1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
88 #include <linux/net_tstamp.h>
93 #include <asm/mpc85xx.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
110 #define TX_TIMEOUT (1*HZ)
112 const char gfar_driver_version
[] = "1.3";
114 static int gfar_enet_open(struct net_device
*dev
);
115 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
116 static void gfar_reset_task(struct work_struct
*work
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 static struct sk_buff
*gfar_new_skb(struct net_device
*dev
,
120 dma_addr_t
*bufaddr
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
);
126 static void adjust_link(struct net_device
*dev
);
127 static noinline
void gfar_update_link_state(struct gfar_private
*priv
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*ofdev
);
130 static int gfar_remove(struct platform_device
*ofdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 static void gfar_configure_serdes(struct net_device
*dev
);
135 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
);
136 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
);
137 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
);
138 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device
*dev
);
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
);
144 static void gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
145 int amount_pull
, struct napi_struct
*napi
);
146 static void gfar_halt_nodisable(struct gfar_private
*priv
);
147 static void gfar_clear_exact_match(struct net_device
*dev
);
148 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
150 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q
*rx_queue
, struct rxbd8
*bdp
,
163 lstatus
= BD_LFLAG(RXBD_EMPTY
| RXBD_INTERRUPT
);
164 if (bdp
== rx_queue
->rx_bd_base
+ rx_queue
->rx_ring_size
- 1)
165 lstatus
|= BD_LFLAG(RXBD_WRAP
);
169 bdp
->lstatus
= lstatus
;
172 static int gfar_init_bds(struct net_device
*ndev
)
174 struct gfar_private
*priv
= netdev_priv(ndev
);
175 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
176 struct gfar_priv_tx_q
*tx_queue
= NULL
;
177 struct gfar_priv_rx_q
*rx_queue
= NULL
;
184 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
185 tx_queue
= priv
->tx_queue
[i
];
186 /* Initialize some variables in our dev structure */
187 tx_queue
->num_txbdfree
= tx_queue
->tx_ring_size
;
188 tx_queue
->dirty_tx
= tx_queue
->tx_bd_base
;
189 tx_queue
->cur_tx
= tx_queue
->tx_bd_base
;
190 tx_queue
->skb_curtx
= 0;
191 tx_queue
->skb_dirtytx
= 0;
193 /* Initialize Transmit Descriptor Ring */
194 txbdp
= tx_queue
->tx_bd_base
;
195 for (j
= 0; j
< tx_queue
->tx_ring_size
; j
++) {
201 /* Set the last descriptor in the ring to indicate wrap */
203 txbdp
->status
|= TXBD_WRAP
;
206 rfbptr
= ®s
->rfbptr0
;
207 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
208 rx_queue
= priv
->rx_queue
[i
];
209 rx_queue
->cur_rx
= rx_queue
->rx_bd_base
;
210 rx_queue
->skb_currx
= 0;
211 rxbdp
= rx_queue
->rx_bd_base
;
213 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++) {
214 struct sk_buff
*skb
= rx_queue
->rx_skbuff
[j
];
217 bufaddr
= rxbdp
->bufPtr
;
219 skb
= gfar_new_skb(ndev
, &bufaddr
);
221 netdev_err(ndev
, "Can't allocate RX buffers\n");
224 rx_queue
->rx_skbuff
[j
] = skb
;
227 gfar_init_rxbdp(rx_queue
, rxbdp
, bufaddr
);
231 rx_queue
->rfbptr
= rfbptr
;
238 static int gfar_alloc_skb_resources(struct net_device
*ndev
)
243 struct gfar_private
*priv
= netdev_priv(ndev
);
244 struct device
*dev
= priv
->dev
;
245 struct gfar_priv_tx_q
*tx_queue
= NULL
;
246 struct gfar_priv_rx_q
*rx_queue
= NULL
;
248 priv
->total_tx_ring_size
= 0;
249 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
250 priv
->total_tx_ring_size
+= priv
->tx_queue
[i
]->tx_ring_size
;
252 priv
->total_rx_ring_size
= 0;
253 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
254 priv
->total_rx_ring_size
+= priv
->rx_queue
[i
]->rx_ring_size
;
256 /* Allocate memory for the buffer descriptors */
257 vaddr
= dma_alloc_coherent(dev
,
258 (priv
->total_tx_ring_size
*
259 sizeof(struct txbd8
)) +
260 (priv
->total_rx_ring_size
*
261 sizeof(struct rxbd8
)),
266 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
267 tx_queue
= priv
->tx_queue
[i
];
268 tx_queue
->tx_bd_base
= vaddr
;
269 tx_queue
->tx_bd_dma_base
= addr
;
270 tx_queue
->dev
= ndev
;
271 /* enet DMA only understands physical addresses */
272 addr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
273 vaddr
+= sizeof(struct txbd8
) * tx_queue
->tx_ring_size
;
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
278 rx_queue
= priv
->rx_queue
[i
];
279 rx_queue
->rx_bd_base
= vaddr
;
280 rx_queue
->rx_bd_dma_base
= addr
;
281 rx_queue
->dev
= ndev
;
282 addr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
283 vaddr
+= sizeof(struct rxbd8
) * rx_queue
->rx_ring_size
;
286 /* Setup the skbuff rings */
287 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
288 tx_queue
= priv
->tx_queue
[i
];
289 tx_queue
->tx_skbuff
=
290 kmalloc_array(tx_queue
->tx_ring_size
,
291 sizeof(*tx_queue
->tx_skbuff
),
293 if (!tx_queue
->tx_skbuff
)
296 for (k
= 0; k
< tx_queue
->tx_ring_size
; k
++)
297 tx_queue
->tx_skbuff
[k
] = NULL
;
300 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
301 rx_queue
= priv
->rx_queue
[i
];
302 rx_queue
->rx_skbuff
=
303 kmalloc_array(rx_queue
->rx_ring_size
,
304 sizeof(*rx_queue
->rx_skbuff
),
306 if (!rx_queue
->rx_skbuff
)
309 for (j
= 0; j
< rx_queue
->rx_ring_size
; j
++)
310 rx_queue
->rx_skbuff
[j
] = NULL
;
313 if (gfar_init_bds(ndev
))
319 free_skb_resources(priv
);
323 static void gfar_init_tx_rx_base(struct gfar_private
*priv
)
325 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
329 baddr
= ®s
->tbase0
;
330 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
331 gfar_write(baddr
, priv
->tx_queue
[i
]->tx_bd_dma_base
);
335 baddr
= ®s
->rbase0
;
336 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
337 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_bd_dma_base
);
342 static void gfar_init_rqprm(struct gfar_private
*priv
)
344 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
348 baddr
= ®s
->rqprm0
;
349 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
350 gfar_write(baddr
, priv
->rx_queue
[i
]->rx_ring_size
|
351 (DEFAULT_RX_LFC_THR
<< FBTHR_SHIFT
));
356 static void gfar_rx_buff_size_config(struct gfar_private
*priv
)
358 int frame_size
= priv
->ndev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
360 /* set this when rx hw offload (TOE) functions are being used */
361 priv
->uses_rxfcb
= 0;
363 if (priv
->ndev
->features
& (NETIF_F_RXCSUM
| NETIF_F_HW_VLAN_CTAG_RX
))
364 priv
->uses_rxfcb
= 1;
366 if (priv
->hwts_rx_en
)
367 priv
->uses_rxfcb
= 1;
369 if (priv
->uses_rxfcb
)
370 frame_size
+= GMAC_FCB_LEN
;
372 frame_size
+= priv
->padding
;
374 frame_size
= (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
375 INCREMENTAL_BUFFER_SIZE
;
377 priv
->rx_buffer_size
= frame_size
;
380 static void gfar_mac_rx_config(struct gfar_private
*priv
)
382 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
385 if (priv
->rx_filer_enable
) {
386 rctrl
|= RCTRL_FILREN
;
387 /* Program the RIR0 reg with the required distribution */
388 if (priv
->poll_mode
== GFAR_SQ_POLLING
)
389 gfar_write(®s
->rir0
, DEFAULT_2RXQ_RIR0
);
390 else /* GFAR_MQ_POLLING */
391 gfar_write(®s
->rir0
, DEFAULT_8RXQ_RIR0
);
394 /* Restore PROMISC mode */
395 if (priv
->ndev
->flags
& IFF_PROMISC
)
398 if (priv
->ndev
->features
& NETIF_F_RXCSUM
)
399 rctrl
|= RCTRL_CHECKSUMMING
;
401 if (priv
->extended_hash
)
402 rctrl
|= RCTRL_EXTHASH
| RCTRL_EMEN
;
405 rctrl
&= ~RCTRL_PAL_MASK
;
406 rctrl
|= RCTRL_PADDING(priv
->padding
);
409 /* Enable HW time stamping if requested from user space */
410 if (priv
->hwts_rx_en
)
411 rctrl
|= RCTRL_PRSDEP_INIT
| RCTRL_TS_ENABLE
;
413 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_RX
)
414 rctrl
|= RCTRL_VLEX
| RCTRL_PRSDEP_INIT
;
416 /* Clear the LFC bit */
417 gfar_write(®s
->rctrl
, rctrl
);
418 /* Init flow control threshold values */
419 gfar_init_rqprm(priv
);
420 gfar_write(®s
->ptv
, DEFAULT_LFC_PTVVAL
);
423 /* Init rctrl based on our settings */
424 gfar_write(®s
->rctrl
, rctrl
);
427 static void gfar_mac_tx_config(struct gfar_private
*priv
)
429 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
432 if (priv
->ndev
->features
& NETIF_F_IP_CSUM
)
433 tctrl
|= TCTRL_INIT_CSUM
;
435 if (priv
->prio_sched_en
)
436 tctrl
|= TCTRL_TXSCHED_PRIO
;
438 tctrl
|= TCTRL_TXSCHED_WRRS
;
439 gfar_write(®s
->tr03wt
, DEFAULT_WRRS_WEIGHT
);
440 gfar_write(®s
->tr47wt
, DEFAULT_WRRS_WEIGHT
);
443 if (priv
->ndev
->features
& NETIF_F_HW_VLAN_CTAG_TX
)
444 tctrl
|= TCTRL_VLINS
;
446 gfar_write(®s
->tctrl
, tctrl
);
449 static void gfar_configure_coalescing(struct gfar_private
*priv
,
450 unsigned long tx_mask
, unsigned long rx_mask
)
452 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
455 if (priv
->mode
== MQ_MG_MODE
) {
458 baddr
= ®s
->txic0
;
459 for_each_set_bit(i
, &tx_mask
, priv
->num_tx_queues
) {
460 gfar_write(baddr
+ i
, 0);
461 if (likely(priv
->tx_queue
[i
]->txcoalescing
))
462 gfar_write(baddr
+ i
, priv
->tx_queue
[i
]->txic
);
465 baddr
= ®s
->rxic0
;
466 for_each_set_bit(i
, &rx_mask
, priv
->num_rx_queues
) {
467 gfar_write(baddr
+ i
, 0);
468 if (likely(priv
->rx_queue
[i
]->rxcoalescing
))
469 gfar_write(baddr
+ i
, priv
->rx_queue
[i
]->rxic
);
472 /* Backward compatible case -- even if we enable
473 * multiple queues, there's only single reg to program
475 gfar_write(®s
->txic
, 0);
476 if (likely(priv
->tx_queue
[0]->txcoalescing
))
477 gfar_write(®s
->txic
, priv
->tx_queue
[0]->txic
);
479 gfar_write(®s
->rxic
, 0);
480 if (unlikely(priv
->rx_queue
[0]->rxcoalescing
))
481 gfar_write(®s
->rxic
, priv
->rx_queue
[0]->rxic
);
485 void gfar_configure_coalescing_all(struct gfar_private
*priv
)
487 gfar_configure_coalescing(priv
, 0xFF, 0xFF);
490 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
)
492 struct gfar_private
*priv
= netdev_priv(dev
);
493 unsigned long rx_packets
= 0, rx_bytes
= 0, rx_dropped
= 0;
494 unsigned long tx_packets
= 0, tx_bytes
= 0;
497 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
498 rx_packets
+= priv
->rx_queue
[i
]->stats
.rx_packets
;
499 rx_bytes
+= priv
->rx_queue
[i
]->stats
.rx_bytes
;
500 rx_dropped
+= priv
->rx_queue
[i
]->stats
.rx_dropped
;
503 dev
->stats
.rx_packets
= rx_packets
;
504 dev
->stats
.rx_bytes
= rx_bytes
;
505 dev
->stats
.rx_dropped
= rx_dropped
;
507 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
508 tx_bytes
+= priv
->tx_queue
[i
]->stats
.tx_bytes
;
509 tx_packets
+= priv
->tx_queue
[i
]->stats
.tx_packets
;
512 dev
->stats
.tx_bytes
= tx_bytes
;
513 dev
->stats
.tx_packets
= tx_packets
;
518 static const struct net_device_ops gfar_netdev_ops
= {
519 .ndo_open
= gfar_enet_open
,
520 .ndo_start_xmit
= gfar_start_xmit
,
521 .ndo_stop
= gfar_close
,
522 .ndo_change_mtu
= gfar_change_mtu
,
523 .ndo_set_features
= gfar_set_features
,
524 .ndo_set_rx_mode
= gfar_set_multi
,
525 .ndo_tx_timeout
= gfar_timeout
,
526 .ndo_do_ioctl
= gfar_ioctl
,
527 .ndo_get_stats
= gfar_get_stats
,
528 .ndo_set_mac_address
= eth_mac_addr
,
529 .ndo_validate_addr
= eth_validate_addr
,
530 #ifdef CONFIG_NET_POLL_CONTROLLER
531 .ndo_poll_controller
= gfar_netpoll
,
535 static void gfar_ints_disable(struct gfar_private
*priv
)
538 for (i
= 0; i
< priv
->num_grps
; i
++) {
539 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
541 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
543 /* Initialize IMASK */
544 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
548 static void gfar_ints_enable(struct gfar_private
*priv
)
551 for (i
= 0; i
< priv
->num_grps
; i
++) {
552 struct gfar __iomem
*regs
= priv
->gfargrp
[i
].regs
;
553 /* Unmask the interrupts we look for */
554 gfar_write(®s
->imask
, IMASK_DEFAULT
);
558 static void lock_tx_qs(struct gfar_private
*priv
)
562 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
563 spin_lock(&priv
->tx_queue
[i
]->txlock
);
566 static void unlock_tx_qs(struct gfar_private
*priv
)
570 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
571 spin_unlock(&priv
->tx_queue
[i
]->txlock
);
574 static int gfar_alloc_tx_queues(struct gfar_private
*priv
)
578 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
579 priv
->tx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_tx_q
),
581 if (!priv
->tx_queue
[i
])
584 priv
->tx_queue
[i
]->tx_skbuff
= NULL
;
585 priv
->tx_queue
[i
]->qindex
= i
;
586 priv
->tx_queue
[i
]->dev
= priv
->ndev
;
587 spin_lock_init(&(priv
->tx_queue
[i
]->txlock
));
592 static int gfar_alloc_rx_queues(struct gfar_private
*priv
)
596 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
597 priv
->rx_queue
[i
] = kzalloc(sizeof(struct gfar_priv_rx_q
),
599 if (!priv
->rx_queue
[i
])
602 priv
->rx_queue
[i
]->rx_skbuff
= NULL
;
603 priv
->rx_queue
[i
]->qindex
= i
;
604 priv
->rx_queue
[i
]->dev
= priv
->ndev
;
609 static void gfar_free_tx_queues(struct gfar_private
*priv
)
613 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
614 kfree(priv
->tx_queue
[i
]);
617 static void gfar_free_rx_queues(struct gfar_private
*priv
)
621 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
622 kfree(priv
->rx_queue
[i
]);
625 static void unmap_group_regs(struct gfar_private
*priv
)
629 for (i
= 0; i
< MAXGROUPS
; i
++)
630 if (priv
->gfargrp
[i
].regs
)
631 iounmap(priv
->gfargrp
[i
].regs
);
634 static void free_gfar_dev(struct gfar_private
*priv
)
638 for (i
= 0; i
< priv
->num_grps
; i
++)
639 for (j
= 0; j
< GFAR_NUM_IRQS
; j
++) {
640 kfree(priv
->gfargrp
[i
].irqinfo
[j
]);
641 priv
->gfargrp
[i
].irqinfo
[j
] = NULL
;
644 free_netdev(priv
->ndev
);
647 static void disable_napi(struct gfar_private
*priv
)
651 for (i
= 0; i
< priv
->num_grps
; i
++) {
652 napi_disable(&priv
->gfargrp
[i
].napi_rx
);
653 napi_disable(&priv
->gfargrp
[i
].napi_tx
);
657 static void enable_napi(struct gfar_private
*priv
)
661 for (i
= 0; i
< priv
->num_grps
; i
++) {
662 napi_enable(&priv
->gfargrp
[i
].napi_rx
);
663 napi_enable(&priv
->gfargrp
[i
].napi_tx
);
667 static int gfar_parse_group(struct device_node
*np
,
668 struct gfar_private
*priv
, const char *model
)
670 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[priv
->num_grps
];
673 for (i
= 0; i
< GFAR_NUM_IRQS
; i
++) {
674 grp
->irqinfo
[i
] = kzalloc(sizeof(struct gfar_irqinfo
),
676 if (!grp
->irqinfo
[i
])
680 grp
->regs
= of_iomap(np
, 0);
684 gfar_irq(grp
, TX
)->irq
= irq_of_parse_and_map(np
, 0);
686 /* If we aren't the FEC we have multiple interrupts */
687 if (model
&& strcasecmp(model
, "FEC")) {
688 gfar_irq(grp
, RX
)->irq
= irq_of_parse_and_map(np
, 1);
689 gfar_irq(grp
, ER
)->irq
= irq_of_parse_and_map(np
, 2);
690 if (gfar_irq(grp
, TX
)->irq
== NO_IRQ
||
691 gfar_irq(grp
, RX
)->irq
== NO_IRQ
||
692 gfar_irq(grp
, ER
)->irq
== NO_IRQ
)
697 spin_lock_init(&grp
->grplock
);
698 if (priv
->mode
== MQ_MG_MODE
) {
699 u32
*rxq_mask
, *txq_mask
;
700 rxq_mask
= (u32
*)of_get_property(np
, "fsl,rx-bit-map", NULL
);
701 txq_mask
= (u32
*)of_get_property(np
, "fsl,tx-bit-map", NULL
);
703 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
704 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
705 grp
->rx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
706 grp
->tx_bit_map
= (DEFAULT_MAPPING
>> priv
->num_grps
);
707 } else { /* GFAR_MQ_POLLING */
708 grp
->rx_bit_map
= rxq_mask
?
709 *rxq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
710 grp
->tx_bit_map
= txq_mask
?
711 *txq_mask
: (DEFAULT_MAPPING
>> priv
->num_grps
);
714 grp
->rx_bit_map
= 0xFF;
715 grp
->tx_bit_map
= 0xFF;
718 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
719 * right to left, so we need to revert the 8 bits to get the q index
721 grp
->rx_bit_map
= bitrev8(grp
->rx_bit_map
);
722 grp
->tx_bit_map
= bitrev8(grp
->tx_bit_map
);
724 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
725 * also assign queues to groups
727 for_each_set_bit(i
, &grp
->rx_bit_map
, priv
->num_rx_queues
) {
729 grp
->rx_queue
= priv
->rx_queue
[i
];
730 grp
->num_rx_queues
++;
731 grp
->rstat
|= (RSTAT_CLEAR_RHALT
>> i
);
732 priv
->rqueue
|= ((RQUEUE_EN0
| RQUEUE_EX0
) >> i
);
733 priv
->rx_queue
[i
]->grp
= grp
;
736 for_each_set_bit(i
, &grp
->tx_bit_map
, priv
->num_tx_queues
) {
738 grp
->tx_queue
= priv
->tx_queue
[i
];
739 grp
->num_tx_queues
++;
740 grp
->tstat
|= (TSTAT_CLEAR_THALT
>> i
);
741 priv
->tqueue
|= (TQUEUE_EN0
>> i
);
742 priv
->tx_queue
[i
]->grp
= grp
;
750 static int gfar_of_init(struct platform_device
*ofdev
, struct net_device
**pdev
)
754 const void *mac_addr
;
756 struct net_device
*dev
= NULL
;
757 struct gfar_private
*priv
= NULL
;
758 struct device_node
*np
= ofdev
->dev
.of_node
;
759 struct device_node
*child
= NULL
;
761 const u32
*stash_len
;
762 const u32
*stash_idx
;
763 unsigned int num_tx_qs
, num_rx_qs
;
764 u32
*tx_queues
, *rx_queues
;
765 unsigned short mode
, poll_mode
;
770 if (of_device_is_compatible(np
, "fsl,etsec2")) {
772 poll_mode
= GFAR_SQ_POLLING
;
775 poll_mode
= GFAR_SQ_POLLING
;
778 /* parse the num of HW tx and rx queues */
779 tx_queues
= (u32
*)of_get_property(np
, "fsl,num_tx_queues", NULL
);
780 rx_queues
= (u32
*)of_get_property(np
, "fsl,num_rx_queues", NULL
);
782 if (mode
== SQ_SG_MODE
) {
785 } else { /* MQ_MG_MODE */
786 /* get the actual number of supported groups */
787 unsigned int num_grps
= of_get_available_child_count(np
);
789 if (num_grps
== 0 || num_grps
> MAXGROUPS
) {
790 dev_err(&ofdev
->dev
, "Invalid # of int groups(%d)\n",
792 pr_err("Cannot do alloc_etherdev, aborting\n");
796 if (poll_mode
== GFAR_SQ_POLLING
) {
797 num_tx_qs
= num_grps
; /* one txq per int group */
798 num_rx_qs
= num_grps
; /* one rxq per int group */
799 } else { /* GFAR_MQ_POLLING */
800 num_tx_qs
= tx_queues
? *tx_queues
: 1;
801 num_rx_qs
= rx_queues
? *rx_queues
: 1;
805 if (num_tx_qs
> MAX_TX_QS
) {
806 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
807 num_tx_qs
, MAX_TX_QS
);
808 pr_err("Cannot do alloc_etherdev, aborting\n");
812 if (num_rx_qs
> MAX_RX_QS
) {
813 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
814 num_rx_qs
, MAX_RX_QS
);
815 pr_err("Cannot do alloc_etherdev, aborting\n");
819 *pdev
= alloc_etherdev_mq(sizeof(*priv
), num_tx_qs
);
824 priv
= netdev_priv(dev
);
828 priv
->poll_mode
= poll_mode
;
830 priv
->num_tx_queues
= num_tx_qs
;
831 netif_set_real_num_rx_queues(dev
, num_rx_qs
);
832 priv
->num_rx_queues
= num_rx_qs
;
834 err
= gfar_alloc_tx_queues(priv
);
836 goto tx_alloc_failed
;
838 err
= gfar_alloc_rx_queues(priv
);
840 goto rx_alloc_failed
;
842 /* Init Rx queue filer rule set linked list */
843 INIT_LIST_HEAD(&priv
->rx_list
.list
);
844 priv
->rx_list
.count
= 0;
845 mutex_init(&priv
->rx_queue_access
);
847 model
= of_get_property(np
, "model", NULL
);
849 for (i
= 0; i
< MAXGROUPS
; i
++)
850 priv
->gfargrp
[i
].regs
= NULL
;
852 /* Parse and initialize group specific information */
853 if (priv
->mode
== MQ_MG_MODE
) {
854 for_each_child_of_node(np
, child
) {
855 err
= gfar_parse_group(child
, priv
, model
);
859 } else { /* SQ_SG_MODE */
860 err
= gfar_parse_group(np
, priv
, model
);
865 stash
= of_get_property(np
, "bd-stash", NULL
);
868 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BD_STASHING
;
869 priv
->bd_stash_en
= 1;
872 stash_len
= of_get_property(np
, "rx-stash-len", NULL
);
875 priv
->rx_stash_size
= *stash_len
;
877 stash_idx
= of_get_property(np
, "rx-stash-idx", NULL
);
880 priv
->rx_stash_index
= *stash_idx
;
882 if (stash_len
|| stash_idx
)
883 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_BUF_STASHING
;
885 mac_addr
= of_get_mac_address(np
);
888 memcpy(dev
->dev_addr
, mac_addr
, ETH_ALEN
);
890 if (model
&& !strcasecmp(model
, "TSEC"))
891 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
892 FSL_GIANFAR_DEV_HAS_COALESCE
|
893 FSL_GIANFAR_DEV_HAS_RMON
|
894 FSL_GIANFAR_DEV_HAS_MULTI_INTR
;
896 if (model
&& !strcasecmp(model
, "eTSEC"))
897 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_GIGABIT
|
898 FSL_GIANFAR_DEV_HAS_COALESCE
|
899 FSL_GIANFAR_DEV_HAS_RMON
|
900 FSL_GIANFAR_DEV_HAS_MULTI_INTR
|
901 FSL_GIANFAR_DEV_HAS_CSUM
|
902 FSL_GIANFAR_DEV_HAS_VLAN
|
903 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
|
904 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
|
905 FSL_GIANFAR_DEV_HAS_TIMER
;
907 ctype
= of_get_property(np
, "phy-connection-type", NULL
);
909 /* We only care about rgmii-id. The rest are autodetected */
910 if (ctype
&& !strcmp(ctype
, "rgmii-id"))
911 priv
->interface
= PHY_INTERFACE_MODE_RGMII_ID
;
913 priv
->interface
= PHY_INTERFACE_MODE_MII
;
915 if (of_get_property(np
, "fsl,magic-packet", NULL
))
916 priv
->device_flags
|= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
;
918 priv
->phy_node
= of_parse_phandle(np
, "phy-handle", 0);
920 /* In the case of a fixed PHY, the DT node associated
921 * to the PHY is the Ethernet MAC DT node.
923 if (!priv
->phy_node
&& of_phy_is_fixed_link(np
)) {
924 err
= of_phy_register_fixed_link(np
);
928 priv
->phy_node
= of_node_get(np
);
931 /* Find the TBI PHY. If it's not there, we don't support SGMII */
932 priv
->tbi_node
= of_parse_phandle(np
, "tbi-handle", 0);
937 unmap_group_regs(priv
);
939 gfar_free_rx_queues(priv
);
941 gfar_free_tx_queues(priv
);
946 static int gfar_hwtstamp_set(struct net_device
*netdev
, struct ifreq
*ifr
)
948 struct hwtstamp_config config
;
949 struct gfar_private
*priv
= netdev_priv(netdev
);
951 if (copy_from_user(&config
, ifr
->ifr_data
, sizeof(config
)))
954 /* reserved for future extensions */
958 switch (config
.tx_type
) {
959 case HWTSTAMP_TX_OFF
:
960 priv
->hwts_tx_en
= 0;
963 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
965 priv
->hwts_tx_en
= 1;
971 switch (config
.rx_filter
) {
972 case HWTSTAMP_FILTER_NONE
:
973 if (priv
->hwts_rx_en
) {
974 priv
->hwts_rx_en
= 0;
979 if (!(priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
))
981 if (!priv
->hwts_rx_en
) {
982 priv
->hwts_rx_en
= 1;
985 config
.rx_filter
= HWTSTAMP_FILTER_ALL
;
989 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
993 static int gfar_hwtstamp_get(struct net_device
*netdev
, struct ifreq
*ifr
)
995 struct hwtstamp_config config
;
996 struct gfar_private
*priv
= netdev_priv(netdev
);
999 config
.tx_type
= priv
->hwts_tx_en
? HWTSTAMP_TX_ON
: HWTSTAMP_TX_OFF
;
1000 config
.rx_filter
= (priv
->hwts_rx_en
?
1001 HWTSTAMP_FILTER_ALL
: HWTSTAMP_FILTER_NONE
);
1003 return copy_to_user(ifr
->ifr_data
, &config
, sizeof(config
)) ?
1007 static int gfar_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1009 struct gfar_private
*priv
= netdev_priv(dev
);
1011 if (!netif_running(dev
))
1014 if (cmd
== SIOCSHWTSTAMP
)
1015 return gfar_hwtstamp_set(dev
, rq
);
1016 if (cmd
== SIOCGHWTSTAMP
)
1017 return gfar_hwtstamp_get(dev
, rq
);
1022 return phy_mii_ioctl(priv
->phydev
, rq
, cmd
);
1025 static u32
cluster_entry_per_class(struct gfar_private
*priv
, u32 rqfar
,
1028 u32 rqfpr
= FPR_FILER_MASK
;
1032 rqfcr
= RQFCR_CLE
| RQFCR_PID_MASK
| RQFCR_CMP_EXACT
;
1033 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1034 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1035 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1038 rqfcr
= RQFCR_CMP_NOMATCH
;
1039 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1040 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1041 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1044 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_PARSE
| RQFCR_CLE
| RQFCR_AND
;
1046 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1047 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1048 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1051 rqfcr
= RQFCR_CMP_EXACT
| RQFCR_PID_MASK
| RQFCR_AND
;
1053 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1054 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1055 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1060 static void gfar_init_filer_table(struct gfar_private
*priv
)
1063 u32 rqfar
= MAX_FILER_IDX
;
1065 u32 rqfpr
= FPR_FILER_MASK
;
1068 rqfcr
= RQFCR_CMP_MATCH
;
1069 priv
->ftp_rqfcr
[rqfar
] = rqfcr
;
1070 priv
->ftp_rqfpr
[rqfar
] = rqfpr
;
1071 gfar_write_filer(priv
, rqfar
, rqfcr
, rqfpr
);
1073 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
);
1074 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_UDP
);
1075 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV6
| RQFPR_TCP
);
1076 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
);
1077 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_UDP
);
1078 rqfar
= cluster_entry_per_class(priv
, rqfar
, RQFPR_IPV4
| RQFPR_TCP
);
1080 /* cur_filer_idx indicated the first non-masked rule */
1081 priv
->cur_filer_idx
= rqfar
;
1083 /* Rest are masked rules */
1084 rqfcr
= RQFCR_CMP_NOMATCH
;
1085 for (i
= 0; i
< rqfar
; i
++) {
1086 priv
->ftp_rqfcr
[i
] = rqfcr
;
1087 priv
->ftp_rqfpr
[i
] = rqfpr
;
1088 gfar_write_filer(priv
, i
, rqfcr
, rqfpr
);
1093 static void __gfar_detect_errata_83xx(struct gfar_private
*priv
)
1095 unsigned int pvr
= mfspr(SPRN_PVR
);
1096 unsigned int svr
= mfspr(SPRN_SVR
);
1097 unsigned int mod
= (svr
>> 16) & 0xfff6; /* w/o E suffix */
1098 unsigned int rev
= svr
& 0xffff;
1100 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1101 if ((pvr
== 0x80850010 && mod
== 0x80b0 && rev
>= 0x0020) ||
1102 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1103 priv
->errata
|= GFAR_ERRATA_74
;
1105 /* MPC8313 and MPC837x all rev */
1106 if ((pvr
== 0x80850010 && mod
== 0x80b0) ||
1107 (pvr
== 0x80861010 && (mod
& 0xfff9) == 0x80c0))
1108 priv
->errata
|= GFAR_ERRATA_76
;
1110 /* MPC8313 Rev < 2.0 */
1111 if (pvr
== 0x80850010 && mod
== 0x80b0 && rev
< 0x0020)
1112 priv
->errata
|= GFAR_ERRATA_12
;
1115 static void __gfar_detect_errata_85xx(struct gfar_private
*priv
)
1117 unsigned int svr
= mfspr(SPRN_SVR
);
1119 if ((SVR_SOC_VER(svr
) == SVR_8548
) && (SVR_REV(svr
) == 0x20))
1120 priv
->errata
|= GFAR_ERRATA_12
;
1121 if (((SVR_SOC_VER(svr
) == SVR_P2020
) && (SVR_REV(svr
) < 0x20)) ||
1122 ((SVR_SOC_VER(svr
) == SVR_P2010
) && (SVR_REV(svr
) < 0x20)))
1123 priv
->errata
|= GFAR_ERRATA_76
; /* aka eTSEC 20 */
1127 static void gfar_detect_errata(struct gfar_private
*priv
)
1129 struct device
*dev
= &priv
->ofdev
->dev
;
1131 /* no plans to fix */
1132 priv
->errata
|= GFAR_ERRATA_A002
;
1135 if (pvr_version_is(PVR_VER_E500V1
) || pvr_version_is(PVR_VER_E500V2
))
1136 __gfar_detect_errata_85xx(priv
);
1137 else /* non-mpc85xx parts, i.e. e300 core based */
1138 __gfar_detect_errata_83xx(priv
);
1142 dev_info(dev
, "enabled errata workarounds, flags: 0x%x\n",
1146 void gfar_mac_reset(struct gfar_private
*priv
)
1148 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1151 /* Reset MAC layer */
1152 gfar_write(®s
->maccfg1
, MACCFG1_SOFT_RESET
);
1154 /* We need to delay at least 3 TX clocks */
1157 /* the soft reset bit is not self-resetting, so we need to
1158 * clear it before resuming normal operation
1160 gfar_write(®s
->maccfg1
, 0);
1164 /* Compute rx_buff_size based on config flags */
1165 gfar_rx_buff_size_config(priv
);
1167 /* Initialize the max receive frame/buffer lengths */
1168 gfar_write(®s
->maxfrm
, priv
->rx_buffer_size
);
1169 gfar_write(®s
->mrblr
, priv
->rx_buffer_size
);
1171 /* Initialize the Minimum Frame Length Register */
1172 gfar_write(®s
->minflr
, MINFLR_INIT_SETTINGS
);
1174 /* Initialize MACCFG2. */
1175 tempval
= MACCFG2_INIT_SETTINGS
;
1177 /* If the mtu is larger than the max size for standard
1178 * ethernet frames (ie, a jumbo frame), then set maccfg2
1179 * to allow huge frames, and to check the length
1181 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
||
1182 gfar_has_errata(priv
, GFAR_ERRATA_74
))
1183 tempval
|= MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
;
1185 gfar_write(®s
->maccfg2
, tempval
);
1187 /* Clear mac addr hash registers */
1188 gfar_write(®s
->igaddr0
, 0);
1189 gfar_write(®s
->igaddr1
, 0);
1190 gfar_write(®s
->igaddr2
, 0);
1191 gfar_write(®s
->igaddr3
, 0);
1192 gfar_write(®s
->igaddr4
, 0);
1193 gfar_write(®s
->igaddr5
, 0);
1194 gfar_write(®s
->igaddr6
, 0);
1195 gfar_write(®s
->igaddr7
, 0);
1197 gfar_write(®s
->gaddr0
, 0);
1198 gfar_write(®s
->gaddr1
, 0);
1199 gfar_write(®s
->gaddr2
, 0);
1200 gfar_write(®s
->gaddr3
, 0);
1201 gfar_write(®s
->gaddr4
, 0);
1202 gfar_write(®s
->gaddr5
, 0);
1203 gfar_write(®s
->gaddr6
, 0);
1204 gfar_write(®s
->gaddr7
, 0);
1206 if (priv
->extended_hash
)
1207 gfar_clear_exact_match(priv
->ndev
);
1209 gfar_mac_rx_config(priv
);
1211 gfar_mac_tx_config(priv
);
1213 gfar_set_mac_address(priv
->ndev
);
1215 gfar_set_multi(priv
->ndev
);
1217 /* clear ievent and imask before configuring coalescing */
1218 gfar_ints_disable(priv
);
1220 /* Configure the coalescing support */
1221 gfar_configure_coalescing_all(priv
);
1224 static void gfar_hw_init(struct gfar_private
*priv
)
1226 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1229 /* Stop the DMA engine now, in case it was running before
1230 * (The firmware could have used it, and left it running).
1234 gfar_mac_reset(priv
);
1236 /* Zero out the rmon mib registers if it has them */
1237 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
1238 memset_io(&(regs
->rmon
), 0, sizeof(struct rmon_mib
));
1240 /* Mask off the CAM interrupts */
1241 gfar_write(®s
->rmon
.cam1
, 0xffffffff);
1242 gfar_write(®s
->rmon
.cam2
, 0xffffffff);
1245 /* Initialize ECNTRL */
1246 gfar_write(®s
->ecntrl
, ECNTRL_INIT_SETTINGS
);
1248 /* Set the extraction length and index */
1249 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
1250 ATTRELI_EI(priv
->rx_stash_index
);
1252 gfar_write(®s
->attreli
, attrs
);
1254 /* Start with defaults, and add stashing
1255 * depending on driver parameters
1257 attrs
= ATTR_INIT_SETTINGS
;
1259 if (priv
->bd_stash_en
)
1260 attrs
|= ATTR_BDSTASH
;
1262 if (priv
->rx_stash_size
!= 0)
1263 attrs
|= ATTR_BUFSTASH
;
1265 gfar_write(®s
->attr
, attrs
);
1268 gfar_write(®s
->fifo_tx_thr
, DEFAULT_FIFO_TX_THR
);
1269 gfar_write(®s
->fifo_tx_starve
, DEFAULT_FIFO_TX_STARVE
);
1270 gfar_write(®s
->fifo_tx_starve_shutoff
, DEFAULT_FIFO_TX_STARVE_OFF
);
1272 /* Program the interrupt steering regs, only for MG devices */
1273 if (priv
->num_grps
> 1)
1274 gfar_write_isrg(priv
);
1277 static void gfar_init_addr_hash_table(struct gfar_private
*priv
)
1279 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1281 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
1282 priv
->extended_hash
= 1;
1283 priv
->hash_width
= 9;
1285 priv
->hash_regs
[0] = ®s
->igaddr0
;
1286 priv
->hash_regs
[1] = ®s
->igaddr1
;
1287 priv
->hash_regs
[2] = ®s
->igaddr2
;
1288 priv
->hash_regs
[3] = ®s
->igaddr3
;
1289 priv
->hash_regs
[4] = ®s
->igaddr4
;
1290 priv
->hash_regs
[5] = ®s
->igaddr5
;
1291 priv
->hash_regs
[6] = ®s
->igaddr6
;
1292 priv
->hash_regs
[7] = ®s
->igaddr7
;
1293 priv
->hash_regs
[8] = ®s
->gaddr0
;
1294 priv
->hash_regs
[9] = ®s
->gaddr1
;
1295 priv
->hash_regs
[10] = ®s
->gaddr2
;
1296 priv
->hash_regs
[11] = ®s
->gaddr3
;
1297 priv
->hash_regs
[12] = ®s
->gaddr4
;
1298 priv
->hash_regs
[13] = ®s
->gaddr5
;
1299 priv
->hash_regs
[14] = ®s
->gaddr6
;
1300 priv
->hash_regs
[15] = ®s
->gaddr7
;
1303 priv
->extended_hash
= 0;
1304 priv
->hash_width
= 8;
1306 priv
->hash_regs
[0] = ®s
->gaddr0
;
1307 priv
->hash_regs
[1] = ®s
->gaddr1
;
1308 priv
->hash_regs
[2] = ®s
->gaddr2
;
1309 priv
->hash_regs
[3] = ®s
->gaddr3
;
1310 priv
->hash_regs
[4] = ®s
->gaddr4
;
1311 priv
->hash_regs
[5] = ®s
->gaddr5
;
1312 priv
->hash_regs
[6] = ®s
->gaddr6
;
1313 priv
->hash_regs
[7] = ®s
->gaddr7
;
1317 /* Set up the ethernet device structure, private data,
1318 * and anything else we need before we start
1320 static int gfar_probe(struct platform_device
*ofdev
)
1322 struct net_device
*dev
= NULL
;
1323 struct gfar_private
*priv
= NULL
;
1326 err
= gfar_of_init(ofdev
, &dev
);
1331 priv
= netdev_priv(dev
);
1333 priv
->ofdev
= ofdev
;
1334 priv
->dev
= &ofdev
->dev
;
1335 SET_NETDEV_DEV(dev
, &ofdev
->dev
);
1337 spin_lock_init(&priv
->bflock
);
1338 INIT_WORK(&priv
->reset_task
, gfar_reset_task
);
1340 platform_set_drvdata(ofdev
, priv
);
1342 gfar_detect_errata(priv
);
1344 /* Set the dev->base_addr to the gfar reg region */
1345 dev
->base_addr
= (unsigned long) priv
->gfargrp
[0].regs
;
1347 /* Fill in the dev structure */
1348 dev
->watchdog_timeo
= TX_TIMEOUT
;
1350 dev
->netdev_ops
= &gfar_netdev_ops
;
1351 dev
->ethtool_ops
= &gfar_ethtool_ops
;
1353 /* Register for napi ...We are registering NAPI for each grp */
1354 for (i
= 0; i
< priv
->num_grps
; i
++) {
1355 if (priv
->poll_mode
== GFAR_SQ_POLLING
) {
1356 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1357 gfar_poll_rx_sq
, GFAR_DEV_WEIGHT
);
1358 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1359 gfar_poll_tx_sq
, 2);
1361 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_rx
,
1362 gfar_poll_rx
, GFAR_DEV_WEIGHT
);
1363 netif_napi_add(dev
, &priv
->gfargrp
[i
].napi_tx
,
1368 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
1369 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1371 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
|
1372 NETIF_F_RXCSUM
| NETIF_F_HIGHDMA
;
1375 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
1376 dev
->hw_features
|= NETIF_F_HW_VLAN_CTAG_TX
|
1377 NETIF_F_HW_VLAN_CTAG_RX
;
1378 dev
->features
|= NETIF_F_HW_VLAN_CTAG_RX
;
1381 gfar_init_addr_hash_table(priv
);
1383 /* Insert receive time stamps into padding alignment bytes */
1384 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1387 if (dev
->features
& NETIF_F_IP_CSUM
||
1388 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_TIMER
)
1389 dev
->needed_headroom
= GMAC_FCB_LEN
;
1391 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
1393 /* Initializing some of the rx/tx queue level parameters */
1394 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1395 priv
->tx_queue
[i
]->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
1396 priv
->tx_queue
[i
]->num_txbdfree
= DEFAULT_TX_RING_SIZE
;
1397 priv
->tx_queue
[i
]->txcoalescing
= DEFAULT_TX_COALESCE
;
1398 priv
->tx_queue
[i
]->txic
= DEFAULT_TXIC
;
1401 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1402 priv
->rx_queue
[i
]->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
1403 priv
->rx_queue
[i
]->rxcoalescing
= DEFAULT_RX_COALESCE
;
1404 priv
->rx_queue
[i
]->rxic
= DEFAULT_RXIC
;
1407 /* always enable rx filer */
1408 priv
->rx_filer_enable
= 1;
1409 /* Enable most messages by default */
1410 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
1411 /* use pritority h/w tx queue scheduling for single queue devices */
1412 if (priv
->num_tx_queues
== 1)
1413 priv
->prio_sched_en
= 1;
1415 set_bit(GFAR_DOWN
, &priv
->state
);
1419 /* Carrier starts down, phylib will bring it up */
1420 netif_carrier_off(dev
);
1422 err
= register_netdev(dev
);
1425 pr_err("%s: Cannot register net device, aborting\n", dev
->name
);
1429 device_init_wakeup(&dev
->dev
,
1430 priv
->device_flags
&
1431 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1433 /* fill out IRQ number and name fields */
1434 for (i
= 0; i
< priv
->num_grps
; i
++) {
1435 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
1436 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
1437 sprintf(gfar_irq(grp
, TX
)->name
, "%s%s%c%s",
1438 dev
->name
, "_g", '0' + i
, "_tx");
1439 sprintf(gfar_irq(grp
, RX
)->name
, "%s%s%c%s",
1440 dev
->name
, "_g", '0' + i
, "_rx");
1441 sprintf(gfar_irq(grp
, ER
)->name
, "%s%s%c%s",
1442 dev
->name
, "_g", '0' + i
, "_er");
1444 strcpy(gfar_irq(grp
, TX
)->name
, dev
->name
);
1447 /* Initialize the filer table */
1448 gfar_init_filer_table(priv
);
1450 /* Print out the device info */
1451 netdev_info(dev
, "mac: %pM\n", dev
->dev_addr
);
1453 /* Even more device info helps when determining which kernel
1454 * provided which set of benchmarks.
1456 netdev_info(dev
, "Running with NAPI enabled\n");
1457 for (i
= 0; i
< priv
->num_rx_queues
; i
++)
1458 netdev_info(dev
, "RX BD ring size for Q[%d]: %d\n",
1459 i
, priv
->rx_queue
[i
]->rx_ring_size
);
1460 for (i
= 0; i
< priv
->num_tx_queues
; i
++)
1461 netdev_info(dev
, "TX BD ring size for Q[%d]: %d\n",
1462 i
, priv
->tx_queue
[i
]->tx_ring_size
);
1467 unmap_group_regs(priv
);
1468 gfar_free_rx_queues(priv
);
1469 gfar_free_tx_queues(priv
);
1470 of_node_put(priv
->phy_node
);
1471 of_node_put(priv
->tbi_node
);
1472 free_gfar_dev(priv
);
1476 static int gfar_remove(struct platform_device
*ofdev
)
1478 struct gfar_private
*priv
= platform_get_drvdata(ofdev
);
1480 of_node_put(priv
->phy_node
);
1481 of_node_put(priv
->tbi_node
);
1483 unregister_netdev(priv
->ndev
);
1484 unmap_group_regs(priv
);
1485 gfar_free_rx_queues(priv
);
1486 gfar_free_tx_queues(priv
);
1487 free_gfar_dev(priv
);
1494 static int gfar_suspend(struct device
*dev
)
1496 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1497 struct net_device
*ndev
= priv
->ndev
;
1498 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1499 unsigned long flags
;
1502 int magic_packet
= priv
->wol_en
&&
1503 (priv
->device_flags
&
1504 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1506 netif_device_detach(ndev
);
1508 if (netif_running(ndev
)) {
1510 local_irq_save(flags
);
1513 gfar_halt_nodisable(priv
);
1515 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1516 tempval
= gfar_read(®s
->maccfg1
);
1518 tempval
&= ~MACCFG1_TX_EN
;
1521 tempval
&= ~MACCFG1_RX_EN
;
1523 gfar_write(®s
->maccfg1
, tempval
);
1526 local_irq_restore(flags
);
1531 /* Enable interrupt on Magic Packet */
1532 gfar_write(®s
->imask
, IMASK_MAG
);
1534 /* Enable Magic Packet mode */
1535 tempval
= gfar_read(®s
->maccfg2
);
1536 tempval
|= MACCFG2_MPEN
;
1537 gfar_write(®s
->maccfg2
, tempval
);
1539 phy_stop(priv
->phydev
);
1546 static int gfar_resume(struct device
*dev
)
1548 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1549 struct net_device
*ndev
= priv
->ndev
;
1550 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1551 unsigned long flags
;
1553 int magic_packet
= priv
->wol_en
&&
1554 (priv
->device_flags
&
1555 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
);
1557 if (!netif_running(ndev
)) {
1558 netif_device_attach(ndev
);
1562 if (!magic_packet
&& priv
->phydev
)
1563 phy_start(priv
->phydev
);
1565 /* Disable Magic Packet mode, in case something
1568 local_irq_save(flags
);
1571 tempval
= gfar_read(®s
->maccfg2
);
1572 tempval
&= ~MACCFG2_MPEN
;
1573 gfar_write(®s
->maccfg2
, tempval
);
1578 local_irq_restore(flags
);
1580 netif_device_attach(ndev
);
1587 static int gfar_restore(struct device
*dev
)
1589 struct gfar_private
*priv
= dev_get_drvdata(dev
);
1590 struct net_device
*ndev
= priv
->ndev
;
1592 if (!netif_running(ndev
)) {
1593 netif_device_attach(ndev
);
1598 if (gfar_init_bds(ndev
)) {
1599 free_skb_resources(priv
);
1603 gfar_mac_reset(priv
);
1605 gfar_init_tx_rx_base(priv
);
1611 priv
->oldduplex
= -1;
1614 phy_start(priv
->phydev
);
1616 netif_device_attach(ndev
);
1622 static struct dev_pm_ops gfar_pm_ops
= {
1623 .suspend
= gfar_suspend
,
1624 .resume
= gfar_resume
,
1625 .freeze
= gfar_suspend
,
1626 .thaw
= gfar_resume
,
1627 .restore
= gfar_restore
,
1630 #define GFAR_PM_OPS (&gfar_pm_ops)
1634 #define GFAR_PM_OPS NULL
1638 /* Reads the controller's registers to determine what interface
1639 * connects it to the PHY.
1641 static phy_interface_t
gfar_get_interface(struct net_device
*dev
)
1643 struct gfar_private
*priv
= netdev_priv(dev
);
1644 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1647 ecntrl
= gfar_read(®s
->ecntrl
);
1649 if (ecntrl
& ECNTRL_SGMII_MODE
)
1650 return PHY_INTERFACE_MODE_SGMII
;
1652 if (ecntrl
& ECNTRL_TBI_MODE
) {
1653 if (ecntrl
& ECNTRL_REDUCED_MODE
)
1654 return PHY_INTERFACE_MODE_RTBI
;
1656 return PHY_INTERFACE_MODE_TBI
;
1659 if (ecntrl
& ECNTRL_REDUCED_MODE
) {
1660 if (ecntrl
& ECNTRL_REDUCED_MII_MODE
) {
1661 return PHY_INTERFACE_MODE_RMII
;
1664 phy_interface_t interface
= priv
->interface
;
1666 /* This isn't autodetected right now, so it must
1667 * be set by the device tree or platform code.
1669 if (interface
== PHY_INTERFACE_MODE_RGMII_ID
)
1670 return PHY_INTERFACE_MODE_RGMII_ID
;
1672 return PHY_INTERFACE_MODE_RGMII
;
1676 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
)
1677 return PHY_INTERFACE_MODE_GMII
;
1679 return PHY_INTERFACE_MODE_MII
;
1683 /* Initializes driver's PHY state, and attaches to the PHY.
1684 * Returns 0 on success.
1686 static int init_phy(struct net_device
*dev
)
1688 struct gfar_private
*priv
= netdev_priv(dev
);
1689 uint gigabit_support
=
1690 priv
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
1691 GFAR_SUPPORTED_GBIT
: 0;
1692 phy_interface_t interface
;
1696 priv
->oldduplex
= -1;
1698 interface
= gfar_get_interface(dev
);
1700 priv
->phydev
= of_phy_connect(dev
, priv
->phy_node
, &adjust_link
, 0,
1702 if (!priv
->phydev
) {
1703 dev_err(&dev
->dev
, "could not attach to PHY\n");
1707 if (interface
== PHY_INTERFACE_MODE_SGMII
)
1708 gfar_configure_serdes(dev
);
1710 /* Remove any features not supported by the controller */
1711 priv
->phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
1712 priv
->phydev
->advertising
= priv
->phydev
->supported
;
1714 /* Add support for flow control, but don't advertise it by default */
1715 priv
->phydev
->supported
|= (SUPPORTED_Pause
| SUPPORTED_Asym_Pause
);
1720 /* Initialize TBI PHY interface for communicating with the
1721 * SERDES lynx PHY on the chip. We communicate with this PHY
1722 * through the MDIO bus on each controller, treating it as a
1723 * "normal" PHY at the address found in the TBIPA register. We assume
1724 * that the TBIPA register is valid. Either the MDIO bus code will set
1725 * it to a value that doesn't conflict with other PHYs on the bus, or the
1726 * value doesn't matter, as there are no other PHYs on the bus.
1728 static void gfar_configure_serdes(struct net_device
*dev
)
1730 struct gfar_private
*priv
= netdev_priv(dev
);
1731 struct phy_device
*tbiphy
;
1733 if (!priv
->tbi_node
) {
1734 dev_warn(&dev
->dev
, "error: SGMII mode requires that the "
1735 "device tree specify a tbi-handle\n");
1739 tbiphy
= of_phy_find_device(priv
->tbi_node
);
1741 dev_err(&dev
->dev
, "error: Could not get TBI device\n");
1745 /* If the link is already up, we must already be ok, and don't need to
1746 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1747 * everything for us? Resetting it takes the link down and requires
1748 * several seconds for it to come back.
1750 if (phy_read(tbiphy
, MII_BMSR
) & BMSR_LSTATUS
)
1753 /* Single clk mode, mii mode off(for serdes communication) */
1754 phy_write(tbiphy
, MII_TBICON
, TBICON_CLK_SELECT
);
1756 phy_write(tbiphy
, MII_ADVERTISE
,
1757 ADVERTISE_1000XFULL
| ADVERTISE_1000XPAUSE
|
1758 ADVERTISE_1000XPSE_ASYM
);
1760 phy_write(tbiphy
, MII_BMCR
,
1761 BMCR_ANENABLE
| BMCR_ANRESTART
| BMCR_FULLDPLX
|
1765 static int __gfar_is_rx_idle(struct gfar_private
*priv
)
1769 /* Normaly TSEC should not hang on GRS commands, so we should
1770 * actually wait for IEVENT_GRSC flag.
1772 if (!gfar_has_errata(priv
, GFAR_ERRATA_A002
))
1775 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1776 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1777 * and the Rx can be safely reset.
1779 res
= gfar_read((void __iomem
*)priv
->gfargrp
[0].regs
+ 0xd1c);
1781 if ((res
& 0xffff) == (res
>> 16))
1787 /* Halt the receive and transmit queues */
1788 static void gfar_halt_nodisable(struct gfar_private
*priv
)
1790 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1792 unsigned int timeout
;
1795 gfar_ints_disable(priv
);
1797 if (gfar_is_dma_stopped(priv
))
1800 /* Stop the DMA, and wait for it to stop */
1801 tempval
= gfar_read(®s
->dmactrl
);
1802 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
1803 gfar_write(®s
->dmactrl
, tempval
);
1807 while (!(stopped
= gfar_is_dma_stopped(priv
)) && timeout
) {
1813 stopped
= gfar_is_dma_stopped(priv
);
1815 if (!stopped
&& !gfar_is_rx_dma_stopped(priv
) &&
1816 !__gfar_is_rx_idle(priv
))
1820 /* Halt the receive and transmit queues */
1821 void gfar_halt(struct gfar_private
*priv
)
1823 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1826 /* Dissable the Rx/Tx hw queues */
1827 gfar_write(®s
->rqueue
, 0);
1828 gfar_write(®s
->tqueue
, 0);
1832 gfar_halt_nodisable(priv
);
1834 /* Disable Rx/Tx DMA */
1835 tempval
= gfar_read(®s
->maccfg1
);
1836 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1837 gfar_write(®s
->maccfg1
, tempval
);
1840 void stop_gfar(struct net_device
*dev
)
1842 struct gfar_private
*priv
= netdev_priv(dev
);
1844 netif_tx_stop_all_queues(dev
);
1846 smp_mb__before_atomic();
1847 set_bit(GFAR_DOWN
, &priv
->state
);
1848 smp_mb__after_atomic();
1852 /* disable ints and gracefully shut down Rx/Tx DMA */
1855 phy_stop(priv
->phydev
);
1857 free_skb_resources(priv
);
1860 static void free_skb_tx_queue(struct gfar_priv_tx_q
*tx_queue
)
1862 struct txbd8
*txbdp
;
1863 struct gfar_private
*priv
= netdev_priv(tx_queue
->dev
);
1866 txbdp
= tx_queue
->tx_bd_base
;
1868 for (i
= 0; i
< tx_queue
->tx_ring_size
; i
++) {
1869 if (!tx_queue
->tx_skbuff
[i
])
1872 dma_unmap_single(priv
->dev
, txbdp
->bufPtr
,
1873 txbdp
->length
, DMA_TO_DEVICE
);
1875 for (j
= 0; j
< skb_shinfo(tx_queue
->tx_skbuff
[i
])->nr_frags
;
1878 dma_unmap_page(priv
->dev
, txbdp
->bufPtr
,
1879 txbdp
->length
, DMA_TO_DEVICE
);
1882 dev_kfree_skb_any(tx_queue
->tx_skbuff
[i
]);
1883 tx_queue
->tx_skbuff
[i
] = NULL
;
1885 kfree(tx_queue
->tx_skbuff
);
1886 tx_queue
->tx_skbuff
= NULL
;
1889 static void free_skb_rx_queue(struct gfar_priv_rx_q
*rx_queue
)
1891 struct rxbd8
*rxbdp
;
1892 struct gfar_private
*priv
= netdev_priv(rx_queue
->dev
);
1895 rxbdp
= rx_queue
->rx_bd_base
;
1897 for (i
= 0; i
< rx_queue
->rx_ring_size
; i
++) {
1898 if (rx_queue
->rx_skbuff
[i
]) {
1899 dma_unmap_single(priv
->dev
, rxbdp
->bufPtr
,
1900 priv
->rx_buffer_size
,
1902 dev_kfree_skb_any(rx_queue
->rx_skbuff
[i
]);
1903 rx_queue
->rx_skbuff
[i
] = NULL
;
1909 kfree(rx_queue
->rx_skbuff
);
1910 rx_queue
->rx_skbuff
= NULL
;
1913 /* If there are any tx skbs or rx skbs still around, free them.
1914 * Then free tx_skbuff and rx_skbuff
1916 static void free_skb_resources(struct gfar_private
*priv
)
1918 struct gfar_priv_tx_q
*tx_queue
= NULL
;
1919 struct gfar_priv_rx_q
*rx_queue
= NULL
;
1922 /* Go through all the buffer descriptors and free their data buffers */
1923 for (i
= 0; i
< priv
->num_tx_queues
; i
++) {
1924 struct netdev_queue
*txq
;
1926 tx_queue
= priv
->tx_queue
[i
];
1927 txq
= netdev_get_tx_queue(tx_queue
->dev
, tx_queue
->qindex
);
1928 if (tx_queue
->tx_skbuff
)
1929 free_skb_tx_queue(tx_queue
);
1930 netdev_tx_reset_queue(txq
);
1933 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
1934 rx_queue
= priv
->rx_queue
[i
];
1935 if (rx_queue
->rx_skbuff
)
1936 free_skb_rx_queue(rx_queue
);
1939 dma_free_coherent(priv
->dev
,
1940 sizeof(struct txbd8
) * priv
->total_tx_ring_size
+
1941 sizeof(struct rxbd8
) * priv
->total_rx_ring_size
,
1942 priv
->tx_queue
[0]->tx_bd_base
,
1943 priv
->tx_queue
[0]->tx_bd_dma_base
);
1946 void gfar_start(struct gfar_private
*priv
)
1948 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
1952 /* Enable Rx/Tx hw queues */
1953 gfar_write(®s
->rqueue
, priv
->rqueue
);
1954 gfar_write(®s
->tqueue
, priv
->tqueue
);
1956 /* Initialize DMACTRL to have WWR and WOP */
1957 tempval
= gfar_read(®s
->dmactrl
);
1958 tempval
|= DMACTRL_INIT_SETTINGS
;
1959 gfar_write(®s
->dmactrl
, tempval
);
1961 /* Make sure we aren't stopped */
1962 tempval
= gfar_read(®s
->dmactrl
);
1963 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
1964 gfar_write(®s
->dmactrl
, tempval
);
1966 for (i
= 0; i
< priv
->num_grps
; i
++) {
1967 regs
= priv
->gfargrp
[i
].regs
;
1968 /* Clear THLT/RHLT, so that the DMA starts polling now */
1969 gfar_write(®s
->tstat
, priv
->gfargrp
[i
].tstat
);
1970 gfar_write(®s
->rstat
, priv
->gfargrp
[i
].rstat
);
1973 /* Enable Rx/Tx DMA */
1974 tempval
= gfar_read(®s
->maccfg1
);
1975 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
1976 gfar_write(®s
->maccfg1
, tempval
);
1978 gfar_ints_enable(priv
);
1980 priv
->ndev
->trans_start
= jiffies
; /* prevent tx timeout */
1983 static void free_grp_irqs(struct gfar_priv_grp
*grp
)
1985 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
1986 free_irq(gfar_irq(grp
, RX
)->irq
, grp
);
1987 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
1990 static int register_grp_irqs(struct gfar_priv_grp
*grp
)
1992 struct gfar_private
*priv
= grp
->priv
;
1993 struct net_device
*dev
= priv
->ndev
;
1996 /* If the device has multiple interrupts, register for
1997 * them. Otherwise, only register for the one
1999 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2000 /* Install our interrupt handlers for Error,
2001 * Transmit, and Receive
2003 err
= request_irq(gfar_irq(grp
, ER
)->irq
, gfar_error
, 0,
2004 gfar_irq(grp
, ER
)->name
, grp
);
2006 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2007 gfar_irq(grp
, ER
)->irq
);
2011 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_transmit
, 0,
2012 gfar_irq(grp
, TX
)->name
, grp
);
2014 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2015 gfar_irq(grp
, TX
)->irq
);
2018 err
= request_irq(gfar_irq(grp
, RX
)->irq
, gfar_receive
, 0,
2019 gfar_irq(grp
, RX
)->name
, grp
);
2021 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2022 gfar_irq(grp
, RX
)->irq
);
2026 err
= request_irq(gfar_irq(grp
, TX
)->irq
, gfar_interrupt
, 0,
2027 gfar_irq(grp
, TX
)->name
, grp
);
2029 netif_err(priv
, intr
, dev
, "Can't get IRQ %d\n",
2030 gfar_irq(grp
, TX
)->irq
);
2038 free_irq(gfar_irq(grp
, TX
)->irq
, grp
);
2040 free_irq(gfar_irq(grp
, ER
)->irq
, grp
);
2046 static void gfar_free_irq(struct gfar_private
*priv
)
2051 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
2052 for (i
= 0; i
< priv
->num_grps
; i
++)
2053 free_grp_irqs(&priv
->gfargrp
[i
]);
2055 for (i
= 0; i
< priv
->num_grps
; i
++)
2056 free_irq(gfar_irq(&priv
->gfargrp
[i
], TX
)->irq
,
2061 static int gfar_request_irq(struct gfar_private
*priv
)
2065 for (i
= 0; i
< priv
->num_grps
; i
++) {
2066 err
= register_grp_irqs(&priv
->gfargrp
[i
]);
2068 for (j
= 0; j
< i
; j
++)
2069 free_grp_irqs(&priv
->gfargrp
[j
]);
2077 /* Bring the controller up and running */
2078 int startup_gfar(struct net_device
*ndev
)
2080 struct gfar_private
*priv
= netdev_priv(ndev
);
2083 gfar_mac_reset(priv
);
2085 err
= gfar_alloc_skb_resources(ndev
);
2089 gfar_init_tx_rx_base(priv
);
2091 smp_mb__before_atomic();
2092 clear_bit(GFAR_DOWN
, &priv
->state
);
2093 smp_mb__after_atomic();
2095 /* Start Rx/Tx DMA and enable the interrupts */
2098 phy_start(priv
->phydev
);
2102 netif_tx_wake_all_queues(ndev
);
2107 /* Called when something needs to use the ethernet device
2108 * Returns 0 for success.
2110 static int gfar_enet_open(struct net_device
*dev
)
2112 struct gfar_private
*priv
= netdev_priv(dev
);
2115 err
= init_phy(dev
);
2119 err
= gfar_request_irq(priv
);
2123 err
= startup_gfar(dev
);
2127 device_set_wakeup_enable(&dev
->dev
, priv
->wol_en
);
2132 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
)
2134 struct txfcb
*fcb
= (struct txfcb
*)skb_push(skb
, GMAC_FCB_LEN
);
2136 memset(fcb
, 0, GMAC_FCB_LEN
);
2141 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
,
2144 /* If we're here, it's a IP packet with a TCP or UDP
2145 * payload. We set it to checksum, using a pseudo-header
2148 u8 flags
= TXFCB_DEFAULT
;
2150 /* Tell the controller what the protocol is
2151 * And provide the already calculated phcs
2153 if (ip_hdr(skb
)->protocol
== IPPROTO_UDP
) {
2155 fcb
->phcs
= udp_hdr(skb
)->check
;
2157 fcb
->phcs
= tcp_hdr(skb
)->check
;
2159 /* l3os is the distance between the start of the
2160 * frame (skb->data) and the start of the IP hdr.
2161 * l4os is the distance between the start of the
2162 * l3 hdr and the l4 hdr
2164 fcb
->l3os
= (u16
)(skb_network_offset(skb
) - fcb_length
);
2165 fcb
->l4os
= skb_network_header_len(skb
);
2170 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
2172 fcb
->flags
|= TXFCB_VLN
;
2173 fcb
->vlctl
= skb_vlan_tag_get(skb
);
2176 static inline struct txbd8
*skip_txbd(struct txbd8
*bdp
, int stride
,
2177 struct txbd8
*base
, int ring_size
)
2179 struct txbd8
*new_bd
= bdp
+ stride
;
2181 return (new_bd
>= (base
+ ring_size
)) ? (new_bd
- ring_size
) : new_bd
;
2184 static inline struct txbd8
*next_txbd(struct txbd8
*bdp
, struct txbd8
*base
,
2187 return skip_txbd(bdp
, 1, base
, ring_size
);
2190 /* eTSEC12: csum generation not supported for some fcb offsets */
2191 static inline bool gfar_csum_errata_12(struct gfar_private
*priv
,
2192 unsigned long fcb_addr
)
2194 return (gfar_has_errata(priv
, GFAR_ERRATA_12
) &&
2195 (fcb_addr
% 0x20) > 0x18);
2198 /* eTSEC76: csum generation for frames larger than 2500 may
2199 * cause excess delays before start of transmission
2201 static inline bool gfar_csum_errata_76(struct gfar_private
*priv
,
2204 return (gfar_has_errata(priv
, GFAR_ERRATA_76
) &&
2208 /* This is called by the kernel when a frame is ready for transmission.
2209 * It is pointed to by the dev->hard_start_xmit function pointer
2211 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2213 struct gfar_private
*priv
= netdev_priv(dev
);
2214 struct gfar_priv_tx_q
*tx_queue
= NULL
;
2215 struct netdev_queue
*txq
;
2216 struct gfar __iomem
*regs
= NULL
;
2217 struct txfcb
*fcb
= NULL
;
2218 struct txbd8
*txbdp
, *txbdp_start
, *base
, *txbdp_tstamp
= NULL
;
2221 int do_tstamp
, do_csum
, do_vlan
;
2223 unsigned long flags
;
2224 unsigned int nr_frags
, nr_txbds
, bytes_sent
, fcb_len
= 0;
2226 rq
= skb
->queue_mapping
;
2227 tx_queue
= priv
->tx_queue
[rq
];
2228 txq
= netdev_get_tx_queue(dev
, rq
);
2229 base
= tx_queue
->tx_bd_base
;
2230 regs
= tx_queue
->grp
->regs
;
2232 do_csum
= (CHECKSUM_PARTIAL
== skb
->ip_summed
);
2233 do_vlan
= skb_vlan_tag_present(skb
);
2234 do_tstamp
= (skb_shinfo(skb
)->tx_flags
& SKBTX_HW_TSTAMP
) &&
2237 if (do_csum
|| do_vlan
)
2238 fcb_len
= GMAC_FCB_LEN
;
2240 /* check if time stamp should be generated */
2241 if (unlikely(do_tstamp
))
2242 fcb_len
= GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2244 /* make space for additional header when fcb is needed */
2245 if (fcb_len
&& unlikely(skb_headroom(skb
) < fcb_len
)) {
2246 struct sk_buff
*skb_new
;
2248 skb_new
= skb_realloc_headroom(skb
, fcb_len
);
2250 dev
->stats
.tx_errors
++;
2251 dev_kfree_skb_any(skb
);
2252 return NETDEV_TX_OK
;
2256 skb_set_owner_w(skb_new
, skb
->sk
);
2257 dev_consume_skb_any(skb
);
2261 /* total number of fragments in the SKB */
2262 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2264 /* calculate the required number of TxBDs for this skb */
2265 if (unlikely(do_tstamp
))
2266 nr_txbds
= nr_frags
+ 2;
2268 nr_txbds
= nr_frags
+ 1;
2270 /* check if there is space to queue this packet */
2271 if (nr_txbds
> tx_queue
->num_txbdfree
) {
2272 /* no space, stop the queue */
2273 netif_tx_stop_queue(txq
);
2274 dev
->stats
.tx_fifo_errors
++;
2275 return NETDEV_TX_BUSY
;
2278 /* Update transmit stats */
2279 bytes_sent
= skb
->len
;
2280 tx_queue
->stats
.tx_bytes
+= bytes_sent
;
2281 /* keep Tx bytes on wire for BQL accounting */
2282 GFAR_CB(skb
)->bytes_sent
= bytes_sent
;
2283 tx_queue
->stats
.tx_packets
++;
2285 txbdp
= txbdp_start
= tx_queue
->cur_tx
;
2286 lstatus
= txbdp
->lstatus
;
2288 /* Time stamp insertion requires one additional TxBD */
2289 if (unlikely(do_tstamp
))
2290 txbdp_tstamp
= txbdp
= next_txbd(txbdp
, base
,
2291 tx_queue
->tx_ring_size
);
2293 if (nr_frags
== 0) {
2294 if (unlikely(do_tstamp
))
2295 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_LAST
|
2298 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2300 /* Place the fragment addresses and lengths into the TxBDs */
2301 for (i
= 0; i
< nr_frags
; i
++) {
2302 unsigned int frag_len
;
2303 /* Point at the next BD, wrapping as needed */
2304 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2306 frag_len
= skb_shinfo(skb
)->frags
[i
].size
;
2308 lstatus
= txbdp
->lstatus
| frag_len
|
2309 BD_LFLAG(TXBD_READY
);
2311 /* Handle the last BD specially */
2312 if (i
== nr_frags
- 1)
2313 lstatus
|= BD_LFLAG(TXBD_LAST
| TXBD_INTERRUPT
);
2315 bufaddr
= skb_frag_dma_map(priv
->dev
,
2316 &skb_shinfo(skb
)->frags
[i
],
2320 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2323 /* set the TxBD length and buffer pointer */
2324 txbdp
->bufPtr
= bufaddr
;
2325 txbdp
->lstatus
= lstatus
;
2328 lstatus
= txbdp_start
->lstatus
;
2331 /* Add TxPAL between FCB and frame if required */
2332 if (unlikely(do_tstamp
)) {
2333 skb_push(skb
, GMAC_TXPAL_LEN
);
2334 memset(skb
->data
, 0, GMAC_TXPAL_LEN
);
2337 /* Add TxFCB if required */
2339 fcb
= gfar_add_fcb(skb
);
2340 lstatus
|= BD_LFLAG(TXBD_TOE
);
2343 /* Set up checksumming */
2345 gfar_tx_checksum(skb
, fcb
, fcb_len
);
2347 if (unlikely(gfar_csum_errata_12(priv
, (unsigned long)fcb
)) ||
2348 unlikely(gfar_csum_errata_76(priv
, skb
->len
))) {
2349 __skb_pull(skb
, GMAC_FCB_LEN
);
2350 skb_checksum_help(skb
);
2351 if (do_vlan
|| do_tstamp
) {
2352 /* put back a new fcb for vlan/tstamp TOE */
2353 fcb
= gfar_add_fcb(skb
);
2355 /* Tx TOE not used */
2356 lstatus
&= ~(BD_LFLAG(TXBD_TOE
));
2363 gfar_tx_vlan(skb
, fcb
);
2365 /* Setup tx hardware time stamping if requested */
2366 if (unlikely(do_tstamp
)) {
2367 skb_shinfo(skb
)->tx_flags
|= SKBTX_IN_PROGRESS
;
2371 bufaddr
= dma_map_single(priv
->dev
, skb
->data
, skb_headlen(skb
),
2373 if (unlikely(dma_mapping_error(priv
->dev
, bufaddr
)))
2376 txbdp_start
->bufPtr
= bufaddr
;
2378 /* If time stamping is requested one additional TxBD must be set up. The
2379 * first TxBD points to the FCB and must have a data length of
2380 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2381 * the full frame length.
2383 if (unlikely(do_tstamp
)) {
2384 txbdp_tstamp
->bufPtr
= txbdp_start
->bufPtr
+ fcb_len
;
2385 txbdp_tstamp
->lstatus
|= BD_LFLAG(TXBD_READY
) |
2386 (skb_headlen(skb
) - fcb_len
);
2387 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | GMAC_FCB_LEN
;
2389 lstatus
|= BD_LFLAG(TXBD_CRC
| TXBD_READY
) | skb_headlen(skb
);
2392 netdev_tx_sent_queue(txq
, bytes_sent
);
2394 /* We can work in parallel with gfar_clean_tx_ring(), except
2395 * when modifying num_txbdfree. Note that we didn't grab the lock
2396 * when we were reading the num_txbdfree and checking for available
2397 * space, that's because outside of this function it can only grow,
2398 * and once we've got needed space, it cannot suddenly disappear.
2400 * The lock also protects us from gfar_error(), which can modify
2401 * regs->tstat and thus retrigger the transfers, which is why we
2402 * also must grab the lock before setting ready bit for the first
2403 * to be transmitted BD.
2405 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2409 txbdp_start
->lstatus
= lstatus
;
2411 gfar_wmb(); /* force lstatus write before tx_skbuff */
2413 tx_queue
->tx_skbuff
[tx_queue
->skb_curtx
] = skb
;
2415 /* Update the current skb pointer to the next entry we will use
2416 * (wrapping if necessary)
2418 tx_queue
->skb_curtx
= (tx_queue
->skb_curtx
+ 1) &
2419 TX_RING_MOD_MASK(tx_queue
->tx_ring_size
);
2421 tx_queue
->cur_tx
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2423 /* reduce TxBD free count */
2424 tx_queue
->num_txbdfree
-= (nr_txbds
);
2426 /* If the next BD still needs to be cleaned up, then the bds
2427 * are full. We need to tell the kernel to stop sending us stuff.
2429 if (!tx_queue
->num_txbdfree
) {
2430 netif_tx_stop_queue(txq
);
2432 dev
->stats
.tx_fifo_errors
++;
2435 /* Tell the DMA to go go go */
2436 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
>> tx_queue
->qindex
);
2439 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2441 return NETDEV_TX_OK
;
2444 txbdp
= next_txbd(txbdp_start
, base
, tx_queue
->tx_ring_size
);
2446 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2447 for (i
= 0; i
< nr_frags
; i
++) {
2448 lstatus
= txbdp
->lstatus
;
2449 if (!(lstatus
& BD_LFLAG(TXBD_READY
)))
2452 txbdp
->lstatus
= lstatus
& ~BD_LFLAG(TXBD_READY
);
2453 bufaddr
= txbdp
->bufPtr
;
2454 dma_unmap_page(priv
->dev
, bufaddr
, txbdp
->length
,
2456 txbdp
= next_txbd(txbdp
, base
, tx_queue
->tx_ring_size
);
2459 dev_kfree_skb_any(skb
);
2460 return NETDEV_TX_OK
;
2463 /* Stops the kernel queue, and halts the controller */
2464 static int gfar_close(struct net_device
*dev
)
2466 struct gfar_private
*priv
= netdev_priv(dev
);
2468 cancel_work_sync(&priv
->reset_task
);
2471 /* Disconnect from the PHY */
2472 phy_disconnect(priv
->phydev
);
2473 priv
->phydev
= NULL
;
2475 gfar_free_irq(priv
);
2480 /* Changes the mac address if the controller is not running. */
2481 static int gfar_set_mac_address(struct net_device
*dev
)
2483 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
2488 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
2490 struct gfar_private
*priv
= netdev_priv(dev
);
2491 int frame_size
= new_mtu
+ ETH_HLEN
;
2493 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
2494 netif_err(priv
, drv
, dev
, "Invalid MTU setting\n");
2498 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2501 if (dev
->flags
& IFF_UP
)
2506 if (dev
->flags
& IFF_UP
)
2509 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2514 void reset_gfar(struct net_device
*ndev
)
2516 struct gfar_private
*priv
= netdev_priv(ndev
);
2518 while (test_and_set_bit_lock(GFAR_RESETTING
, &priv
->state
))
2524 clear_bit_unlock(GFAR_RESETTING
, &priv
->state
);
2527 /* gfar_reset_task gets scheduled when a packet has not been
2528 * transmitted after a set amount of time.
2529 * For now, assume that clearing out all the structures, and
2530 * starting over will fix the problem.
2532 static void gfar_reset_task(struct work_struct
*work
)
2534 struct gfar_private
*priv
= container_of(work
, struct gfar_private
,
2536 reset_gfar(priv
->ndev
);
2539 static void gfar_timeout(struct net_device
*dev
)
2541 struct gfar_private
*priv
= netdev_priv(dev
);
2543 dev
->stats
.tx_errors
++;
2544 schedule_work(&priv
->reset_task
);
2547 static void gfar_align_skb(struct sk_buff
*skb
)
2549 /* We need the data buffer to be aligned properly. We will reserve
2550 * as many bytes as needed to align the data properly
2552 skb_reserve(skb
, RXBUF_ALIGNMENT
-
2553 (((unsigned long) skb
->data
) & (RXBUF_ALIGNMENT
- 1)));
2556 /* Interrupt Handler for Transmit complete */
2557 static void gfar_clean_tx_ring(struct gfar_priv_tx_q
*tx_queue
)
2559 struct net_device
*dev
= tx_queue
->dev
;
2560 struct netdev_queue
*txq
;
2561 struct gfar_private
*priv
= netdev_priv(dev
);
2562 struct txbd8
*bdp
, *next
= NULL
;
2563 struct txbd8
*lbdp
= NULL
;
2564 struct txbd8
*base
= tx_queue
->tx_bd_base
;
2565 struct sk_buff
*skb
;
2567 int tx_ring_size
= tx_queue
->tx_ring_size
;
2568 int frags
= 0, nr_txbds
= 0;
2571 int tqi
= tx_queue
->qindex
;
2572 unsigned int bytes_sent
= 0;
2576 txq
= netdev_get_tx_queue(dev
, tqi
);
2577 bdp
= tx_queue
->dirty_tx
;
2578 skb_dirtytx
= tx_queue
->skb_dirtytx
;
2580 while ((skb
= tx_queue
->tx_skbuff
[skb_dirtytx
])) {
2581 unsigned long flags
;
2583 frags
= skb_shinfo(skb
)->nr_frags
;
2585 /* When time stamping, one additional TxBD must be freed.
2586 * Also, we need to dma_unmap_single() the TxPAL.
2588 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
))
2589 nr_txbds
= frags
+ 2;
2591 nr_txbds
= frags
+ 1;
2593 lbdp
= skip_txbd(bdp
, nr_txbds
- 1, base
, tx_ring_size
);
2595 lstatus
= lbdp
->lstatus
;
2597 /* Only clean completed frames */
2598 if ((lstatus
& BD_LFLAG(TXBD_READY
)) &&
2599 (lstatus
& BD_LENGTH_MASK
))
2602 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2603 next
= next_txbd(bdp
, base
, tx_ring_size
);
2604 buflen
= next
->length
+ GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
;
2606 buflen
= bdp
->length
;
2608 dma_unmap_single(priv
->dev
, bdp
->bufPtr
,
2609 buflen
, DMA_TO_DEVICE
);
2611 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_IN_PROGRESS
)) {
2612 struct skb_shared_hwtstamps shhwtstamps
;
2613 u64
*ns
= (u64
*) (((u32
)skb
->data
+ 0x10) & ~0x7);
2615 memset(&shhwtstamps
, 0, sizeof(shhwtstamps
));
2616 shhwtstamps
.hwtstamp
= ns_to_ktime(*ns
);
2617 skb_pull(skb
, GMAC_FCB_LEN
+ GMAC_TXPAL_LEN
);
2618 skb_tstamp_tx(skb
, &shhwtstamps
);
2619 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2623 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2624 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2626 for (i
= 0; i
< frags
; i
++) {
2627 dma_unmap_page(priv
->dev
, bdp
->bufPtr
,
2628 bdp
->length
, DMA_TO_DEVICE
);
2629 bdp
->lstatus
&= BD_LFLAG(TXBD_WRAP
);
2630 bdp
= next_txbd(bdp
, base
, tx_ring_size
);
2633 bytes_sent
+= GFAR_CB(skb
)->bytes_sent
;
2635 dev_kfree_skb_any(skb
);
2637 tx_queue
->tx_skbuff
[skb_dirtytx
] = NULL
;
2639 skb_dirtytx
= (skb_dirtytx
+ 1) &
2640 TX_RING_MOD_MASK(tx_ring_size
);
2643 spin_lock_irqsave(&tx_queue
->txlock
, flags
);
2644 tx_queue
->num_txbdfree
+= nr_txbds
;
2645 spin_unlock_irqrestore(&tx_queue
->txlock
, flags
);
2648 /* If we freed a buffer, we can restart transmission, if necessary */
2649 if (tx_queue
->num_txbdfree
&&
2650 netif_tx_queue_stopped(txq
) &&
2651 !(test_bit(GFAR_DOWN
, &priv
->state
)))
2652 netif_wake_subqueue(priv
->ndev
, tqi
);
2654 /* Update dirty indicators */
2655 tx_queue
->skb_dirtytx
= skb_dirtytx
;
2656 tx_queue
->dirty_tx
= bdp
;
2658 netdev_tx_completed_queue(txq
, howmany
, bytes_sent
);
2661 static struct sk_buff
*gfar_alloc_skb(struct net_device
*dev
)
2663 struct gfar_private
*priv
= netdev_priv(dev
);
2664 struct sk_buff
*skb
;
2666 skb
= netdev_alloc_skb(dev
, priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
2670 gfar_align_skb(skb
);
2675 static struct sk_buff
*gfar_new_skb(struct net_device
*dev
, dma_addr_t
*bufaddr
)
2677 struct gfar_private
*priv
= netdev_priv(dev
);
2678 struct sk_buff
*skb
;
2681 skb
= gfar_alloc_skb(dev
);
2685 addr
= dma_map_single(priv
->dev
, skb
->data
,
2686 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2687 if (unlikely(dma_mapping_error(priv
->dev
, addr
))) {
2688 dev_kfree_skb_any(skb
);
2696 static inline void count_errors(unsigned short status
, struct net_device
*dev
)
2698 struct gfar_private
*priv
= netdev_priv(dev
);
2699 struct net_device_stats
*stats
= &dev
->stats
;
2700 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
2702 /* If the packet was truncated, none of the other errors matter */
2703 if (status
& RXBD_TRUNCATED
) {
2704 stats
->rx_length_errors
++;
2706 atomic64_inc(&estats
->rx_trunc
);
2710 /* Count the errors, if there were any */
2711 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
2712 stats
->rx_length_errors
++;
2714 if (status
& RXBD_LARGE
)
2715 atomic64_inc(&estats
->rx_large
);
2717 atomic64_inc(&estats
->rx_short
);
2719 if (status
& RXBD_NONOCTET
) {
2720 stats
->rx_frame_errors
++;
2721 atomic64_inc(&estats
->rx_nonoctet
);
2723 if (status
& RXBD_CRCERR
) {
2724 atomic64_inc(&estats
->rx_crcerr
);
2725 stats
->rx_crc_errors
++;
2727 if (status
& RXBD_OVERRUN
) {
2728 atomic64_inc(&estats
->rx_overrun
);
2729 stats
->rx_crc_errors
++;
2733 irqreturn_t
gfar_receive(int irq
, void *grp_id
)
2735 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2736 unsigned long flags
;
2739 if (likely(napi_schedule_prep(&grp
->napi_rx
))) {
2740 spin_lock_irqsave(&grp
->grplock
, flags
);
2741 imask
= gfar_read(&grp
->regs
->imask
);
2742 imask
&= IMASK_RX_DISABLED
;
2743 gfar_write(&grp
->regs
->imask
, imask
);
2744 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2745 __napi_schedule(&grp
->napi_rx
);
2747 /* Clear IEVENT, so interrupts aren't called again
2748 * because of the packets that have already arrived.
2750 gfar_write(&grp
->regs
->ievent
, IEVENT_RX_MASK
);
2756 /* Interrupt Handler for Transmit complete */
2757 static irqreturn_t
gfar_transmit(int irq
, void *grp_id
)
2759 struct gfar_priv_grp
*grp
= (struct gfar_priv_grp
*)grp_id
;
2760 unsigned long flags
;
2763 if (likely(napi_schedule_prep(&grp
->napi_tx
))) {
2764 spin_lock_irqsave(&grp
->grplock
, flags
);
2765 imask
= gfar_read(&grp
->regs
->imask
);
2766 imask
&= IMASK_TX_DISABLED
;
2767 gfar_write(&grp
->regs
->imask
, imask
);
2768 spin_unlock_irqrestore(&grp
->grplock
, flags
);
2769 __napi_schedule(&grp
->napi_tx
);
2771 /* Clear IEVENT, so interrupts aren't called again
2772 * because of the packets that have already arrived.
2774 gfar_write(&grp
->regs
->ievent
, IEVENT_TX_MASK
);
2780 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
2782 /* If valid headers were found, and valid sums
2783 * were verified, then we tell the kernel that no
2784 * checksumming is necessary. Otherwise, it is [FIXME]
2786 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
2787 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
2789 skb_checksum_none_assert(skb
);
2793 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2794 static void gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
2795 int amount_pull
, struct napi_struct
*napi
)
2797 struct gfar_private
*priv
= netdev_priv(dev
);
2798 struct rxfcb
*fcb
= NULL
;
2800 /* fcb is at the beginning if exists */
2801 fcb
= (struct rxfcb
*)skb
->data
;
2803 /* Remove the FCB from the skb
2804 * Remove the padded bytes, if there are any
2807 skb_record_rx_queue(skb
, fcb
->rq
);
2808 skb_pull(skb
, amount_pull
);
2811 /* Get receive timestamp from the skb */
2812 if (priv
->hwts_rx_en
) {
2813 struct skb_shared_hwtstamps
*shhwtstamps
= skb_hwtstamps(skb
);
2814 u64
*ns
= (u64
*) skb
->data
;
2816 memset(shhwtstamps
, 0, sizeof(*shhwtstamps
));
2817 shhwtstamps
->hwtstamp
= ns_to_ktime(*ns
);
2821 skb_pull(skb
, priv
->padding
);
2823 if (dev
->features
& NETIF_F_RXCSUM
)
2824 gfar_rx_checksum(skb
, fcb
);
2826 /* Tell the skb what kind of packet this is */
2827 skb
->protocol
= eth_type_trans(skb
, dev
);
2829 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2830 * Even if vlan rx accel is disabled, on some chips
2831 * RXFCB_VLN is pseudo randomly set.
2833 if (dev
->features
& NETIF_F_HW_VLAN_CTAG_RX
&&
2834 fcb
->flags
& RXFCB_VLN
)
2835 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), fcb
->vlctl
);
2837 /* Send the packet up the stack */
2838 napi_gro_receive(napi
, skb
);
2842 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2843 * until the budget/quota has been reached. Returns the number
2846 int gfar_clean_rx_ring(struct gfar_priv_rx_q
*rx_queue
, int rx_work_limit
)
2848 struct net_device
*dev
= rx_queue
->dev
;
2849 struct rxbd8
*bdp
, *base
;
2850 struct sk_buff
*skb
;
2854 struct gfar_private
*priv
= netdev_priv(dev
);
2856 /* Get the first full descriptor */
2857 bdp
= rx_queue
->cur_rx
;
2858 base
= rx_queue
->rx_bd_base
;
2860 amount_pull
= priv
->uses_rxfcb
? GMAC_FCB_LEN
: 0;
2862 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
2863 struct sk_buff
*newskb
;
2868 /* Add another skb for the future */
2869 newskb
= gfar_new_skb(dev
, &bufaddr
);
2871 skb
= rx_queue
->rx_skbuff
[rx_queue
->skb_currx
];
2873 dma_unmap_single(priv
->dev
, bdp
->bufPtr
,
2874 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
2876 if (unlikely(!(bdp
->status
& RXBD_ERR
) &&
2877 bdp
->length
> priv
->rx_buffer_size
))
2878 bdp
->status
= RXBD_LARGE
;
2880 /* We drop the frame if we failed to allocate a new buffer */
2881 if (unlikely(!newskb
|| !(bdp
->status
& RXBD_LAST
) ||
2882 bdp
->status
& RXBD_ERR
)) {
2883 count_errors(bdp
->status
, dev
);
2885 if (unlikely(!newskb
)) {
2887 bufaddr
= bdp
->bufPtr
;
2891 /* Increment the number of packets */
2892 rx_queue
->stats
.rx_packets
++;
2896 pkt_len
= bdp
->length
- ETH_FCS_LEN
;
2897 /* Remove the FCS from the packet length */
2898 skb_put(skb
, pkt_len
);
2899 rx_queue
->stats
.rx_bytes
+= pkt_len
;
2900 skb_record_rx_queue(skb
, rx_queue
->qindex
);
2901 gfar_process_frame(dev
, skb
, amount_pull
,
2902 &rx_queue
->grp
->napi_rx
);
2905 netif_warn(priv
, rx_err
, dev
, "Missing skb!\n");
2906 rx_queue
->stats
.rx_dropped
++;
2907 atomic64_inc(&priv
->extra_stats
.rx_skbmissing
);
2912 rx_queue
->rx_skbuff
[rx_queue
->skb_currx
] = newskb
;
2914 /* Setup the new bdp */
2915 gfar_init_rxbdp(rx_queue
, bdp
, bufaddr
);
2917 /* Update Last Free RxBD pointer for LFC */
2918 if (unlikely(rx_queue
->rfbptr
&& priv
->tx_actual_en
))
2919 gfar_write(rx_queue
->rfbptr
, (u32
)bdp
);
2921 /* Update to the next pointer */
2922 bdp
= next_bd(bdp
, base
, rx_queue
->rx_ring_size
);
2924 /* update to point at the next skb */
2925 rx_queue
->skb_currx
= (rx_queue
->skb_currx
+ 1) &
2926 RX_RING_MOD_MASK(rx_queue
->rx_ring_size
);
2929 /* Update the current rxbd pointer to be the next one */
2930 rx_queue
->cur_rx
= bdp
;
2935 static int gfar_poll_rx_sq(struct napi_struct
*napi
, int budget
)
2937 struct gfar_priv_grp
*gfargrp
=
2938 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
2939 struct gfar __iomem
*regs
= gfargrp
->regs
;
2940 struct gfar_priv_rx_q
*rx_queue
= gfargrp
->rx_queue
;
2943 /* Clear IEVENT, so interrupts aren't called again
2944 * because of the packets that have already arrived
2946 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
2948 work_done
= gfar_clean_rx_ring(rx_queue
, budget
);
2950 if (work_done
< budget
) {
2952 napi_complete(napi
);
2953 /* Clear the halt bit in RSTAT */
2954 gfar_write(®s
->rstat
, gfargrp
->rstat
);
2956 spin_lock_irq(&gfargrp
->grplock
);
2957 imask
= gfar_read(®s
->imask
);
2958 imask
|= IMASK_RX_DEFAULT
;
2959 gfar_write(®s
->imask
, imask
);
2960 spin_unlock_irq(&gfargrp
->grplock
);
2966 static int gfar_poll_tx_sq(struct napi_struct
*napi
, int budget
)
2968 struct gfar_priv_grp
*gfargrp
=
2969 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
2970 struct gfar __iomem
*regs
= gfargrp
->regs
;
2971 struct gfar_priv_tx_q
*tx_queue
= gfargrp
->tx_queue
;
2974 /* Clear IEVENT, so interrupts aren't called again
2975 * because of the packets that have already arrived
2977 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
2979 /* run Tx cleanup to completion */
2980 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
])
2981 gfar_clean_tx_ring(tx_queue
);
2983 napi_complete(napi
);
2985 spin_lock_irq(&gfargrp
->grplock
);
2986 imask
= gfar_read(®s
->imask
);
2987 imask
|= IMASK_TX_DEFAULT
;
2988 gfar_write(®s
->imask
, imask
);
2989 spin_unlock_irq(&gfargrp
->grplock
);
2994 static int gfar_poll_rx(struct napi_struct
*napi
, int budget
)
2996 struct gfar_priv_grp
*gfargrp
=
2997 container_of(napi
, struct gfar_priv_grp
, napi_rx
);
2998 struct gfar_private
*priv
= gfargrp
->priv
;
2999 struct gfar __iomem
*regs
= gfargrp
->regs
;
3000 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3001 int work_done
= 0, work_done_per_q
= 0;
3002 int i
, budget_per_q
= 0;
3003 unsigned long rstat_rxf
;
3006 /* Clear IEVENT, so interrupts aren't called again
3007 * because of the packets that have already arrived
3009 gfar_write(®s
->ievent
, IEVENT_RX_MASK
);
3011 rstat_rxf
= gfar_read(®s
->rstat
) & RSTAT_RXF_MASK
;
3013 num_act_queues
= bitmap_weight(&rstat_rxf
, MAX_RX_QS
);
3015 budget_per_q
= budget
/num_act_queues
;
3017 for_each_set_bit(i
, &gfargrp
->rx_bit_map
, priv
->num_rx_queues
) {
3018 /* skip queue if not active */
3019 if (!(rstat_rxf
& (RSTAT_CLEAR_RXF0
>> i
)))
3022 rx_queue
= priv
->rx_queue
[i
];
3024 gfar_clean_rx_ring(rx_queue
, budget_per_q
);
3025 work_done
+= work_done_per_q
;
3027 /* finished processing this queue */
3028 if (work_done_per_q
< budget_per_q
) {
3029 /* clear active queue hw indication */
3030 gfar_write(®s
->rstat
,
3031 RSTAT_CLEAR_RXF0
>> i
);
3034 if (!num_act_queues
)
3039 if (!num_act_queues
) {
3041 napi_complete(napi
);
3043 /* Clear the halt bit in RSTAT */
3044 gfar_write(®s
->rstat
, gfargrp
->rstat
);
3046 spin_lock_irq(&gfargrp
->grplock
);
3047 imask
= gfar_read(®s
->imask
);
3048 imask
|= IMASK_RX_DEFAULT
;
3049 gfar_write(®s
->imask
, imask
);
3050 spin_unlock_irq(&gfargrp
->grplock
);
3056 static int gfar_poll_tx(struct napi_struct
*napi
, int budget
)
3058 struct gfar_priv_grp
*gfargrp
=
3059 container_of(napi
, struct gfar_priv_grp
, napi_tx
);
3060 struct gfar_private
*priv
= gfargrp
->priv
;
3061 struct gfar __iomem
*regs
= gfargrp
->regs
;
3062 struct gfar_priv_tx_q
*tx_queue
= NULL
;
3063 int has_tx_work
= 0;
3066 /* Clear IEVENT, so interrupts aren't called again
3067 * because of the packets that have already arrived
3069 gfar_write(®s
->ievent
, IEVENT_TX_MASK
);
3071 for_each_set_bit(i
, &gfargrp
->tx_bit_map
, priv
->num_tx_queues
) {
3072 tx_queue
= priv
->tx_queue
[i
];
3073 /* run Tx cleanup to completion */
3074 if (tx_queue
->tx_skbuff
[tx_queue
->skb_dirtytx
]) {
3075 gfar_clean_tx_ring(tx_queue
);
3082 napi_complete(napi
);
3084 spin_lock_irq(&gfargrp
->grplock
);
3085 imask
= gfar_read(®s
->imask
);
3086 imask
|= IMASK_TX_DEFAULT
;
3087 gfar_write(®s
->imask
, imask
);
3088 spin_unlock_irq(&gfargrp
->grplock
);
3095 #ifdef CONFIG_NET_POLL_CONTROLLER
3096 /* Polling 'interrupt' - used by things like netconsole to send skbs
3097 * without having to re-enable interrupts. It's not called while
3098 * the interrupt routine is executing.
3100 static void gfar_netpoll(struct net_device
*dev
)
3102 struct gfar_private
*priv
= netdev_priv(dev
);
3105 /* If the device has multiple interrupts, run tx/rx */
3106 if (priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
3107 for (i
= 0; i
< priv
->num_grps
; i
++) {
3108 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3110 disable_irq(gfar_irq(grp
, TX
)->irq
);
3111 disable_irq(gfar_irq(grp
, RX
)->irq
);
3112 disable_irq(gfar_irq(grp
, ER
)->irq
);
3113 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3114 enable_irq(gfar_irq(grp
, ER
)->irq
);
3115 enable_irq(gfar_irq(grp
, RX
)->irq
);
3116 enable_irq(gfar_irq(grp
, TX
)->irq
);
3119 for (i
= 0; i
< priv
->num_grps
; i
++) {
3120 struct gfar_priv_grp
*grp
= &priv
->gfargrp
[i
];
3122 disable_irq(gfar_irq(grp
, TX
)->irq
);
3123 gfar_interrupt(gfar_irq(grp
, TX
)->irq
, grp
);
3124 enable_irq(gfar_irq(grp
, TX
)->irq
);
3130 /* The interrupt handler for devices with one interrupt */
3131 static irqreturn_t
gfar_interrupt(int irq
, void *grp_id
)
3133 struct gfar_priv_grp
*gfargrp
= grp_id
;
3135 /* Save ievent for future reference */
3136 u32 events
= gfar_read(&gfargrp
->regs
->ievent
);
3138 /* Check for reception */
3139 if (events
& IEVENT_RX_MASK
)
3140 gfar_receive(irq
, grp_id
);
3142 /* Check for transmit completion */
3143 if (events
& IEVENT_TX_MASK
)
3144 gfar_transmit(irq
, grp_id
);
3146 /* Check for errors */
3147 if (events
& IEVENT_ERR_MASK
)
3148 gfar_error(irq
, grp_id
);
3153 /* Called every time the controller might need to be made
3154 * aware of new link state. The PHY code conveys this
3155 * information through variables in the phydev structure, and this
3156 * function converts those variables into the appropriate
3157 * register values, and can bring down the device if needed.
3159 static void adjust_link(struct net_device
*dev
)
3161 struct gfar_private
*priv
= netdev_priv(dev
);
3162 struct phy_device
*phydev
= priv
->phydev
;
3164 if (unlikely(phydev
->link
!= priv
->oldlink
||
3165 (phydev
->link
&& (phydev
->duplex
!= priv
->oldduplex
||
3166 phydev
->speed
!= priv
->oldspeed
))))
3167 gfar_update_link_state(priv
);
3170 /* Update the hash table based on the current list of multicast
3171 * addresses we subscribe to. Also, change the promiscuity of
3172 * the device based on the flags (this function is called
3173 * whenever dev->flags is changed
3175 static void gfar_set_multi(struct net_device
*dev
)
3177 struct netdev_hw_addr
*ha
;
3178 struct gfar_private
*priv
= netdev_priv(dev
);
3179 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3182 if (dev
->flags
& IFF_PROMISC
) {
3183 /* Set RCTRL to PROM */
3184 tempval
= gfar_read(®s
->rctrl
);
3185 tempval
|= RCTRL_PROM
;
3186 gfar_write(®s
->rctrl
, tempval
);
3188 /* Set RCTRL to not PROM */
3189 tempval
= gfar_read(®s
->rctrl
);
3190 tempval
&= ~(RCTRL_PROM
);
3191 gfar_write(®s
->rctrl
, tempval
);
3194 if (dev
->flags
& IFF_ALLMULTI
) {
3195 /* Set the hash to rx all multicast frames */
3196 gfar_write(®s
->igaddr0
, 0xffffffff);
3197 gfar_write(®s
->igaddr1
, 0xffffffff);
3198 gfar_write(®s
->igaddr2
, 0xffffffff);
3199 gfar_write(®s
->igaddr3
, 0xffffffff);
3200 gfar_write(®s
->igaddr4
, 0xffffffff);
3201 gfar_write(®s
->igaddr5
, 0xffffffff);
3202 gfar_write(®s
->igaddr6
, 0xffffffff);
3203 gfar_write(®s
->igaddr7
, 0xffffffff);
3204 gfar_write(®s
->gaddr0
, 0xffffffff);
3205 gfar_write(®s
->gaddr1
, 0xffffffff);
3206 gfar_write(®s
->gaddr2
, 0xffffffff);
3207 gfar_write(®s
->gaddr3
, 0xffffffff);
3208 gfar_write(®s
->gaddr4
, 0xffffffff);
3209 gfar_write(®s
->gaddr5
, 0xffffffff);
3210 gfar_write(®s
->gaddr6
, 0xffffffff);
3211 gfar_write(®s
->gaddr7
, 0xffffffff);
3216 /* zero out the hash */
3217 gfar_write(®s
->igaddr0
, 0x0);
3218 gfar_write(®s
->igaddr1
, 0x0);
3219 gfar_write(®s
->igaddr2
, 0x0);
3220 gfar_write(®s
->igaddr3
, 0x0);
3221 gfar_write(®s
->igaddr4
, 0x0);
3222 gfar_write(®s
->igaddr5
, 0x0);
3223 gfar_write(®s
->igaddr6
, 0x0);
3224 gfar_write(®s
->igaddr7
, 0x0);
3225 gfar_write(®s
->gaddr0
, 0x0);
3226 gfar_write(®s
->gaddr1
, 0x0);
3227 gfar_write(®s
->gaddr2
, 0x0);
3228 gfar_write(®s
->gaddr3
, 0x0);
3229 gfar_write(®s
->gaddr4
, 0x0);
3230 gfar_write(®s
->gaddr5
, 0x0);
3231 gfar_write(®s
->gaddr6
, 0x0);
3232 gfar_write(®s
->gaddr7
, 0x0);
3234 /* If we have extended hash tables, we need to
3235 * clear the exact match registers to prepare for
3238 if (priv
->extended_hash
) {
3239 em_num
= GFAR_EM_NUM
+ 1;
3240 gfar_clear_exact_match(dev
);
3247 if (netdev_mc_empty(dev
))
3250 /* Parse the list, and set the appropriate bits */
3251 netdev_for_each_mc_addr(ha
, dev
) {
3253 gfar_set_mac_for_addr(dev
, idx
, ha
->addr
);
3256 gfar_set_hash_for_addr(dev
, ha
->addr
);
3262 /* Clears each of the exact match registers to zero, so they
3263 * don't interfere with normal reception
3265 static void gfar_clear_exact_match(struct net_device
*dev
)
3268 static const u8 zero_arr
[ETH_ALEN
] = {0, 0, 0, 0, 0, 0};
3270 for (idx
= 1; idx
< GFAR_EM_NUM
+ 1; idx
++)
3271 gfar_set_mac_for_addr(dev
, idx
, zero_arr
);
3274 /* Set the appropriate hash bit for the given addr */
3275 /* The algorithm works like so:
3276 * 1) Take the Destination Address (ie the multicast address), and
3277 * do a CRC on it (little endian), and reverse the bits of the
3279 * 2) Use the 8 most significant bits as a hash into a 256-entry
3280 * table. The table is controlled through 8 32-bit registers:
3281 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3282 * gaddr7. This means that the 3 most significant bits in the
3283 * hash index which gaddr register to use, and the 5 other bits
3284 * indicate which bit (assuming an IBM numbering scheme, which
3285 * for PowerPC (tm) is usually the case) in the register holds
3288 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
3291 struct gfar_private
*priv
= netdev_priv(dev
);
3292 u32 result
= ether_crc(ETH_ALEN
, addr
);
3293 int width
= priv
->hash_width
;
3294 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
3295 u8 whichreg
= result
>> (32 - width
+ 5);
3296 u32 value
= (1 << (31-whichbit
));
3298 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
3300 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
3304 /* There are multiple MAC Address register pairs on some controllers
3305 * This function sets the numth pair to a given address
3307 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
,
3310 struct gfar_private
*priv
= netdev_priv(dev
);
3311 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3313 u32 __iomem
*macptr
= ®s
->macstnaddr1
;
3317 /* For a station address of 0x12345678ABCD in transmission
3318 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3319 * MACnADDR2 is set to 0x34120000.
3321 tempval
= (addr
[5] << 24) | (addr
[4] << 16) |
3322 (addr
[3] << 8) | addr
[2];
3324 gfar_write(macptr
, tempval
);
3326 tempval
= (addr
[1] << 24) | (addr
[0] << 16);
3328 gfar_write(macptr
+1, tempval
);
3331 /* GFAR error interrupt handler */
3332 static irqreturn_t
gfar_error(int irq
, void *grp_id
)
3334 struct gfar_priv_grp
*gfargrp
= grp_id
;
3335 struct gfar __iomem
*regs
= gfargrp
->regs
;
3336 struct gfar_private
*priv
= gfargrp
->priv
;
3337 struct net_device
*dev
= priv
->ndev
;
3339 /* Save ievent for future reference */
3340 u32 events
= gfar_read(®s
->ievent
);
3343 gfar_write(®s
->ievent
, events
& IEVENT_ERR_MASK
);
3345 /* Magic Packet is not an error. */
3346 if ((priv
->device_flags
& FSL_GIANFAR_DEV_HAS_MAGIC_PACKET
) &&
3347 (events
& IEVENT_MAG
))
3348 events
&= ~IEVENT_MAG
;
3351 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
3353 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3354 events
, gfar_read(®s
->imask
));
3356 /* Update the error counters */
3357 if (events
& IEVENT_TXE
) {
3358 dev
->stats
.tx_errors
++;
3360 if (events
& IEVENT_LC
)
3361 dev
->stats
.tx_window_errors
++;
3362 if (events
& IEVENT_CRL
)
3363 dev
->stats
.tx_aborted_errors
++;
3364 if (events
& IEVENT_XFUN
) {
3365 unsigned long flags
;
3367 netif_dbg(priv
, tx_err
, dev
,
3368 "TX FIFO underrun, packet dropped\n");
3369 dev
->stats
.tx_dropped
++;
3370 atomic64_inc(&priv
->extra_stats
.tx_underrun
);
3372 local_irq_save(flags
);
3375 /* Reactivate the Tx Queues */
3376 gfar_write(®s
->tstat
, gfargrp
->tstat
);
3379 local_irq_restore(flags
);
3381 netif_dbg(priv
, tx_err
, dev
, "Transmit Error\n");
3383 if (events
& IEVENT_BSY
) {
3384 dev
->stats
.rx_errors
++;
3385 atomic64_inc(&priv
->extra_stats
.rx_bsy
);
3387 gfar_receive(irq
, grp_id
);
3389 netif_dbg(priv
, rx_err
, dev
, "busy error (rstat: %x)\n",
3390 gfar_read(®s
->rstat
));
3392 if (events
& IEVENT_BABR
) {
3393 dev
->stats
.rx_errors
++;
3394 atomic64_inc(&priv
->extra_stats
.rx_babr
);
3396 netif_dbg(priv
, rx_err
, dev
, "babbling RX error\n");
3398 if (events
& IEVENT_EBERR
) {
3399 atomic64_inc(&priv
->extra_stats
.eberr
);
3400 netif_dbg(priv
, rx_err
, dev
, "bus error\n");
3402 if (events
& IEVENT_RXC
)
3403 netif_dbg(priv
, rx_status
, dev
, "control frame\n");
3405 if (events
& IEVENT_BABT
) {
3406 atomic64_inc(&priv
->extra_stats
.tx_babt
);
3407 netif_dbg(priv
, tx_err
, dev
, "babbling TX error\n");
3412 static u32
gfar_get_flowctrl_cfg(struct gfar_private
*priv
)
3414 struct phy_device
*phydev
= priv
->phydev
;
3417 if (!phydev
->duplex
)
3420 if (!priv
->pause_aneg_en
) {
3421 if (priv
->tx_pause_en
)
3422 val
|= MACCFG1_TX_FLOW
;
3423 if (priv
->rx_pause_en
)
3424 val
|= MACCFG1_RX_FLOW
;
3426 u16 lcl_adv
, rmt_adv
;
3428 /* get link partner capabilities */
3431 rmt_adv
= LPA_PAUSE_CAP
;
3432 if (phydev
->asym_pause
)
3433 rmt_adv
|= LPA_PAUSE_ASYM
;
3436 if (phydev
->advertising
& ADVERTISED_Pause
)
3437 lcl_adv
|= ADVERTISE_PAUSE_CAP
;
3438 if (phydev
->advertising
& ADVERTISED_Asym_Pause
)
3439 lcl_adv
|= ADVERTISE_PAUSE_ASYM
;
3441 flowctrl
= mii_resolve_flowctrl_fdx(lcl_adv
, rmt_adv
);
3442 if (flowctrl
& FLOW_CTRL_TX
)
3443 val
|= MACCFG1_TX_FLOW
;
3444 if (flowctrl
& FLOW_CTRL_RX
)
3445 val
|= MACCFG1_RX_FLOW
;
3451 static noinline
void gfar_update_link_state(struct gfar_private
*priv
)
3453 struct gfar __iomem
*regs
= priv
->gfargrp
[0].regs
;
3454 struct phy_device
*phydev
= priv
->phydev
;
3455 struct gfar_priv_rx_q
*rx_queue
= NULL
;
3459 if (unlikely(test_bit(GFAR_RESETTING
, &priv
->state
)))
3463 u32 tempval1
= gfar_read(®s
->maccfg1
);
3464 u32 tempval
= gfar_read(®s
->maccfg2
);
3465 u32 ecntrl
= gfar_read(®s
->ecntrl
);
3466 u32 tx_flow_oldval
= (tempval
& MACCFG1_TX_FLOW
);
3468 if (phydev
->duplex
!= priv
->oldduplex
) {
3469 if (!(phydev
->duplex
))
3470 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
3472 tempval
|= MACCFG2_FULL_DUPLEX
;
3474 priv
->oldduplex
= phydev
->duplex
;
3477 if (phydev
->speed
!= priv
->oldspeed
) {
3478 switch (phydev
->speed
) {
3481 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
3483 ecntrl
&= ~(ECNTRL_R100
);
3488 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
3490 /* Reduced mode distinguishes
3491 * between 10 and 100
3493 if (phydev
->speed
== SPEED_100
)
3494 ecntrl
|= ECNTRL_R100
;
3496 ecntrl
&= ~(ECNTRL_R100
);
3499 netif_warn(priv
, link
, priv
->ndev
,
3500 "Ack! Speed (%d) is not 10/100/1000!\n",
3505 priv
->oldspeed
= phydev
->speed
;
3508 tempval1
&= ~(MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
3509 tempval1
|= gfar_get_flowctrl_cfg(priv
);
3511 /* Turn last free buffer recording on */
3512 if ((tempval1
& MACCFG1_TX_FLOW
) && !tx_flow_oldval
) {
3513 for (i
= 0; i
< priv
->num_rx_queues
; i
++) {
3514 rx_queue
= priv
->rx_queue
[i
];
3515 bdp
= rx_queue
->cur_rx
;
3516 /* skip to previous bd */
3517 bdp
= skip_bd(bdp
, rx_queue
->rx_ring_size
- 1,
3518 rx_queue
->rx_bd_base
,
3519 rx_queue
->rx_ring_size
);
3521 if (rx_queue
->rfbptr
)
3522 gfar_write(rx_queue
->rfbptr
, (u32
)bdp
);
3525 priv
->tx_actual_en
= 1;
3528 if (unlikely(!(tempval1
& MACCFG1_TX_FLOW
) && tx_flow_oldval
))
3529 priv
->tx_actual_en
= 0;
3531 gfar_write(®s
->maccfg1
, tempval1
);
3532 gfar_write(®s
->maccfg2
, tempval
);
3533 gfar_write(®s
->ecntrl
, ecntrl
);
3538 } else if (priv
->oldlink
) {
3541 priv
->oldduplex
= -1;
3544 if (netif_msg_link(priv
))
3545 phy_print_status(phydev
);
3548 static struct of_device_id gfar_match
[] =
3552 .compatible
= "gianfar",
3555 .compatible
= "fsl,etsec2",
3559 MODULE_DEVICE_TABLE(of
, gfar_match
);
3561 /* Structure for a device driver */
3562 static struct platform_driver gfar_driver
= {
3564 .name
= "fsl-gianfar",
3566 .of_match_table
= gfar_match
,
3568 .probe
= gfar_probe
,
3569 .remove
= gfar_remove
,
3572 module_platform_driver(gfar_driver
);