1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
69 #include <net/tcp_memcontrol.h>
72 #include <asm/uaccess.h>
74 #include <trace/events/vmscan.h>
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
77 EXPORT_SYMBOL(memory_cgrp_subsys
);
79 #define MEM_CGROUP_RECLAIM_RETRIES 5
80 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
81 struct cgroup_subsys_state
*mem_cgroup_root_css __read_mostly
;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly
;
87 #define do_swap_account 0
90 static const char * const mem_cgroup_stat_names
[] = {
100 static const char * const mem_cgroup_events_names
[] = {
107 static const char * const mem_cgroup_lru_names
[] = {
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
124 struct mem_cgroup_tree_per_zone
{
125 struct rb_root rb_root
;
129 struct mem_cgroup_tree_per_node
{
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
133 struct mem_cgroup_tree
{
134 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
137 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
140 struct mem_cgroup_eventfd_list
{
141 struct list_head list
;
142 struct eventfd_ctx
*eventfd
;
146 * cgroup_event represents events which userspace want to receive.
148 struct mem_cgroup_event
{
150 * memcg which the event belongs to.
152 struct mem_cgroup
*memcg
;
154 * eventfd to signal userspace about the event.
156 struct eventfd_ctx
*eventfd
;
158 * Each of these stored in a list by the cgroup.
160 struct list_head list
;
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
166 int (*register_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
, const char *args
);
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
173 void (*unregister_event
)(struct mem_cgroup
*memcg
,
174 struct eventfd_ctx
*eventfd
);
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
180 wait_queue_head_t
*wqh
;
182 struct work_struct remove
;
185 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
186 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
188 /* Stuffs for move charges at task migration. */
190 * Types of charges to be moved.
192 #define MOVE_ANON 0x1U
193 #define MOVE_FILE 0x2U
194 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
196 /* "mc" and its members are protected by cgroup_mutex */
197 static struct move_charge_struct
{
198 spinlock_t lock
; /* for from, to */
199 struct mm_struct
*mm
;
200 struct mem_cgroup
*from
;
201 struct mem_cgroup
*to
;
203 unsigned long precharge
;
204 unsigned long moved_charge
;
205 unsigned long moved_swap
;
206 struct task_struct
*moving_task
; /* a task moving charges */
207 wait_queue_head_t waitq
; /* a waitq for other context */
209 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
210 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
214 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
215 * limit reclaim to prevent infinite loops, if they ever occur.
217 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
218 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
221 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
222 MEM_CGROUP_CHARGE_TYPE_ANON
,
223 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
224 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
228 /* for encoding cft->private value on file */
236 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
237 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
238 #define MEMFILE_ATTR(val) ((val) & 0xffff)
239 /* Used for OOM nofiier */
240 #define OOM_CONTROL (0)
243 * The memcg_create_mutex will be held whenever a new cgroup is created.
244 * As a consequence, any change that needs to protect against new child cgroups
245 * appearing has to hold it as well.
247 static DEFINE_MUTEX(memcg_create_mutex
);
249 /* Some nice accessors for the vmpressure. */
250 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
253 memcg
= root_mem_cgroup
;
254 return &memcg
->vmpressure
;
257 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
259 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
262 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
264 return (memcg
== root_mem_cgroup
);
268 * We restrict the id in the range of [1, 65535], so it can fit into
271 #define MEM_CGROUP_ID_MAX USHRT_MAX
273 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
278 /* Writing them here to avoid exposing memcg's inner layout */
279 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
281 void sock_update_memcg(struct sock
*sk
)
283 if (mem_cgroup_sockets_enabled
) {
284 struct mem_cgroup
*memcg
;
285 struct cg_proto
*cg_proto
;
287 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
289 /* Socket cloning can throw us here with sk_cgrp already
290 * filled. It won't however, necessarily happen from
291 * process context. So the test for root memcg given
292 * the current task's memcg won't help us in this case.
294 * Respecting the original socket's memcg is a better
295 * decision in this case.
298 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
299 css_get(&sk
->sk_cgrp
->memcg
->css
);
304 memcg
= mem_cgroup_from_task(current
);
305 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
306 if (cg_proto
&& test_bit(MEMCG_SOCK_ACTIVE
, &cg_proto
->flags
) &&
307 css_tryget_online(&memcg
->css
)) {
308 sk
->sk_cgrp
= cg_proto
;
313 EXPORT_SYMBOL(sock_update_memcg
);
315 void sock_release_memcg(struct sock
*sk
)
317 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
318 struct mem_cgroup
*memcg
;
319 WARN_ON(!sk
->sk_cgrp
->memcg
);
320 memcg
= sk
->sk_cgrp
->memcg
;
321 css_put(&sk
->sk_cgrp
->memcg
->css
);
325 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
327 if (!memcg
|| mem_cgroup_is_root(memcg
))
330 return &memcg
->tcp_mem
;
332 EXPORT_SYMBOL(tcp_proto_cgroup
);
336 #ifdef CONFIG_MEMCG_KMEM
338 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
339 * The main reason for not using cgroup id for this:
340 * this works better in sparse environments, where we have a lot of memcgs,
341 * but only a few kmem-limited. Or also, if we have, for instance, 200
342 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
343 * 200 entry array for that.
345 * The current size of the caches array is stored in memcg_nr_cache_ids. It
346 * will double each time we have to increase it.
348 static DEFINE_IDA(memcg_cache_ida
);
349 int memcg_nr_cache_ids
;
351 /* Protects memcg_nr_cache_ids */
352 static DECLARE_RWSEM(memcg_cache_ids_sem
);
354 void memcg_get_cache_ids(void)
356 down_read(&memcg_cache_ids_sem
);
359 void memcg_put_cache_ids(void)
361 up_read(&memcg_cache_ids_sem
);
365 * MIN_SIZE is different than 1, because we would like to avoid going through
366 * the alloc/free process all the time. In a small machine, 4 kmem-limited
367 * cgroups is a reasonable guess. In the future, it could be a parameter or
368 * tunable, but that is strictly not necessary.
370 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
371 * this constant directly from cgroup, but it is understandable that this is
372 * better kept as an internal representation in cgroup.c. In any case, the
373 * cgrp_id space is not getting any smaller, and we don't have to necessarily
374 * increase ours as well if it increases.
376 #define MEMCG_CACHES_MIN_SIZE 4
377 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
380 * A lot of the calls to the cache allocation functions are expected to be
381 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
382 * conditional to this static branch, we'll have to allow modules that does
383 * kmem_cache_alloc and the such to see this symbol as well
385 struct static_key memcg_kmem_enabled_key
;
386 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
388 #endif /* CONFIG_MEMCG_KMEM */
390 static struct mem_cgroup_per_zone
*
391 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
393 int nid
= zone_to_nid(zone
);
394 int zid
= zone_idx(zone
);
396 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
400 * mem_cgroup_css_from_page - css of the memcg associated with a page
401 * @page: page of interest
403 * If memcg is bound to the default hierarchy, css of the memcg associated
404 * with @page is returned. The returned css remains associated with @page
405 * until it is released.
407 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
410 * XXX: The above description of behavior on the default hierarchy isn't
411 * strictly true yet as replace_page_cache_page() can modify the
412 * association before @page is released even on the default hierarchy;
413 * however, the current and planned usages don't mix the the two functions
414 * and replace_page_cache_page() will soon be updated to make the invariant
417 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
419 struct mem_cgroup
*memcg
;
423 memcg
= page
->mem_cgroup
;
425 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
426 memcg
= root_mem_cgroup
;
433 * page_cgroup_ino - return inode number of the memcg a page is charged to
436 * Look up the closest online ancestor of the memory cgroup @page is charged to
437 * and return its inode number or 0 if @page is not charged to any cgroup. It
438 * is safe to call this function without holding a reference to @page.
440 * Note, this function is inherently racy, because there is nothing to prevent
441 * the cgroup inode from getting torn down and potentially reallocated a moment
442 * after page_cgroup_ino() returns, so it only should be used by callers that
443 * do not care (such as procfs interfaces).
445 ino_t
page_cgroup_ino(struct page
*page
)
447 struct mem_cgroup
*memcg
;
448 unsigned long ino
= 0;
451 memcg
= READ_ONCE(page
->mem_cgroup
);
452 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
453 memcg
= parent_mem_cgroup(memcg
);
455 ino
= cgroup_ino(memcg
->css
.cgroup
);
460 static struct mem_cgroup_per_zone
*
461 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
463 int nid
= page_to_nid(page
);
464 int zid
= page_zonenum(page
);
466 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
469 static struct mem_cgroup_tree_per_zone
*
470 soft_limit_tree_node_zone(int nid
, int zid
)
472 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
475 static struct mem_cgroup_tree_per_zone
*
476 soft_limit_tree_from_page(struct page
*page
)
478 int nid
= page_to_nid(page
);
479 int zid
= page_zonenum(page
);
481 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
485 struct mem_cgroup_tree_per_zone
*mctz
,
486 unsigned long new_usage_in_excess
)
488 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
489 struct rb_node
*parent
= NULL
;
490 struct mem_cgroup_per_zone
*mz_node
;
495 mz
->usage_in_excess
= new_usage_in_excess
;
496 if (!mz
->usage_in_excess
)
500 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
502 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
505 * We can't avoid mem cgroups that are over their soft
506 * limit by the same amount
508 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
511 rb_link_node(&mz
->tree_node
, parent
, p
);
512 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
516 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
517 struct mem_cgroup_tree_per_zone
*mctz
)
521 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
525 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
526 struct mem_cgroup_tree_per_zone
*mctz
)
530 spin_lock_irqsave(&mctz
->lock
, flags
);
531 __mem_cgroup_remove_exceeded(mz
, mctz
);
532 spin_unlock_irqrestore(&mctz
->lock
, flags
);
535 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
537 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
538 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
539 unsigned long excess
= 0;
541 if (nr_pages
> soft_limit
)
542 excess
= nr_pages
- soft_limit
;
547 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
549 unsigned long excess
;
550 struct mem_cgroup_per_zone
*mz
;
551 struct mem_cgroup_tree_per_zone
*mctz
;
553 mctz
= soft_limit_tree_from_page(page
);
555 * Necessary to update all ancestors when hierarchy is used.
556 * because their event counter is not touched.
558 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
559 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
560 excess
= soft_limit_excess(memcg
);
562 * We have to update the tree if mz is on RB-tree or
563 * mem is over its softlimit.
565 if (excess
|| mz
->on_tree
) {
568 spin_lock_irqsave(&mctz
->lock
, flags
);
569 /* if on-tree, remove it */
571 __mem_cgroup_remove_exceeded(mz
, mctz
);
573 * Insert again. mz->usage_in_excess will be updated.
574 * If excess is 0, no tree ops.
576 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
577 spin_unlock_irqrestore(&mctz
->lock
, flags
);
582 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
584 struct mem_cgroup_tree_per_zone
*mctz
;
585 struct mem_cgroup_per_zone
*mz
;
589 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
590 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
591 mctz
= soft_limit_tree_node_zone(nid
, zid
);
592 mem_cgroup_remove_exceeded(mz
, mctz
);
597 static struct mem_cgroup_per_zone
*
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
600 struct rb_node
*rightmost
= NULL
;
601 struct mem_cgroup_per_zone
*mz
;
605 rightmost
= rb_last(&mctz
->rb_root
);
607 goto done
; /* Nothing to reclaim from */
609 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
611 * Remove the node now but someone else can add it back,
612 * we will to add it back at the end of reclaim to its correct
613 * position in the tree.
615 __mem_cgroup_remove_exceeded(mz
, mctz
);
616 if (!soft_limit_excess(mz
->memcg
) ||
617 !css_tryget_online(&mz
->memcg
->css
))
623 static struct mem_cgroup_per_zone
*
624 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
626 struct mem_cgroup_per_zone
*mz
;
628 spin_lock_irq(&mctz
->lock
);
629 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
630 spin_unlock_irq(&mctz
->lock
);
635 * Return page count for single (non recursive) @memcg.
637 * Implementation Note: reading percpu statistics for memcg.
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronization of counter in memcg's counter.
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threshold and synchronization as vmstat[] should be
656 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
661 /* Per-cpu values can be negative, use a signed accumulator */
662 for_each_possible_cpu(cpu
)
663 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
665 * Summing races with updates, so val may be negative. Avoid exposing
666 * transient negative values.
673 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
674 enum mem_cgroup_events_index idx
)
676 unsigned long val
= 0;
679 for_each_possible_cpu(cpu
)
680 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
684 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
689 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
690 * counted as CACHE even if it's on ANON LRU.
693 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
696 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
699 if (PageTransHuge(page
))
700 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
703 /* pagein of a big page is an event. So, ignore page size */
705 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
707 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
708 nr_pages
= -nr_pages
; /* for event */
711 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
714 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
716 unsigned int lru_mask
)
718 unsigned long nr
= 0;
721 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
723 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
724 struct mem_cgroup_per_zone
*mz
;
728 if (!(BIT(lru
) & lru_mask
))
730 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
731 nr
+= mz
->lru_size
[lru
];
737 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
738 unsigned int lru_mask
)
740 unsigned long nr
= 0;
743 for_each_node_state(nid
, N_MEMORY
)
744 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
748 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
749 enum mem_cgroup_events_target target
)
751 unsigned long val
, next
;
753 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
754 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
755 /* from time_after() in jiffies.h */
756 if ((long)next
- (long)val
< 0) {
758 case MEM_CGROUP_TARGET_THRESH
:
759 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
761 case MEM_CGROUP_TARGET_SOFTLIMIT
:
762 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
764 case MEM_CGROUP_TARGET_NUMAINFO
:
765 next
= val
+ NUMAINFO_EVENTS_TARGET
;
770 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
777 * Check events in order.
780 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
782 /* threshold event is triggered in finer grain than soft limit */
783 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
784 MEM_CGROUP_TARGET_THRESH
))) {
786 bool do_numainfo __maybe_unused
;
788 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
789 MEM_CGROUP_TARGET_SOFTLIMIT
);
791 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
792 MEM_CGROUP_TARGET_NUMAINFO
);
794 mem_cgroup_threshold(memcg
);
795 if (unlikely(do_softlimit
))
796 mem_cgroup_update_tree(memcg
, page
);
798 if (unlikely(do_numainfo
))
799 atomic_inc(&memcg
->numainfo_events
);
804 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
807 * mm_update_next_owner() may clear mm->owner to NULL
808 * if it races with swapoff, page migration, etc.
809 * So this can be called with p == NULL.
814 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
816 EXPORT_SYMBOL(mem_cgroup_from_task
);
818 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
820 struct mem_cgroup
*memcg
= NULL
;
825 * Page cache insertions can happen withou an
826 * actual mm context, e.g. during disk probing
827 * on boot, loopback IO, acct() writes etc.
830 memcg
= root_mem_cgroup
;
832 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
833 if (unlikely(!memcg
))
834 memcg
= root_mem_cgroup
;
836 } while (!css_tryget(&memcg
->css
));
842 * mem_cgroup_iter - iterate over memory cgroup hierarchy
843 * @root: hierarchy root
844 * @prev: previously returned memcg, NULL on first invocation
845 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 * Returns references to children of the hierarchy below @root, or
848 * @root itself, or %NULL after a full round-trip.
850 * Caller must pass the return value in @prev on subsequent
851 * invocations for reference counting, or use mem_cgroup_iter_break()
852 * to cancel a hierarchy walk before the round-trip is complete.
854 * Reclaimers can specify a zone and a priority level in @reclaim to
855 * divide up the memcgs in the hierarchy among all concurrent
856 * reclaimers operating on the same zone and priority.
858 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
859 struct mem_cgroup
*prev
,
860 struct mem_cgroup_reclaim_cookie
*reclaim
)
862 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
863 struct cgroup_subsys_state
*css
= NULL
;
864 struct mem_cgroup
*memcg
= NULL
;
865 struct mem_cgroup
*pos
= NULL
;
867 if (mem_cgroup_disabled())
871 root
= root_mem_cgroup
;
873 if (prev
&& !reclaim
)
876 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
885 struct mem_cgroup_per_zone
*mz
;
887 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
888 iter
= &mz
->iter
[reclaim
->priority
];
890 if (prev
&& reclaim
->generation
!= iter
->generation
)
894 pos
= READ_ONCE(iter
->position
);
895 if (!pos
|| css_tryget(&pos
->css
))
898 * css reference reached zero, so iter->position will
899 * be cleared by ->css_released. However, we should not
900 * rely on this happening soon, because ->css_released
901 * is called from a work queue, and by busy-waiting we
902 * might block it. So we clear iter->position right
905 (void)cmpxchg(&iter
->position
, pos
, NULL
);
913 css
= css_next_descendant_pre(css
, &root
->css
);
916 * Reclaimers share the hierarchy walk, and a
917 * new one might jump in right at the end of
918 * the hierarchy - make sure they see at least
919 * one group and restart from the beginning.
927 * Verify the css and acquire a reference. The root
928 * is provided by the caller, so we know it's alive
929 * and kicking, and don't take an extra reference.
931 memcg
= mem_cgroup_from_css(css
);
933 if (css
== &root
->css
)
936 if (css_tryget(css
)) {
938 * Make sure the memcg is initialized:
939 * mem_cgroup_css_online() orders the the
940 * initialization against setting the flag.
942 if (smp_load_acquire(&memcg
->initialized
))
953 * The position could have already been updated by a competing
954 * thread, so check that the value hasn't changed since we read
955 * it to avoid reclaiming from the same cgroup twice.
957 (void)cmpxchg(&iter
->position
, pos
, memcg
);
965 reclaim
->generation
= iter
->generation
;
971 if (prev
&& prev
!= root
)
978 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
979 * @root: hierarchy root
980 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
982 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
983 struct mem_cgroup
*prev
)
986 root
= root_mem_cgroup
;
987 if (prev
&& prev
!= root
)
991 static void __invalidate_reclaim_iterators(struct mem_cgroup
*from
,
992 struct mem_cgroup
*dead_memcg
)
994 struct mem_cgroup_reclaim_iter
*iter
;
995 struct mem_cgroup_per_zone
*mz
;
1000 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1001 mz
= &from
->nodeinfo
[nid
]->zoneinfo
[zid
];
1002 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
1003 iter
= &mz
->iter
[i
];
1004 cmpxchg(&iter
->position
,
1011 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
1013 struct mem_cgroup
*memcg
= dead_memcg
;
1014 struct mem_cgroup
*last
;
1017 __invalidate_reclaim_iterators(memcg
, dead_memcg
);
1019 } while ((memcg
= parent_mem_cgroup(memcg
)));
1022 * When cgruop1 non-hierarchy mode is used,
1023 * parent_mem_cgroup() does not walk all the way up to the
1024 * cgroup root (root_mem_cgroup). So we have to handle
1025 * dead_memcg from cgroup root separately.
1027 if (last
!= root_mem_cgroup
)
1028 __invalidate_reclaim_iterators(root_mem_cgroup
,
1033 * Iteration constructs for visiting all cgroups (under a tree). If
1034 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1035 * be used for reference counting.
1037 #define for_each_mem_cgroup_tree(iter, root) \
1038 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1040 iter = mem_cgroup_iter(root, iter, NULL))
1042 #define for_each_mem_cgroup(iter) \
1043 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1045 iter = mem_cgroup_iter(NULL, iter, NULL))
1048 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1049 * @zone: zone of the wanted lruvec
1050 * @memcg: memcg of the wanted lruvec
1052 * Returns the lru list vector holding pages for the given @zone and
1053 * @mem. This can be the global zone lruvec, if the memory controller
1056 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1057 struct mem_cgroup
*memcg
)
1059 struct mem_cgroup_per_zone
*mz
;
1060 struct lruvec
*lruvec
;
1062 if (mem_cgroup_disabled()) {
1063 lruvec
= &zone
->lruvec
;
1067 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
1068 lruvec
= &mz
->lruvec
;
1071 * Since a node can be onlined after the mem_cgroup was created,
1072 * we have to be prepared to initialize lruvec->zone here;
1073 * and if offlined then reonlined, we need to reinitialize it.
1075 if (unlikely(lruvec
->zone
!= zone
))
1076 lruvec
->zone
= zone
;
1081 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1083 * @zone: zone of the page
1085 * This function is only safe when following the LRU page isolation
1086 * and putback protocol: the LRU lock must be held, and the page must
1087 * either be PageLRU() or the caller must have isolated/allocated it.
1089 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1091 struct mem_cgroup_per_zone
*mz
;
1092 struct mem_cgroup
*memcg
;
1093 struct lruvec
*lruvec
;
1095 if (mem_cgroup_disabled()) {
1096 lruvec
= &zone
->lruvec
;
1100 memcg
= page
->mem_cgroup
;
1102 * Swapcache readahead pages are added to the LRU - and
1103 * possibly migrated - before they are charged.
1106 memcg
= root_mem_cgroup
;
1108 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1109 lruvec
= &mz
->lruvec
;
1112 * Since a node can be onlined after the mem_cgroup was created,
1113 * we have to be prepared to initialize lruvec->zone here;
1114 * and if offlined then reonlined, we need to reinitialize it.
1116 if (unlikely(lruvec
->zone
!= zone
))
1117 lruvec
->zone
= zone
;
1122 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1123 * @lruvec: mem_cgroup per zone lru vector
1124 * @lru: index of lru list the page is sitting on
1125 * @nr_pages: positive when adding or negative when removing
1127 * This function must be called when a page is added to or removed from an
1130 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1133 struct mem_cgroup_per_zone
*mz
;
1134 unsigned long *lru_size
;
1136 if (mem_cgroup_disabled())
1139 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1140 lru_size
= mz
->lru_size
+ lru
;
1141 *lru_size
+= nr_pages
;
1142 VM_BUG_ON((long)(*lru_size
) < 0);
1145 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1147 struct mem_cgroup
*task_memcg
;
1148 struct task_struct
*p
;
1151 p
= find_lock_task_mm(task
);
1153 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1157 * All threads may have already detached their mm's, but the oom
1158 * killer still needs to detect if they have already been oom
1159 * killed to prevent needlessly killing additional tasks.
1162 task_memcg
= mem_cgroup_from_task(task
);
1163 css_get(&task_memcg
->css
);
1166 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1167 css_put(&task_memcg
->css
);
1171 #define mem_cgroup_from_counter(counter, member) \
1172 container_of(counter, struct mem_cgroup, member)
1175 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1176 * @memcg: the memory cgroup
1178 * Returns the maximum amount of memory @mem can be charged with, in
1181 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1183 unsigned long margin
= 0;
1184 unsigned long count
;
1185 unsigned long limit
;
1187 count
= page_counter_read(&memcg
->memory
);
1188 limit
= READ_ONCE(memcg
->memory
.limit
);
1190 margin
= limit
- count
;
1192 if (do_swap_account
) {
1193 count
= page_counter_read(&memcg
->memsw
);
1194 limit
= READ_ONCE(memcg
->memsw
.limit
);
1196 margin
= min(margin
, limit
- count
);
1203 * A routine for checking "mem" is under move_account() or not.
1205 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1206 * moving cgroups. This is for waiting at high-memory pressure
1209 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1211 struct mem_cgroup
*from
;
1212 struct mem_cgroup
*to
;
1215 * Unlike task_move routines, we access mc.to, mc.from not under
1216 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1218 spin_lock(&mc
.lock
);
1224 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1225 mem_cgroup_is_descendant(to
, memcg
);
1227 spin_unlock(&mc
.lock
);
1231 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1233 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1234 if (mem_cgroup_under_move(memcg
)) {
1236 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1237 /* moving charge context might have finished. */
1240 finish_wait(&mc
.waitq
, &wait
);
1247 #define K(x) ((x) << (PAGE_SHIFT-10))
1249 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1250 * @memcg: The memory cgroup that went over limit
1251 * @p: Task that is going to be killed
1253 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1256 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1258 /* oom_info_lock ensures that parallel ooms do not interleave */
1259 static DEFINE_MUTEX(oom_info_lock
);
1260 struct mem_cgroup
*iter
;
1263 mutex_lock(&oom_info_lock
);
1267 pr_info("Task in ");
1268 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1269 pr_cont(" killed as a result of limit of ");
1271 pr_info("Memory limit reached of cgroup ");
1274 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1279 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1280 K((u64
)page_counter_read(&memcg
->memory
)),
1281 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1282 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1283 K((u64
)page_counter_read(&memcg
->memsw
)),
1284 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1285 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1286 K((u64
)page_counter_read(&memcg
->kmem
)),
1287 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1289 for_each_mem_cgroup_tree(iter
, memcg
) {
1290 pr_info("Memory cgroup stats for ");
1291 pr_cont_cgroup_path(iter
->css
.cgroup
);
1294 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1295 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1297 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1298 K(mem_cgroup_read_stat(iter
, i
)));
1301 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1302 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1303 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1307 mutex_unlock(&oom_info_lock
);
1311 * This function returns the number of memcg under hierarchy tree. Returns
1312 * 1(self count) if no children.
1314 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1317 struct mem_cgroup
*iter
;
1319 for_each_mem_cgroup_tree(iter
, memcg
)
1325 * Return the memory (and swap, if configured) limit for a memcg.
1327 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1329 unsigned long limit
;
1331 limit
= memcg
->memory
.limit
;
1332 if (mem_cgroup_swappiness(memcg
)) {
1333 unsigned long memsw_limit
;
1335 memsw_limit
= memcg
->memsw
.limit
;
1336 limit
= min(limit
+ total_swap_pages
, memsw_limit
);
1341 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1344 struct oom_control oc
= {
1347 .gfp_mask
= gfp_mask
,
1350 struct mem_cgroup
*iter
;
1351 unsigned long chosen_points
= 0;
1352 unsigned long totalpages
;
1353 unsigned int points
= 0;
1354 struct task_struct
*chosen
= NULL
;
1356 mutex_lock(&oom_lock
);
1359 * If current has a pending SIGKILL or is exiting, then automatically
1360 * select it. The goal is to allow it to allocate so that it may
1361 * quickly exit and free its memory.
1363 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1364 mark_oom_victim(current
);
1368 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1369 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1370 for_each_mem_cgroup_tree(iter
, memcg
) {
1371 struct css_task_iter it
;
1372 struct task_struct
*task
;
1374 css_task_iter_start(&iter
->css
, &it
);
1375 while ((task
= css_task_iter_next(&it
))) {
1376 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1377 case OOM_SCAN_SELECT
:
1379 put_task_struct(chosen
);
1381 chosen_points
= ULONG_MAX
;
1382 get_task_struct(chosen
);
1384 case OOM_SCAN_CONTINUE
:
1386 case OOM_SCAN_ABORT
:
1387 css_task_iter_end(&it
);
1388 mem_cgroup_iter_break(memcg
, iter
);
1390 put_task_struct(chosen
);
1395 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1396 if (!points
|| points
< chosen_points
)
1398 /* Prefer thread group leaders for display purposes */
1399 if (points
== chosen_points
&&
1400 thread_group_leader(chosen
))
1404 put_task_struct(chosen
);
1406 chosen_points
= points
;
1407 get_task_struct(chosen
);
1409 css_task_iter_end(&it
);
1413 points
= chosen_points
* 1000 / totalpages
;
1414 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1415 "Memory cgroup out of memory");
1418 mutex_unlock(&oom_lock
);
1422 #if MAX_NUMNODES > 1
1425 * test_mem_cgroup_node_reclaimable
1426 * @memcg: the target memcg
1427 * @nid: the node ID to be checked.
1428 * @noswap : specify true here if the user wants flle only information.
1430 * This function returns whether the specified memcg contains any
1431 * reclaimable pages on a node. Returns true if there are any reclaimable
1432 * pages in the node.
1434 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1435 int nid
, bool noswap
)
1437 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1439 if (noswap
|| !total_swap_pages
)
1441 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1448 * Always updating the nodemask is not very good - even if we have an empty
1449 * list or the wrong list here, we can start from some node and traverse all
1450 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1453 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1457 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1458 * pagein/pageout changes since the last update.
1460 if (!atomic_read(&memcg
->numainfo_events
))
1462 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1465 /* make a nodemask where this memcg uses memory from */
1466 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1468 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1470 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1471 node_clear(nid
, memcg
->scan_nodes
);
1474 atomic_set(&memcg
->numainfo_events
, 0);
1475 atomic_set(&memcg
->numainfo_updating
, 0);
1479 * Selecting a node where we start reclaim from. Because what we need is just
1480 * reducing usage counter, start from anywhere is O,K. Considering
1481 * memory reclaim from current node, there are pros. and cons.
1483 * Freeing memory from current node means freeing memory from a node which
1484 * we'll use or we've used. So, it may make LRU bad. And if several threads
1485 * hit limits, it will see a contention on a node. But freeing from remote
1486 * node means more costs for memory reclaim because of memory latency.
1488 * Now, we use round-robin. Better algorithm is welcomed.
1490 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1494 mem_cgroup_may_update_nodemask(memcg
);
1495 node
= memcg
->last_scanned_node
;
1497 node
= next_node(node
, memcg
->scan_nodes
);
1498 if (node
== MAX_NUMNODES
)
1499 node
= first_node(memcg
->scan_nodes
);
1501 * We call this when we hit limit, not when pages are added to LRU.
1502 * No LRU may hold pages because all pages are UNEVICTABLE or
1503 * memcg is too small and all pages are not on LRU. In that case,
1504 * we use curret node.
1506 if (unlikely(node
== MAX_NUMNODES
))
1507 node
= numa_node_id();
1509 memcg
->last_scanned_node
= node
;
1513 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1519 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1522 unsigned long *total_scanned
)
1524 struct mem_cgroup
*victim
= NULL
;
1527 unsigned long excess
;
1528 unsigned long nr_scanned
;
1529 struct mem_cgroup_reclaim_cookie reclaim
= {
1534 excess
= soft_limit_excess(root_memcg
);
1537 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1542 * If we have not been able to reclaim
1543 * anything, it might because there are
1544 * no reclaimable pages under this hierarchy
1549 * We want to do more targeted reclaim.
1550 * excess >> 2 is not to excessive so as to
1551 * reclaim too much, nor too less that we keep
1552 * coming back to reclaim from this cgroup
1554 if (total
>= (excess
>> 2) ||
1555 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1560 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1562 *total_scanned
+= nr_scanned
;
1563 if (!soft_limit_excess(root_memcg
))
1566 mem_cgroup_iter_break(root_memcg
, victim
);
1570 #ifdef CONFIG_LOCKDEP
1571 static struct lockdep_map memcg_oom_lock_dep_map
= {
1572 .name
= "memcg_oom_lock",
1576 static DEFINE_SPINLOCK(memcg_oom_lock
);
1579 * Check OOM-Killer is already running under our hierarchy.
1580 * If someone is running, return false.
1582 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1584 struct mem_cgroup
*iter
, *failed
= NULL
;
1586 spin_lock(&memcg_oom_lock
);
1588 for_each_mem_cgroup_tree(iter
, memcg
) {
1589 if (iter
->oom_lock
) {
1591 * this subtree of our hierarchy is already locked
1592 * so we cannot give a lock.
1595 mem_cgroup_iter_break(memcg
, iter
);
1598 iter
->oom_lock
= true;
1603 * OK, we failed to lock the whole subtree so we have
1604 * to clean up what we set up to the failing subtree
1606 for_each_mem_cgroup_tree(iter
, memcg
) {
1607 if (iter
== failed
) {
1608 mem_cgroup_iter_break(memcg
, iter
);
1611 iter
->oom_lock
= false;
1614 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1616 spin_unlock(&memcg_oom_lock
);
1621 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1623 struct mem_cgroup
*iter
;
1625 spin_lock(&memcg_oom_lock
);
1626 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1627 for_each_mem_cgroup_tree(iter
, memcg
)
1628 iter
->oom_lock
= false;
1629 spin_unlock(&memcg_oom_lock
);
1632 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1634 struct mem_cgroup
*iter
;
1636 spin_lock(&memcg_oom_lock
);
1637 for_each_mem_cgroup_tree(iter
, memcg
)
1639 spin_unlock(&memcg_oom_lock
);
1642 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1644 struct mem_cgroup
*iter
;
1647 * When a new child is created while the hierarchy is under oom,
1648 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1650 spin_lock(&memcg_oom_lock
);
1651 for_each_mem_cgroup_tree(iter
, memcg
)
1652 if (iter
->under_oom
> 0)
1654 spin_unlock(&memcg_oom_lock
);
1657 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1659 struct oom_wait_info
{
1660 struct mem_cgroup
*memcg
;
1664 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1665 unsigned mode
, int sync
, void *arg
)
1667 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1668 struct mem_cgroup
*oom_wait_memcg
;
1669 struct oom_wait_info
*oom_wait_info
;
1671 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1672 oom_wait_memcg
= oom_wait_info
->memcg
;
1674 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1675 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1677 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1680 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1683 * For the following lockless ->under_oom test, the only required
1684 * guarantee is that it must see the state asserted by an OOM when
1685 * this function is called as a result of userland actions
1686 * triggered by the notification of the OOM. This is trivially
1687 * achieved by invoking mem_cgroup_mark_under_oom() before
1688 * triggering notification.
1690 if (memcg
&& memcg
->under_oom
)
1691 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1694 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1696 if (!current
->memcg_may_oom
)
1699 * We are in the middle of the charge context here, so we
1700 * don't want to block when potentially sitting on a callstack
1701 * that holds all kinds of filesystem and mm locks.
1703 * Also, the caller may handle a failed allocation gracefully
1704 * (like optional page cache readahead) and so an OOM killer
1705 * invocation might not even be necessary.
1707 * That's why we don't do anything here except remember the
1708 * OOM context and then deal with it at the end of the page
1709 * fault when the stack is unwound, the locks are released,
1710 * and when we know whether the fault was overall successful.
1712 css_get(&memcg
->css
);
1713 current
->memcg_in_oom
= memcg
;
1714 current
->memcg_oom_gfp_mask
= mask
;
1715 current
->memcg_oom_order
= order
;
1719 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1720 * @handle: actually kill/wait or just clean up the OOM state
1722 * This has to be called at the end of a page fault if the memcg OOM
1723 * handler was enabled.
1725 * Memcg supports userspace OOM handling where failed allocations must
1726 * sleep on a waitqueue until the userspace task resolves the
1727 * situation. Sleeping directly in the charge context with all kinds
1728 * of locks held is not a good idea, instead we remember an OOM state
1729 * in the task and mem_cgroup_oom_synchronize() has to be called at
1730 * the end of the page fault to complete the OOM handling.
1732 * Returns %true if an ongoing memcg OOM situation was detected and
1733 * completed, %false otherwise.
1735 bool mem_cgroup_oom_synchronize(bool handle
)
1737 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1738 struct oom_wait_info owait
;
1741 /* OOM is global, do not handle */
1745 if (!handle
|| oom_killer_disabled
)
1748 owait
.memcg
= memcg
;
1749 owait
.wait
.flags
= 0;
1750 owait
.wait
.func
= memcg_oom_wake_function
;
1751 owait
.wait
.private = current
;
1752 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1754 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1755 mem_cgroup_mark_under_oom(memcg
);
1757 locked
= mem_cgroup_oom_trylock(memcg
);
1760 mem_cgroup_oom_notify(memcg
);
1762 if (locked
&& !memcg
->oom_kill_disable
) {
1763 mem_cgroup_unmark_under_oom(memcg
);
1764 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1765 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1766 current
->memcg_oom_order
);
1769 mem_cgroup_unmark_under_oom(memcg
);
1770 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1774 mem_cgroup_oom_unlock(memcg
);
1776 * There is no guarantee that an OOM-lock contender
1777 * sees the wakeups triggered by the OOM kill
1778 * uncharges. Wake any sleepers explicitely.
1780 memcg_oom_recover(memcg
);
1783 current
->memcg_in_oom
= NULL
;
1784 css_put(&memcg
->css
);
1789 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1790 * @page: page that is going to change accounted state
1792 * This function must mark the beginning of an accounted page state
1793 * change to prevent double accounting when the page is concurrently
1794 * being moved to another memcg:
1796 * memcg = mem_cgroup_begin_page_stat(page);
1797 * if (TestClearPageState(page))
1798 * mem_cgroup_update_page_stat(memcg, state, -1);
1799 * mem_cgroup_end_page_stat(memcg);
1801 struct mem_cgroup
*mem_cgroup_begin_page_stat(struct page
*page
)
1803 struct mem_cgroup
*memcg
;
1804 unsigned long flags
;
1807 * The RCU lock is held throughout the transaction. The fast
1808 * path can get away without acquiring the memcg->move_lock
1809 * because page moving starts with an RCU grace period.
1811 * The RCU lock also protects the memcg from being freed when
1812 * the page state that is going to change is the only thing
1813 * preventing the page from being uncharged.
1814 * E.g. end-writeback clearing PageWriteback(), which allows
1815 * migration to go ahead and uncharge the page before the
1816 * account transaction might be complete.
1820 if (mem_cgroup_disabled())
1823 memcg
= page
->mem_cgroup
;
1824 if (unlikely(!memcg
))
1827 if (atomic_read(&memcg
->moving_account
) <= 0)
1830 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1831 if (memcg
!= page
->mem_cgroup
) {
1832 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1837 * When charge migration first begins, we can have locked and
1838 * unlocked page stat updates happening concurrently. Track
1839 * the task who has the lock for mem_cgroup_end_page_stat().
1841 memcg
->move_lock_task
= current
;
1842 memcg
->move_lock_flags
= flags
;
1846 EXPORT_SYMBOL(mem_cgroup_begin_page_stat
);
1849 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1850 * @memcg: the memcg that was accounted against
1852 void mem_cgroup_end_page_stat(struct mem_cgroup
*memcg
)
1854 if (memcg
&& memcg
->move_lock_task
== current
) {
1855 unsigned long flags
= memcg
->move_lock_flags
;
1857 memcg
->move_lock_task
= NULL
;
1858 memcg
->move_lock_flags
= 0;
1860 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1865 EXPORT_SYMBOL(mem_cgroup_end_page_stat
);
1868 * size of first charge trial. "32" comes from vmscan.c's magic value.
1869 * TODO: maybe necessary to use big numbers in big irons.
1871 #define CHARGE_BATCH 32U
1872 struct memcg_stock_pcp
{
1873 struct mem_cgroup
*cached
; /* this never be root cgroup */
1874 unsigned int nr_pages
;
1875 struct work_struct work
;
1876 unsigned long flags
;
1877 #define FLUSHING_CACHED_CHARGE 0
1879 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1880 static DEFINE_MUTEX(percpu_charge_mutex
);
1883 * consume_stock: Try to consume stocked charge on this cpu.
1884 * @memcg: memcg to consume from.
1885 * @nr_pages: how many pages to charge.
1887 * The charges will only happen if @memcg matches the current cpu's memcg
1888 * stock, and at least @nr_pages are available in that stock. Failure to
1889 * service an allocation will refill the stock.
1891 * returns true if successful, false otherwise.
1893 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1895 struct memcg_stock_pcp
*stock
;
1898 if (nr_pages
> CHARGE_BATCH
)
1901 stock
= &get_cpu_var(memcg_stock
);
1902 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1903 stock
->nr_pages
-= nr_pages
;
1906 put_cpu_var(memcg_stock
);
1911 * Returns stocks cached in percpu and reset cached information.
1913 static void drain_stock(struct memcg_stock_pcp
*stock
)
1915 struct mem_cgroup
*old
= stock
->cached
;
1917 if (stock
->nr_pages
) {
1918 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1919 if (do_swap_account
)
1920 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1921 css_put_many(&old
->css
, stock
->nr_pages
);
1922 stock
->nr_pages
= 0;
1924 stock
->cached
= NULL
;
1928 * This must be called under preempt disabled or must be called by
1929 * a thread which is pinned to local cpu.
1931 static void drain_local_stock(struct work_struct
*dummy
)
1933 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1935 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1939 * Cache charges(val) to local per_cpu area.
1940 * This will be consumed by consume_stock() function, later.
1942 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1944 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1946 if (stock
->cached
!= memcg
) { /* reset if necessary */
1948 stock
->cached
= memcg
;
1950 stock
->nr_pages
+= nr_pages
;
1951 put_cpu_var(memcg_stock
);
1955 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1956 * of the hierarchy under it.
1958 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1962 /* If someone's already draining, avoid adding running more workers. */
1963 if (!mutex_trylock(&percpu_charge_mutex
))
1965 /* Notify other cpus that system-wide "drain" is running */
1968 for_each_online_cpu(cpu
) {
1969 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1970 struct mem_cgroup
*memcg
;
1972 memcg
= stock
->cached
;
1973 if (!memcg
|| !stock
->nr_pages
)
1975 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1977 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1979 drain_local_stock(&stock
->work
);
1981 schedule_work_on(cpu
, &stock
->work
);
1986 mutex_unlock(&percpu_charge_mutex
);
1989 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1990 unsigned long action
,
1993 int cpu
= (unsigned long)hcpu
;
1994 struct memcg_stock_pcp
*stock
;
1996 if (action
== CPU_ONLINE
)
1999 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2002 stock
= &per_cpu(memcg_stock
, cpu
);
2008 * Scheduled by try_charge() to be executed from the userland return path
2009 * and reclaims memory over the high limit.
2011 void mem_cgroup_handle_over_high(void)
2013 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
2014 struct mem_cgroup
*memcg
, *pos
;
2016 if (likely(!nr_pages
))
2019 pos
= memcg
= get_mem_cgroup_from_mm(current
->mm
);
2022 if (page_counter_read(&pos
->memory
) <= pos
->high
)
2024 mem_cgroup_events(pos
, MEMCG_HIGH
, 1);
2025 try_to_free_mem_cgroup_pages(pos
, nr_pages
, GFP_KERNEL
, true);
2026 } while ((pos
= parent_mem_cgroup(pos
)));
2028 css_put(&memcg
->css
);
2029 current
->memcg_nr_pages_over_high
= 0;
2032 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2033 unsigned int nr_pages
)
2035 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2036 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2037 struct mem_cgroup
*mem_over_limit
;
2038 struct page_counter
*counter
;
2039 unsigned long nr_reclaimed
;
2040 bool may_swap
= true;
2041 bool drained
= false;
2043 if (mem_cgroup_is_root(memcg
))
2046 if (consume_stock(memcg
, nr_pages
))
2049 if (!do_swap_account
||
2050 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
2051 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
2053 if (do_swap_account
)
2054 page_counter_uncharge(&memcg
->memsw
, batch
);
2055 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
2057 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
2061 if (batch
> nr_pages
) {
2067 * Unlike in global OOM situations, memcg is not in a physical
2068 * memory shortage. Allow dying and OOM-killed tasks to
2069 * bypass the last charges so that they can exit quickly and
2070 * free their memory.
2072 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
2073 fatal_signal_pending(current
) ||
2074 current
->flags
& PF_EXITING
))
2078 * Prevent unbounded recursion when reclaim operations need to
2079 * allocate memory. This might exceed the limits temporarily,
2080 * but we prefer facilitating memory reclaim and getting back
2081 * under the limit over triggering OOM kills in these cases.
2083 if (unlikely(current
->flags
& PF_MEMALLOC
))
2086 if (unlikely(task_in_memcg_oom(current
)))
2089 if (!gfpflags_allow_blocking(gfp_mask
))
2092 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
2094 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
2095 gfp_mask
, may_swap
);
2097 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2101 drain_all_stock(mem_over_limit
);
2106 if (gfp_mask
& __GFP_NORETRY
)
2109 * Even though the limit is exceeded at this point, reclaim
2110 * may have been able to free some pages. Retry the charge
2111 * before killing the task.
2113 * Only for regular pages, though: huge pages are rather
2114 * unlikely to succeed so close to the limit, and we fall back
2115 * to regular pages anyway in case of failure.
2117 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2120 * At task move, charge accounts can be doubly counted. So, it's
2121 * better to wait until the end of task_move if something is going on.
2123 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2129 if (gfp_mask
& __GFP_NOFAIL
)
2132 if (fatal_signal_pending(current
))
2135 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2137 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2138 get_order(nr_pages
* PAGE_SIZE
));
2140 if (!(gfp_mask
& __GFP_NOFAIL
))
2144 * The allocation either can't fail or will lead to more memory
2145 * being freed very soon. Allow memory usage go over the limit
2146 * temporarily by force charging it.
2148 page_counter_charge(&memcg
->memory
, nr_pages
);
2149 if (do_swap_account
)
2150 page_counter_charge(&memcg
->memsw
, nr_pages
);
2151 css_get_many(&memcg
->css
, nr_pages
);
2156 css_get_many(&memcg
->css
, batch
);
2157 if (batch
> nr_pages
)
2158 refill_stock(memcg
, batch
- nr_pages
);
2161 * If the hierarchy is above the normal consumption range, schedule
2162 * reclaim on returning to userland. We can perform reclaim here
2163 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2164 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2165 * not recorded as it most likely matches current's and won't
2166 * change in the meantime. As high limit is checked again before
2167 * reclaim, the cost of mismatch is negligible.
2170 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2171 current
->memcg_nr_pages_over_high
+= batch
;
2172 set_notify_resume(current
);
2175 } while ((memcg
= parent_mem_cgroup(memcg
)));
2180 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2182 if (mem_cgroup_is_root(memcg
))
2185 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2186 if (do_swap_account
)
2187 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2189 css_put_many(&memcg
->css
, nr_pages
);
2192 static void lock_page_lru(struct page
*page
, int *isolated
)
2194 struct zone
*zone
= page_zone(page
);
2196 spin_lock_irq(&zone
->lru_lock
);
2197 if (PageLRU(page
)) {
2198 struct lruvec
*lruvec
;
2200 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2202 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2208 static void unlock_page_lru(struct page
*page
, int isolated
)
2210 struct zone
*zone
= page_zone(page
);
2213 struct lruvec
*lruvec
;
2215 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2216 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2218 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2220 spin_unlock_irq(&zone
->lru_lock
);
2223 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2228 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2231 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2232 * may already be on some other mem_cgroup's LRU. Take care of it.
2235 lock_page_lru(page
, &isolated
);
2238 * Nobody should be changing or seriously looking at
2239 * page->mem_cgroup at this point:
2241 * - the page is uncharged
2243 * - the page is off-LRU
2245 * - an anonymous fault has exclusive page access, except for
2246 * a locked page table
2248 * - a page cache insertion, a swapin fault, or a migration
2249 * have the page locked
2251 page
->mem_cgroup
= memcg
;
2254 unlock_page_lru(page
, isolated
);
2257 #ifdef CONFIG_MEMCG_KMEM
2258 static int memcg_alloc_cache_id(void)
2263 id
= ida_simple_get(&memcg_cache_ida
,
2264 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2268 if (id
< memcg_nr_cache_ids
)
2272 * There's no space for the new id in memcg_caches arrays,
2273 * so we have to grow them.
2275 down_write(&memcg_cache_ids_sem
);
2277 size
= 2 * (id
+ 1);
2278 if (size
< MEMCG_CACHES_MIN_SIZE
)
2279 size
= MEMCG_CACHES_MIN_SIZE
;
2280 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2281 size
= MEMCG_CACHES_MAX_SIZE
;
2283 err
= memcg_update_all_caches(size
);
2285 err
= memcg_update_all_list_lrus(size
);
2287 memcg_nr_cache_ids
= size
;
2289 up_write(&memcg_cache_ids_sem
);
2292 ida_simple_remove(&memcg_cache_ida
, id
);
2298 static void memcg_free_cache_id(int id
)
2300 ida_simple_remove(&memcg_cache_ida
, id
);
2303 struct memcg_kmem_cache_create_work
{
2304 struct mem_cgroup
*memcg
;
2305 struct kmem_cache
*cachep
;
2306 struct work_struct work
;
2309 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2311 struct memcg_kmem_cache_create_work
*cw
=
2312 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2313 struct mem_cgroup
*memcg
= cw
->memcg
;
2314 struct kmem_cache
*cachep
= cw
->cachep
;
2316 memcg_create_kmem_cache(memcg
, cachep
);
2318 css_put(&memcg
->css
);
2323 * Enqueue the creation of a per-memcg kmem_cache.
2325 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2326 struct kmem_cache
*cachep
)
2328 struct memcg_kmem_cache_create_work
*cw
;
2330 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2334 css_get(&memcg
->css
);
2337 cw
->cachep
= cachep
;
2338 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2340 schedule_work(&cw
->work
);
2343 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2344 struct kmem_cache
*cachep
)
2347 * We need to stop accounting when we kmalloc, because if the
2348 * corresponding kmalloc cache is not yet created, the first allocation
2349 * in __memcg_schedule_kmem_cache_create will recurse.
2351 * However, it is better to enclose the whole function. Depending on
2352 * the debugging options enabled, INIT_WORK(), for instance, can
2353 * trigger an allocation. This too, will make us recurse. Because at
2354 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2355 * the safest choice is to do it like this, wrapping the whole function.
2357 current
->memcg_kmem_skip_account
= 1;
2358 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2359 current
->memcg_kmem_skip_account
= 0;
2363 * Return the kmem_cache we're supposed to use for a slab allocation.
2364 * We try to use the current memcg's version of the cache.
2366 * If the cache does not exist yet, if we are the first user of it,
2367 * we either create it immediately, if possible, or create it asynchronously
2369 * In the latter case, we will let the current allocation go through with
2370 * the original cache.
2372 * Can't be called in interrupt context or from kernel threads.
2373 * This function needs to be called with rcu_read_lock() held.
2375 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2377 struct mem_cgroup
*memcg
;
2378 struct kmem_cache
*memcg_cachep
;
2381 VM_BUG_ON(!is_root_cache(cachep
));
2383 if (current
->memcg_kmem_skip_account
)
2386 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2387 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2391 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2392 if (likely(memcg_cachep
))
2393 return memcg_cachep
;
2396 * If we are in a safe context (can wait, and not in interrupt
2397 * context), we could be be predictable and return right away.
2398 * This would guarantee that the allocation being performed
2399 * already belongs in the new cache.
2401 * However, there are some clashes that can arrive from locking.
2402 * For instance, because we acquire the slab_mutex while doing
2403 * memcg_create_kmem_cache, this means no further allocation
2404 * could happen with the slab_mutex held. So it's better to
2407 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2409 css_put(&memcg
->css
);
2413 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2415 if (!is_root_cache(cachep
))
2416 css_put(&cachep
->memcg_params
.memcg
->css
);
2419 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2420 struct mem_cgroup
*memcg
)
2422 unsigned int nr_pages
= 1 << order
;
2423 struct page_counter
*counter
;
2426 if (!memcg_kmem_is_active(memcg
))
2429 if (!page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
))
2432 ret
= try_charge(memcg
, gfp
, nr_pages
);
2434 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2438 page
->mem_cgroup
= memcg
;
2443 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2445 struct mem_cgroup
*memcg
;
2448 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2449 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2450 css_put(&memcg
->css
);
2454 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2456 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2457 unsigned int nr_pages
= 1 << order
;
2462 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2464 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2465 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2466 if (do_swap_account
)
2467 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2469 page
->mem_cgroup
= NULL
;
2470 css_put_many(&memcg
->css
, nr_pages
);
2472 #endif /* CONFIG_MEMCG_KMEM */
2474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2477 * Because tail pages are not marked as "used", set it. We're under
2478 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2479 * charge/uncharge will be never happen and move_account() is done under
2480 * compound_lock(), so we don't have to take care of races.
2482 void mem_cgroup_split_huge_fixup(struct page
*head
)
2486 if (mem_cgroup_disabled())
2489 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2490 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2492 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2495 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2497 #ifdef CONFIG_MEMCG_SWAP
2498 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2501 int val
= (charge
) ? 1 : -1;
2502 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2506 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2507 * @entry: swap entry to be moved
2508 * @from: mem_cgroup which the entry is moved from
2509 * @to: mem_cgroup which the entry is moved to
2511 * It succeeds only when the swap_cgroup's record for this entry is the same
2512 * as the mem_cgroup's id of @from.
2514 * Returns 0 on success, -EINVAL on failure.
2516 * The caller must have charged to @to, IOW, called page_counter_charge() about
2517 * both res and memsw, and called css_get().
2519 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2520 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2522 unsigned short old_id
, new_id
;
2524 old_id
= mem_cgroup_id(from
);
2525 new_id
= mem_cgroup_id(to
);
2527 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2528 mem_cgroup_swap_statistics(from
, false);
2529 mem_cgroup_swap_statistics(to
, true);
2535 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2536 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2542 static DEFINE_MUTEX(memcg_limit_mutex
);
2544 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2545 unsigned long limit
)
2547 unsigned long curusage
;
2548 unsigned long oldusage
;
2549 bool enlarge
= false;
2554 * For keeping hierarchical_reclaim simple, how long we should retry
2555 * is depends on callers. We set our retry-count to be function
2556 * of # of children which we should visit in this loop.
2558 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2559 mem_cgroup_count_children(memcg
);
2561 oldusage
= page_counter_read(&memcg
->memory
);
2564 if (signal_pending(current
)) {
2569 mutex_lock(&memcg_limit_mutex
);
2570 if (limit
> memcg
->memsw
.limit
) {
2571 mutex_unlock(&memcg_limit_mutex
);
2575 if (limit
> memcg
->memory
.limit
)
2577 ret
= page_counter_limit(&memcg
->memory
, limit
);
2578 mutex_unlock(&memcg_limit_mutex
);
2583 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2585 curusage
= page_counter_read(&memcg
->memory
);
2586 /* Usage is reduced ? */
2587 if (curusage
>= oldusage
)
2590 oldusage
= curusage
;
2591 } while (retry_count
);
2593 if (!ret
&& enlarge
)
2594 memcg_oom_recover(memcg
);
2599 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2600 unsigned long limit
)
2602 unsigned long curusage
;
2603 unsigned long oldusage
;
2604 bool enlarge
= false;
2608 /* see mem_cgroup_resize_res_limit */
2609 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2610 mem_cgroup_count_children(memcg
);
2612 oldusage
= page_counter_read(&memcg
->memsw
);
2615 if (signal_pending(current
)) {
2620 mutex_lock(&memcg_limit_mutex
);
2621 if (limit
< memcg
->memory
.limit
) {
2622 mutex_unlock(&memcg_limit_mutex
);
2626 if (limit
> memcg
->memsw
.limit
)
2628 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2629 mutex_unlock(&memcg_limit_mutex
);
2634 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2636 curusage
= page_counter_read(&memcg
->memsw
);
2637 /* Usage is reduced ? */
2638 if (curusage
>= oldusage
)
2641 oldusage
= curusage
;
2642 } while (retry_count
);
2644 if (!ret
&& enlarge
)
2645 memcg_oom_recover(memcg
);
2650 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2652 unsigned long *total_scanned
)
2654 unsigned long nr_reclaimed
= 0;
2655 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2656 unsigned long reclaimed
;
2658 struct mem_cgroup_tree_per_zone
*mctz
;
2659 unsigned long excess
;
2660 unsigned long nr_scanned
;
2665 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2667 * This loop can run a while, specially if mem_cgroup's continuously
2668 * keep exceeding their soft limit and putting the system under
2675 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2680 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2681 gfp_mask
, &nr_scanned
);
2682 nr_reclaimed
+= reclaimed
;
2683 *total_scanned
+= nr_scanned
;
2684 spin_lock_irq(&mctz
->lock
);
2685 __mem_cgroup_remove_exceeded(mz
, mctz
);
2688 * If we failed to reclaim anything from this memory cgroup
2689 * it is time to move on to the next cgroup
2693 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2695 excess
= soft_limit_excess(mz
->memcg
);
2697 * One school of thought says that we should not add
2698 * back the node to the tree if reclaim returns 0.
2699 * But our reclaim could return 0, simply because due
2700 * to priority we are exposing a smaller subset of
2701 * memory to reclaim from. Consider this as a longer
2704 /* If excess == 0, no tree ops */
2705 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2706 spin_unlock_irq(&mctz
->lock
);
2707 css_put(&mz
->memcg
->css
);
2710 * Could not reclaim anything and there are no more
2711 * mem cgroups to try or we seem to be looping without
2712 * reclaiming anything.
2714 if (!nr_reclaimed
&&
2716 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2718 } while (!nr_reclaimed
);
2720 css_put(&next_mz
->memcg
->css
);
2721 return nr_reclaimed
;
2725 * Test whether @memcg has children, dead or alive. Note that this
2726 * function doesn't care whether @memcg has use_hierarchy enabled and
2727 * returns %true if there are child csses according to the cgroup
2728 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2730 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2735 * The lock does not prevent addition or deletion of children, but
2736 * it prevents a new child from being initialized based on this
2737 * parent in css_online(), so it's enough to decide whether
2738 * hierarchically inherited attributes can still be changed or not.
2740 lockdep_assert_held(&memcg_create_mutex
);
2743 ret
= css_next_child(NULL
, &memcg
->css
);
2749 * Reclaims as many pages from the given memcg as possible and moves
2750 * the rest to the parent.
2752 * Caller is responsible for holding css reference for memcg.
2754 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2756 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2758 /* we call try-to-free pages for make this cgroup empty */
2759 lru_add_drain_all();
2760 /* try to free all pages in this cgroup */
2761 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2764 if (signal_pending(current
))
2767 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2771 /* maybe some writeback is necessary */
2772 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2780 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2781 char *buf
, size_t nbytes
,
2784 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2786 if (mem_cgroup_is_root(memcg
))
2788 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2791 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2794 return mem_cgroup_from_css(css
)->use_hierarchy
;
2797 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2798 struct cftype
*cft
, u64 val
)
2801 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2802 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2804 mutex_lock(&memcg_create_mutex
);
2806 if (memcg
->use_hierarchy
== val
)
2810 * If parent's use_hierarchy is set, we can't make any modifications
2811 * in the child subtrees. If it is unset, then the change can
2812 * occur, provided the current cgroup has no children.
2814 * For the root cgroup, parent_mem is NULL, we allow value to be
2815 * set if there are no children.
2817 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2818 (val
== 1 || val
== 0)) {
2819 if (!memcg_has_children(memcg
))
2820 memcg
->use_hierarchy
= val
;
2827 mutex_unlock(&memcg_create_mutex
);
2832 static unsigned long tree_stat(struct mem_cgroup
*memcg
,
2833 enum mem_cgroup_stat_index idx
)
2835 struct mem_cgroup
*iter
;
2836 unsigned long val
= 0;
2838 for_each_mem_cgroup_tree(iter
, memcg
)
2839 val
+= mem_cgroup_read_stat(iter
, idx
);
2844 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2848 if (mem_cgroup_is_root(memcg
)) {
2849 val
= tree_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
2850 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_RSS
);
2852 val
+= tree_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
2855 val
= page_counter_read(&memcg
->memory
);
2857 val
= page_counter_read(&memcg
->memsw
);
2870 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2873 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2874 struct page_counter
*counter
;
2876 switch (MEMFILE_TYPE(cft
->private)) {
2878 counter
= &memcg
->memory
;
2881 counter
= &memcg
->memsw
;
2884 counter
= &memcg
->kmem
;
2890 switch (MEMFILE_ATTR(cft
->private)) {
2892 if (counter
== &memcg
->memory
)
2893 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2894 if (counter
== &memcg
->memsw
)
2895 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2896 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2898 return (u64
)counter
->limit
* PAGE_SIZE
;
2900 return (u64
)counter
->watermark
* PAGE_SIZE
;
2902 return counter
->failcnt
;
2903 case RES_SOFT_LIMIT
:
2904 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2910 #ifdef CONFIG_MEMCG_KMEM
2911 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
2912 unsigned long nr_pages
)
2917 BUG_ON(memcg
->kmemcg_id
>= 0);
2918 BUG_ON(memcg
->kmem_acct_activated
);
2919 BUG_ON(memcg
->kmem_acct_active
);
2922 * For simplicity, we won't allow this to be disabled. It also can't
2923 * be changed if the cgroup has children already, or if tasks had
2926 * If tasks join before we set the limit, a person looking at
2927 * kmem.usage_in_bytes will have no way to determine when it took
2928 * place, which makes the value quite meaningless.
2930 * After it first became limited, changes in the value of the limit are
2931 * of course permitted.
2933 mutex_lock(&memcg_create_mutex
);
2934 if (cgroup_is_populated(memcg
->css
.cgroup
) ||
2935 (memcg
->use_hierarchy
&& memcg_has_children(memcg
)))
2937 mutex_unlock(&memcg_create_mutex
);
2941 memcg_id
= memcg_alloc_cache_id();
2948 * We couldn't have accounted to this cgroup, because it hasn't got
2949 * activated yet, so this should succeed.
2951 err
= page_counter_limit(&memcg
->kmem
, nr_pages
);
2954 static_key_slow_inc(&memcg_kmem_enabled_key
);
2956 * A memory cgroup is considered kmem-active as soon as it gets
2957 * kmemcg_id. Setting the id after enabling static branching will
2958 * guarantee no one starts accounting before all call sites are
2961 memcg
->kmemcg_id
= memcg_id
;
2962 memcg
->kmem_acct_activated
= true;
2963 memcg
->kmem_acct_active
= true;
2968 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2969 unsigned long limit
)
2973 mutex_lock(&memcg_limit_mutex
);
2974 if (!memcg_kmem_is_active(memcg
))
2975 ret
= memcg_activate_kmem(memcg
, limit
);
2977 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2978 mutex_unlock(&memcg_limit_mutex
);
2982 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
2985 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
2990 mutex_lock(&memcg_limit_mutex
);
2992 * If the parent cgroup is not kmem-active now, it cannot be activated
2993 * after this point, because it has at least one child already.
2995 if (memcg_kmem_is_active(parent
))
2996 ret
= memcg_activate_kmem(memcg
, PAGE_COUNTER_MAX
);
2997 mutex_unlock(&memcg_limit_mutex
);
3001 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
3002 unsigned long limit
)
3006 #endif /* CONFIG_MEMCG_KMEM */
3009 * The user of this function is...
3012 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3013 char *buf
, size_t nbytes
, loff_t off
)
3015 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3016 unsigned long nr_pages
;
3019 buf
= strstrip(buf
);
3020 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3024 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3026 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3030 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3032 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3035 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3038 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3042 case RES_SOFT_LIMIT
:
3043 memcg
->soft_limit
= nr_pages
;
3047 return ret
?: nbytes
;
3050 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3051 size_t nbytes
, loff_t off
)
3053 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3054 struct page_counter
*counter
;
3056 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3058 counter
= &memcg
->memory
;
3061 counter
= &memcg
->memsw
;
3064 counter
= &memcg
->kmem
;
3070 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3072 page_counter_reset_watermark(counter
);
3075 counter
->failcnt
= 0;
3084 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3087 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3091 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3092 struct cftype
*cft
, u64 val
)
3094 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3096 if (val
& ~MOVE_MASK
)
3100 * No kind of locking is needed in here, because ->can_attach() will
3101 * check this value once in the beginning of the process, and then carry
3102 * on with stale data. This means that changes to this value will only
3103 * affect task migrations starting after the change.
3105 memcg
->move_charge_at_immigrate
= val
;
3109 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3110 struct cftype
*cft
, u64 val
)
3117 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3121 unsigned int lru_mask
;
3124 static const struct numa_stat stats
[] = {
3125 { "total", LRU_ALL
},
3126 { "file", LRU_ALL_FILE
},
3127 { "anon", LRU_ALL_ANON
},
3128 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3130 const struct numa_stat
*stat
;
3133 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3135 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3136 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3137 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3138 for_each_node_state(nid
, N_MEMORY
) {
3139 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3141 seq_printf(m
, " N%d=%lu", nid
, nr
);
3146 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3147 struct mem_cgroup
*iter
;
3150 for_each_mem_cgroup_tree(iter
, memcg
)
3151 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3152 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3153 for_each_node_state(nid
, N_MEMORY
) {
3155 for_each_mem_cgroup_tree(iter
, memcg
)
3156 nr
+= mem_cgroup_node_nr_lru_pages(
3157 iter
, nid
, stat
->lru_mask
);
3158 seq_printf(m
, " N%d=%lu", nid
, nr
);
3165 #endif /* CONFIG_NUMA */
3167 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3169 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3170 unsigned long memory
, memsw
;
3171 struct mem_cgroup
*mi
;
3174 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3175 MEM_CGROUP_STAT_NSTATS
);
3176 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3177 MEM_CGROUP_EVENTS_NSTATS
);
3178 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3180 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3181 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3183 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3184 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3187 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3188 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3189 mem_cgroup_read_events(memcg
, i
));
3191 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3192 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3193 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3195 /* Hierarchical information */
3196 memory
= memsw
= PAGE_COUNTER_MAX
;
3197 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3198 memory
= min(memory
, mi
->memory
.limit
);
3199 memsw
= min(memsw
, mi
->memsw
.limit
);
3201 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3202 (u64
)memory
* PAGE_SIZE
);
3203 if (do_swap_account
)
3204 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3205 (u64
)memsw
* PAGE_SIZE
);
3207 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3208 unsigned long long val
= 0;
3210 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
3212 for_each_mem_cgroup_tree(mi
, memcg
)
3213 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3214 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3217 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3218 unsigned long long val
= 0;
3220 for_each_mem_cgroup_tree(mi
, memcg
)
3221 val
+= mem_cgroup_read_events(mi
, i
);
3222 seq_printf(m
, "total_%s %llu\n",
3223 mem_cgroup_events_names
[i
], val
);
3226 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3227 unsigned long long val
= 0;
3229 for_each_mem_cgroup_tree(mi
, memcg
)
3230 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3231 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3234 #ifdef CONFIG_DEBUG_VM
3237 struct mem_cgroup_per_zone
*mz
;
3238 struct zone_reclaim_stat
*rstat
;
3239 unsigned long recent_rotated
[2] = {0, 0};
3240 unsigned long recent_scanned
[2] = {0, 0};
3242 for_each_online_node(nid
)
3243 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3244 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3245 rstat
= &mz
->lruvec
.reclaim_stat
;
3247 recent_rotated
[0] += rstat
->recent_rotated
[0];
3248 recent_rotated
[1] += rstat
->recent_rotated
[1];
3249 recent_scanned
[0] += rstat
->recent_scanned
[0];
3250 recent_scanned
[1] += rstat
->recent_scanned
[1];
3252 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3253 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3254 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3255 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3262 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3265 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3267 return mem_cgroup_swappiness(memcg
);
3270 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3271 struct cftype
*cft
, u64 val
)
3273 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3279 memcg
->swappiness
= val
;
3281 vm_swappiness
= val
;
3286 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3288 struct mem_cgroup_threshold_ary
*t
;
3289 unsigned long usage
;
3294 t
= rcu_dereference(memcg
->thresholds
.primary
);
3296 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3301 usage
= mem_cgroup_usage(memcg
, swap
);
3304 * current_threshold points to threshold just below or equal to usage.
3305 * If it's not true, a threshold was crossed after last
3306 * call of __mem_cgroup_threshold().
3308 i
= t
->current_threshold
;
3311 * Iterate backward over array of thresholds starting from
3312 * current_threshold and check if a threshold is crossed.
3313 * If none of thresholds below usage is crossed, we read
3314 * only one element of the array here.
3316 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3317 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3319 /* i = current_threshold + 1 */
3323 * Iterate forward over array of thresholds starting from
3324 * current_threshold+1 and check if a threshold is crossed.
3325 * If none of thresholds above usage is crossed, we read
3326 * only one element of the array here.
3328 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3329 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3331 /* Update current_threshold */
3332 t
->current_threshold
= i
- 1;
3337 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3340 __mem_cgroup_threshold(memcg
, false);
3341 if (do_swap_account
)
3342 __mem_cgroup_threshold(memcg
, true);
3344 memcg
= parent_mem_cgroup(memcg
);
3348 static int compare_thresholds(const void *a
, const void *b
)
3350 const struct mem_cgroup_threshold
*_a
= a
;
3351 const struct mem_cgroup_threshold
*_b
= b
;
3353 if (_a
->threshold
> _b
->threshold
)
3356 if (_a
->threshold
< _b
->threshold
)
3362 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3364 struct mem_cgroup_eventfd_list
*ev
;
3366 spin_lock(&memcg_oom_lock
);
3368 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3369 eventfd_signal(ev
->eventfd
, 1);
3371 spin_unlock(&memcg_oom_lock
);
3375 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3377 struct mem_cgroup
*iter
;
3379 for_each_mem_cgroup_tree(iter
, memcg
)
3380 mem_cgroup_oom_notify_cb(iter
);
3383 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3384 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3386 struct mem_cgroup_thresholds
*thresholds
;
3387 struct mem_cgroup_threshold_ary
*new;
3388 unsigned long threshold
;
3389 unsigned long usage
;
3392 ret
= page_counter_memparse(args
, "-1", &threshold
);
3396 mutex_lock(&memcg
->thresholds_lock
);
3399 thresholds
= &memcg
->thresholds
;
3400 usage
= mem_cgroup_usage(memcg
, false);
3401 } else if (type
== _MEMSWAP
) {
3402 thresholds
= &memcg
->memsw_thresholds
;
3403 usage
= mem_cgroup_usage(memcg
, true);
3407 /* Check if a threshold crossed before adding a new one */
3408 if (thresholds
->primary
)
3409 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3411 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3413 /* Allocate memory for new array of thresholds */
3414 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3422 /* Copy thresholds (if any) to new array */
3423 if (thresholds
->primary
) {
3424 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3425 sizeof(struct mem_cgroup_threshold
));
3428 /* Add new threshold */
3429 new->entries
[size
- 1].eventfd
= eventfd
;
3430 new->entries
[size
- 1].threshold
= threshold
;
3432 /* Sort thresholds. Registering of new threshold isn't time-critical */
3433 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3434 compare_thresholds
, NULL
);
3436 /* Find current threshold */
3437 new->current_threshold
= -1;
3438 for (i
= 0; i
< size
; i
++) {
3439 if (new->entries
[i
].threshold
<= usage
) {
3441 * new->current_threshold will not be used until
3442 * rcu_assign_pointer(), so it's safe to increment
3445 ++new->current_threshold
;
3450 /* Free old spare buffer and save old primary buffer as spare */
3451 kfree(thresholds
->spare
);
3452 thresholds
->spare
= thresholds
->primary
;
3454 rcu_assign_pointer(thresholds
->primary
, new);
3456 /* To be sure that nobody uses thresholds */
3460 mutex_unlock(&memcg
->thresholds_lock
);
3465 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3466 struct eventfd_ctx
*eventfd
, const char *args
)
3468 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3471 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3472 struct eventfd_ctx
*eventfd
, const char *args
)
3474 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3477 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3478 struct eventfd_ctx
*eventfd
, enum res_type type
)
3480 struct mem_cgroup_thresholds
*thresholds
;
3481 struct mem_cgroup_threshold_ary
*new;
3482 unsigned long usage
;
3483 int i
, j
, size
, entries
;
3485 mutex_lock(&memcg
->thresholds_lock
);
3488 thresholds
= &memcg
->thresholds
;
3489 usage
= mem_cgroup_usage(memcg
, false);
3490 } else if (type
== _MEMSWAP
) {
3491 thresholds
= &memcg
->memsw_thresholds
;
3492 usage
= mem_cgroup_usage(memcg
, true);
3496 if (!thresholds
->primary
)
3499 /* Check if a threshold crossed before removing */
3500 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3502 /* Calculate new number of threshold */
3504 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3505 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3511 new = thresholds
->spare
;
3513 /* If no items related to eventfd have been cleared, nothing to do */
3517 /* Set thresholds array to NULL if we don't have thresholds */
3526 /* Copy thresholds and find current threshold */
3527 new->current_threshold
= -1;
3528 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3529 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3532 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3533 if (new->entries
[j
].threshold
<= usage
) {
3535 * new->current_threshold will not be used
3536 * until rcu_assign_pointer(), so it's safe to increment
3539 ++new->current_threshold
;
3545 /* Swap primary and spare array */
3546 thresholds
->spare
= thresholds
->primary
;
3548 rcu_assign_pointer(thresholds
->primary
, new);
3550 /* To be sure that nobody uses thresholds */
3553 /* If all events are unregistered, free the spare array */
3555 kfree(thresholds
->spare
);
3556 thresholds
->spare
= NULL
;
3559 mutex_unlock(&memcg
->thresholds_lock
);
3562 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3563 struct eventfd_ctx
*eventfd
)
3565 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3568 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3569 struct eventfd_ctx
*eventfd
)
3571 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3574 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3575 struct eventfd_ctx
*eventfd
, const char *args
)
3577 struct mem_cgroup_eventfd_list
*event
;
3579 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3583 spin_lock(&memcg_oom_lock
);
3585 event
->eventfd
= eventfd
;
3586 list_add(&event
->list
, &memcg
->oom_notify
);
3588 /* already in OOM ? */
3589 if (memcg
->under_oom
)
3590 eventfd_signal(eventfd
, 1);
3591 spin_unlock(&memcg_oom_lock
);
3596 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3597 struct eventfd_ctx
*eventfd
)
3599 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3601 spin_lock(&memcg_oom_lock
);
3603 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3604 if (ev
->eventfd
== eventfd
) {
3605 list_del(&ev
->list
);
3610 spin_unlock(&memcg_oom_lock
);
3613 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3615 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3617 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3618 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3622 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3623 struct cftype
*cft
, u64 val
)
3625 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3627 /* cannot set to root cgroup and only 0 and 1 are allowed */
3628 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3631 memcg
->oom_kill_disable
= val
;
3633 memcg_oom_recover(memcg
);
3638 #ifdef CONFIG_MEMCG_KMEM
3639 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3643 ret
= memcg_propagate_kmem(memcg
);
3647 return mem_cgroup_sockets_init(memcg
, ss
);
3650 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3652 struct cgroup_subsys_state
*css
;
3653 struct mem_cgroup
*parent
, *child
;
3656 if (!memcg
->kmem_acct_active
)
3660 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3661 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3662 * guarantees no cache will be created for this cgroup after we are
3663 * done (see memcg_create_kmem_cache()).
3665 memcg
->kmem_acct_active
= false;
3667 memcg_deactivate_kmem_caches(memcg
);
3669 kmemcg_id
= memcg
->kmemcg_id
;
3670 BUG_ON(kmemcg_id
< 0);
3672 parent
= parent_mem_cgroup(memcg
);
3674 parent
= root_mem_cgroup
;
3677 * Change kmemcg_id of this cgroup and all its descendants to the
3678 * parent's id, and then move all entries from this cgroup's list_lrus
3679 * to ones of the parent. After we have finished, all list_lrus
3680 * corresponding to this cgroup are guaranteed to remain empty. The
3681 * ordering is imposed by list_lru_node->lock taken by
3682 * memcg_drain_all_list_lrus().
3684 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3685 css_for_each_descendant_pre(css
, &memcg
->css
) {
3686 child
= mem_cgroup_from_css(css
);
3687 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
3688 child
->kmemcg_id
= parent
->kmemcg_id
;
3689 if (!memcg
->use_hierarchy
)
3694 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
3696 memcg_free_cache_id(kmemcg_id
);
3699 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
3701 if (memcg
->kmem_acct_activated
) {
3702 memcg_destroy_kmem_caches(memcg
);
3703 static_key_slow_dec(&memcg_kmem_enabled_key
);
3704 WARN_ON(page_counter_read(&memcg
->kmem
));
3706 mem_cgroup_sockets_destroy(memcg
);
3709 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
3714 static void memcg_deactivate_kmem(struct mem_cgroup
*memcg
)
3718 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
3723 #ifdef CONFIG_CGROUP_WRITEBACK
3725 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3727 return &memcg
->cgwb_list
;
3730 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3732 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3735 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3737 wb_domain_exit(&memcg
->cgwb_domain
);
3740 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3742 wb_domain_size_changed(&memcg
->cgwb_domain
);
3745 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3747 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3749 if (!memcg
->css
.parent
)
3752 return &memcg
->cgwb_domain
;
3756 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3757 * @wb: bdi_writeback in question
3758 * @pfilepages: out parameter for number of file pages
3759 * @pheadroom: out parameter for number of allocatable pages according to memcg
3760 * @pdirty: out parameter for number of dirty pages
3761 * @pwriteback: out parameter for number of pages under writeback
3763 * Determine the numbers of file, headroom, dirty, and writeback pages in
3764 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3765 * is a bit more involved.
3767 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3768 * headroom is calculated as the lowest headroom of itself and the
3769 * ancestors. Note that this doesn't consider the actual amount of
3770 * available memory in the system. The caller should further cap
3771 * *@pheadroom accordingly.
3773 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3774 unsigned long *pheadroom
, unsigned long *pdirty
,
3775 unsigned long *pwriteback
)
3777 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3778 struct mem_cgroup
*parent
;
3780 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3782 /* this should eventually include NR_UNSTABLE_NFS */
3783 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3784 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3785 (1 << LRU_ACTIVE_FILE
));
3786 *pheadroom
= PAGE_COUNTER_MAX
;
3788 while ((parent
= parent_mem_cgroup(memcg
))) {
3789 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3790 unsigned long used
= page_counter_read(&memcg
->memory
);
3792 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3797 #else /* CONFIG_CGROUP_WRITEBACK */
3799 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3804 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3808 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3812 #endif /* CONFIG_CGROUP_WRITEBACK */
3815 * DO NOT USE IN NEW FILES.
3817 * "cgroup.event_control" implementation.
3819 * This is way over-engineered. It tries to support fully configurable
3820 * events for each user. Such level of flexibility is completely
3821 * unnecessary especially in the light of the planned unified hierarchy.
3823 * Please deprecate this and replace with something simpler if at all
3828 * Unregister event and free resources.
3830 * Gets called from workqueue.
3832 static void memcg_event_remove(struct work_struct
*work
)
3834 struct mem_cgroup_event
*event
=
3835 container_of(work
, struct mem_cgroup_event
, remove
);
3836 struct mem_cgroup
*memcg
= event
->memcg
;
3838 remove_wait_queue(event
->wqh
, &event
->wait
);
3840 event
->unregister_event(memcg
, event
->eventfd
);
3842 /* Notify userspace the event is going away. */
3843 eventfd_signal(event
->eventfd
, 1);
3845 eventfd_ctx_put(event
->eventfd
);
3847 css_put(&memcg
->css
);
3851 * Gets called on POLLHUP on eventfd when user closes it.
3853 * Called with wqh->lock held and interrupts disabled.
3855 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3856 int sync
, void *key
)
3858 struct mem_cgroup_event
*event
=
3859 container_of(wait
, struct mem_cgroup_event
, wait
);
3860 struct mem_cgroup
*memcg
= event
->memcg
;
3861 unsigned long flags
= (unsigned long)key
;
3863 if (flags
& POLLHUP
) {
3865 * If the event has been detached at cgroup removal, we
3866 * can simply return knowing the other side will cleanup
3869 * We can't race against event freeing since the other
3870 * side will require wqh->lock via remove_wait_queue(),
3873 spin_lock(&memcg
->event_list_lock
);
3874 if (!list_empty(&event
->list
)) {
3875 list_del_init(&event
->list
);
3877 * We are in atomic context, but cgroup_event_remove()
3878 * may sleep, so we have to call it in workqueue.
3880 schedule_work(&event
->remove
);
3882 spin_unlock(&memcg
->event_list_lock
);
3888 static void memcg_event_ptable_queue_proc(struct file
*file
,
3889 wait_queue_head_t
*wqh
, poll_table
*pt
)
3891 struct mem_cgroup_event
*event
=
3892 container_of(pt
, struct mem_cgroup_event
, pt
);
3895 add_wait_queue(wqh
, &event
->wait
);
3899 * DO NOT USE IN NEW FILES.
3901 * Parse input and register new cgroup event handler.
3903 * Input must be in format '<event_fd> <control_fd> <args>'.
3904 * Interpretation of args is defined by control file implementation.
3906 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3907 char *buf
, size_t nbytes
, loff_t off
)
3909 struct cgroup_subsys_state
*css
= of_css(of
);
3910 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3911 struct mem_cgroup_event
*event
;
3912 struct cgroup_subsys_state
*cfile_css
;
3913 unsigned int efd
, cfd
;
3920 buf
= strstrip(buf
);
3922 efd
= simple_strtoul(buf
, &endp
, 10);
3927 cfd
= simple_strtoul(buf
, &endp
, 10);
3928 if ((*endp
!= ' ') && (*endp
!= '\0'))
3932 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3936 event
->memcg
= memcg
;
3937 INIT_LIST_HEAD(&event
->list
);
3938 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3939 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3940 INIT_WORK(&event
->remove
, memcg_event_remove
);
3948 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3949 if (IS_ERR(event
->eventfd
)) {
3950 ret
= PTR_ERR(event
->eventfd
);
3957 goto out_put_eventfd
;
3960 /* the process need read permission on control file */
3961 /* AV: shouldn't we check that it's been opened for read instead? */
3962 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3967 * Determine the event callbacks and set them in @event. This used
3968 * to be done via struct cftype but cgroup core no longer knows
3969 * about these events. The following is crude but the whole thing
3970 * is for compatibility anyway.
3972 * DO NOT ADD NEW FILES.
3974 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3976 if (!strcmp(name
, "memory.usage_in_bytes")) {
3977 event
->register_event
= mem_cgroup_usage_register_event
;
3978 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3979 } else if (!strcmp(name
, "memory.oom_control")) {
3980 event
->register_event
= mem_cgroup_oom_register_event
;
3981 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3982 } else if (!strcmp(name
, "memory.pressure_level")) {
3983 event
->register_event
= vmpressure_register_event
;
3984 event
->unregister_event
= vmpressure_unregister_event
;
3985 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3986 event
->register_event
= memsw_cgroup_usage_register_event
;
3987 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3994 * Verify @cfile should belong to @css. Also, remaining events are
3995 * automatically removed on cgroup destruction but the removal is
3996 * asynchronous, so take an extra ref on @css.
3998 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3999 &memory_cgrp_subsys
);
4001 if (IS_ERR(cfile_css
))
4003 if (cfile_css
!= css
) {
4008 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
4012 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
4014 spin_lock(&memcg
->event_list_lock
);
4015 list_add(&event
->list
, &memcg
->event_list
);
4016 spin_unlock(&memcg
->event_list_lock
);
4028 eventfd_ctx_put(event
->eventfd
);
4037 static struct cftype mem_cgroup_legacy_files
[] = {
4039 .name
= "usage_in_bytes",
4040 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4041 .read_u64
= mem_cgroup_read_u64
,
4044 .name
= "max_usage_in_bytes",
4045 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4046 .write
= mem_cgroup_reset
,
4047 .read_u64
= mem_cgroup_read_u64
,
4050 .name
= "limit_in_bytes",
4051 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4052 .write
= mem_cgroup_write
,
4053 .read_u64
= mem_cgroup_read_u64
,
4056 .name
= "soft_limit_in_bytes",
4057 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4058 .write
= mem_cgroup_write
,
4059 .read_u64
= mem_cgroup_read_u64
,
4063 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4064 .write
= mem_cgroup_reset
,
4065 .read_u64
= mem_cgroup_read_u64
,
4069 .seq_show
= memcg_stat_show
,
4072 .name
= "force_empty",
4073 .write
= mem_cgroup_force_empty_write
,
4076 .name
= "use_hierarchy",
4077 .write_u64
= mem_cgroup_hierarchy_write
,
4078 .read_u64
= mem_cgroup_hierarchy_read
,
4081 .name
= "cgroup.event_control", /* XXX: for compat */
4082 .write
= memcg_write_event_control
,
4083 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4086 .name
= "swappiness",
4087 .read_u64
= mem_cgroup_swappiness_read
,
4088 .write_u64
= mem_cgroup_swappiness_write
,
4091 .name
= "move_charge_at_immigrate",
4092 .read_u64
= mem_cgroup_move_charge_read
,
4093 .write_u64
= mem_cgroup_move_charge_write
,
4096 .name
= "oom_control",
4097 .seq_show
= mem_cgroup_oom_control_read
,
4098 .write_u64
= mem_cgroup_oom_control_write
,
4099 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4102 .name
= "pressure_level",
4106 .name
= "numa_stat",
4107 .seq_show
= memcg_numa_stat_show
,
4110 #ifdef CONFIG_MEMCG_KMEM
4112 .name
= "kmem.limit_in_bytes",
4113 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4114 .write
= mem_cgroup_write
,
4115 .read_u64
= mem_cgroup_read_u64
,
4118 .name
= "kmem.usage_in_bytes",
4119 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4120 .read_u64
= mem_cgroup_read_u64
,
4123 .name
= "kmem.failcnt",
4124 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4125 .write
= mem_cgroup_reset
,
4126 .read_u64
= mem_cgroup_read_u64
,
4129 .name
= "kmem.max_usage_in_bytes",
4130 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4131 .write
= mem_cgroup_reset
,
4132 .read_u64
= mem_cgroup_read_u64
,
4134 #ifdef CONFIG_SLABINFO
4136 .name
= "kmem.slabinfo",
4137 .seq_start
= slab_start
,
4138 .seq_next
= slab_next
,
4139 .seq_stop
= slab_stop
,
4140 .seq_show
= memcg_slab_show
,
4144 { }, /* terminate */
4148 * Private memory cgroup IDR
4150 * Swap-out records and page cache shadow entries need to store memcg
4151 * references in constrained space, so we maintain an ID space that is
4152 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4153 * memory-controlled cgroups to 64k.
4155 * However, there usually are many references to the oflline CSS after
4156 * the cgroup has been destroyed, such as page cache or reclaimable
4157 * slab objects, that don't need to hang on to the ID. We want to keep
4158 * those dead CSS from occupying IDs, or we might quickly exhaust the
4159 * relatively small ID space and prevent the creation of new cgroups
4160 * even when there are much fewer than 64k cgroups - possibly none.
4162 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4163 * be freed and recycled when it's no longer needed, which is usually
4164 * when the CSS is offlined.
4166 * The only exception to that are records of swapped out tmpfs/shmem
4167 * pages that need to be attributed to live ancestors on swapin. But
4168 * those references are manageable from userspace.
4171 static DEFINE_IDR(mem_cgroup_idr
);
4173 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4175 atomic_add(n
, &memcg
->id
.ref
);
4178 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4180 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4181 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4184 /* Memcg ID pins CSS */
4185 css_put(&memcg
->css
);
4189 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4191 mem_cgroup_id_get_many(memcg
, 1);
4194 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4196 mem_cgroup_id_put_many(memcg
, 1);
4200 * mem_cgroup_from_id - look up a memcg from a memcg id
4201 * @id: the memcg id to look up
4203 * Caller must hold rcu_read_lock().
4205 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4207 WARN_ON_ONCE(!rcu_read_lock_held());
4208 return idr_find(&mem_cgroup_idr
, id
);
4211 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4213 struct mem_cgroup_per_node
*pn
;
4214 struct mem_cgroup_per_zone
*mz
;
4215 int zone
, tmp
= node
;
4217 * This routine is called against possible nodes.
4218 * But it's BUG to call kmalloc() against offline node.
4220 * TODO: this routine can waste much memory for nodes which will
4221 * never be onlined. It's better to use memory hotplug callback
4224 if (!node_state(node
, N_NORMAL_MEMORY
))
4226 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4230 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4231 mz
= &pn
->zoneinfo
[zone
];
4232 lruvec_init(&mz
->lruvec
);
4233 mz
->usage_in_excess
= 0;
4234 mz
->on_tree
= false;
4237 memcg
->nodeinfo
[node
] = pn
;
4241 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4243 kfree(memcg
->nodeinfo
[node
]);
4246 static struct mem_cgroup
*mem_cgroup_alloc(void)
4248 struct mem_cgroup
*memcg
;
4251 size
= sizeof(struct mem_cgroup
);
4252 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4254 memcg
= kzalloc(size
, GFP_KERNEL
);
4258 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4262 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4265 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4266 1, MEM_CGROUP_ID_MAX
,
4268 if (memcg
->id
.id
< 0)
4274 free_percpu(memcg
->stat
);
4281 * At destroying mem_cgroup, references from swap_cgroup can remain.
4282 * (scanning all at force_empty is too costly...)
4284 * Instead of clearing all references at force_empty, we remember
4285 * the number of reference from swap_cgroup and free mem_cgroup when
4286 * it goes down to 0.
4288 * Removal of cgroup itself succeeds regardless of refs from swap.
4291 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4295 mem_cgroup_remove_from_trees(memcg
);
4298 free_mem_cgroup_per_zone_info(memcg
, node
);
4300 free_percpu(memcg
->stat
);
4301 memcg_wb_domain_exit(memcg
);
4306 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4308 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
4310 if (!memcg
->memory
.parent
)
4312 return mem_cgroup_from_counter(memcg
->memory
.parent
, memory
);
4314 EXPORT_SYMBOL(parent_mem_cgroup
);
4316 static struct cgroup_subsys_state
* __ref
4317 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4319 struct mem_cgroup
*memcg
;
4320 long error
= -ENOMEM
;
4323 memcg
= mem_cgroup_alloc();
4325 return ERR_PTR(error
);
4328 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4332 if (parent_css
== NULL
) {
4333 root_mem_cgroup
= memcg
;
4334 mem_cgroup_root_css
= &memcg
->css
;
4335 page_counter_init(&memcg
->memory
, NULL
);
4336 memcg
->high
= PAGE_COUNTER_MAX
;
4337 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4338 page_counter_init(&memcg
->memsw
, NULL
);
4339 page_counter_init(&memcg
->kmem
, NULL
);
4342 memcg
->last_scanned_node
= MAX_NUMNODES
;
4343 INIT_LIST_HEAD(&memcg
->oom_notify
);
4344 memcg
->move_charge_at_immigrate
= 0;
4345 mutex_init(&memcg
->thresholds_lock
);
4346 spin_lock_init(&memcg
->move_lock
);
4347 vmpressure_init(&memcg
->vmpressure
);
4348 INIT_LIST_HEAD(&memcg
->event_list
);
4349 spin_lock_init(&memcg
->event_list_lock
);
4350 #ifdef CONFIG_MEMCG_KMEM
4351 memcg
->kmemcg_id
= -1;
4353 #ifdef CONFIG_CGROUP_WRITEBACK
4354 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4356 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4360 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4361 __mem_cgroup_free(memcg
);
4362 return ERR_PTR(error
);
4366 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4368 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4369 struct mem_cgroup
*parent
= mem_cgroup_from_css(css
->parent
);
4372 /* Online state pins memcg ID, memcg ID pins CSS */
4373 mem_cgroup_id_get(mem_cgroup_from_css(css
));
4379 mutex_lock(&memcg_create_mutex
);
4381 memcg
->use_hierarchy
= parent
->use_hierarchy
;
4382 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4383 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4385 if (parent
->use_hierarchy
) {
4386 page_counter_init(&memcg
->memory
, &parent
->memory
);
4387 memcg
->high
= PAGE_COUNTER_MAX
;
4388 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4389 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4390 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4393 * No need to take a reference to the parent because cgroup
4394 * core guarantees its existence.
4397 page_counter_init(&memcg
->memory
, NULL
);
4398 memcg
->high
= PAGE_COUNTER_MAX
;
4399 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4400 page_counter_init(&memcg
->memsw
, NULL
);
4401 page_counter_init(&memcg
->kmem
, NULL
);
4403 * Deeper hierachy with use_hierarchy == false doesn't make
4404 * much sense so let cgroup subsystem know about this
4405 * unfortunate state in our controller.
4407 if (parent
!= root_mem_cgroup
)
4408 memory_cgrp_subsys
.broken_hierarchy
= true;
4410 mutex_unlock(&memcg_create_mutex
);
4412 ret
= memcg_init_kmem(memcg
, &memory_cgrp_subsys
);
4417 * Make sure the memcg is initialized: mem_cgroup_iter()
4418 * orders reading memcg->initialized against its callers
4419 * reading the memcg members.
4421 smp_store_release(&memcg
->initialized
, 1);
4426 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4428 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4429 struct mem_cgroup_event
*event
, *tmp
;
4432 * Unregister events and notify userspace.
4433 * Notify userspace about cgroup removing only after rmdir of cgroup
4434 * directory to avoid race between userspace and kernelspace.
4436 spin_lock(&memcg
->event_list_lock
);
4437 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4438 list_del_init(&event
->list
);
4439 schedule_work(&event
->remove
);
4441 spin_unlock(&memcg
->event_list_lock
);
4443 vmpressure_cleanup(&memcg
->vmpressure
);
4445 memcg_deactivate_kmem(memcg
);
4447 wb_memcg_offline(memcg
);
4449 mem_cgroup_id_put(memcg
);
4452 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4454 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4456 invalidate_reclaim_iterators(memcg
);
4459 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4461 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4463 memcg_destroy_kmem(memcg
);
4464 __mem_cgroup_free(memcg
);
4468 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4469 * @css: the target css
4471 * Reset the states of the mem_cgroup associated with @css. This is
4472 * invoked when the userland requests disabling on the default hierarchy
4473 * but the memcg is pinned through dependency. The memcg should stop
4474 * applying policies and should revert to the vanilla state as it may be
4475 * made visible again.
4477 * The current implementation only resets the essential configurations.
4478 * This needs to be expanded to cover all the visible parts.
4480 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4482 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4484 mem_cgroup_resize_limit(memcg
, PAGE_COUNTER_MAX
);
4485 mem_cgroup_resize_memsw_limit(memcg
, PAGE_COUNTER_MAX
);
4486 memcg_update_kmem_limit(memcg
, PAGE_COUNTER_MAX
);
4488 memcg
->high
= PAGE_COUNTER_MAX
;
4489 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4490 memcg_wb_domain_size_changed(memcg
);
4494 /* Handlers for move charge at task migration. */
4495 static int mem_cgroup_do_precharge(unsigned long count
)
4499 /* Try a single bulk charge without reclaim first, kswapd may wake */
4500 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4502 mc
.precharge
+= count
;
4506 /* Try charges one by one with reclaim, but do not retry */
4508 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4518 * get_mctgt_type - get target type of moving charge
4519 * @vma: the vma the pte to be checked belongs
4520 * @addr: the address corresponding to the pte to be checked
4521 * @ptent: the pte to be checked
4522 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4525 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4526 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4527 * move charge. if @target is not NULL, the page is stored in target->page
4528 * with extra refcnt got(Callers should handle it).
4529 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4530 * target for charge migration. if @target is not NULL, the entry is stored
4533 * Called with pte lock held.
4540 enum mc_target_type
{
4546 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4547 unsigned long addr
, pte_t ptent
)
4549 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4551 if (!page
|| !page_mapped(page
))
4553 if (PageAnon(page
)) {
4554 if (!(mc
.flags
& MOVE_ANON
))
4557 if (!(mc
.flags
& MOVE_FILE
))
4560 if (!get_page_unless_zero(page
))
4567 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4568 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4570 struct page
*page
= NULL
;
4571 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4573 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4576 * Because lookup_swap_cache() updates some statistics counter,
4577 * we call find_get_page() with swapper_space directly.
4579 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4580 if (do_swap_account
)
4581 entry
->val
= ent
.val
;
4586 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4587 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4593 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4594 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4596 struct page
*page
= NULL
;
4597 struct address_space
*mapping
;
4600 if (!vma
->vm_file
) /* anonymous vma */
4602 if (!(mc
.flags
& MOVE_FILE
))
4605 mapping
= vma
->vm_file
->f_mapping
;
4606 pgoff
= linear_page_index(vma
, addr
);
4608 /* page is moved even if it's not RSS of this task(page-faulted). */
4610 /* shmem/tmpfs may report page out on swap: account for that too. */
4611 if (shmem_mapping(mapping
)) {
4612 page
= find_get_entry(mapping
, pgoff
);
4613 if (radix_tree_exceptional_entry(page
)) {
4614 swp_entry_t swp
= radix_to_swp_entry(page
);
4615 if (do_swap_account
)
4617 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4620 page
= find_get_page(mapping
, pgoff
);
4622 page
= find_get_page(mapping
, pgoff
);
4628 * mem_cgroup_move_account - move account of the page
4630 * @nr_pages: number of regular pages (>1 for huge pages)
4631 * @from: mem_cgroup which the page is moved from.
4632 * @to: mem_cgroup which the page is moved to. @from != @to.
4634 * The caller must confirm following.
4635 * - page is not on LRU (isolate_page() is useful.)
4636 * - compound_lock is held when nr_pages > 1
4638 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4641 static int mem_cgroup_move_account(struct page
*page
,
4642 unsigned int nr_pages
,
4643 struct mem_cgroup
*from
,
4644 struct mem_cgroup
*to
)
4646 unsigned long flags
;
4650 VM_BUG_ON(from
== to
);
4651 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4653 * The page is isolated from LRU. So, collapse function
4654 * will not handle this page. But page splitting can happen.
4655 * Do this check under compound_page_lock(). The caller should
4659 if (nr_pages
> 1 && !PageTransHuge(page
))
4663 * Prevent mem_cgroup_replace_page() from looking at
4664 * page->mem_cgroup of its source page while we change it.
4666 if (!trylock_page(page
))
4670 if (page
->mem_cgroup
!= from
)
4673 anon
= PageAnon(page
);
4675 spin_lock_irqsave(&from
->move_lock
, flags
);
4677 if (!anon
&& page_mapped(page
)) {
4678 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4680 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4685 * move_lock grabbed above and caller set from->moving_account, so
4686 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4687 * So mapping should be stable for dirty pages.
4689 if (!anon
&& PageDirty(page
)) {
4690 struct address_space
*mapping
= page_mapping(page
);
4692 if (mapping_cap_account_dirty(mapping
)) {
4693 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4695 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4700 if (PageWriteback(page
)) {
4701 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4703 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4708 * It is safe to change page->mem_cgroup here because the page
4709 * is referenced, charged, and isolated - we can't race with
4710 * uncharging, charging, migration, or LRU putback.
4713 /* caller should have done css_get */
4714 page
->mem_cgroup
= to
;
4715 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4719 local_irq_disable();
4720 mem_cgroup_charge_statistics(to
, page
, nr_pages
);
4721 memcg_check_events(to
, page
);
4722 mem_cgroup_charge_statistics(from
, page
, -nr_pages
);
4723 memcg_check_events(from
, page
);
4731 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4732 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4734 struct page
*page
= NULL
;
4735 enum mc_target_type ret
= MC_TARGET_NONE
;
4736 swp_entry_t ent
= { .val
= 0 };
4738 if (pte_present(ptent
))
4739 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4740 else if (is_swap_pte(ptent
))
4741 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4742 else if (pte_none(ptent
))
4743 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4745 if (!page
&& !ent
.val
)
4749 * Do only loose check w/o serialization.
4750 * mem_cgroup_move_account() checks the page is valid or
4751 * not under LRU exclusion.
4753 if (page
->mem_cgroup
== mc
.from
) {
4754 ret
= MC_TARGET_PAGE
;
4756 target
->page
= page
;
4758 if (!ret
|| !target
)
4761 /* There is a swap entry and a page doesn't exist or isn't charged */
4762 if (ent
.val
&& !ret
&&
4763 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4764 ret
= MC_TARGET_SWAP
;
4771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4773 * We don't consider swapping or file mapped pages because THP does not
4774 * support them for now.
4775 * Caller should make sure that pmd_trans_huge(pmd) is true.
4777 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4778 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4780 struct page
*page
= NULL
;
4781 enum mc_target_type ret
= MC_TARGET_NONE
;
4783 page
= pmd_page(pmd
);
4784 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4785 if (!(mc
.flags
& MOVE_ANON
))
4787 if (page
->mem_cgroup
== mc
.from
) {
4788 ret
= MC_TARGET_PAGE
;
4791 target
->page
= page
;
4797 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4798 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4800 return MC_TARGET_NONE
;
4804 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4805 unsigned long addr
, unsigned long end
,
4806 struct mm_walk
*walk
)
4808 struct vm_area_struct
*vma
= walk
->vma
;
4812 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
4813 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4814 mc
.precharge
+= HPAGE_PMD_NR
;
4819 if (pmd_trans_unstable(pmd
))
4821 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4822 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4823 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4824 mc
.precharge
++; /* increment precharge temporarily */
4825 pte_unmap_unlock(pte
- 1, ptl
);
4831 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4833 unsigned long precharge
;
4835 struct mm_walk mem_cgroup_count_precharge_walk
= {
4836 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4839 down_read(&mm
->mmap_sem
);
4840 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4841 up_read(&mm
->mmap_sem
);
4843 precharge
= mc
.precharge
;
4849 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4851 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4853 VM_BUG_ON(mc
.moving_task
);
4854 mc
.moving_task
= current
;
4855 return mem_cgroup_do_precharge(precharge
);
4858 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4859 static void __mem_cgroup_clear_mc(void)
4861 struct mem_cgroup
*from
= mc
.from
;
4862 struct mem_cgroup
*to
= mc
.to
;
4864 /* we must uncharge all the leftover precharges from mc.to */
4866 cancel_charge(mc
.to
, mc
.precharge
);
4870 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4871 * we must uncharge here.
4873 if (mc
.moved_charge
) {
4874 cancel_charge(mc
.from
, mc
.moved_charge
);
4875 mc
.moved_charge
= 0;
4877 /* we must fixup refcnts and charges */
4878 if (mc
.moved_swap
) {
4879 /* uncharge swap account from the old cgroup */
4880 if (!mem_cgroup_is_root(mc
.from
))
4881 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4883 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4886 * we charged both to->memory and to->memsw, so we
4887 * should uncharge to->memory.
4889 if (!mem_cgroup_is_root(mc
.to
))
4890 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4892 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4896 memcg_oom_recover(from
);
4897 memcg_oom_recover(to
);
4898 wake_up_all(&mc
.waitq
);
4901 static void mem_cgroup_clear_mc(void)
4903 struct mm_struct
*mm
= mc
.mm
;
4906 * we must clear moving_task before waking up waiters at the end of
4909 mc
.moving_task
= NULL
;
4910 __mem_cgroup_clear_mc();
4911 spin_lock(&mc
.lock
);
4915 spin_unlock(&mc
.lock
);
4920 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4922 struct cgroup_subsys_state
*css
;
4923 struct mem_cgroup
*memcg
;
4924 struct mem_cgroup
*from
;
4925 struct task_struct
*leader
, *p
;
4926 struct mm_struct
*mm
;
4927 unsigned long move_flags
;
4930 /* charge immigration isn't supported on the default hierarchy */
4931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4935 * Multi-process migrations only happen on the default hierarchy
4936 * where charge immigration is not used. Perform charge
4937 * immigration if @tset contains a leader and whine if there are
4941 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4944 memcg
= mem_cgroup_from_css(css
);
4950 * We are now commited to this value whatever it is. Changes in this
4951 * tunable will only affect upcoming migrations, not the current one.
4952 * So we need to save it, and keep it going.
4954 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4958 from
= mem_cgroup_from_task(p
);
4960 VM_BUG_ON(from
== memcg
);
4962 mm
= get_task_mm(p
);
4965 /* We move charges only when we move a owner of the mm */
4966 if (mm
->owner
== p
) {
4969 VM_BUG_ON(mc
.precharge
);
4970 VM_BUG_ON(mc
.moved_charge
);
4971 VM_BUG_ON(mc
.moved_swap
);
4973 spin_lock(&mc
.lock
);
4977 mc
.flags
= move_flags
;
4978 spin_unlock(&mc
.lock
);
4979 /* We set mc.moving_task later */
4981 ret
= mem_cgroup_precharge_mc(mm
);
4983 mem_cgroup_clear_mc();
4990 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4993 mem_cgroup_clear_mc();
4996 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4997 unsigned long addr
, unsigned long end
,
4998 struct mm_walk
*walk
)
5001 struct vm_area_struct
*vma
= walk
->vma
;
5004 enum mc_target_type target_type
;
5005 union mc_target target
;
5009 * We don't take compound_lock() here but no race with splitting thp
5011 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5012 * under splitting, which means there's no concurrent thp split,
5013 * - if another thread runs into split_huge_page() just after we
5014 * entered this if-block, the thread must wait for page table lock
5015 * to be unlocked in __split_huge_page_splitting(), where the main
5016 * part of thp split is not executed yet.
5018 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
5019 if (mc
.precharge
< HPAGE_PMD_NR
) {
5023 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
5024 if (target_type
== MC_TARGET_PAGE
) {
5026 if (!isolate_lru_page(page
)) {
5027 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
5029 mc
.precharge
-= HPAGE_PMD_NR
;
5030 mc
.moved_charge
+= HPAGE_PMD_NR
;
5032 putback_lru_page(page
);
5040 if (pmd_trans_unstable(pmd
))
5043 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
5044 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
5045 pte_t ptent
= *(pte
++);
5051 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5052 case MC_TARGET_PAGE
:
5054 if (isolate_lru_page(page
))
5056 if (!mem_cgroup_move_account(page
, 1, mc
.from
, mc
.to
)) {
5058 /* we uncharge from mc.from later. */
5061 putback_lru_page(page
);
5062 put
: /* get_mctgt_type() gets the page */
5065 case MC_TARGET_SWAP
:
5067 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5069 mem_cgroup_id_get_many(mc
.to
, 1);
5070 /* we fixup other refcnts and charges later. */
5078 pte_unmap_unlock(pte
- 1, ptl
);
5083 * We have consumed all precharges we got in can_attach().
5084 * We try charge one by one, but don't do any additional
5085 * charges to mc.to if we have failed in charge once in attach()
5088 ret
= mem_cgroup_do_precharge(1);
5096 static void mem_cgroup_move_charge(void)
5098 struct mm_walk mem_cgroup_move_charge_walk
= {
5099 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5103 lru_add_drain_all();
5105 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5106 * move_lock while we're moving its pages to another memcg.
5107 * Then wait for already started RCU-only updates to finish.
5109 atomic_inc(&mc
.from
->moving_account
);
5112 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5114 * Someone who are holding the mmap_sem might be waiting in
5115 * waitq. So we cancel all extra charges, wake up all waiters,
5116 * and retry. Because we cancel precharges, we might not be able
5117 * to move enough charges, but moving charge is a best-effort
5118 * feature anyway, so it wouldn't be a big problem.
5120 __mem_cgroup_clear_mc();
5125 * When we have consumed all precharges and failed in doing
5126 * additional charge, the page walk just aborts.
5128 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
5129 up_read(&mc
.mm
->mmap_sem
);
5130 atomic_dec(&mc
.from
->moving_account
);
5133 static void mem_cgroup_move_task(void)
5136 mem_cgroup_move_charge();
5137 mem_cgroup_clear_mc();
5140 #else /* !CONFIG_MMU */
5141 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5145 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5148 static void mem_cgroup_move_task(void)
5154 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5155 * to verify whether we're attached to the default hierarchy on each mount
5158 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5161 * use_hierarchy is forced on the default hierarchy. cgroup core
5162 * guarantees that @root doesn't have any children, so turning it
5163 * on for the root memcg is enough.
5165 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5166 root_mem_cgroup
->use_hierarchy
= true;
5168 root_mem_cgroup
->use_hierarchy
= false;
5171 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5174 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5176 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5179 static int memory_low_show(struct seq_file
*m
, void *v
)
5181 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5182 unsigned long low
= READ_ONCE(memcg
->low
);
5184 if (low
== PAGE_COUNTER_MAX
)
5185 seq_puts(m
, "max\n");
5187 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5192 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5193 char *buf
, size_t nbytes
, loff_t off
)
5195 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5199 buf
= strstrip(buf
);
5200 err
= page_counter_memparse(buf
, "max", &low
);
5209 static int memory_high_show(struct seq_file
*m
, void *v
)
5211 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5212 unsigned long high
= READ_ONCE(memcg
->high
);
5214 if (high
== PAGE_COUNTER_MAX
)
5215 seq_puts(m
, "max\n");
5217 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5222 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5223 char *buf
, size_t nbytes
, loff_t off
)
5225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5226 unsigned long nr_pages
;
5230 buf
= strstrip(buf
);
5231 err
= page_counter_memparse(buf
, "max", &high
);
5237 nr_pages
= page_counter_read(&memcg
->memory
);
5238 if (nr_pages
> high
)
5239 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5242 memcg_wb_domain_size_changed(memcg
);
5246 static int memory_max_show(struct seq_file
*m
, void *v
)
5248 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5249 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5251 if (max
== PAGE_COUNTER_MAX
)
5252 seq_puts(m
, "max\n");
5254 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5259 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5260 char *buf
, size_t nbytes
, loff_t off
)
5262 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5263 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5264 bool drained
= false;
5268 buf
= strstrip(buf
);
5269 err
= page_counter_memparse(buf
, "max", &max
);
5273 xchg(&memcg
->memory
.limit
, max
);
5276 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5278 if (nr_pages
<= max
)
5281 if (signal_pending(current
)) {
5287 drain_all_stock(memcg
);
5293 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5299 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5300 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5304 memcg_wb_domain_size_changed(memcg
);
5308 static int memory_events_show(struct seq_file
*m
, void *v
)
5310 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5312 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5313 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5314 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5315 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5320 static struct cftype memory_files
[] = {
5323 .flags
= CFTYPE_NOT_ON_ROOT
,
5324 .read_u64
= memory_current_read
,
5328 .flags
= CFTYPE_NOT_ON_ROOT
,
5329 .seq_show
= memory_low_show
,
5330 .write
= memory_low_write
,
5334 .flags
= CFTYPE_NOT_ON_ROOT
,
5335 .seq_show
= memory_high_show
,
5336 .write
= memory_high_write
,
5340 .flags
= CFTYPE_NOT_ON_ROOT
,
5341 .seq_show
= memory_max_show
,
5342 .write
= memory_max_write
,
5346 .flags
= CFTYPE_NOT_ON_ROOT
,
5347 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5348 .seq_show
= memory_events_show
,
5353 struct cgroup_subsys memory_cgrp_subsys
= {
5354 .css_alloc
= mem_cgroup_css_alloc
,
5355 .css_online
= mem_cgroup_css_online
,
5356 .css_offline
= mem_cgroup_css_offline
,
5357 .css_released
= mem_cgroup_css_released
,
5358 .css_free
= mem_cgroup_css_free
,
5359 .css_reset
= mem_cgroup_css_reset
,
5360 .can_attach
= mem_cgroup_can_attach
,
5361 .cancel_attach
= mem_cgroup_cancel_attach
,
5362 .post_attach
= mem_cgroup_move_task
,
5363 .bind
= mem_cgroup_bind
,
5364 .dfl_cftypes
= memory_files
,
5365 .legacy_cftypes
= mem_cgroup_legacy_files
,
5370 * mem_cgroup_low - check if memory consumption is below the normal range
5371 * @root: the highest ancestor to consider
5372 * @memcg: the memory cgroup to check
5374 * Returns %true if memory consumption of @memcg, and that of all
5375 * configurable ancestors up to @root, is below the normal range.
5377 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5379 if (mem_cgroup_disabled())
5383 * The toplevel group doesn't have a configurable range, so
5384 * it's never low when looked at directly, and it is not
5385 * considered an ancestor when assessing the hierarchy.
5388 if (memcg
== root_mem_cgroup
)
5391 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5394 while (memcg
!= root
) {
5395 memcg
= parent_mem_cgroup(memcg
);
5397 if (memcg
== root_mem_cgroup
)
5400 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5407 * mem_cgroup_try_charge - try charging a page
5408 * @page: page to charge
5409 * @mm: mm context of the victim
5410 * @gfp_mask: reclaim mode
5411 * @memcgp: charged memcg return
5413 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5414 * pages according to @gfp_mask if necessary.
5416 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5417 * Otherwise, an error code is returned.
5419 * After page->mapping has been set up, the caller must finalize the
5420 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5421 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5423 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5424 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
5426 struct mem_cgroup
*memcg
= NULL
;
5427 unsigned int nr_pages
= 1;
5430 if (mem_cgroup_disabled())
5433 if (PageSwapCache(page
)) {
5435 * Every swap fault against a single page tries to charge the
5436 * page, bail as early as possible. shmem_unuse() encounters
5437 * already charged pages, too. The USED bit is protected by
5438 * the page lock, which serializes swap cache removal, which
5439 * in turn serializes uncharging.
5441 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5442 if (page
->mem_cgroup
)
5445 if (do_swap_account
) {
5446 swp_entry_t ent
= { .val
= page_private(page
), };
5447 unsigned short id
= lookup_swap_cgroup_id(ent
);
5450 memcg
= mem_cgroup_from_id(id
);
5451 if (memcg
&& !css_tryget_online(&memcg
->css
))
5457 if (PageTransHuge(page
)) {
5458 nr_pages
<<= compound_order(page
);
5459 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5463 memcg
= get_mem_cgroup_from_mm(mm
);
5465 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5467 css_put(&memcg
->css
);
5474 * mem_cgroup_commit_charge - commit a page charge
5475 * @page: page to charge
5476 * @memcg: memcg to charge the page to
5477 * @lrucare: page might be on LRU already
5479 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5480 * after page->mapping has been set up. This must happen atomically
5481 * as part of the page instantiation, i.e. under the page table lock
5482 * for anonymous pages, under the page lock for page and swap cache.
5484 * In addition, the page must not be on the LRU during the commit, to
5485 * prevent racing with task migration. If it might be, use @lrucare.
5487 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5489 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5492 unsigned int nr_pages
= 1;
5494 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5495 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5497 if (mem_cgroup_disabled())
5500 * Swap faults will attempt to charge the same page multiple
5501 * times. But reuse_swap_page() might have removed the page
5502 * from swapcache already, so we can't check PageSwapCache().
5507 commit_charge(page
, memcg
, lrucare
);
5509 if (PageTransHuge(page
)) {
5510 nr_pages
<<= compound_order(page
);
5511 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5514 local_irq_disable();
5515 mem_cgroup_charge_statistics(memcg
, page
, nr_pages
);
5516 memcg_check_events(memcg
, page
);
5519 if (do_swap_account
&& PageSwapCache(page
)) {
5520 swp_entry_t entry
= { .val
= page_private(page
) };
5522 * The swap entry might not get freed for a long time,
5523 * let's not wait for it. The page already received a
5524 * memory+swap charge, drop the swap entry duplicate.
5526 mem_cgroup_uncharge_swap(entry
);
5531 * mem_cgroup_cancel_charge - cancel a page charge
5532 * @page: page to charge
5533 * @memcg: memcg to charge the page to
5535 * Cancel a charge transaction started by mem_cgroup_try_charge().
5537 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
)
5539 unsigned int nr_pages
= 1;
5541 if (mem_cgroup_disabled())
5544 * Swap faults will attempt to charge the same page multiple
5545 * times. But reuse_swap_page() might have removed the page
5546 * from swapcache already, so we can't check PageSwapCache().
5551 if (PageTransHuge(page
)) {
5552 nr_pages
<<= compound_order(page
);
5553 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5556 cancel_charge(memcg
, nr_pages
);
5559 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5560 unsigned long nr_anon
, unsigned long nr_file
,
5561 unsigned long nr_huge
, struct page
*dummy_page
)
5563 unsigned long nr_pages
= nr_anon
+ nr_file
;
5564 unsigned long flags
;
5566 if (!mem_cgroup_is_root(memcg
)) {
5567 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5568 if (do_swap_account
)
5569 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5570 memcg_oom_recover(memcg
);
5573 local_irq_save(flags
);
5574 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5575 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5576 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5577 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5578 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5579 memcg_check_events(memcg
, dummy_page
);
5580 local_irq_restore(flags
);
5582 if (!mem_cgroup_is_root(memcg
))
5583 css_put_many(&memcg
->css
, nr_pages
);
5586 static void uncharge_list(struct list_head
*page_list
)
5588 struct mem_cgroup
*memcg
= NULL
;
5589 unsigned long nr_anon
= 0;
5590 unsigned long nr_file
= 0;
5591 unsigned long nr_huge
= 0;
5592 unsigned long pgpgout
= 0;
5593 struct list_head
*next
;
5596 next
= page_list
->next
;
5598 unsigned int nr_pages
= 1;
5600 page
= list_entry(next
, struct page
, lru
);
5601 next
= page
->lru
.next
;
5603 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5604 VM_BUG_ON_PAGE(!PageHWPoison(page
) && page_count(page
), page
);
5606 if (!page
->mem_cgroup
)
5610 * Nobody should be changing or seriously looking at
5611 * page->mem_cgroup at this point, we have fully
5612 * exclusive access to the page.
5615 if (memcg
!= page
->mem_cgroup
) {
5617 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5619 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5621 memcg
= page
->mem_cgroup
;
5624 if (PageTransHuge(page
)) {
5625 nr_pages
<<= compound_order(page
);
5626 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5627 nr_huge
+= nr_pages
;
5631 nr_anon
+= nr_pages
;
5633 nr_file
+= nr_pages
;
5635 page
->mem_cgroup
= NULL
;
5638 } while (next
!= page_list
);
5641 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5646 * mem_cgroup_uncharge - uncharge a page
5647 * @page: page to uncharge
5649 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5650 * mem_cgroup_commit_charge().
5652 void mem_cgroup_uncharge(struct page
*page
)
5654 if (mem_cgroup_disabled())
5657 /* Don't touch page->lru of any random page, pre-check: */
5658 if (!page
->mem_cgroup
)
5661 INIT_LIST_HEAD(&page
->lru
);
5662 uncharge_list(&page
->lru
);
5666 * mem_cgroup_uncharge_list - uncharge a list of page
5667 * @page_list: list of pages to uncharge
5669 * Uncharge a list of pages previously charged with
5670 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5672 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5674 if (mem_cgroup_disabled())
5677 if (!list_empty(page_list
))
5678 uncharge_list(page_list
);
5682 * mem_cgroup_replace_page - migrate a charge to another page
5683 * @oldpage: currently charged page
5684 * @newpage: page to transfer the charge to
5686 * Migrate the charge from @oldpage to @newpage.
5688 * Both pages must be locked, @newpage->mapping must be set up.
5689 * Either or both pages might be on the LRU already.
5691 void mem_cgroup_replace_page(struct page
*oldpage
, struct page
*newpage
)
5693 struct mem_cgroup
*memcg
;
5696 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5697 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5698 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5699 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5702 if (mem_cgroup_disabled())
5705 /* Page cache replacement: new page already charged? */
5706 if (newpage
->mem_cgroup
)
5709 /* Swapcache readahead pages can get replaced before being charged */
5710 memcg
= oldpage
->mem_cgroup
;
5714 lock_page_lru(oldpage
, &isolated
);
5715 oldpage
->mem_cgroup
= NULL
;
5716 unlock_page_lru(oldpage
, isolated
);
5718 commit_charge(newpage
, memcg
, true);
5722 * subsys_initcall() for memory controller.
5724 * Some parts like hotcpu_notifier() have to be initialized from this context
5725 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5726 * everything that doesn't depend on a specific mem_cgroup structure should
5727 * be initialized from here.
5729 static int __init
mem_cgroup_init(void)
5733 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5735 for_each_possible_cpu(cpu
)
5736 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5739 for_each_node(node
) {
5740 struct mem_cgroup_tree_per_node
*rtpn
;
5743 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5744 node_online(node
) ? node
: NUMA_NO_NODE
);
5746 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5747 struct mem_cgroup_tree_per_zone
*rtpz
;
5749 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5750 rtpz
->rb_root
= RB_ROOT
;
5751 spin_lock_init(&rtpz
->lock
);
5753 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5758 subsys_initcall(mem_cgroup_init
);
5760 #ifdef CONFIG_MEMCG_SWAP
5761 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5763 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5765 * The root cgroup cannot be destroyed, so it's refcount must
5768 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5772 memcg
= parent_mem_cgroup(memcg
);
5774 memcg
= root_mem_cgroup
;
5780 * mem_cgroup_swapout - transfer a memsw charge to swap
5781 * @page: page whose memsw charge to transfer
5782 * @entry: swap entry to move the charge to
5784 * Transfer the memsw charge of @page to @entry.
5786 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5788 struct mem_cgroup
*memcg
, *swap_memcg
;
5789 unsigned short oldid
;
5791 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5792 VM_BUG_ON_PAGE(page_count(page
), page
);
5794 if (!do_swap_account
)
5797 memcg
= page
->mem_cgroup
;
5799 /* Readahead page, never charged */
5804 * In case the memcg owning these pages has been offlined and doesn't
5805 * have an ID allocated to it anymore, charge the closest online
5806 * ancestor for the swap instead and transfer the memory+swap charge.
5808 swap_memcg
= mem_cgroup_id_get_online(memcg
);
5809 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
));
5810 VM_BUG_ON_PAGE(oldid
, page
);
5811 mem_cgroup_swap_statistics(swap_memcg
, true);
5813 page
->mem_cgroup
= NULL
;
5815 if (!mem_cgroup_is_root(memcg
))
5816 page_counter_uncharge(&memcg
->memory
, 1);
5818 if (memcg
!= swap_memcg
) {
5819 if (!mem_cgroup_is_root(swap_memcg
))
5820 page_counter_charge(&swap_memcg
->memsw
, 1);
5821 page_counter_uncharge(&memcg
->memsw
, 1);
5825 * Interrupts should be disabled here because the caller holds the
5826 * mapping->tree_lock lock which is taken with interrupts-off. It is
5827 * important here to have the interrupts disabled because it is the
5828 * only synchronisation we have for udpating the per-CPU variables.
5830 VM_BUG_ON(!irqs_disabled());
5831 mem_cgroup_charge_statistics(memcg
, page
, -1);
5832 memcg_check_events(memcg
, page
);
5834 if (!mem_cgroup_is_root(memcg
))
5835 css_put(&memcg
->css
);
5839 * mem_cgroup_uncharge_swap - uncharge a swap entry
5840 * @entry: swap entry to uncharge
5842 * Drop the memsw charge associated with @entry.
5844 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5846 struct mem_cgroup
*memcg
;
5849 if (!do_swap_account
)
5852 id
= swap_cgroup_record(entry
, 0);
5854 memcg
= mem_cgroup_from_id(id
);
5856 if (!mem_cgroup_is_root(memcg
))
5857 page_counter_uncharge(&memcg
->memsw
, 1);
5858 mem_cgroup_swap_statistics(memcg
, false);
5859 mem_cgroup_id_put(memcg
);
5864 /* for remember boot option*/
5865 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5866 static int really_do_swap_account __initdata
= 1;
5868 static int really_do_swap_account __initdata
;
5871 static int __init
enable_swap_account(char *s
)
5873 if (!strcmp(s
, "1"))
5874 really_do_swap_account
= 1;
5875 else if (!strcmp(s
, "0"))
5876 really_do_swap_account
= 0;
5879 __setup("swapaccount=", enable_swap_account
);
5881 static struct cftype memsw_cgroup_files
[] = {
5883 .name
= "memsw.usage_in_bytes",
5884 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5885 .read_u64
= mem_cgroup_read_u64
,
5888 .name
= "memsw.max_usage_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5890 .write
= mem_cgroup_reset
,
5891 .read_u64
= mem_cgroup_read_u64
,
5894 .name
= "memsw.limit_in_bytes",
5895 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5896 .write
= mem_cgroup_write
,
5897 .read_u64
= mem_cgroup_read_u64
,
5900 .name
= "memsw.failcnt",
5901 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5902 .write
= mem_cgroup_reset
,
5903 .read_u64
= mem_cgroup_read_u64
,
5905 { }, /* terminate */
5908 static int __init
mem_cgroup_swap_init(void)
5910 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5911 do_swap_account
= 1;
5912 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5913 memsw_cgroup_files
));
5917 subsys_initcall(mem_cgroup_swap_init
);
5919 #endif /* CONFIG_MEMCG_SWAP */