_zero_pmd(*pmd))
1588 goto unlock;
1590 if (prot_numa && pmd_protnone(*pmd))
1591 goto unlock;
1594 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1595 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1596 * which is also under down_read(mmap_sem):
1598 * CPU0: CPU1:
1599 * change_huge_pmd(prot_numa=1)
1600 * pmdp_huge_get_and_clear_notify()
1601 * madvise_dontneed()
1602 * zap_pmd_range()
1603 * pmd_trans_huge(*pmd) == 0 (without ptl)
1604 * // skip the pmd
1605 * set_pmd_at();
1606 * // pmd is re-established
1608 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1609 * which may break userspace.
1611 * pmdp_invalidate() is required to make sure we don't miss
1612 * dirty/young flags set by hardware.
1614 entry = *pmd;
1615 pmdp_invalidate(vma, addr, pmd);
1618 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1619 * corrupt them.
1621 if (pmd_dirty(*pmd))
1622 entry = pmd_mkdirty(entry);
1623 if (pmd_young(*pmd))
1624 entry = pmd_mkyoung(entry);
1626 entry = pmd_modify(entry, newprot);
1627 if (preserve_write)
1628 entry = pmd_mkwrite(entry);
1629 ret = HPAGE_PMD_NR;
1630 set_pmd_at(mm, addr, pmd, entry);
1631 BUG_ON(!preserve_write && pmd_write(entry));
1632 unlock:
1633 spin_unlock(ptl);
1634 return ret;
1638 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1639 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1641 * Note that if it returns 1, this routine returns without unlocking page
1642 * table locks. So callers must unlock them.
1644 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1645 spinlock_t **ptl)
1647 *ptl = pmd_lock(vma->vm_mm, pmd);
1648 if (likely(pmd_trans_huge(*pmd))) {
1649 if (unlikely(pmd_trans_splitting(*pmd))) {
1650 spin_unlock(*ptl);
1651 wait_split_huge_page(vma->anon_vma, pmd);
1652 return -1;
1653 } else {
1654 /* Thp mapped by 'pmd' is stable, so we can
1655 * handle it as it is. */
1656 return 1;
1659 spin_unlock(*ptl);
1660 return 0;
1664 * This function returns whether a given @page is mapped onto the @address
1665 * in the virtual space of @mm.
1667 * When it's true, this function returns *pmd with holding the page table lock
1668 * and passing it back to the caller via @ptl.
1669 * If it's false, returns NULL without holding the page table lock.
1671 pmd_t *page_check_address_pmd(struct page *page,
1672 struct mm_struct *mm,
1673 unsigned long address,
1674 enum page_check_address_pmd_flag flag,
1675 spinlock_t **ptl)
1677 pgd_t *pgd;
1678 pud_t *pud;
1679 pmd_t *pmd;
1681 if (address & ~HPAGE_PMD_MASK)
1682 return NULL;
1684 pgd = pgd_offset(mm, address);
1685 if (!pgd_present(*pgd))
1686 return NULL;
1687 pud = pud_offset(pgd, address);
1688 if (!pud_present(*pud))
1689 return NULL;
1690 pmd = pmd_offset(pud, address);
1692 *ptl = pmd_lock(mm, pmd);
1693 if (!pmd_present(*pmd))
1694 goto unlock;
1695 if (pmd_page(*pmd) != page)
1696 goto unlock;
1698 * split_vma() may create temporary aliased mappings. There is
1699 * no risk as long as all huge pmd are found and have their
1700 * splitting bit set before __split_huge_page_refcount
1701 * runs. Finding the same huge pmd more than once during the
1702 * same rmap walk is not a problem.
1704 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1705 pmd_trans_splitting(*pmd))
1706 goto unlock;
1707 if (pmd_trans_huge(*pmd)) {
1708 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1709 !pmd_trans_splitting(*pmd));
1710 return pmd;
1712 unlock:
1713 spin_unlock(*ptl);
1714 return NULL;
1717 static int __split_huge_page_splitting(struct page *page,
1718 struct vm_area_struct *vma,
1719 unsigned long address)
1721 struct mm_struct *mm = vma->vm_mm;
1722 spinlock_t *ptl;
1723 pmd_t *pmd;
1724 int ret = 0;
1725 /* For mmu_notifiers */
1726 const unsigned long mmun_start = address;
1727 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1729 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1730 pmd = page_check_address_pmd(page, mm, address,
1731 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1732 if (pmd) {
1734 * We can't temporarily set the pmd to null in order
1735 * to split it, the pmd must remain marked huge at all
1736 * times or the VM won't take the pmd_trans_huge paths
1737 * and it won't wait on the anon_vma->root->rwsem to
1738 * serialize against split_huge_page*.
1740 pmdp_splitting_flush(vma, address, pmd);
1742 ret = 1;
1743 spin_unlock(ptl);
1745 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1747 return ret;
1750 static void __split_huge_page_refcount(struct page *page,
1751 struct list_head *list)
1753 int i;
1754 struct zone *zone = page_zone(page);
1755 struct lruvec *lruvec;
1756 int tail_count = 0;
1758 /* prevent PageLRU to go away from under us, and freeze lru stats */
1759 spin_lock_irq(&zone->lru_lock);
1760 lruvec = mem_cgroup_page_lruvec(page, zone);
1762 compound_lock(page);
1763 /* complete memcg works before add pages to LRU */
1764 mem_cgroup_split_huge_fixup(page);
1766 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1767 struct page *page_tail = page + i;
1769 /* tail_page->_mapcount cannot change */
1770 BUG_ON(page_mapcount(page_tail) < 0);
1771 tail_count += page_mapcount(page_tail);
1772 /* check for overflow */
1773 BUG_ON(tail_count < 0);
1774 BUG_ON(atomic_read(&page_tail->_count) != 0);
1776 * tail_page->_count is zero and not changing from
1777 * under us. But get_page_unless_zero() may be running
1778 * from under us on the tail_page. If we used
1779 * atomic_set() below instead of atomic_add(), we
1780 * would then run atomic_set() concurrently with
1781 * get_page_unless_zero(), and atomic_set() is
1782 * implemented in C not using locked ops. spin_unlock
1783 * on x86 sometime uses locked ops because of PPro
1784 * errata 66, 92, so unless somebody can guarantee
1785 * atomic_set() here would be safe on all archs (and
1786 * not only on x86), it's safer to use atomic_add().
1788 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1789 &page_tail->_count);
1791 /* after clearing PageTail the gup refcount can be released */
1792 smp_mb__after_atomic();
1794 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1795 page_tail->flags |= (page->flags &
1796 ((1L << PG_referenced) |
1797 (1L << PG_swapbacked) |
1798 (1L << PG_mlocked) |
1799 (1L << PG_uptodate) |
1800 (1L << PG_active) |
1801 (1L << PG_unevictable)));
1802 page_tail->flags |= (1L << PG_dirty);
1804 clear_compound_head(page_tail);
1806 if (page_is_young(page))
1807 set_page_young(page_tail);
1808 if (page_is_idle(page))
1809 set_page_idle(page_tail);
1812 * __split_huge_page_splitting() already set the
1813 * splitting bit in all pmd that could map this
1814 * hugepage, that will ensure no CPU can alter the
1815 * mapcount on the head page. The mapcount is only
1816 * accounted in the head page and it has to be
1817 * transferred to all tail pages in the below code. So
1818 * for this code to be safe, the split the mapcount
1819 * can't change. But that doesn't mean userland can't
1820 * keep changing and reading the page contents while
1821 * we transfer the mapcount, so the pmd splitting
1822 * status is achieved setting a reserved bit in the
1823 * pmd, not by clearing the present bit.
1825 page_tail->_mapcount = page->_mapcount;
1827 BUG_ON(page_tail->mapping);
1828 page_tail->mapping = page->mapping;
1830 page_tail->index = page->index + i;
1831 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1833 BUG_ON(!PageAnon(page_tail));
1834 BUG_ON(!PageUptodate(page_tail));
1835 BUG_ON(!PageDirty(page_tail));
1836 BUG_ON(!PageSwapBacked(page_tail));
1838 lru_add_page_tail(page, page_tail, lruvec, list);
1840 atomic_sub(tail_count, &page->_count);
1841 BUG_ON(atomic_read(&page->_count) <= 0);
1843 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1845 ClearPageCompound(page);
1846 compound_unlock(page);
1847 spin_unlock_irq(&zone->lru_lock);
1849 for (i = 1; i < HPAGE_PMD_NR; i++) {
1850 struct page *page_tail = page + i;
1851 BUG_ON(page_count(page_tail) <= 0);
1853 * Tail pages may be freed if there wasn't any mapping
1854 * like if add_to_swap() is running on a lru page that
1855 * had its mapping zapped. And freeing these pages
1856 * requires taking the lru_lock so we do the put_page
1857 * of the tail pages after the split is complete.
1859 put_page(page_tail);
1863 * Only the head page (now become a regular page) is required
1864 * to be pinned by the caller.
1866 BUG_ON(page_count(page) <= 0);
1869 static int __split_huge_page_map(struct page *page,
1870 struct vm_area_struct *vma,
1871 unsigned long address)
1873 struct mm_struct *mm = vma->vm_mm;
1874 spinlock_t *ptl;
1875 pmd_t *pmd, _pmd;
1876 int ret = 0, i;
1877 pgtable_t pgtable;
1878 unsigned long haddr;
1880 pmd = page_check_address_pmd(page, mm, address,
1881 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1882 if (pmd) {
1883 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1884 pmd_populate(mm, &_pmd, pgtable);
1885 if (pmd_write(*pmd))
1886 BUG_ON(page_mapcount(page) != 1);
1888 haddr = address;
1889 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1890 pte_t *pte, entry;
1891 BUG_ON(PageCompound(page+i));
1893 * Note that NUMA hinting access restrictions are not
1894 * transferred to avoid any possibility of altering
1895 * permissions across VMAs.
1897 entry = mk_pte(page + i, vma->vm_page_prot);
1898 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1899 if (!pmd_write(*pmd))
1900 entry = pte_wrprotect(entry);
1901 if (!pmd_young(*pmd))
1902 entry = pte_mkold(entry);
1903 pte = pte_offset_map(&_pmd, haddr);
1904 BUG_ON(!pte_none(*pte));
1905 set_pte_at(mm, haddr, pte, entry);
1906 pte_unmap(pte);
1909 smp_wmb(); /* make pte visible before pmd */
1911 * Up to this point the pmd is present and huge and
1912 * userland has the whole access to the hugepage
1913 * during the split (which happens in place). If we
1914 * overwrite the pmd with the not-huge version
1915 * pointing to the pte here (which of course we could
1916 * if all CPUs were bug free), userland could trigger
1917 * a small page size TLB miss on the small sized TLB
1918 * while the hugepage TLB entry is still established
1919 * in the huge TLB. Some CPU doesn't like that. See
1920 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1921 * Erratum 383 on page 93. Intel should be safe but is
1922 * also warns that it's only safe if the permission
1923 * and cache attributes of the two entries loaded in
1924 * the two TLB is identical (which should be the case
1925 * here). But it is generally safer to never allow
1926 * small and huge TLB entries for the same virtual
1927 * address to be loaded simultaneously. So instead of
1928 * doing "pmd_populate(); flush_pmd_tlb_range();" we first
1929 * mark the current pmd notpresent (atomically because
1930 * here the pmd_trans_huge and pmd_trans_splitting
1931 * must remain set at all times on the pmd until the
1932 * split is complete for this pmd), then we flush the
1933 * SMP TLB and finally we write the non-huge version
1934 * of the pmd entry with pmd_populate.
1936 pmdp_invalidate(vma, address, pmd);
1937 pmd_populate(mm, pmd, pgtable);
1938 ret = 1;
1939 spin_unlock(ptl);
1942 return ret;
1945 /* must be called with anon_vma->root->rwsem held */
1946 static void __split_huge_page(struct page *page,
1947 struct anon_vma *anon_vma,
1948 struct list_head *list)
1950 int mapcount, mapcount2;
1951 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1952 struct anon_vma_chain *avc;
1954 BUG_ON(!PageHead(page));
1955 BUG_ON(PageTail(page));
1957 mapcount = 0;
1958 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1959 struct vm_area_struct *vma = avc->vma;
1960 unsigned long addr = vma_address(page, vma);
1961 BUG_ON(is_vma_temporary_stack(vma));
1962 mapcount += __split_huge_page_splitting(page, vma, addr);
1965 * It is critical that new vmas are added to the tail of the
1966 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1967 * and establishes a child pmd before
1968 * __split_huge_page_splitting() freezes the parent pmd (so if
1969 * we fail to prevent copy_huge_pmd() from running until the
1970 * whole __split_huge_page() is complete), we will still see
1971 * the newly established pmd of the child later during the
1972 * walk, to be able to set it as pmd_trans_splitting too.
1974 if (mapcount != page_mapcount(page)) {
1975 pr_err("mapcount %d page_mapcount %d\n",
1976 mapcount, page_mapcount(page));
1977 BUG();
1980 __split_huge_page_refcount(page, list);
1982 mapcount2 = 0;
1983 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1984 struct vm_area_struct *vma = avc->vma;
1985 unsigned long addr = vma_address(page, vma);
1986 BUG_ON(is_vma_temporary_stack(vma));
1987 mapcount2 += __split_huge_page_map(page, vma, addr);
1989 if (mapcount != mapcount2) {
1990 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1991 mapcount, mapcount2, page_mapcount(page));
1992 BUG();
1997 * Split a hugepage into normal pages. This doesn't change the position of head
1998 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1999 * @list. Both head page and tail pages will inherit mapping, flags, and so on
2000 * from the hugepage.
2001 * Return 0 if the hugepage is split successfully otherwise return 1.
2003 int split_huge_page_to_list(struct page *page, struct list_head *list)
2005 struct anon_vma *anon_vma;
2006 int ret = 1;
2008 BUG_ON(is_huge_zero_page(page));
2009 BUG_ON(!PageAnon(page));
2012 * The caller does not necessarily hold an mmap_sem that would prevent
2013 * the anon_vma disappearing so we first we take a reference to it
2014 * and then lock the anon_vma for write. This is similar to
2015 * page_lock_anon_vma_read except the write lock is taken to serialise
2016 * against parallel split or collapse operations.
2018 anon_vma = page_get_anon_vma(page);
2019 if (!anon_vma)
2020 goto out;
2021 anon_vma_lock_write(anon_vma);
2023 ret = 0;
2024 if (!PageCompound(page))
2025 goto out_unlock;
2027 BUG_ON(!PageSwapBacked(page));
2028 __split_huge_page(page, anon_vma, list);
2029 count_vm_event(THP_SPLIT);
2031 BUG_ON(PageCompound(page));
2032 out_unlock:
2033 anon_vma_unlock_write(anon_vma);
2034 put_anon_vma(anon_vma);
2035 out:
2036 return ret;
2039 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
2041 int hugepage_madvise(struct vm_area_struct *vma,
2042 unsigned long *vm_flags, int advice)
2044 switch (advice) {
2045 case MADV_HUGEPAGE:
2046 #ifdef CONFIG_S390
2048 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
2049 * can't handle this properly after s390_enable_sie, so we simply
2050 * ignore the madvise to prevent qemu from causing a SIGSEGV.
2052 if (mm_has_pgste(vma->vm_mm))
2053 return 0;
2054 #endif
2056 * Be somewhat over-protective like KSM for now!
2058 if (*vm_flags & VM_NO_THP)
2059 return -EINVAL;
2060 *vm_flags &= ~VM_NOHUGEPAGE;
2061 *vm_flags |= VM_HUGEPAGE;
2063 * If the vma become good for khugepaged to scan,
2064 * register it here without waiting a page fault that
2065 * may not happen any time soon.
2067 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
2068 return -ENOMEM;
2069 break;
2070 case MADV_NOHUGEPAGE:
2072 * Be somewhat over-protective like KSM for now!
2074 if (*vm_flags & VM_NO_THP)
2075 return -EINVAL;
2076 *vm_flags &= ~VM_HUGEPAGE;
2077 *vm_flags |= VM_NOHUGEPAGE;
2079 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2080 * this vma even if we leave the mm registered in khugepaged if
2081 * it got registered before VM_NOHUGEPAGE was set.
2083 break;
2086 return 0;
2089 static int __init khugepaged_slab_init(void)
2091 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2092 sizeof(struct mm_slot),
2093 __alignof__(struct mm_slot), 0, NULL);
2094 if (!mm_slot_cache)
2095 return -ENOMEM;
2097 return 0;
2100 static void __init khugepaged_slab_exit(void)
2102 kmem_cache_destroy(mm_slot_cache);
2105 static inline struct mm_slot *alloc_mm_slot(void)
2107 if (!mm_slot_cache) /* initialization failed */
2108 return NULL;
2109 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2112 static inline void free_mm_slot(struct mm_slot *mm_slot)
2114 kmem_cache_free(mm_slot_cache, mm_slot);
2117 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2119 struct mm_slot *mm_slot;
2121 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2122 if (mm == mm_slot->mm)
2123 return mm_slot;
2125 return NULL;
2128 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2129 struct mm_slot *mm_slot)
2131 mm_slot->mm = mm;
2132 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2135 static inline int khugepaged_test_exit(struct mm_struct *mm)
2137 return atomic_read(&mm->mm_users) == 0 || !mmget_still_valid(mm);
2140 int __khugepaged_enter(struct mm_struct *mm)
2142 struct mm_slot *mm_slot;
2143 int wakeup;
2145 mm_slot = alloc_mm_slot();
2146 if (!mm_slot)
2147 return -ENOMEM;
2149 /* __khugepaged_exit() must not run from under us */
2150 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
2151 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2152 free_mm_slot(mm_slot);
2153 return 0;
2156 spin_lock(&khugepaged_mm_lock);
2157 insert_to_mm_slots_hash(mm, mm_slot);
2159 * Insert just behind the scanning cursor, to let the area settle
2160 * down a little.
2162 wakeup = list_empty(&khugepaged_scan.mm_head);
2163 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2164 spin_unlock(&khugepaged_mm_lock);
2166 atomic_inc(&mm->mm_count);
2167 if (wakeup)
2168 wake_up_interruptible(&khugepaged_wait);
2170 return 0;
2173 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2174 unsigned long vm_flags)
2176 unsigned long hstart, hend;
2177 if (!vma->anon_vma)
2179 * Not yet faulted in so we will register later in the
2180 * page fault if needed.
2182 return 0;
2183 if (vma->vm_ops || (vm_flags & VM_NO_THP))
2184 /* khugepaged not yet working on file or special mappings */
2185 return 0;
2186 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2187 hend = vma->vm_end & HPAGE_PMD_MASK;
2188 if (hstart < hend)
2189 return khugepaged_enter(vma, vm_flags);
2190 return 0;
2193 void __khugepaged_exit(struct mm_struct *mm)
2195 struct mm_slot *mm_slot;
2196 int free = 0;
2198 spin_lock(&khugepaged_mm_lock);
2199 mm_slot = get_mm_slot(mm);
2200 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2201 hash_del(&mm_slot->hash);
2202 list_del(&mm_slot->mm_node);
2203 free = 1;
2205 spin_unlock(&khugepaged_mm_lock);
2207 if (free) {
2208 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2209 free_mm_slot(mm_slot);
2210 mmdrop(mm);
2211 } else if (mm_slot) {
2213 * This is required to serialize against
2214 * khugepaged_test_exit() (which is guaranteed to run
2215 * under mmap sem read mode). Stop here (after we
2216 * return all pagetables will be destroyed) until
2217 * khugepaged has finished working on the pagetables
2218 * under the mmap_sem.
2220 down_write(&mm->mmap_sem);
2221 up_write(&mm->mmap_sem);
2225 static void release_pte_page(struct page *page)
2227 /* 0 stands for page_is_file_cache(page) == false */
2228 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2229 unlock_page(page);
2230 putback_lru_page(page);
2233 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2235 while (--_pte >= pte) {
2236 pte_t pteval = *_pte;
2237 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2238 release_pte_page(pte_page(pteval));
2242 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2243 unsigned long address,
2244 pte_t *pte)
2246 struct page *page;
2247 pte_t *_pte;
2248 int none_or_zero = 0;
2249 bool referenced = false, writable = false;
2250 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2251 _pte++, address += PAGE_SIZE) {
2252 pte_t pteval = *_pte;
2253 if (pte_none(pteval) || (pte_present(pteval) &&
2254 is_zero_pfn(pte_pfn(pteval)))) {
2255 if (!userfaultfd_armed(vma) &&
2256 ++none_or_zero <= khugepaged_max_ptes_none)
2257 continue;
2258 else
2259 goto out;
2261 if (!pte_present(pteval))
2262 goto out;
2263 page = vm_normal_page(vma, address, pteval);
2264 if (unlikely(!page))
2265 goto out;
2267 VM_BUG_ON_PAGE(PageCompound(page), page);
2268 VM_BUG_ON_PAGE(!PageAnon(page), page);
2269 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2272 * We can do it before isolate_lru_page because the
2273 * page can't be freed from under us. NOTE: PG_lock
2274 * is needed to serialize against split_huge_page
2275 * when invoked from the VM.
2277 if (!trylock_page(page))
2278 goto out;
2281 * cannot use mapcount: can't collapse if there's a gup pin.
2282 * The page must only be referenced by the scanned process
2283 * and page swap cache.
2285 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2286 unlock_page(page);
2287 goto out;
2289 if (pte_write(pteval)) {
2290 writable = true;
2291 } else {
2292 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2293 unlock_page(page);
2294 goto out;
2297 * Page is not in the swap cache. It can be collapsed
2298 * into a THP.
2303 * Isolate the page to avoid collapsing an hugepage
2304 * currently in use by the VM.
2306 if (isolate_lru_page(page)) {
2307 unlock_page(page);
2308 goto out;
2310 /* 0 stands for page_is_file_cache(page) == false */
2311 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2312 VM_BUG_ON_PAGE(!PageLocked(page), page);
2313 VM_BUG_ON_PAGE(PageLRU(page), page);
2315 /* If there is no mapped pte young don't collapse the page */
2316 if (pte_young(pteval) ||
2317 page_is_young(page) || PageReferenced(page) ||
2318 mmu_notifier_test_young(vma->vm_mm, address))
2319 referenced = true;
2321 if (likely(referenced && writable))
2322 return 1;
2323 out:
2324 release_pte_pages(pte, _pte);
2325 return 0;
2328 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2329 struct vm_area_struct *vma,
2330 unsigned long address,
2331 spinlock_t *ptl)
2333 pte_t *_pte;
2334 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2335 pte_t pteval = *_pte;
2336 struct page *src_page;
2338 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2339 clear_user_highpage(page, address);
2340 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2341 if (is_zero_pfn(pte_pfn(pteval))) {
2343 * ptl mostly unnecessary.
2345 spin_lock(ptl);
2347 * paravirt calls inside pte_clear here are
2348 * superfluous.
2350 pte_clear(vma->vm_mm, address, _pte);
2351 spin_unlock(ptl);
2353 } else {
2354 src_page = pte_page(pteval);
2355 copy_user_highpage(page, src_page, address, vma);
2356 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2357 release_pte_page(src_page);
2359 * ptl mostly unnecessary, but preempt has to
2360 * be disabled to update the per-cpu stats
2361 * inside page_remove_rmap().
2363 spin_lock(ptl);
2365 * paravirt calls inside pte_clear here are
2366 * superfluous.
2368 pte_clear(vma->vm_mm, address, _pte);
2369 page_remove_rmap(src_page);
2370 spin_unlock(ptl);
2371 free_page_and_swap_cache(src_page);
2374 address += PAGE_SIZE;
2375 page++;
2379 static void khugepaged_alloc_sleep(void)
2381 DEFINE_WAIT(wait);
2383 add_wait_queue(&khugepaged_wait, &wait);
2384 freezable_schedule_timeout_interruptible(
2385 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2386 remove_wait_queue(&khugepaged_wait, &wait);
2389 static int khugepaged_node_load[MAX_NUMNODES];
2391 static bool khugepaged_scan_abort(int nid)
2393 int i;
2396 * If zone_reclaim_mode is disabled, then no extra effort is made to
2397 * allocate memory locally.
2399 if (!zone_reclaim_mode)
2400 return false;
2402 /* If there is a count for this node already, it must be acceptable */
2403 if (khugepaged_node_load[nid])
2404 return false;
2406 for (i = 0; i < MAX_NUMNODES; i++) {
2407 if (!khugepaged_node_load[i])
2408 continue;
2409 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2410 return true;
2412 return false;
2415 #ifdef CONFIG_NUMA
2416 static int khugepaged_find_target_node(void)
2418 static int last_khugepaged_target_node = NUMA_NO_NODE;
2419 int nid, target_node = 0, max_value = 0;
2421 /* find first node with max normal pages hit */
2422 for (nid = 0; nid < MAX_NUMNODES; nid++)
2423 if (khugepaged_node_load[nid] > max_value) {
2424 max_value = khugepaged_node_load[nid];
2425 target_node = nid;
2428 /* do some balance if several nodes have the same hit record */
2429 if (target_node <= last_khugepaged_target_node)
2430 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2431 nid++)
2432 if (max_value == khugepaged_node_load[nid]) {
2433 target_node = nid;
2434 break;
2437 last_khugepaged_target_node = target_node;
2438 return target_node;
2441 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2443 if (IS_ERR(*hpage)) {
2444 if (!*wait)
2445 return false;
2447 *wait = false;
2448 *hpage = NULL;
2449 khugepaged_alloc_sleep();
2450 } else if (*hpage) {
2451 put_page(*hpage);
2452 *hpage = NULL;
2455 return true;
2458 static struct page *
2459 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2460 unsigned long address, int node)
2462 VM_BUG_ON_PAGE(*hpage, *hpage);
2465 * Before allocating the hugepage, release the mmap_sem read lock.
2466 * The allocation can take potentially a long time if it involves
2467 * sync compaction, and we do not need to hold the mmap_sem during
2468 * that. We will recheck the vma after taking it again in write mode.
2470 up_read(&mm->mmap_sem);
2472 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2473 if (unlikely(!*hpage)) {
2474 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2475 *hpage = ERR_PTR(-ENOMEM);
2476 return NULL;
2479 count_vm_event(THP_COLLAPSE_ALLOC);
2480 return *hpage;
2482 #else
2483 static int khugepaged_find_target_node(void)
2485 return 0;
2488 static inline struct page *alloc_hugepage(int defrag)
2490 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2491 HPAGE_PMD_ORDER);
2494 static struct page *khugepaged_alloc_hugepage(bool *wait)
2496 struct page *hpage;
2498 do {
2499 hpage = alloc_hugepage(khugepaged_defrag());
2500 if (!hpage) {
2501 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2502 if (!*wait)
2503 return NULL;
2505 *wait = false;
2506 khugepaged_alloc_sleep();
2507 } else
2508 count_vm_event(THP_COLLAPSE_ALLOC);
2509 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2511 return hpage;
2514 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2516 if (!*hpage)
2517 *hpage = khugepaged_alloc_hugepage(wait);
2519 if (unlikely(!*hpage))
2520 return false;
2522 return true;
2525 static struct page *
2526 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2527 unsigned long address, int node)
2529 up_read(&mm->mmap_sem);
2530 VM_BUG_ON(!*hpage);
2532 return *hpage;
2534 #endif
2536 static bool hugepage_vma_check(struct vm_area_struct *vma)
2538 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2539 (vma->vm_flags & VM_NOHUGEPAGE))
2540 return false;
2542 if (!vma->anon_vma || vma->vm_ops)
2543 return false;
2544 if (is_vma_temporary_stack(vma))
2545 return false;
2546 return !(vma->vm_flags & VM_NO_THP);
2549 static void collapse_huge_page(struct mm_struct *mm,
2550 unsigned long address,
2551 struct page **hpage,
2552 struct vm_area_struct *vma,
2553 int node)
2555 pmd_t *pmd, _pmd;
2556 pte_t *pte;
2557 pgtable_t pgtable;
2558 struct page *new_page;
2559 spinlock_t *pmd_ptl, *pte_ptl;
2560 int isolated;
2561 unsigned long hstart, hend;
2562 struct mem_cgroup *memcg;
2563 unsigned long mmun_start; /* For mmu_notifiers */
2564 unsigned long mmun_end; /* For mmu_notifiers */
2565 gfp_t gfp;
2567 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2569 /* Only allocate from the target node */
2570 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2571 __GFP_THISNODE;
2573 /* release the mmap_sem read lock. */
2574 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2575 if (!new_page)
2576 return;
2578 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2579 gfp, &memcg)))
2580 return;
2583 * Prevent all access to pagetables with the exception of
2584 * gup_fast later hanlded by the ptep_clear_flush and the VM
2585 * handled by the anon_vma lock + PG_lock.
2587 down_write(&mm->mmap_sem);
2588 if (unlikely(khugepaged_test_exit(mm)))
2589 goto out;
2591 vma = find_vma(mm, address);
2592 if (!vma)
2593 goto out;
2594 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2595 hend = vma->vm_end & HPAGE_PMD_MASK;
2596 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2597 goto out;
2598 if (!hugepage_vma_check(vma))
2599 goto out;
2600 pmd = mm_find_pmd(mm, address);
2601 if (!pmd)
2602 goto out;
2604 anon_vma_lock_write(vma->anon_vma);
2606 pte = pte_offset_map(pmd, address);
2607 pte_ptl = pte_lockptr(mm, pmd);
2609 mmun_start = address;
2610 mmun_end = address + HPAGE_PMD_SIZE;
2611 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2612 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2614 * After this gup_fast can't run anymore. This also removes
2615 * any huge TLB entry from the CPU so we won't allow
2616 * huge and small TLB entries for the same virtual address
2617 * to avoid the risk of CPU bugs in that area.
2619 _pmd = pmdp_collapse_flush(vma, address, pmd);
2620 spin_unlock(pmd_ptl);
2621 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2623 spin_lock(pte_ptl);
2624 isolated = __collapse_huge_page_isolate(vma, address, pte);
2625 spin_unlock(pte_ptl);
2627 if (unlikely(!isolated)) {
2628 pte_unmap(pte);
2629 spin_lock(pmd_ptl);
2630 BUG_ON(!pmd_none(*pmd));
2632 * We can only use set_pmd_at when establishing
2633 * hugepmds and never for establishing regular pmds that
2634 * points to regular pagetables. Use pmd_populate for that
2636 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2637 spin_unlock(pmd_ptl);
2638 anon_vma_unlock_write(vma->anon_vma);
2639 goto out;
2643 * All pages are isolated and locked so anon_vma rmap
2644 * can't run anymore.
2646 anon_vma_unlock_write(vma->anon_vma);
2648 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2649 pte_unmap(pte);
2650 __SetPageUptodate(new_page);
2651 pgtable = pmd_pgtable(_pmd);
2653 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2654 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2657 * spin_lock() below is not the equivalent of smp_wmb(), so
2658 * this is needed to avoid the copy_huge_page writes to become
2659 * visible after the set_pmd_at() write.
2661 smp_wmb();
2663 spin_lock(pmd_ptl);
2664 BUG_ON(!pmd_none(*pmd));
2665 page_add_new_anon_rmap(new_page, vma, address);
2666 mem_cgroup_commit_charge(new_page, memcg, false);
2667 lru_cache_add_active_or_unevictable(new_page, vma);
2668 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2669 set_pmd_at(mm, address, pmd, _pmd);
2670 update_mmu_cache_pmd(vma, address, pmd);
2671 spin_unlock(pmd_ptl);
2673 *hpage = NULL;
2675 khugepaged_pages_collapsed++;
2676 out_up_write:
2677 up_write(&mm->mmap_sem);
2678 return;
2680 out:
2681 mem_cgroup_cancel_charge(new_page, memcg);
2682 goto out_up_write;
2685 static int khugepaged_scan_pmd(struct mm_struct *mm,
2686 struct vm_area_struct *vma,
2687 unsigned long address,
2688 struct page **hpage)
2690 pmd_t *pmd;
2691 pte_t *pte, *_pte;
2692 int ret = 0, none_or_zero = 0;
2693 struct page *page;
2694 unsigned long _address;
2695 spinlock_t *ptl;
2696 int node = NUMA_NO_NODE;
2697 bool writable = false, referenced = false;
2699 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2701 pmd = mm_find_pmd(mm, address);
2702 if (!pmd)
2703 goto out;
2705 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2706 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2707 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2708 _pte++, _address += PAGE_SIZE) {
2709 pte_t pteval = *_pte;
2710 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2711 if (!userfaultfd_armed(vma) &&
2712 ++none_or_zero <= khugepaged_max_ptes_none)
2713 continue;
2714 else
2715 goto out_unmap;
2717 if (!pte_present(pteval))
2718 goto out_unmap;
2719 if (pte_write(pteval))
2720 writable = true;
2722 page = vm_normal_page(vma, _address, pteval);
2723 if (unlikely(!page))
2724 goto out_unmap;
2726 * Record which node the original page is from and save this
2727 * information to khugepaged_node_load[].
2728 * Khupaged will allocate hugepage from the node has the max
2729 * hit record.
2731 node = page_to_nid(page);
2732 if (khugepaged_scan_abort(node))
2733 goto out_unmap;
2734 khugepaged_node_load[node]++;
2735 VM_BUG_ON_PAGE(PageCompound(page), page);
2736 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2737 goto out_unmap;
2739 * cannot use mapcount: can't collapse if there's a gup pin.
2740 * The page must only be referenced by the scanned process
2741 * and page swap cache.
2743 if (page_count(page) != 1 + !!PageSwapCache(page))
2744 goto out_unmap;
2745 if (pte_young(pteval) ||
2746 page_is_young(page) || PageReferenced(page) ||
2747 mmu_notifier_test_young(vma->vm_mm, address))
2748 referenced = true;
2750 if (referenced && writable)
2751 ret = 1;
2752 out_unmap:
2753 pte_unmap_unlock(pte, ptl);
2754 if (ret) {
2755 node = khugepaged_find_target_node();
2756 /* collapse_huge_page will return with the mmap_sem released */
2757 collapse_huge_page(mm, address, hpage, vma, node);
2759 out:
2760 return ret;
2763 static void collect_mm_slot(struct mm_slot *mm_slot)
2765 struct mm_struct *mm = mm_slot->mm;
2767 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2769 if (khugepaged_test_exit(mm)) {
2770 /* free mm_slot */
2771 hash_del(&mm_slot->hash);
2772 list_del(&mm_slot->mm_node);
2775 * Not strictly needed because the mm exited already.
2777 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2780 /* khugepaged_mm_lock actually not necessary for the below */
2781 free_mm_slot(mm_slot);
2782 mmdrop(mm);
2786 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2787 struct page **hpage)
2788 __releases(&khugepaged_mm_lock)
2789 __acquires(&khugepaged_mm_lock)
2791 struct mm_slot *mm_slot;
2792 struct mm_struct *mm;
2793 struct vm_area_struct *vma;
2794 int progress = 0;
2796 VM_BUG_ON(!pages);
2797 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2799 if (khugepaged_scan.mm_slot)
2800 mm_slot = khugepaged_scan.mm_slot;
2801 else {
2802 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2803 struct mm_slot, mm_node);
2804 khugepaged_scan.address = 0;
2805 khugepaged_scan.mm_slot = mm_slot;
2807 spin_unlock(&khugepaged_mm_lock);
2809 mm = mm_slot->mm;
2810 down_read(&mm->mmap_sem);
2811 if (unlikely(khugepaged_test_exit(mm)))
2812 vma = NULL;
2813 else
2814 vma = find_vma(mm, khugepaged_scan.address);
2816 progress++;
2817 for (; vma; vma = vma->vm_next) {
2818 unsigned long hstart, hend;
2820 cond_resched();
2821 if (unlikely(khugepaged_test_exit(mm))) {
2822 progress++;
2823 break;
2825 if (!hugepage_vma_check(vma)) {
2826 skip:
2827 progress++;
2828 continue;
2830 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2831 hend = vma->vm_end & HPAGE_PMD_MASK;
2832 if (hstart >= hend)
2833 goto skip;
2834 if (khugepaged_scan.address > hend)
2835 goto skip;
2836 if (khugepaged_scan.address < hstart)
2837 khugepaged_scan.address = hstart;
2838 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2840 while (khugepaged_scan.address < hend) {
2841 int ret;
2842 cond_resched();
2843 if (unlikely(khugepaged_test_exit(mm)))
2844 goto breakouterloop;
2846 VM_BUG_ON(khugepaged_scan.address < hstart ||
2847 khugepaged_scan.address + HPAGE_PMD_SIZE >
2848 hend);
2849 ret = khugepaged_scan_pmd(mm, vma,
2850 khugepaged_scan.address,
2851 hpage);
2852 /* move to next address */
2853 khugepaged_scan.address += HPAGE_PMD_SIZE;
2854 progress += HPAGE_PMD_NR;
2855 if (ret)
2856 /* we released mmap_sem so break loop */
2857 goto breakouterloop_mmap_sem;
2858 if (progress >= pages)
2859 goto breakouterloop;
2862 breakouterloop:
2863 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2864 breakouterloop_mmap_sem:
2866 spin_lock(&khugepaged_mm_lock);
2867 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2869 * Release the current mm_slot if this mm is about to die, or
2870 * if we scanned all vmas of this mm.
2872 if (khugepaged_test_exit(mm) || !vma) {
2874 * Make sure that if mm_users is reaching zero while
2875 * khugepaged runs here, khugepaged_exit will find
2876 * mm_slot not pointing to the exiting mm.
2878 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2879 khugepaged_scan.mm_slot = list_entry(
2880 mm_slot->mm_node.next,
2881 struct mm_slot, mm_node);
2882 khugepaged_scan.address = 0;
2883 } else {
2884 khugepaged_scan.mm_slot = NULL;
2885 khugepaged_full_scans++;
2888 collect_mm_slot(mm_slot);
2891 return progress;
2894 static int khugepaged_has_work(void)
2896 return !list_empty(&khugepaged_scan.mm_head) &&
2897 khugepaged_enabled();
2900 static int khugepaged_wait_event(void)
2902 return !list_empty(&khugepaged_scan.mm_head) ||
2903 kthread_should_stop();
2906 static void khugepaged_do_scan(void)
2908 struct page *hpage = NULL;
2909 unsigned int progress = 0, pass_through_head = 0;
2910 unsigned int pages = khugepaged_pages_to_scan;
2911 bool wait = true;
2913 barrier(); /* write khugepaged_pages_to_scan to local stack */
2915 while (progress < pages) {
2916 if (!khugepaged_prealloc_page(&hpage, &wait))
2917 break;
2919 cond_resched();
2921 if (unlikely(kthread_should_stop() || try_to_freeze()))
2922 break;
2924 spin_lock(&khugepaged_mm_lock);
2925 if (!khugepaged_scan.mm_slot)
2926 pass_through_head++;
2927 if (khugepaged_has_work() &&
2928 pass_through_head < 2)
2929 progress += khugepaged_scan_mm_slot(pages - progress,
2930 &hpage);
2931 else
2932 progress = pages;
2933 spin_unlock(&khugepaged_mm_lock);
2936 if (!IS_ERR_OR_NULL(hpage))
2937 put_page(hpage);
2940 static void khugepaged_wait_work(void)
2942 if (khugepaged_has_work()) {
2943 if (!khugepaged_scan_sleep_millisecs)
2944 return;
2946 wait_event_freezable_timeout(khugepaged_wait,
2947 kthread_should_stop(),
2948 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2949 return;
2952 if (khugepaged_enabled())
2953 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2956 static int khugepaged(void *none)
2958 struct mm_slot *mm_slot;
2960 set_freezable();
2961 set_user_nice(current, MAX_NICE);
2963 while (!kthread_should_stop()) {
2964 khugepaged_do_scan();
2965 khugepaged_wait_work();
2968 spin_lock(&khugepaged_mm_lock);
2969 mm_slot = khugepaged_scan.mm_slot;
2970 khugepaged_scan.mm_slot = NULL;
2971 if (mm_slot)
2972 collect_mm_slot(mm_slot);
2973 spin_unlock(&khugepaged_mm_lock);
2974 return 0;
2977 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2978 unsigned long haddr, pmd_t *pmd)
2980 struct mm_struct *mm = vma->vm_mm;
2981 pgtable_t pgtable;
2982 pmd_t _pmd;
2983 int i;
2985 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2986 /* leave pmd empty until pte is filled */
2988 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2989 pmd_populate(mm, &_pmd, pgtable);
2991 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2992 pte_t *pte, entry;
2993 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2994 entry = pte_mkspecial(entry);
2995 pte = pte_offset_map(&_pmd, haddr);
2996 VM_BUG_ON(!pte_none(*pte));
2997 set_pte_at(mm, haddr, pte, entry);
2998 pte_unmap(pte);
3000 smp_wmb(); /* make pte visible before pmd */
3001 pmd_populate(mm, pmd, pgtable);
3002 put_huge_zero_page();
3005 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
3006 pmd_t *pmd)
3008 spinlock_t *ptl;
3009 struct page *page = NULL;
3010 struct mm_struct *mm = vma->vm_mm;
3011 unsigned long haddr = address & HPAGE_PMD_MASK;
3012 unsigned long mmun_start; /* For mmu_notifiers */
3013 unsigned long mmun_end; /* For mmu_notifiers */
3015 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
3017 mmun_start = haddr;
3018 mmun_end = haddr + HPAGE_PMD_SIZE;
3019 again:
3020 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3021 ptl = pmd_lock(mm, pmd);
3022 if (unlikely(!pmd_trans_huge(*pmd)))
3023 goto unlock;
3024 if (vma_is_dax(vma)) {
3025 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3026 if (is_huge_zero_pmd(_pmd))
3027 put_huge_zero_page();
3028 } else if (is_huge_zero_pmd(*pmd)) {
3029 __split_huge_zero_page_pmd(vma, haddr, pmd);
3030 } else {
3031 page = pmd_page(*pmd);
3032 VM_BUG_ON_PAGE(!page_count(page), page);
3033 get_page(page);
3035 unlock:
3036 spin_unlock(ptl);
3037 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3039 if (!page)
3040 return;
3042 split_huge_page(page);
3043 put_page(page);
3046 * We don't always have down_write of mmap_sem here: a racing
3047 * do_huge_pmd_wp_page() might have copied-on-write to another
3048 * huge page before our split_huge_page() got the anon_vma lock.
3050 if (unlikely(pmd_trans_huge(*pmd)))
3051 goto again;
3054 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
3055 pmd_t *pmd)
3057 struct vm_area_struct *vma;
3059 vma = find_vma(mm, address);
3060 BUG_ON(vma == NULL);
3061 split_huge_page_pmd(vma, address, pmd);
3064 static void split_huge_page_address(struct mm_struct *mm,
3065 unsigned long address)
3067 pgd_t *pgd;
3068 pud_t *pud;
3069 pmd_t *pmd;
3071 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3073 pgd = pgd_offset(mm, address);
3074 if (!pgd_present(*pgd))
3075 return;
3077 pud = pud_offset(pgd, address);
3078 if (!pud_present(*pud))
3079 return;
3081 pmd = pmd_offset(pud, address);
3082 if (!pmd_present(*pmd))
3083 return;
3085 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3086 * materialize from under us.
3088 split_huge_page_pmd_mm(mm, address, pmd);
3091 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3092 unsigned long start,
3093 unsigned long end,
3094 long adjust_next)
3097 * If the new start address isn't hpage aligned and it could
3098 * previously contain an hugepage: check if we need to split
3099 * an huge pmd.
3101 if (start & ~HPAGE_PMD_MASK &&
3102 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3103 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3104 split_huge_page_address(vma->vm_mm, start);
3107 * If the new end address isn't hpage aligned and it could
3108 * previously contain an hugepage: check if we need to split
3109 * an huge pmd.
3111 if (end & ~HPAGE_PMD_MASK &&
3112 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3113 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3114 split_huge_page_address(vma->vm_mm, end);
3117 * If we're also updating the vma->vm_next->vm_start, if the new
3118 * vm_next->vm_start isn't page aligned and it could previously
3119 * contain an hugepage: check if we need to split an huge pmd.
3121 if (adjust_next > 0) {
3122 struct vm_area_struct *next = vma->vm_next;
3123 unsigned long nstart = next->vm_start;
3124 nstart += adjust_next << PAGE_SHIFT;
3125 if (nstart & ~HPAGE_PMD_MASK &&
3126 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3127 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3128 split_huge_page_address(next->vm_mm, nstart);