powerpc/eeh: Fix PE#0 check in eeh_add_to_parent_pe()
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / gianfar.c
blob178e54028d1047eab23af38ba970303bc0cad357
1 /* drivers/net/ethernet/freescale/gianfar.c
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
26 * Theory of operation
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
108 #include "gianfar.h"
110 #define TX_TIMEOUT (1*HZ)
112 const char gfar_driver_version[] = "1.3";
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 dma_addr_t buf)
159 u32 lstatus;
161 bdp->bufPtr = buf;
163 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 lstatus |= BD_LFLAG(RXBD_WRAP);
167 gfar_wmb();
169 bdp->lstatus = lstatus;
172 static int gfar_init_bds(struct net_device *ndev)
174 struct gfar_private *priv = netdev_priv(ndev);
175 struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 struct gfar_priv_tx_q *tx_queue = NULL;
177 struct gfar_priv_rx_q *rx_queue = NULL;
178 struct txbd8 *txbdp;
179 struct rxbd8 *rxbdp;
180 u32 __iomem *rfbptr;
181 int i, j;
182 dma_addr_t bufaddr;
184 for (i = 0; i < priv->num_tx_queues; i++) {
185 tx_queue = priv->tx_queue[i];
186 /* Initialize some variables in our dev structure */
187 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 tx_queue->cur_tx = tx_queue->tx_bd_base;
190 tx_queue->skb_curtx = 0;
191 tx_queue->skb_dirtytx = 0;
193 /* Initialize Transmit Descriptor Ring */
194 txbdp = tx_queue->tx_bd_base;
195 for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 txbdp->lstatus = 0;
197 txbdp->bufPtr = 0;
198 txbdp++;
201 /* Set the last descriptor in the ring to indicate wrap */
202 txbdp--;
203 txbdp->status |= TXBD_WRAP;
206 rfbptr = &regs->rfbptr0;
207 for (i = 0; i < priv->num_rx_queues; i++) {
208 rx_queue = priv->rx_queue[i];
209 rx_queue->cur_rx = rx_queue->rx_bd_base;
210 rx_queue->skb_currx = 0;
211 rxbdp = rx_queue->rx_bd_base;
213 for (j = 0; j < rx_queue->rx_ring_size; j++) {
214 struct sk_buff *skb = rx_queue->rx_skbuff[j];
216 if (skb) {
217 bufaddr = rxbdp->bufPtr;
218 } else {
219 skb = gfar_new_skb(ndev, &bufaddr);
220 if (!skb) {
221 netdev_err(ndev, "Can't allocate RX buffers\n");
222 return -ENOMEM;
224 rx_queue->rx_skbuff[j] = skb;
227 gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
228 rxbdp++;
231 rx_queue->rfbptr = rfbptr;
232 rfbptr += 2;
235 return 0;
238 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 void *vaddr;
241 dma_addr_t addr;
242 int i, j, k;
243 struct gfar_private *priv = netdev_priv(ndev);
244 struct device *dev = priv->dev;
245 struct gfar_priv_tx_q *tx_queue = NULL;
246 struct gfar_priv_rx_q *rx_queue = NULL;
248 priv->total_tx_ring_size = 0;
249 for (i = 0; i < priv->num_tx_queues; i++)
250 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252 priv->total_rx_ring_size = 0;
253 for (i = 0; i < priv->num_rx_queues; i++)
254 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256 /* Allocate memory for the buffer descriptors */
257 vaddr = dma_alloc_coherent(dev,
258 (priv->total_tx_ring_size *
259 sizeof(struct txbd8)) +
260 (priv->total_rx_ring_size *
261 sizeof(struct rxbd8)),
262 &addr, GFP_KERNEL);
263 if (!vaddr)
264 return -ENOMEM;
266 for (i = 0; i < priv->num_tx_queues; i++) {
267 tx_queue = priv->tx_queue[i];
268 tx_queue->tx_bd_base = vaddr;
269 tx_queue->tx_bd_dma_base = addr;
270 tx_queue->dev = ndev;
271 /* enet DMA only understands physical addresses */
272 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
273 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
276 /* Start the rx descriptor ring where the tx ring leaves off */
277 for (i = 0; i < priv->num_rx_queues; i++) {
278 rx_queue = priv->rx_queue[i];
279 rx_queue->rx_bd_base = vaddr;
280 rx_queue->rx_bd_dma_base = addr;
281 rx_queue->dev = ndev;
282 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
283 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
286 /* Setup the skbuff rings */
287 for (i = 0; i < priv->num_tx_queues; i++) {
288 tx_queue = priv->tx_queue[i];
289 tx_queue->tx_skbuff =
290 kmalloc_array(tx_queue->tx_ring_size,
291 sizeof(*tx_queue->tx_skbuff),
292 GFP_KERNEL);
293 if (!tx_queue->tx_skbuff)
294 goto cleanup;
296 for (k = 0; k < tx_queue->tx_ring_size; k++)
297 tx_queue->tx_skbuff[k] = NULL;
300 for (i = 0; i < priv->num_rx_queues; i++) {
301 rx_queue = priv->rx_queue[i];
302 rx_queue->rx_skbuff =
303 kmalloc_array(rx_queue->rx_ring_size,
304 sizeof(*rx_queue->rx_skbuff),
305 GFP_KERNEL);
306 if (!rx_queue->rx_skbuff)
307 goto cleanup;
309 for (j = 0; j < rx_queue->rx_ring_size; j++)
310 rx_queue->rx_skbuff[j] = NULL;
313 if (gfar_init_bds(ndev))
314 goto cleanup;
316 return 0;
318 cleanup:
319 free_skb_resources(priv);
320 return -ENOMEM;
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 struct gfar __iomem *regs = priv->gfargrp[0].regs;
326 u32 __iomem *baddr;
327 int i;
329 baddr = &regs->tbase0;
330 for (i = 0; i < priv->num_tx_queues; i++) {
331 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332 baddr += 2;
335 baddr = &regs->rbase0;
336 for (i = 0; i < priv->num_rx_queues; i++) {
337 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338 baddr += 2;
342 static void gfar_init_rqprm(struct gfar_private *priv)
344 struct gfar __iomem *regs = priv->gfargrp[0].regs;
345 u32 __iomem *baddr;
346 int i;
348 baddr = &regs->rqprm0;
349 for (i = 0; i < priv->num_rx_queues; i++) {
350 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
351 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
352 baddr++;
356 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360 /* set this when rx hw offload (TOE) functions are being used */
361 priv->uses_rxfcb = 0;
363 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
364 priv->uses_rxfcb = 1;
366 if (priv->hwts_rx_en)
367 priv->uses_rxfcb = 1;
369 if (priv->uses_rxfcb)
370 frame_size += GMAC_FCB_LEN;
372 frame_size += priv->padding;
374 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
375 INCREMENTAL_BUFFER_SIZE;
377 priv->rx_buffer_size = frame_size;
380 static void gfar_mac_rx_config(struct gfar_private *priv)
382 struct gfar __iomem *regs = priv->gfargrp[0].regs;
383 u32 rctrl = 0;
385 if (priv->rx_filer_enable) {
386 rctrl |= RCTRL_FILREN;
387 /* Program the RIR0 reg with the required distribution */
388 if (priv->poll_mode == GFAR_SQ_POLLING)
389 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
390 else /* GFAR_MQ_POLLING */
391 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
394 /* Restore PROMISC mode */
395 if (priv->ndev->flags & IFF_PROMISC)
396 rctrl |= RCTRL_PROM;
398 if (priv->ndev->features & NETIF_F_RXCSUM)
399 rctrl |= RCTRL_CHECKSUMMING;
401 if (priv->extended_hash)
402 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404 if (priv->padding) {
405 rctrl &= ~RCTRL_PAL_MASK;
406 rctrl |= RCTRL_PADDING(priv->padding);
409 /* Enable HW time stamping if requested from user space */
410 if (priv->hwts_rx_en)
411 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
414 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416 /* Clear the LFC bit */
417 gfar_write(&regs->rctrl, rctrl);
418 /* Init flow control threshold values */
419 gfar_init_rqprm(priv);
420 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
421 rctrl |= RCTRL_LFC;
423 /* Init rctrl based on our settings */
424 gfar_write(&regs->rctrl, rctrl);
427 static void gfar_mac_tx_config(struct gfar_private *priv)
429 struct gfar __iomem *regs = priv->gfargrp[0].regs;
430 u32 tctrl = 0;
432 if (priv->ndev->features & NETIF_F_IP_CSUM)
433 tctrl |= TCTRL_INIT_CSUM;
435 if (priv->prio_sched_en)
436 tctrl |= TCTRL_TXSCHED_PRIO;
437 else {
438 tctrl |= TCTRL_TXSCHED_WRRS;
439 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
440 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
443 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
444 tctrl |= TCTRL_VLINS;
446 gfar_write(&regs->tctrl, tctrl);
449 static void gfar_configure_coalescing(struct gfar_private *priv,
450 unsigned long tx_mask, unsigned long rx_mask)
452 struct gfar __iomem *regs = priv->gfargrp[0].regs;
453 u32 __iomem *baddr;
455 if (priv->mode == MQ_MG_MODE) {
456 int i = 0;
458 baddr = &regs->txic0;
459 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
460 gfar_write(baddr + i, 0);
461 if (likely(priv->tx_queue[i]->txcoalescing))
462 gfar_write(baddr + i, priv->tx_queue[i]->txic);
465 baddr = &regs->rxic0;
466 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
467 gfar_write(baddr + i, 0);
468 if (likely(priv->rx_queue[i]->rxcoalescing))
469 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 } else {
472 /* Backward compatible case -- even if we enable
473 * multiple queues, there's only single reg to program
475 gfar_write(&regs->txic, 0);
476 if (likely(priv->tx_queue[0]->txcoalescing))
477 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479 gfar_write(&regs->rxic, 0);
480 if (unlikely(priv->rx_queue[0]->rxcoalescing))
481 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
485 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 gfar_configure_coalescing(priv, 0xFF, 0xFF);
490 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 struct gfar_private *priv = netdev_priv(dev);
493 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
494 unsigned long tx_packets = 0, tx_bytes = 0;
495 int i;
497 for (i = 0; i < priv->num_rx_queues; i++) {
498 rx_packets += priv->rx_queue[i]->stats.rx_packets;
499 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
500 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
503 dev->stats.rx_packets = rx_packets;
504 dev->stats.rx_bytes = rx_bytes;
505 dev->stats.rx_dropped = rx_dropped;
507 for (i = 0; i < priv->num_tx_queues; i++) {
508 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
509 tx_packets += priv->tx_queue[i]->stats.tx_packets;
512 dev->stats.tx_bytes = tx_bytes;
513 dev->stats.tx_packets = tx_packets;
515 return &dev->stats;
518 static const struct net_device_ops gfar_netdev_ops = {
519 .ndo_open = gfar_enet_open,
520 .ndo_start_xmit = gfar_start_xmit,
521 .ndo_stop = gfar_close,
522 .ndo_change_mtu = gfar_change_mtu,
523 .ndo_set_features = gfar_set_features,
524 .ndo_set_rx_mode = gfar_set_multi,
525 .ndo_tx_timeout = gfar_timeout,
526 .ndo_do_ioctl = gfar_ioctl,
527 .ndo_get_stats = gfar_get_stats,
528 .ndo_set_mac_address = eth_mac_addr,
529 .ndo_validate_addr = eth_validate_addr,
530 #ifdef CONFIG_NET_POLL_CONTROLLER
531 .ndo_poll_controller = gfar_netpoll,
532 #endif
535 static void gfar_ints_disable(struct gfar_private *priv)
537 int i;
538 for (i = 0; i < priv->num_grps; i++) {
539 struct gfar __iomem *regs = priv->gfargrp[i].regs;
540 /* Clear IEVENT */
541 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
543 /* Initialize IMASK */
544 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
548 static void gfar_ints_enable(struct gfar_private *priv)
550 int i;
551 for (i = 0; i < priv->num_grps; i++) {
552 struct gfar __iomem *regs = priv->gfargrp[i].regs;
553 /* Unmask the interrupts we look for */
554 gfar_write(&regs->imask, IMASK_DEFAULT);
558 static void lock_tx_qs(struct gfar_private *priv)
560 int i;
562 for (i = 0; i < priv->num_tx_queues; i++)
563 spin_lock(&priv->tx_queue[i]->txlock);
566 static void unlock_tx_qs(struct gfar_private *priv)
568 int i;
570 for (i = 0; i < priv->num_tx_queues; i++)
571 spin_unlock(&priv->tx_queue[i]->txlock);
574 static int gfar_alloc_tx_queues(struct gfar_private *priv)
576 int i;
578 for (i = 0; i < priv->num_tx_queues; i++) {
579 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
580 GFP_KERNEL);
581 if (!priv->tx_queue[i])
582 return -ENOMEM;
584 priv->tx_queue[i]->tx_skbuff = NULL;
585 priv->tx_queue[i]->qindex = i;
586 priv->tx_queue[i]->dev = priv->ndev;
587 spin_lock_init(&(priv->tx_queue[i]->txlock));
589 return 0;
592 static int gfar_alloc_rx_queues(struct gfar_private *priv)
594 int i;
596 for (i = 0; i < priv->num_rx_queues; i++) {
597 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
598 GFP_KERNEL);
599 if (!priv->rx_queue[i])
600 return -ENOMEM;
602 priv->rx_queue[i]->rx_skbuff = NULL;
603 priv->rx_queue[i]->qindex = i;
604 priv->rx_queue[i]->dev = priv->ndev;
606 return 0;
609 static void gfar_free_tx_queues(struct gfar_private *priv)
611 int i;
613 for (i = 0; i < priv->num_tx_queues; i++)
614 kfree(priv->tx_queue[i]);
617 static void gfar_free_rx_queues(struct gfar_private *priv)
619 int i;
621 for (i = 0; i < priv->num_rx_queues; i++)
622 kfree(priv->rx_queue[i]);
625 static void unmap_group_regs(struct gfar_private *priv)
627 int i;
629 for (i = 0; i < MAXGROUPS; i++)
630 if (priv->gfargrp[i].regs)
631 iounmap(priv->gfargrp[i].regs);
634 static void free_gfar_dev(struct gfar_private *priv)
636 int i, j;
638 for (i = 0; i < priv->num_grps; i++)
639 for (j = 0; j < GFAR_NUM_IRQS; j++) {
640 kfree(priv->gfargrp[i].irqinfo[j]);
641 priv->gfargrp[i].irqinfo[j] = NULL;
644 free_netdev(priv->ndev);
647 static void disable_napi(struct gfar_private *priv)
649 int i;
651 for (i = 0; i < priv->num_grps; i++) {
652 napi_disable(&priv->gfargrp[i].napi_rx);
653 napi_disable(&priv->gfargrp[i].napi_tx);
657 static void enable_napi(struct gfar_private *priv)
659 int i;
661 for (i = 0; i < priv->num_grps; i++) {
662 napi_enable(&priv->gfargrp[i].napi_rx);
663 napi_enable(&priv->gfargrp[i].napi_tx);
667 static int gfar_parse_group(struct device_node *np,
668 struct gfar_private *priv, const char *model)
670 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
671 int i;
673 for (i = 0; i < GFAR_NUM_IRQS; i++) {
674 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
675 GFP_KERNEL);
676 if (!grp->irqinfo[i])
677 return -ENOMEM;
680 grp->regs = of_iomap(np, 0);
681 if (!grp->regs)
682 return -ENOMEM;
684 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
686 /* If we aren't the FEC we have multiple interrupts */
687 if (model && strcasecmp(model, "FEC")) {
688 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
689 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
690 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
691 gfar_irq(grp, RX)->irq == NO_IRQ ||
692 gfar_irq(grp, ER)->irq == NO_IRQ)
693 return -EINVAL;
696 grp->priv = priv;
697 spin_lock_init(&grp->grplock);
698 if (priv->mode == MQ_MG_MODE) {
699 u32 *rxq_mask, *txq_mask;
700 rxq_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
701 txq_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
703 if (priv->poll_mode == GFAR_SQ_POLLING) {
704 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
705 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
706 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
707 } else { /* GFAR_MQ_POLLING */
708 grp->rx_bit_map = rxq_mask ?
709 *rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710 grp->tx_bit_map = txq_mask ?
711 *txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
713 } else {
714 grp->rx_bit_map = 0xFF;
715 grp->tx_bit_map = 0xFF;
718 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
719 * right to left, so we need to revert the 8 bits to get the q index
721 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
722 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
724 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
725 * also assign queues to groups
727 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
728 if (!grp->rx_queue)
729 grp->rx_queue = priv->rx_queue[i];
730 grp->num_rx_queues++;
731 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
732 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
733 priv->rx_queue[i]->grp = grp;
736 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
737 if (!grp->tx_queue)
738 grp->tx_queue = priv->tx_queue[i];
739 grp->num_tx_queues++;
740 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
741 priv->tqueue |= (TQUEUE_EN0 >> i);
742 priv->tx_queue[i]->grp = grp;
745 priv->num_grps++;
747 return 0;
750 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
752 const char *model;
753 const char *ctype;
754 const void *mac_addr;
755 int err = 0, i;
756 struct net_device *dev = NULL;
757 struct gfar_private *priv = NULL;
758 struct device_node *np = ofdev->dev.of_node;
759 struct device_node *child = NULL;
760 const u32 *stash;
761 const u32 *stash_len;
762 const u32 *stash_idx;
763 unsigned int num_tx_qs, num_rx_qs;
764 u32 *tx_queues, *rx_queues;
765 unsigned short mode, poll_mode;
767 if (!np)
768 return -ENODEV;
770 if (of_device_is_compatible(np, "fsl,etsec2")) {
771 mode = MQ_MG_MODE;
772 poll_mode = GFAR_SQ_POLLING;
773 } else {
774 mode = SQ_SG_MODE;
775 poll_mode = GFAR_SQ_POLLING;
778 /* parse the num of HW tx and rx queues */
779 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
780 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
782 if (mode == SQ_SG_MODE) {
783 num_tx_qs = 1;
784 num_rx_qs = 1;
785 } else { /* MQ_MG_MODE */
786 /* get the actual number of supported groups */
787 unsigned int num_grps = of_get_available_child_count(np);
789 if (num_grps == 0 || num_grps > MAXGROUPS) {
790 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
791 num_grps);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
796 if (poll_mode == GFAR_SQ_POLLING) {
797 num_tx_qs = num_grps; /* one txq per int group */
798 num_rx_qs = num_grps; /* one rxq per int group */
799 } else { /* GFAR_MQ_POLLING */
800 num_tx_qs = tx_queues ? *tx_queues : 1;
801 num_rx_qs = rx_queues ? *rx_queues : 1;
805 if (num_tx_qs > MAX_TX_QS) {
806 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
807 num_tx_qs, MAX_TX_QS);
808 pr_err("Cannot do alloc_etherdev, aborting\n");
809 return -EINVAL;
812 if (num_rx_qs > MAX_RX_QS) {
813 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
814 num_rx_qs, MAX_RX_QS);
815 pr_err("Cannot do alloc_etherdev, aborting\n");
816 return -EINVAL;
819 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
820 dev = *pdev;
821 if (NULL == dev)
822 return -ENOMEM;
824 priv = netdev_priv(dev);
825 priv->ndev = dev;
827 priv->mode = mode;
828 priv->poll_mode = poll_mode;
830 priv->num_tx_queues = num_tx_qs;
831 netif_set_real_num_rx_queues(dev, num_rx_qs);
832 priv->num_rx_queues = num_rx_qs;
834 err = gfar_alloc_tx_queues(priv);
835 if (err)
836 goto tx_alloc_failed;
838 err = gfar_alloc_rx_queues(priv);
839 if (err)
840 goto rx_alloc_failed;
842 /* Init Rx queue filer rule set linked list */
843 INIT_LIST_HEAD(&priv->rx_list.list);
844 priv->rx_list.count = 0;
845 mutex_init(&priv->rx_queue_access);
847 model = of_get_property(np, "model", NULL);
849 for (i = 0; i < MAXGROUPS; i++)
850 priv->gfargrp[i].regs = NULL;
852 /* Parse and initialize group specific information */
853 if (priv->mode == MQ_MG_MODE) {
854 for_each_child_of_node(np, child) {
855 err = gfar_parse_group(child, priv, model);
856 if (err)
857 goto err_grp_init;
859 } else { /* SQ_SG_MODE */
860 err = gfar_parse_group(np, priv, model);
861 if (err)
862 goto err_grp_init;
865 stash = of_get_property(np, "bd-stash", NULL);
867 if (stash) {
868 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
869 priv->bd_stash_en = 1;
872 stash_len = of_get_property(np, "rx-stash-len", NULL);
874 if (stash_len)
875 priv->rx_stash_size = *stash_len;
877 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
879 if (stash_idx)
880 priv->rx_stash_index = *stash_idx;
882 if (stash_len || stash_idx)
883 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
885 mac_addr = of_get_mac_address(np);
887 if (mac_addr)
888 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
890 if (model && !strcasecmp(model, "TSEC"))
891 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
892 FSL_GIANFAR_DEV_HAS_COALESCE |
893 FSL_GIANFAR_DEV_HAS_RMON |
894 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
896 if (model && !strcasecmp(model, "eTSEC"))
897 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
898 FSL_GIANFAR_DEV_HAS_COALESCE |
899 FSL_GIANFAR_DEV_HAS_RMON |
900 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
901 FSL_GIANFAR_DEV_HAS_CSUM |
902 FSL_GIANFAR_DEV_HAS_VLAN |
903 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
904 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
905 FSL_GIANFAR_DEV_HAS_TIMER;
907 ctype = of_get_property(np, "phy-connection-type", NULL);
909 /* We only care about rgmii-id. The rest are autodetected */
910 if (ctype && !strcmp(ctype, "rgmii-id"))
911 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
912 else
913 priv->interface = PHY_INTERFACE_MODE_MII;
915 if (of_get_property(np, "fsl,magic-packet", NULL))
916 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
918 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
920 /* In the case of a fixed PHY, the DT node associated
921 * to the PHY is the Ethernet MAC DT node.
923 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
924 err = of_phy_register_fixed_link(np);
925 if (err)
926 goto err_grp_init;
928 priv->phy_node = of_node_get(np);
931 /* Find the TBI PHY. If it's not there, we don't support SGMII */
932 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
934 return 0;
936 err_grp_init:
937 unmap_group_regs(priv);
938 rx_alloc_failed:
939 gfar_free_rx_queues(priv);
940 tx_alloc_failed:
941 gfar_free_tx_queues(priv);
942 free_gfar_dev(priv);
943 return err;
946 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
948 struct hwtstamp_config config;
949 struct gfar_private *priv = netdev_priv(netdev);
951 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
952 return -EFAULT;
954 /* reserved for future extensions */
955 if (config.flags)
956 return -EINVAL;
958 switch (config.tx_type) {
959 case HWTSTAMP_TX_OFF:
960 priv->hwts_tx_en = 0;
961 break;
962 case HWTSTAMP_TX_ON:
963 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
964 return -ERANGE;
965 priv->hwts_tx_en = 1;
966 break;
967 default:
968 return -ERANGE;
971 switch (config.rx_filter) {
972 case HWTSTAMP_FILTER_NONE:
973 if (priv->hwts_rx_en) {
974 priv->hwts_rx_en = 0;
975 reset_gfar(netdev);
977 break;
978 default:
979 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
980 return -ERANGE;
981 if (!priv->hwts_rx_en) {
982 priv->hwts_rx_en = 1;
983 reset_gfar(netdev);
985 config.rx_filter = HWTSTAMP_FILTER_ALL;
986 break;
989 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
990 -EFAULT : 0;
993 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
995 struct hwtstamp_config config;
996 struct gfar_private *priv = netdev_priv(netdev);
998 config.flags = 0;
999 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1000 config.rx_filter = (priv->hwts_rx_en ?
1001 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1003 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1004 -EFAULT : 0;
1007 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1009 struct gfar_private *priv = netdev_priv(dev);
1011 if (!netif_running(dev))
1012 return -EINVAL;
1014 if (cmd == SIOCSHWTSTAMP)
1015 return gfar_hwtstamp_set(dev, rq);
1016 if (cmd == SIOCGHWTSTAMP)
1017 return gfar_hwtstamp_get(dev, rq);
1019 if (!priv->phydev)
1020 return -ENODEV;
1022 return phy_mii_ioctl(priv->phydev, rq, cmd);
1025 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1026 u32 class)
1028 u32 rqfpr = FPR_FILER_MASK;
1029 u32 rqfcr = 0x0;
1031 rqfar--;
1032 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1033 priv->ftp_rqfpr[rqfar] = rqfpr;
1034 priv->ftp_rqfcr[rqfar] = rqfcr;
1035 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037 rqfar--;
1038 rqfcr = RQFCR_CMP_NOMATCH;
1039 priv->ftp_rqfpr[rqfar] = rqfpr;
1040 priv->ftp_rqfcr[rqfar] = rqfcr;
1041 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1043 rqfar--;
1044 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1045 rqfpr = class;
1046 priv->ftp_rqfcr[rqfar] = rqfcr;
1047 priv->ftp_rqfpr[rqfar] = rqfpr;
1048 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1050 rqfar--;
1051 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1052 rqfpr = class;
1053 priv->ftp_rqfcr[rqfar] = rqfcr;
1054 priv->ftp_rqfpr[rqfar] = rqfpr;
1055 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1057 return rqfar;
1060 static void gfar_init_filer_table(struct gfar_private *priv)
1062 int i = 0x0;
1063 u32 rqfar = MAX_FILER_IDX;
1064 u32 rqfcr = 0x0;
1065 u32 rqfpr = FPR_FILER_MASK;
1067 /* Default rule */
1068 rqfcr = RQFCR_CMP_MATCH;
1069 priv->ftp_rqfcr[rqfar] = rqfcr;
1070 priv->ftp_rqfpr[rqfar] = rqfpr;
1071 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1073 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1074 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1075 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1076 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1077 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1078 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1080 /* cur_filer_idx indicated the first non-masked rule */
1081 priv->cur_filer_idx = rqfar;
1083 /* Rest are masked rules */
1084 rqfcr = RQFCR_CMP_NOMATCH;
1085 for (i = 0; i < rqfar; i++) {
1086 priv->ftp_rqfcr[i] = rqfcr;
1087 priv->ftp_rqfpr[i] = rqfpr;
1088 gfar_write_filer(priv, i, rqfcr, rqfpr);
1092 #ifdef CONFIG_PPC
1093 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1095 unsigned int pvr = mfspr(SPRN_PVR);
1096 unsigned int svr = mfspr(SPRN_SVR);
1097 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1098 unsigned int rev = svr & 0xffff;
1100 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1101 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1102 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 priv->errata |= GFAR_ERRATA_74;
1105 /* MPC8313 and MPC837x all rev */
1106 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1107 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1108 priv->errata |= GFAR_ERRATA_76;
1110 /* MPC8313 Rev < 2.0 */
1111 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1112 priv->errata |= GFAR_ERRATA_12;
1115 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1117 unsigned int svr = mfspr(SPRN_SVR);
1119 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1120 priv->errata |= GFAR_ERRATA_12;
1121 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1122 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1123 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1125 #endif
1127 static void gfar_detect_errata(struct gfar_private *priv)
1129 struct device *dev = &priv->ofdev->dev;
1131 /* no plans to fix */
1132 priv->errata |= GFAR_ERRATA_A002;
1134 #ifdef CONFIG_PPC
1135 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1136 __gfar_detect_errata_85xx(priv);
1137 else /* non-mpc85xx parts, i.e. e300 core based */
1138 __gfar_detect_errata_83xx(priv);
1139 #endif
1141 if (priv->errata)
1142 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1143 priv->errata);
1146 void gfar_mac_reset(struct gfar_private *priv)
1148 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1149 u32 tempval;
1151 /* Reset MAC layer */
1152 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1154 /* We need to delay at least 3 TX clocks */
1155 udelay(3);
1157 /* the soft reset bit is not self-resetting, so we need to
1158 * clear it before resuming normal operation
1160 gfar_write(&regs->maccfg1, 0);
1162 udelay(3);
1164 /* Compute rx_buff_size based on config flags */
1165 gfar_rx_buff_size_config(priv);
1167 /* Initialize the max receive frame/buffer lengths */
1168 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1169 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1171 /* Initialize the Minimum Frame Length Register */
1172 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1174 /* Initialize MACCFG2. */
1175 tempval = MACCFG2_INIT_SETTINGS;
1177 /* If the mtu is larger than the max size for standard
1178 * ethernet frames (ie, a jumbo frame), then set maccfg2
1179 * to allow huge frames, and to check the length
1181 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1182 gfar_has_errata(priv, GFAR_ERRATA_74))
1183 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1185 gfar_write(&regs->maccfg2, tempval);
1187 /* Clear mac addr hash registers */
1188 gfar_write(&regs->igaddr0, 0);
1189 gfar_write(&regs->igaddr1, 0);
1190 gfar_write(&regs->igaddr2, 0);
1191 gfar_write(&regs->igaddr3, 0);
1192 gfar_write(&regs->igaddr4, 0);
1193 gfar_write(&regs->igaddr5, 0);
1194 gfar_write(&regs->igaddr6, 0);
1195 gfar_write(&regs->igaddr7, 0);
1197 gfar_write(&regs->gaddr0, 0);
1198 gfar_write(&regs->gaddr1, 0);
1199 gfar_write(&regs->gaddr2, 0);
1200 gfar_write(&regs->gaddr3, 0);
1201 gfar_write(&regs->gaddr4, 0);
1202 gfar_write(&regs->gaddr5, 0);
1203 gfar_write(&regs->gaddr6, 0);
1204 gfar_write(&regs->gaddr7, 0);
1206 if (priv->extended_hash)
1207 gfar_clear_exact_match(priv->ndev);
1209 gfar_mac_rx_config(priv);
1211 gfar_mac_tx_config(priv);
1213 gfar_set_mac_address(priv->ndev);
1215 gfar_set_multi(priv->ndev);
1217 /* clear ievent and imask before configuring coalescing */
1218 gfar_ints_disable(priv);
1220 /* Configure the coalescing support */
1221 gfar_configure_coalescing_all(priv);
1224 static void gfar_hw_init(struct gfar_private *priv)
1226 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1227 u32 attrs;
1229 /* Stop the DMA engine now, in case it was running before
1230 * (The firmware could have used it, and left it running).
1232 gfar_halt(priv);
1234 gfar_mac_reset(priv);
1236 /* Zero out the rmon mib registers if it has them */
1237 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1238 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1240 /* Mask off the CAM interrupts */
1241 gfar_write(&regs->rmon.cam1, 0xffffffff);
1242 gfar_write(&regs->rmon.cam2, 0xffffffff);
1245 /* Initialize ECNTRL */
1246 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1248 /* Set the extraction length and index */
1249 attrs = ATTRELI_EL(priv->rx_stash_size) |
1250 ATTRELI_EI(priv->rx_stash_index);
1252 gfar_write(&regs->attreli, attrs);
1254 /* Start with defaults, and add stashing
1255 * depending on driver parameters
1257 attrs = ATTR_INIT_SETTINGS;
1259 if (priv->bd_stash_en)
1260 attrs |= ATTR_BDSTASH;
1262 if (priv->rx_stash_size != 0)
1263 attrs |= ATTR_BUFSTASH;
1265 gfar_write(&regs->attr, attrs);
1267 /* FIFO configs */
1268 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1269 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1270 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1272 /* Program the interrupt steering regs, only for MG devices */
1273 if (priv->num_grps > 1)
1274 gfar_write_isrg(priv);
1277 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1279 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1281 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1282 priv->extended_hash = 1;
1283 priv->hash_width = 9;
1285 priv->hash_regs[0] = &regs->igaddr0;
1286 priv->hash_regs[1] = &regs->igaddr1;
1287 priv->hash_regs[2] = &regs->igaddr2;
1288 priv->hash_regs[3] = &regs->igaddr3;
1289 priv->hash_regs[4] = &regs->igaddr4;
1290 priv->hash_regs[5] = &regs->igaddr5;
1291 priv->hash_regs[6] = &regs->igaddr6;
1292 priv->hash_regs[7] = &regs->igaddr7;
1293 priv->hash_regs[8] = &regs->gaddr0;
1294 priv->hash_regs[9] = &regs->gaddr1;
1295 priv->hash_regs[10] = &regs->gaddr2;
1296 priv->hash_regs[11] = &regs->gaddr3;
1297 priv->hash_regs[12] = &regs->gaddr4;
1298 priv->hash_regs[13] = &regs->gaddr5;
1299 priv->hash_regs[14] = &regs->gaddr6;
1300 priv->hash_regs[15] = &regs->gaddr7;
1302 } else {
1303 priv->extended_hash = 0;
1304 priv->hash_width = 8;
1306 priv->hash_regs[0] = &regs->gaddr0;
1307 priv->hash_regs[1] = &regs->gaddr1;
1308 priv->hash_regs[2] = &regs->gaddr2;
1309 priv->hash_regs[3] = &regs->gaddr3;
1310 priv->hash_regs[4] = &regs->gaddr4;
1311 priv->hash_regs[5] = &regs->gaddr5;
1312 priv->hash_regs[6] = &regs->gaddr6;
1313 priv->hash_regs[7] = &regs->gaddr7;
1317 /* Set up the ethernet device structure, private data,
1318 * and anything else we need before we start
1320 static int gfar_probe(struct platform_device *ofdev)
1322 struct net_device *dev = NULL;
1323 struct gfar_private *priv = NULL;
1324 int err = 0, i;
1326 err = gfar_of_init(ofdev, &dev);
1328 if (err)
1329 return err;
1331 priv = netdev_priv(dev);
1332 priv->ndev = dev;
1333 priv->ofdev = ofdev;
1334 priv->dev = &ofdev->dev;
1335 SET_NETDEV_DEV(dev, &ofdev->dev);
1337 spin_lock_init(&priv->bflock);
1338 INIT_WORK(&priv->reset_task, gfar_reset_task);
1340 platform_set_drvdata(ofdev, priv);
1342 gfar_detect_errata(priv);
1344 /* Set the dev->base_addr to the gfar reg region */
1345 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1347 /* Fill in the dev structure */
1348 dev->watchdog_timeo = TX_TIMEOUT;
1349 dev->mtu = 1500;
1350 dev->netdev_ops = &gfar_netdev_ops;
1351 dev->ethtool_ops = &gfar_ethtool_ops;
1353 /* Register for napi ...We are registering NAPI for each grp */
1354 for (i = 0; i < priv->num_grps; i++) {
1355 if (priv->poll_mode == GFAR_SQ_POLLING) {
1356 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1357 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1358 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1359 gfar_poll_tx_sq, 2);
1360 } else {
1361 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1362 gfar_poll_rx, GFAR_DEV_WEIGHT);
1363 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1364 gfar_poll_tx, 2);
1368 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1369 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1370 NETIF_F_RXCSUM;
1371 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1372 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1375 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1376 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1377 NETIF_F_HW_VLAN_CTAG_RX;
1378 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1381 gfar_init_addr_hash_table(priv);
1383 /* Insert receive time stamps into padding alignment bytes */
1384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1385 priv->padding = 8;
1387 if (dev->features & NETIF_F_IP_CSUM ||
1388 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1389 dev->needed_headroom = GMAC_FCB_LEN;
1391 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1393 /* Initializing some of the rx/tx queue level parameters */
1394 for (i = 0; i < priv->num_tx_queues; i++) {
1395 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1396 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1397 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1398 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1401 for (i = 0; i < priv->num_rx_queues; i++) {
1402 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1403 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1404 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1407 /* always enable rx filer */
1408 priv->rx_filer_enable = 1;
1409 /* Enable most messages by default */
1410 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1411 /* use pritority h/w tx queue scheduling for single queue devices */
1412 if (priv->num_tx_queues == 1)
1413 priv->prio_sched_en = 1;
1415 set_bit(GFAR_DOWN, &priv->state);
1417 gfar_hw_init(priv);
1419 /* Carrier starts down, phylib will bring it up */
1420 netif_carrier_off(dev);
1422 err = register_netdev(dev);
1424 if (err) {
1425 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1426 goto register_fail;
1429 device_init_wakeup(&dev->dev,
1430 priv->device_flags &
1431 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1433 /* fill out IRQ number and name fields */
1434 for (i = 0; i < priv->num_grps; i++) {
1435 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1436 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1437 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1438 dev->name, "_g", '0' + i, "_tx");
1439 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1440 dev->name, "_g", '0' + i, "_rx");
1441 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1442 dev->name, "_g", '0' + i, "_er");
1443 } else
1444 strcpy(gfar_irq(grp, TX)->name, dev->name);
1447 /* Initialize the filer table */
1448 gfar_init_filer_table(priv);
1450 /* Print out the device info */
1451 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1453 /* Even more device info helps when determining which kernel
1454 * provided which set of benchmarks.
1456 netdev_info(dev, "Running with NAPI enabled\n");
1457 for (i = 0; i < priv->num_rx_queues; i++)
1458 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1459 i, priv->rx_queue[i]->rx_ring_size);
1460 for (i = 0; i < priv->num_tx_queues; i++)
1461 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1462 i, priv->tx_queue[i]->tx_ring_size);
1464 return 0;
1466 register_fail:
1467 unmap_group_regs(priv);
1468 gfar_free_rx_queues(priv);
1469 gfar_free_tx_queues(priv);
1470 of_node_put(priv->phy_node);
1471 of_node_put(priv->tbi_node);
1472 free_gfar_dev(priv);
1473 return err;
1476 static int gfar_remove(struct platform_device *ofdev)
1478 struct gfar_private *priv = platform_get_drvdata(ofdev);
1480 of_node_put(priv->phy_node);
1481 of_node_put(priv->tbi_node);
1483 unregister_netdev(priv->ndev);
1484 unmap_group_regs(priv);
1485 gfar_free_rx_queues(priv);
1486 gfar_free_tx_queues(priv);
1487 free_gfar_dev(priv);
1489 return 0;
1492 #ifdef CONFIG_PM
1494 static int gfar_suspend(struct device *dev)
1496 struct gfar_private *priv = dev_get_drvdata(dev);
1497 struct net_device *ndev = priv->ndev;
1498 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1499 unsigned long flags;
1500 u32 tempval;
1502 int magic_packet = priv->wol_en &&
1503 (priv->device_flags &
1504 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1506 netif_device_detach(ndev);
1508 if (netif_running(ndev)) {
1510 local_irq_save(flags);
1511 lock_tx_qs(priv);
1513 gfar_halt_nodisable(priv);
1515 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1516 tempval = gfar_read(&regs->maccfg1);
1518 tempval &= ~MACCFG1_TX_EN;
1520 if (!magic_packet)
1521 tempval &= ~MACCFG1_RX_EN;
1523 gfar_write(&regs->maccfg1, tempval);
1525 unlock_tx_qs(priv);
1526 local_irq_restore(flags);
1528 disable_napi(priv);
1530 if (magic_packet) {
1531 /* Enable interrupt on Magic Packet */
1532 gfar_write(&regs->imask, IMASK_MAG);
1534 /* Enable Magic Packet mode */
1535 tempval = gfar_read(&regs->maccfg2);
1536 tempval |= MACCFG2_MPEN;
1537 gfar_write(&regs->maccfg2, tempval);
1538 } else {
1539 phy_stop(priv->phydev);
1543 return 0;
1546 static int gfar_resume(struct device *dev)
1548 struct gfar_private *priv = dev_get_drvdata(dev);
1549 struct net_device *ndev = priv->ndev;
1550 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1551 unsigned long flags;
1552 u32 tempval;
1553 int magic_packet = priv->wol_en &&
1554 (priv->device_flags &
1555 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1557 if (!netif_running(ndev)) {
1558 netif_device_attach(ndev);
1559 return 0;
1562 if (!magic_packet && priv->phydev)
1563 phy_start(priv->phydev);
1565 /* Disable Magic Packet mode, in case something
1566 * else woke us up.
1568 local_irq_save(flags);
1569 lock_tx_qs(priv);
1571 tempval = gfar_read(&regs->maccfg2);
1572 tempval &= ~MACCFG2_MPEN;
1573 gfar_write(&regs->maccfg2, tempval);
1575 gfar_start(priv);
1577 unlock_tx_qs(priv);
1578 local_irq_restore(flags);
1580 netif_device_attach(ndev);
1582 enable_napi(priv);
1584 return 0;
1587 static int gfar_restore(struct device *dev)
1589 struct gfar_private *priv = dev_get_drvdata(dev);
1590 struct net_device *ndev = priv->ndev;
1592 if (!netif_running(ndev)) {
1593 netif_device_attach(ndev);
1595 return 0;
1598 if (gfar_init_bds(ndev)) {
1599 free_skb_resources(priv);
1600 return -ENOMEM;
1603 gfar_mac_reset(priv);
1605 gfar_init_tx_rx_base(priv);
1607 gfar_start(priv);
1609 priv->oldlink = 0;
1610 priv->oldspeed = 0;
1611 priv->oldduplex = -1;
1613 if (priv->phydev)
1614 phy_start(priv->phydev);
1616 netif_device_attach(ndev);
1617 enable_napi(priv);
1619 return 0;
1622 static struct dev_pm_ops gfar_pm_ops = {
1623 .suspend = gfar_suspend,
1624 .resume = gfar_resume,
1625 .freeze = gfar_suspend,
1626 .thaw = gfar_resume,
1627 .restore = gfar_restore,
1630 #define GFAR_PM_OPS (&gfar_pm_ops)
1632 #else
1634 #define GFAR_PM_OPS NULL
1636 #endif
1638 /* Reads the controller's registers to determine what interface
1639 * connects it to the PHY.
1641 static phy_interface_t gfar_get_interface(struct net_device *dev)
1643 struct gfar_private *priv = netdev_priv(dev);
1644 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1645 u32 ecntrl;
1647 ecntrl = gfar_read(&regs->ecntrl);
1649 if (ecntrl & ECNTRL_SGMII_MODE)
1650 return PHY_INTERFACE_MODE_SGMII;
1652 if (ecntrl & ECNTRL_TBI_MODE) {
1653 if (ecntrl & ECNTRL_REDUCED_MODE)
1654 return PHY_INTERFACE_MODE_RTBI;
1655 else
1656 return PHY_INTERFACE_MODE_TBI;
1659 if (ecntrl & ECNTRL_REDUCED_MODE) {
1660 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1661 return PHY_INTERFACE_MODE_RMII;
1663 else {
1664 phy_interface_t interface = priv->interface;
1666 /* This isn't autodetected right now, so it must
1667 * be set by the device tree or platform code.
1669 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1670 return PHY_INTERFACE_MODE_RGMII_ID;
1672 return PHY_INTERFACE_MODE_RGMII;
1676 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1677 return PHY_INTERFACE_MODE_GMII;
1679 return PHY_INTERFACE_MODE_MII;
1683 /* Initializes driver's PHY state, and attaches to the PHY.
1684 * Returns 0 on success.
1686 static int init_phy(struct net_device *dev)
1688 struct gfar_private *priv = netdev_priv(dev);
1689 uint gigabit_support =
1690 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1691 GFAR_SUPPORTED_GBIT : 0;
1692 phy_interface_t interface;
1694 priv->oldlink = 0;
1695 priv->oldspeed = 0;
1696 priv->oldduplex = -1;
1698 interface = gfar_get_interface(dev);
1700 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1701 interface);
1702 if (!priv->phydev) {
1703 dev_err(&dev->dev, "could not attach to PHY\n");
1704 return -ENODEV;
1707 if (interface == PHY_INTERFACE_MODE_SGMII)
1708 gfar_configure_serdes(dev);
1710 /* Remove any features not supported by the controller */
1711 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1712 priv->phydev->advertising = priv->phydev->supported;
1714 /* Add support for flow control, but don't advertise it by default */
1715 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1717 return 0;
1720 /* Initialize TBI PHY interface for communicating with the
1721 * SERDES lynx PHY on the chip. We communicate with this PHY
1722 * through the MDIO bus on each controller, treating it as a
1723 * "normal" PHY at the address found in the TBIPA register. We assume
1724 * that the TBIPA register is valid. Either the MDIO bus code will set
1725 * it to a value that doesn't conflict with other PHYs on the bus, or the
1726 * value doesn't matter, as there are no other PHYs on the bus.
1728 static void gfar_configure_serdes(struct net_device *dev)
1730 struct gfar_private *priv = netdev_priv(dev);
1731 struct phy_device *tbiphy;
1733 if (!priv->tbi_node) {
1734 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1735 "device tree specify a tbi-handle\n");
1736 return;
1739 tbiphy = of_phy_find_device(priv->tbi_node);
1740 if (!tbiphy) {
1741 dev_err(&dev->dev, "error: Could not get TBI device\n");
1742 return;
1745 /* If the link is already up, we must already be ok, and don't need to
1746 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1747 * everything for us? Resetting it takes the link down and requires
1748 * several seconds for it to come back.
1750 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1751 return;
1753 /* Single clk mode, mii mode off(for serdes communication) */
1754 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1756 phy_write(tbiphy, MII_ADVERTISE,
1757 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1758 ADVERTISE_1000XPSE_ASYM);
1760 phy_write(tbiphy, MII_BMCR,
1761 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1762 BMCR_SPEED1000);
1765 static int __gfar_is_rx_idle(struct gfar_private *priv)
1767 u32 res;
1769 /* Normaly TSEC should not hang on GRS commands, so we should
1770 * actually wait for IEVENT_GRSC flag.
1772 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1773 return 0;
1775 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1776 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1777 * and the Rx can be safely reset.
1779 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1780 res &= 0x7f807f80;
1781 if ((res & 0xffff) == (res >> 16))
1782 return 1;
1784 return 0;
1787 /* Halt the receive and transmit queues */
1788 static void gfar_halt_nodisable(struct gfar_private *priv)
1790 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1791 u32 tempval;
1792 unsigned int timeout;
1793 int stopped;
1795 gfar_ints_disable(priv);
1797 if (gfar_is_dma_stopped(priv))
1798 return;
1800 /* Stop the DMA, and wait for it to stop */
1801 tempval = gfar_read(&regs->dmactrl);
1802 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1803 gfar_write(&regs->dmactrl, tempval);
1805 retry:
1806 timeout = 1000;
1807 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1808 cpu_relax();
1809 timeout--;
1812 if (!timeout)
1813 stopped = gfar_is_dma_stopped(priv);
1815 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1816 !__gfar_is_rx_idle(priv))
1817 goto retry;
1820 /* Halt the receive and transmit queues */
1821 void gfar_halt(struct gfar_private *priv)
1823 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 u32 tempval;
1826 /* Dissable the Rx/Tx hw queues */
1827 gfar_write(&regs->rqueue, 0);
1828 gfar_write(&regs->tqueue, 0);
1830 mdelay(10);
1832 gfar_halt_nodisable(priv);
1834 /* Disable Rx/Tx DMA */
1835 tempval = gfar_read(&regs->maccfg1);
1836 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1837 gfar_write(&regs->maccfg1, tempval);
1840 void stop_gfar(struct net_device *dev)
1842 struct gfar_private *priv = netdev_priv(dev);
1844 netif_tx_stop_all_queues(dev);
1846 smp_mb__before_atomic();
1847 set_bit(GFAR_DOWN, &priv->state);
1848 smp_mb__after_atomic();
1850 disable_napi(priv);
1852 /* disable ints and gracefully shut down Rx/Tx DMA */
1853 gfar_halt(priv);
1855 phy_stop(priv->phydev);
1857 free_skb_resources(priv);
1860 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1862 struct txbd8 *txbdp;
1863 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1864 int i, j;
1866 txbdp = tx_queue->tx_bd_base;
1868 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1869 if (!tx_queue->tx_skbuff[i])
1870 continue;
1872 dma_unmap_single(priv->dev, txbdp->bufPtr,
1873 txbdp->length, DMA_TO_DEVICE);
1874 txbdp->lstatus = 0;
1875 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1876 j++) {
1877 txbdp++;
1878 dma_unmap_page(priv->dev, txbdp->bufPtr,
1879 txbdp->length, DMA_TO_DEVICE);
1881 txbdp++;
1882 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1883 tx_queue->tx_skbuff[i] = NULL;
1885 kfree(tx_queue->tx_skbuff);
1886 tx_queue->tx_skbuff = NULL;
1889 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1891 struct rxbd8 *rxbdp;
1892 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1893 int i;
1895 rxbdp = rx_queue->rx_bd_base;
1897 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1898 if (rx_queue->rx_skbuff[i]) {
1899 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1900 priv->rx_buffer_size,
1901 DMA_FROM_DEVICE);
1902 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1903 rx_queue->rx_skbuff[i] = NULL;
1905 rxbdp->lstatus = 0;
1906 rxbdp->bufPtr = 0;
1907 rxbdp++;
1909 kfree(rx_queue->rx_skbuff);
1910 rx_queue->rx_skbuff = NULL;
1913 /* If there are any tx skbs or rx skbs still around, free them.
1914 * Then free tx_skbuff and rx_skbuff
1916 static void free_skb_resources(struct gfar_private *priv)
1918 struct gfar_priv_tx_q *tx_queue = NULL;
1919 struct gfar_priv_rx_q *rx_queue = NULL;
1920 int i;
1922 /* Go through all the buffer descriptors and free their data buffers */
1923 for (i = 0; i < priv->num_tx_queues; i++) {
1924 struct netdev_queue *txq;
1926 tx_queue = priv->tx_queue[i];
1927 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1928 if (tx_queue->tx_skbuff)
1929 free_skb_tx_queue(tx_queue);
1930 netdev_tx_reset_queue(txq);
1933 for (i = 0; i < priv->num_rx_queues; i++) {
1934 rx_queue = priv->rx_queue[i];
1935 if (rx_queue->rx_skbuff)
1936 free_skb_rx_queue(rx_queue);
1939 dma_free_coherent(priv->dev,
1940 sizeof(struct txbd8) * priv->total_tx_ring_size +
1941 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1942 priv->tx_queue[0]->tx_bd_base,
1943 priv->tx_queue[0]->tx_bd_dma_base);
1946 void gfar_start(struct gfar_private *priv)
1948 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1949 u32 tempval;
1950 int i = 0;
1952 /* Enable Rx/Tx hw queues */
1953 gfar_write(&regs->rqueue, priv->rqueue);
1954 gfar_write(&regs->tqueue, priv->tqueue);
1956 /* Initialize DMACTRL to have WWR and WOP */
1957 tempval = gfar_read(&regs->dmactrl);
1958 tempval |= DMACTRL_INIT_SETTINGS;
1959 gfar_write(&regs->dmactrl, tempval);
1961 /* Make sure we aren't stopped */
1962 tempval = gfar_read(&regs->dmactrl);
1963 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1964 gfar_write(&regs->dmactrl, tempval);
1966 for (i = 0; i < priv->num_grps; i++) {
1967 regs = priv->gfargrp[i].regs;
1968 /* Clear THLT/RHLT, so that the DMA starts polling now */
1969 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1970 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1973 /* Enable Rx/Tx DMA */
1974 tempval = gfar_read(&regs->maccfg1);
1975 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1976 gfar_write(&regs->maccfg1, tempval);
1978 gfar_ints_enable(priv);
1980 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
1983 static void free_grp_irqs(struct gfar_priv_grp *grp)
1985 free_irq(gfar_irq(grp, TX)->irq, grp);
1986 free_irq(gfar_irq(grp, RX)->irq, grp);
1987 free_irq(gfar_irq(grp, ER)->irq, grp);
1990 static int register_grp_irqs(struct gfar_priv_grp *grp)
1992 struct gfar_private *priv = grp->priv;
1993 struct net_device *dev = priv->ndev;
1994 int err;
1996 /* If the device has multiple interrupts, register for
1997 * them. Otherwise, only register for the one
1999 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2000 /* Install our interrupt handlers for Error,
2001 * Transmit, and Receive
2003 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2004 gfar_irq(grp, ER)->name, grp);
2005 if (err < 0) {
2006 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2007 gfar_irq(grp, ER)->irq);
2009 goto err_irq_fail;
2011 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2012 gfar_irq(grp, TX)->name, grp);
2013 if (err < 0) {
2014 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2015 gfar_irq(grp, TX)->irq);
2016 goto tx_irq_fail;
2018 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2019 gfar_irq(grp, RX)->name, grp);
2020 if (err < 0) {
2021 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2022 gfar_irq(grp, RX)->irq);
2023 goto rx_irq_fail;
2025 } else {
2026 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2027 gfar_irq(grp, TX)->name, grp);
2028 if (err < 0) {
2029 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2030 gfar_irq(grp, TX)->irq);
2031 goto err_irq_fail;
2035 return 0;
2037 rx_irq_fail:
2038 free_irq(gfar_irq(grp, TX)->irq, grp);
2039 tx_irq_fail:
2040 free_irq(gfar_irq(grp, ER)->irq, grp);
2041 err_irq_fail:
2042 return err;
2046 static void gfar_free_irq(struct gfar_private *priv)
2048 int i;
2050 /* Free the IRQs */
2051 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2052 for (i = 0; i < priv->num_grps; i++)
2053 free_grp_irqs(&priv->gfargrp[i]);
2054 } else {
2055 for (i = 0; i < priv->num_grps; i++)
2056 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2057 &priv->gfargrp[i]);
2061 static int gfar_request_irq(struct gfar_private *priv)
2063 int err, i, j;
2065 for (i = 0; i < priv->num_grps; i++) {
2066 err = register_grp_irqs(&priv->gfargrp[i]);
2067 if (err) {
2068 for (j = 0; j < i; j++)
2069 free_grp_irqs(&priv->gfargrp[j]);
2070 return err;
2074 return 0;
2077 /* Bring the controller up and running */
2078 int startup_gfar(struct net_device *ndev)
2080 struct gfar_private *priv = netdev_priv(ndev);
2081 int err;
2083 gfar_mac_reset(priv);
2085 err = gfar_alloc_skb_resources(ndev);
2086 if (err)
2087 return err;
2089 gfar_init_tx_rx_base(priv);
2091 smp_mb__before_atomic();
2092 clear_bit(GFAR_DOWN, &priv->state);
2093 smp_mb__after_atomic();
2095 /* Start Rx/Tx DMA and enable the interrupts */
2096 gfar_start(priv);
2098 phy_start(priv->phydev);
2100 enable_napi(priv);
2102 netif_tx_wake_all_queues(ndev);
2104 return 0;
2107 /* Called when something needs to use the ethernet device
2108 * Returns 0 for success.
2110 static int gfar_enet_open(struct net_device *dev)
2112 struct gfar_private *priv = netdev_priv(dev);
2113 int err;
2115 err = init_phy(dev);
2116 if (err)
2117 return err;
2119 err = gfar_request_irq(priv);
2120 if (err)
2121 return err;
2123 err = startup_gfar(dev);
2124 if (err)
2125 return err;
2127 device_set_wakeup_enable(&dev->dev, priv->wol_en);
2129 return err;
2132 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2134 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2136 memset(fcb, 0, GMAC_FCB_LEN);
2138 return fcb;
2141 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2142 int fcb_length)
2144 /* If we're here, it's a IP packet with a TCP or UDP
2145 * payload. We set it to checksum, using a pseudo-header
2146 * we provide
2148 u8 flags = TXFCB_DEFAULT;
2150 /* Tell the controller what the protocol is
2151 * And provide the already calculated phcs
2153 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2154 flags |= TXFCB_UDP;
2155 fcb->phcs = udp_hdr(skb)->check;
2156 } else
2157 fcb->phcs = tcp_hdr(skb)->check;
2159 /* l3os is the distance between the start of the
2160 * frame (skb->data) and the start of the IP hdr.
2161 * l4os is the distance between the start of the
2162 * l3 hdr and the l4 hdr
2164 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2165 fcb->l4os = skb_network_header_len(skb);
2167 fcb->flags = flags;
2170 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2172 fcb->flags |= TXFCB_VLN;
2173 fcb->vlctl = skb_vlan_tag_get(skb);
2176 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2177 struct txbd8 *base, int ring_size)
2179 struct txbd8 *new_bd = bdp + stride;
2181 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2184 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2185 int ring_size)
2187 return skip_txbd(bdp, 1, base, ring_size);
2190 /* eTSEC12: csum generation not supported for some fcb offsets */
2191 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2192 unsigned long fcb_addr)
2194 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2195 (fcb_addr % 0x20) > 0x18);
2198 /* eTSEC76: csum generation for frames larger than 2500 may
2199 * cause excess delays before start of transmission
2201 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2202 unsigned int len)
2204 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2205 (len > 2500));
2208 /* This is called by the kernel when a frame is ready for transmission.
2209 * It is pointed to by the dev->hard_start_xmit function pointer
2211 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2213 struct gfar_private *priv = netdev_priv(dev);
2214 struct gfar_priv_tx_q *tx_queue = NULL;
2215 struct netdev_queue *txq;
2216 struct gfar __iomem *regs = NULL;
2217 struct txfcb *fcb = NULL;
2218 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2219 u32 lstatus;
2220 int i, rq = 0;
2221 int do_tstamp, do_csum, do_vlan;
2222 u32 bufaddr;
2223 unsigned long flags;
2224 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2226 rq = skb->queue_mapping;
2227 tx_queue = priv->tx_queue[rq];
2228 txq = netdev_get_tx_queue(dev, rq);
2229 base = tx_queue->tx_bd_base;
2230 regs = tx_queue->grp->regs;
2232 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2233 do_vlan = skb_vlan_tag_present(skb);
2234 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2235 priv->hwts_tx_en;
2237 if (do_csum || do_vlan)
2238 fcb_len = GMAC_FCB_LEN;
2240 /* check if time stamp should be generated */
2241 if (unlikely(do_tstamp))
2242 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2244 /* make space for additional header when fcb is needed */
2245 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2246 struct sk_buff *skb_new;
2248 skb_new = skb_realloc_headroom(skb, fcb_len);
2249 if (!skb_new) {
2250 dev->stats.tx_errors++;
2251 dev_kfree_skb_any(skb);
2252 return NETDEV_TX_OK;
2255 if (skb->sk)
2256 skb_set_owner_w(skb_new, skb->sk);
2257 dev_consume_skb_any(skb);
2258 skb = skb_new;
2261 /* total number of fragments in the SKB */
2262 nr_frags = skb_shinfo(skb)->nr_frags;
2264 /* calculate the required number of TxBDs for this skb */
2265 if (unlikely(do_tstamp))
2266 nr_txbds = nr_frags + 2;
2267 else
2268 nr_txbds = nr_frags + 1;
2270 /* check if there is space to queue this packet */
2271 if (nr_txbds > tx_queue->num_txbdfree) {
2272 /* no space, stop the queue */
2273 netif_tx_stop_queue(txq);
2274 dev->stats.tx_fifo_errors++;
2275 return NETDEV_TX_BUSY;
2278 /* Update transmit stats */
2279 bytes_sent = skb->len;
2280 tx_queue->stats.tx_bytes += bytes_sent;
2281 /* keep Tx bytes on wire for BQL accounting */
2282 GFAR_CB(skb)->bytes_sent = bytes_sent;
2283 tx_queue->stats.tx_packets++;
2285 txbdp = txbdp_start = tx_queue->cur_tx;
2286 lstatus = txbdp->lstatus;
2288 /* Time stamp insertion requires one additional TxBD */
2289 if (unlikely(do_tstamp))
2290 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2291 tx_queue->tx_ring_size);
2293 if (nr_frags == 0) {
2294 if (unlikely(do_tstamp))
2295 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2296 TXBD_INTERRUPT);
2297 else
2298 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2299 } else {
2300 /* Place the fragment addresses and lengths into the TxBDs */
2301 for (i = 0; i < nr_frags; i++) {
2302 unsigned int frag_len;
2303 /* Point at the next BD, wrapping as needed */
2304 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2306 frag_len = skb_shinfo(skb)->frags[i].size;
2308 lstatus = txbdp->lstatus | frag_len |
2309 BD_LFLAG(TXBD_READY);
2311 /* Handle the last BD specially */
2312 if (i == nr_frags - 1)
2313 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2315 bufaddr = skb_frag_dma_map(priv->dev,
2316 &skb_shinfo(skb)->frags[i],
2318 frag_len,
2319 DMA_TO_DEVICE);
2320 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2321 goto dma_map_err;
2323 /* set the TxBD length and buffer pointer */
2324 txbdp->bufPtr = bufaddr;
2325 txbdp->lstatus = lstatus;
2328 lstatus = txbdp_start->lstatus;
2331 /* Add TxPAL between FCB and frame if required */
2332 if (unlikely(do_tstamp)) {
2333 skb_push(skb, GMAC_TXPAL_LEN);
2334 memset(skb->data, 0, GMAC_TXPAL_LEN);
2337 /* Add TxFCB if required */
2338 if (fcb_len) {
2339 fcb = gfar_add_fcb(skb);
2340 lstatus |= BD_LFLAG(TXBD_TOE);
2343 /* Set up checksumming */
2344 if (do_csum) {
2345 gfar_tx_checksum(skb, fcb, fcb_len);
2347 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2348 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2349 __skb_pull(skb, GMAC_FCB_LEN);
2350 skb_checksum_help(skb);
2351 if (do_vlan || do_tstamp) {
2352 /* put back a new fcb for vlan/tstamp TOE */
2353 fcb = gfar_add_fcb(skb);
2354 } else {
2355 /* Tx TOE not used */
2356 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2357 fcb = NULL;
2362 if (do_vlan)
2363 gfar_tx_vlan(skb, fcb);
2365 /* Setup tx hardware time stamping if requested */
2366 if (unlikely(do_tstamp)) {
2367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2368 fcb->ptp = 1;
2371 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2372 DMA_TO_DEVICE);
2373 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2374 goto dma_map_err;
2376 txbdp_start->bufPtr = bufaddr;
2378 /* If time stamping is requested one additional TxBD must be set up. The
2379 * first TxBD points to the FCB and must have a data length of
2380 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2381 * the full frame length.
2383 if (unlikely(do_tstamp)) {
2384 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2385 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2386 (skb_headlen(skb) - fcb_len);
2387 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2388 } else {
2389 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2392 netdev_tx_sent_queue(txq, bytes_sent);
2394 /* We can work in parallel with gfar_clean_tx_ring(), except
2395 * when modifying num_txbdfree. Note that we didn't grab the lock
2396 * when we were reading the num_txbdfree and checking for available
2397 * space, that's because outside of this function it can only grow,
2398 * and once we've got needed space, it cannot suddenly disappear.
2400 * The lock also protects us from gfar_error(), which can modify
2401 * regs->tstat and thus retrigger the transfers, which is why we
2402 * also must grab the lock before setting ready bit for the first
2403 * to be transmitted BD.
2405 spin_lock_irqsave(&tx_queue->txlock, flags);
2407 gfar_wmb();
2409 txbdp_start->lstatus = lstatus;
2411 gfar_wmb(); /* force lstatus write before tx_skbuff */
2413 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2415 /* Update the current skb pointer to the next entry we will use
2416 * (wrapping if necessary)
2418 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2419 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2421 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2423 /* reduce TxBD free count */
2424 tx_queue->num_txbdfree -= (nr_txbds);
2426 /* If the next BD still needs to be cleaned up, then the bds
2427 * are full. We need to tell the kernel to stop sending us stuff.
2429 if (!tx_queue->num_txbdfree) {
2430 netif_tx_stop_queue(txq);
2432 dev->stats.tx_fifo_errors++;
2435 /* Tell the DMA to go go go */
2436 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2438 /* Unlock priv */
2439 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2441 return NETDEV_TX_OK;
2443 dma_map_err:
2444 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2445 if (do_tstamp)
2446 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2447 for (i = 0; i < nr_frags; i++) {
2448 lstatus = txbdp->lstatus;
2449 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2450 break;
2452 txbdp->lstatus = lstatus & ~BD_LFLAG(TXBD_READY);
2453 bufaddr = txbdp->bufPtr;
2454 dma_unmap_page(priv->dev, bufaddr, txbdp->length,
2455 DMA_TO_DEVICE);
2456 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2458 gfar_wmb();
2459 dev_kfree_skb_any(skb);
2460 return NETDEV_TX_OK;
2463 /* Stops the kernel queue, and halts the controller */
2464 static int gfar_close(struct net_device *dev)
2466 struct gfar_private *priv = netdev_priv(dev);
2468 cancel_work_sync(&priv->reset_task);
2469 stop_gfar(dev);
2471 /* Disconnect from the PHY */
2472 phy_disconnect(priv->phydev);
2473 priv->phydev = NULL;
2475 gfar_free_irq(priv);
2477 return 0;
2480 /* Changes the mac address if the controller is not running. */
2481 static int gfar_set_mac_address(struct net_device *dev)
2483 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2485 return 0;
2488 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2490 struct gfar_private *priv = netdev_priv(dev);
2491 int frame_size = new_mtu + ETH_HLEN;
2493 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2494 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2495 return -EINVAL;
2498 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2499 cpu_relax();
2501 if (dev->flags & IFF_UP)
2502 stop_gfar(dev);
2504 dev->mtu = new_mtu;
2506 if (dev->flags & IFF_UP)
2507 startup_gfar(dev);
2509 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2511 return 0;
2514 void reset_gfar(struct net_device *ndev)
2516 struct gfar_private *priv = netdev_priv(ndev);
2518 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2519 cpu_relax();
2521 stop_gfar(ndev);
2522 startup_gfar(ndev);
2524 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2527 /* gfar_reset_task gets scheduled when a packet has not been
2528 * transmitted after a set amount of time.
2529 * For now, assume that clearing out all the structures, and
2530 * starting over will fix the problem.
2532 static void gfar_reset_task(struct work_struct *work)
2534 struct gfar_private *priv = container_of(work, struct gfar_private,
2535 reset_task);
2536 reset_gfar(priv->ndev);
2539 static void gfar_timeout(struct net_device *dev)
2541 struct gfar_private *priv = netdev_priv(dev);
2543 dev->stats.tx_errors++;
2544 schedule_work(&priv->reset_task);
2547 static void gfar_align_skb(struct sk_buff *skb)
2549 /* We need the data buffer to be aligned properly. We will reserve
2550 * as many bytes as needed to align the data properly
2552 skb_reserve(skb, RXBUF_ALIGNMENT -
2553 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2556 /* Interrupt Handler for Transmit complete */
2557 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2559 struct net_device *dev = tx_queue->dev;
2560 struct netdev_queue *txq;
2561 struct gfar_private *priv = netdev_priv(dev);
2562 struct txbd8 *bdp, *next = NULL;
2563 struct txbd8 *lbdp = NULL;
2564 struct txbd8 *base = tx_queue->tx_bd_base;
2565 struct sk_buff *skb;
2566 int skb_dirtytx;
2567 int tx_ring_size = tx_queue->tx_ring_size;
2568 int frags = 0, nr_txbds = 0;
2569 int i;
2570 int howmany = 0;
2571 int tqi = tx_queue->qindex;
2572 unsigned int bytes_sent = 0;
2573 u32 lstatus;
2574 size_t buflen;
2576 txq = netdev_get_tx_queue(dev, tqi);
2577 bdp = tx_queue->dirty_tx;
2578 skb_dirtytx = tx_queue->skb_dirtytx;
2580 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2581 unsigned long flags;
2583 frags = skb_shinfo(skb)->nr_frags;
2585 /* When time stamping, one additional TxBD must be freed.
2586 * Also, we need to dma_unmap_single() the TxPAL.
2588 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2589 nr_txbds = frags + 2;
2590 else
2591 nr_txbds = frags + 1;
2593 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2595 lstatus = lbdp->lstatus;
2597 /* Only clean completed frames */
2598 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2599 (lstatus & BD_LENGTH_MASK))
2600 break;
2602 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2603 next = next_txbd(bdp, base, tx_ring_size);
2604 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2605 } else
2606 buflen = bdp->length;
2608 dma_unmap_single(priv->dev, bdp->bufPtr,
2609 buflen, DMA_TO_DEVICE);
2611 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2612 struct skb_shared_hwtstamps shhwtstamps;
2613 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2615 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2616 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2617 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2618 skb_tstamp_tx(skb, &shhwtstamps);
2619 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2620 bdp = next;
2623 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2624 bdp = next_txbd(bdp, base, tx_ring_size);
2626 for (i = 0; i < frags; i++) {
2627 dma_unmap_page(priv->dev, bdp->bufPtr,
2628 bdp->length, DMA_TO_DEVICE);
2629 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2630 bdp = next_txbd(bdp, base, tx_ring_size);
2633 bytes_sent += GFAR_CB(skb)->bytes_sent;
2635 dev_kfree_skb_any(skb);
2637 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2639 skb_dirtytx = (skb_dirtytx + 1) &
2640 TX_RING_MOD_MASK(tx_ring_size);
2642 howmany++;
2643 spin_lock_irqsave(&tx_queue->txlock, flags);
2644 tx_queue->num_txbdfree += nr_txbds;
2645 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2648 /* If we freed a buffer, we can restart transmission, if necessary */
2649 if (tx_queue->num_txbdfree &&
2650 netif_tx_queue_stopped(txq) &&
2651 !(test_bit(GFAR_DOWN, &priv->state)))
2652 netif_wake_subqueue(priv->ndev, tqi);
2654 /* Update dirty indicators */
2655 tx_queue->skb_dirtytx = skb_dirtytx;
2656 tx_queue->dirty_tx = bdp;
2658 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2661 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2663 struct gfar_private *priv = netdev_priv(dev);
2664 struct sk_buff *skb;
2666 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2667 if (!skb)
2668 return NULL;
2670 gfar_align_skb(skb);
2672 return skb;
2675 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2677 struct gfar_private *priv = netdev_priv(dev);
2678 struct sk_buff *skb;
2679 dma_addr_t addr;
2681 skb = gfar_alloc_skb(dev);
2682 if (!skb)
2683 return NULL;
2685 addr = dma_map_single(priv->dev, skb->data,
2686 priv->rx_buffer_size, DMA_FROM_DEVICE);
2687 if (unlikely(dma_mapping_error(priv->dev, addr))) {
2688 dev_kfree_skb_any(skb);
2689 return NULL;
2692 *bufaddr = addr;
2693 return skb;
2696 static inline void count_errors(unsigned short status, struct net_device *dev)
2698 struct gfar_private *priv = netdev_priv(dev);
2699 struct net_device_stats *stats = &dev->stats;
2700 struct gfar_extra_stats *estats = &priv->extra_stats;
2702 /* If the packet was truncated, none of the other errors matter */
2703 if (status & RXBD_TRUNCATED) {
2704 stats->rx_length_errors++;
2706 atomic64_inc(&estats->rx_trunc);
2708 return;
2710 /* Count the errors, if there were any */
2711 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2712 stats->rx_length_errors++;
2714 if (status & RXBD_LARGE)
2715 atomic64_inc(&estats->rx_large);
2716 else
2717 atomic64_inc(&estats->rx_short);
2719 if (status & RXBD_NONOCTET) {
2720 stats->rx_frame_errors++;
2721 atomic64_inc(&estats->rx_nonoctet);
2723 if (status & RXBD_CRCERR) {
2724 atomic64_inc(&estats->rx_crcerr);
2725 stats->rx_crc_errors++;
2727 if (status & RXBD_OVERRUN) {
2728 atomic64_inc(&estats->rx_overrun);
2729 stats->rx_crc_errors++;
2733 irqreturn_t gfar_receive(int irq, void *grp_id)
2735 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2736 unsigned long flags;
2737 u32 imask;
2739 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2740 spin_lock_irqsave(&grp->grplock, flags);
2741 imask = gfar_read(&grp->regs->imask);
2742 imask &= IMASK_RX_DISABLED;
2743 gfar_write(&grp->regs->imask, imask);
2744 spin_unlock_irqrestore(&grp->grplock, flags);
2745 __napi_schedule(&grp->napi_rx);
2746 } else {
2747 /* Clear IEVENT, so interrupts aren't called again
2748 * because of the packets that have already arrived.
2750 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2753 return IRQ_HANDLED;
2756 /* Interrupt Handler for Transmit complete */
2757 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2759 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2760 unsigned long flags;
2761 u32 imask;
2763 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2764 spin_lock_irqsave(&grp->grplock, flags);
2765 imask = gfar_read(&grp->regs->imask);
2766 imask &= IMASK_TX_DISABLED;
2767 gfar_write(&grp->regs->imask, imask);
2768 spin_unlock_irqrestore(&grp->grplock, flags);
2769 __napi_schedule(&grp->napi_tx);
2770 } else {
2771 /* Clear IEVENT, so interrupts aren't called again
2772 * because of the packets that have already arrived.
2774 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2777 return IRQ_HANDLED;
2780 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2782 /* If valid headers were found, and valid sums
2783 * were verified, then we tell the kernel that no
2784 * checksumming is necessary. Otherwise, it is [FIXME]
2786 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2787 skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 else
2789 skb_checksum_none_assert(skb);
2793 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2794 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2795 int amount_pull, struct napi_struct *napi)
2797 struct gfar_private *priv = netdev_priv(dev);
2798 struct rxfcb *fcb = NULL;
2800 /* fcb is at the beginning if exists */
2801 fcb = (struct rxfcb *)skb->data;
2803 /* Remove the FCB from the skb
2804 * Remove the padded bytes, if there are any
2806 if (amount_pull) {
2807 skb_record_rx_queue(skb, fcb->rq);
2808 skb_pull(skb, amount_pull);
2811 /* Get receive timestamp from the skb */
2812 if (priv->hwts_rx_en) {
2813 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2814 u64 *ns = (u64 *) skb->data;
2816 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2817 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2820 if (priv->padding)
2821 skb_pull(skb, priv->padding);
2823 if (dev->features & NETIF_F_RXCSUM)
2824 gfar_rx_checksum(skb, fcb);
2826 /* Tell the skb what kind of packet this is */
2827 skb->protocol = eth_type_trans(skb, dev);
2829 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2830 * Even if vlan rx accel is disabled, on some chips
2831 * RXFCB_VLN is pseudo randomly set.
2833 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2834 fcb->flags & RXFCB_VLN)
2835 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2837 /* Send the packet up the stack */
2838 napi_gro_receive(napi, skb);
2842 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2843 * until the budget/quota has been reached. Returns the number
2844 * of frames handled
2846 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2848 struct net_device *dev = rx_queue->dev;
2849 struct rxbd8 *bdp, *base;
2850 struct sk_buff *skb;
2851 int pkt_len;
2852 int amount_pull;
2853 int howmany = 0;
2854 struct gfar_private *priv = netdev_priv(dev);
2856 /* Get the first full descriptor */
2857 bdp = rx_queue->cur_rx;
2858 base = rx_queue->rx_bd_base;
2860 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2862 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2863 struct sk_buff *newskb;
2864 dma_addr_t bufaddr;
2866 rmb();
2868 /* Add another skb for the future */
2869 newskb = gfar_new_skb(dev, &bufaddr);
2871 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2873 dma_unmap_single(priv->dev, bdp->bufPtr,
2874 priv->rx_buffer_size, DMA_FROM_DEVICE);
2876 if (unlikely(!(bdp->status & RXBD_ERR) &&
2877 bdp->length > priv->rx_buffer_size))
2878 bdp->status = RXBD_LARGE;
2880 /* We drop the frame if we failed to allocate a new buffer */
2881 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2882 bdp->status & RXBD_ERR)) {
2883 count_errors(bdp->status, dev);
2885 if (unlikely(!newskb)) {
2886 newskb = skb;
2887 bufaddr = bdp->bufPtr;
2888 } else if (skb)
2889 dev_kfree_skb(skb);
2890 } else {
2891 /* Increment the number of packets */
2892 rx_queue->stats.rx_packets++;
2893 howmany++;
2895 if (likely(skb)) {
2896 pkt_len = bdp->length - ETH_FCS_LEN;
2897 /* Remove the FCS from the packet length */
2898 skb_put(skb, pkt_len);
2899 rx_queue->stats.rx_bytes += pkt_len;
2900 skb_record_rx_queue(skb, rx_queue->qindex);
2901 gfar_process_frame(dev, skb, amount_pull,
2902 &rx_queue->grp->napi_rx);
2904 } else {
2905 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2906 rx_queue->stats.rx_dropped++;
2907 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2912 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2914 /* Setup the new bdp */
2915 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2917 /* Update Last Free RxBD pointer for LFC */
2918 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2919 gfar_write(rx_queue->rfbptr, (u32)bdp);
2921 /* Update to the next pointer */
2922 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2924 /* update to point at the next skb */
2925 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2926 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2929 /* Update the current rxbd pointer to be the next one */
2930 rx_queue->cur_rx = bdp;
2932 return howmany;
2935 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2937 struct gfar_priv_grp *gfargrp =
2938 container_of(napi, struct gfar_priv_grp, napi_rx);
2939 struct gfar __iomem *regs = gfargrp->regs;
2940 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2941 int work_done = 0;
2943 /* Clear IEVENT, so interrupts aren't called again
2944 * because of the packets that have already arrived
2946 gfar_write(&regs->ievent, IEVENT_RX_MASK);
2948 work_done = gfar_clean_rx_ring(rx_queue, budget);
2950 if (work_done < budget) {
2951 u32 imask;
2952 napi_complete(napi);
2953 /* Clear the halt bit in RSTAT */
2954 gfar_write(&regs->rstat, gfargrp->rstat);
2956 spin_lock_irq(&gfargrp->grplock);
2957 imask = gfar_read(&regs->imask);
2958 imask |= IMASK_RX_DEFAULT;
2959 gfar_write(&regs->imask, imask);
2960 spin_unlock_irq(&gfargrp->grplock);
2963 return work_done;
2966 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2968 struct gfar_priv_grp *gfargrp =
2969 container_of(napi, struct gfar_priv_grp, napi_tx);
2970 struct gfar __iomem *regs = gfargrp->regs;
2971 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2972 u32 imask;
2974 /* Clear IEVENT, so interrupts aren't called again
2975 * because of the packets that have already arrived
2977 gfar_write(&regs->ievent, IEVENT_TX_MASK);
2979 /* run Tx cleanup to completion */
2980 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2981 gfar_clean_tx_ring(tx_queue);
2983 napi_complete(napi);
2985 spin_lock_irq(&gfargrp->grplock);
2986 imask = gfar_read(&regs->imask);
2987 imask |= IMASK_TX_DEFAULT;
2988 gfar_write(&regs->imask, imask);
2989 spin_unlock_irq(&gfargrp->grplock);
2991 return 0;
2994 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2996 struct gfar_priv_grp *gfargrp =
2997 container_of(napi, struct gfar_priv_grp, napi_rx);
2998 struct gfar_private *priv = gfargrp->priv;
2999 struct gfar __iomem *regs = gfargrp->regs;
3000 struct gfar_priv_rx_q *rx_queue = NULL;
3001 int work_done = 0, work_done_per_q = 0;
3002 int i, budget_per_q = 0;
3003 unsigned long rstat_rxf;
3004 int num_act_queues;
3006 /* Clear IEVENT, so interrupts aren't called again
3007 * because of the packets that have already arrived
3009 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3011 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3013 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3014 if (num_act_queues)
3015 budget_per_q = budget/num_act_queues;
3017 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3018 /* skip queue if not active */
3019 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3020 continue;
3022 rx_queue = priv->rx_queue[i];
3023 work_done_per_q =
3024 gfar_clean_rx_ring(rx_queue, budget_per_q);
3025 work_done += work_done_per_q;
3027 /* finished processing this queue */
3028 if (work_done_per_q < budget_per_q) {
3029 /* clear active queue hw indication */
3030 gfar_write(&regs->rstat,
3031 RSTAT_CLEAR_RXF0 >> i);
3032 num_act_queues--;
3034 if (!num_act_queues)
3035 break;
3039 if (!num_act_queues) {
3040 u32 imask;
3041 napi_complete(napi);
3043 /* Clear the halt bit in RSTAT */
3044 gfar_write(&regs->rstat, gfargrp->rstat);
3046 spin_lock_irq(&gfargrp->grplock);
3047 imask = gfar_read(&regs->imask);
3048 imask |= IMASK_RX_DEFAULT;
3049 gfar_write(&regs->imask, imask);
3050 spin_unlock_irq(&gfargrp->grplock);
3053 return work_done;
3056 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3058 struct gfar_priv_grp *gfargrp =
3059 container_of(napi, struct gfar_priv_grp, napi_tx);
3060 struct gfar_private *priv = gfargrp->priv;
3061 struct gfar __iomem *regs = gfargrp->regs;
3062 struct gfar_priv_tx_q *tx_queue = NULL;
3063 int has_tx_work = 0;
3064 int i;
3066 /* Clear IEVENT, so interrupts aren't called again
3067 * because of the packets that have already arrived
3069 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3071 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3072 tx_queue = priv->tx_queue[i];
3073 /* run Tx cleanup to completion */
3074 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3075 gfar_clean_tx_ring(tx_queue);
3076 has_tx_work = 1;
3080 if (!has_tx_work) {
3081 u32 imask;
3082 napi_complete(napi);
3084 spin_lock_irq(&gfargrp->grplock);
3085 imask = gfar_read(&regs->imask);
3086 imask |= IMASK_TX_DEFAULT;
3087 gfar_write(&regs->imask, imask);
3088 spin_unlock_irq(&gfargrp->grplock);
3091 return 0;
3095 #ifdef CONFIG_NET_POLL_CONTROLLER
3096 /* Polling 'interrupt' - used by things like netconsole to send skbs
3097 * without having to re-enable interrupts. It's not called while
3098 * the interrupt routine is executing.
3100 static void gfar_netpoll(struct net_device *dev)
3102 struct gfar_private *priv = netdev_priv(dev);
3103 int i;
3105 /* If the device has multiple interrupts, run tx/rx */
3106 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3107 for (i = 0; i < priv->num_grps; i++) {
3108 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3110 disable_irq(gfar_irq(grp, TX)->irq);
3111 disable_irq(gfar_irq(grp, RX)->irq);
3112 disable_irq(gfar_irq(grp, ER)->irq);
3113 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3114 enable_irq(gfar_irq(grp, ER)->irq);
3115 enable_irq(gfar_irq(grp, RX)->irq);
3116 enable_irq(gfar_irq(grp, TX)->irq);
3118 } else {
3119 for (i = 0; i < priv->num_grps; i++) {
3120 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3122 disable_irq(gfar_irq(grp, TX)->irq);
3123 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3124 enable_irq(gfar_irq(grp, TX)->irq);
3128 #endif
3130 /* The interrupt handler for devices with one interrupt */
3131 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3133 struct gfar_priv_grp *gfargrp = grp_id;
3135 /* Save ievent for future reference */
3136 u32 events = gfar_read(&gfargrp->regs->ievent);
3138 /* Check for reception */
3139 if (events & IEVENT_RX_MASK)
3140 gfar_receive(irq, grp_id);
3142 /* Check for transmit completion */
3143 if (events & IEVENT_TX_MASK)
3144 gfar_transmit(irq, grp_id);
3146 /* Check for errors */
3147 if (events & IEVENT_ERR_MASK)
3148 gfar_error(irq, grp_id);
3150 return IRQ_HANDLED;
3153 /* Called every time the controller might need to be made
3154 * aware of new link state. The PHY code conveys this
3155 * information through variables in the phydev structure, and this
3156 * function converts those variables into the appropriate
3157 * register values, and can bring down the device if needed.
3159 static void adjust_link(struct net_device *dev)
3161 struct gfar_private *priv = netdev_priv(dev);
3162 struct phy_device *phydev = priv->phydev;
3164 if (unlikely(phydev->link != priv->oldlink ||
3165 (phydev->link && (phydev->duplex != priv->oldduplex ||
3166 phydev->speed != priv->oldspeed))))
3167 gfar_update_link_state(priv);
3170 /* Update the hash table based on the current list of multicast
3171 * addresses we subscribe to. Also, change the promiscuity of
3172 * the device based on the flags (this function is called
3173 * whenever dev->flags is changed
3175 static void gfar_set_multi(struct net_device *dev)
3177 struct netdev_hw_addr *ha;
3178 struct gfar_private *priv = netdev_priv(dev);
3179 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3180 u32 tempval;
3182 if (dev->flags & IFF_PROMISC) {
3183 /* Set RCTRL to PROM */
3184 tempval = gfar_read(&regs->rctrl);
3185 tempval |= RCTRL_PROM;
3186 gfar_write(&regs->rctrl, tempval);
3187 } else {
3188 /* Set RCTRL to not PROM */
3189 tempval = gfar_read(&regs->rctrl);
3190 tempval &= ~(RCTRL_PROM);
3191 gfar_write(&regs->rctrl, tempval);
3194 if (dev->flags & IFF_ALLMULTI) {
3195 /* Set the hash to rx all multicast frames */
3196 gfar_write(&regs->igaddr0, 0xffffffff);
3197 gfar_write(&regs->igaddr1, 0xffffffff);
3198 gfar_write(&regs->igaddr2, 0xffffffff);
3199 gfar_write(&regs->igaddr3, 0xffffffff);
3200 gfar_write(&regs->igaddr4, 0xffffffff);
3201 gfar_write(&regs->igaddr5, 0xffffffff);
3202 gfar_write(&regs->igaddr6, 0xffffffff);
3203 gfar_write(&regs->igaddr7, 0xffffffff);
3204 gfar_write(&regs->gaddr0, 0xffffffff);
3205 gfar_write(&regs->gaddr1, 0xffffffff);
3206 gfar_write(&regs->gaddr2, 0xffffffff);
3207 gfar_write(&regs->gaddr3, 0xffffffff);
3208 gfar_write(&regs->gaddr4, 0xffffffff);
3209 gfar_write(&regs->gaddr5, 0xffffffff);
3210 gfar_write(&regs->gaddr6, 0xffffffff);
3211 gfar_write(&regs->gaddr7, 0xffffffff);
3212 } else {
3213 int em_num;
3214 int idx;
3216 /* zero out the hash */
3217 gfar_write(&regs->igaddr0, 0x0);
3218 gfar_write(&regs->igaddr1, 0x0);
3219 gfar_write(&regs->igaddr2, 0x0);
3220 gfar_write(&regs->igaddr3, 0x0);
3221 gfar_write(&regs->igaddr4, 0x0);
3222 gfar_write(&regs->igaddr5, 0x0);
3223 gfar_write(&regs->igaddr6, 0x0);
3224 gfar_write(&regs->igaddr7, 0x0);
3225 gfar_write(&regs->gaddr0, 0x0);
3226 gfar_write(&regs->gaddr1, 0x0);
3227 gfar_write(&regs->gaddr2, 0x0);
3228 gfar_write(&regs->gaddr3, 0x0);
3229 gfar_write(&regs->gaddr4, 0x0);
3230 gfar_write(&regs->gaddr5, 0x0);
3231 gfar_write(&regs->gaddr6, 0x0);
3232 gfar_write(&regs->gaddr7, 0x0);
3234 /* If we have extended hash tables, we need to
3235 * clear the exact match registers to prepare for
3236 * setting them
3238 if (priv->extended_hash) {
3239 em_num = GFAR_EM_NUM + 1;
3240 gfar_clear_exact_match(dev);
3241 idx = 1;
3242 } else {
3243 idx = 0;
3244 em_num = 0;
3247 if (netdev_mc_empty(dev))
3248 return;
3250 /* Parse the list, and set the appropriate bits */
3251 netdev_for_each_mc_addr(ha, dev) {
3252 if (idx < em_num) {
3253 gfar_set_mac_for_addr(dev, idx, ha->addr);
3254 idx++;
3255 } else
3256 gfar_set_hash_for_addr(dev, ha->addr);
3262 /* Clears each of the exact match registers to zero, so they
3263 * don't interfere with normal reception
3265 static void gfar_clear_exact_match(struct net_device *dev)
3267 int idx;
3268 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3270 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3271 gfar_set_mac_for_addr(dev, idx, zero_arr);
3274 /* Set the appropriate hash bit for the given addr */
3275 /* The algorithm works like so:
3276 * 1) Take the Destination Address (ie the multicast address), and
3277 * do a CRC on it (little endian), and reverse the bits of the
3278 * result.
3279 * 2) Use the 8 most significant bits as a hash into a 256-entry
3280 * table. The table is controlled through 8 32-bit registers:
3281 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3282 * gaddr7. This means that the 3 most significant bits in the
3283 * hash index which gaddr register to use, and the 5 other bits
3284 * indicate which bit (assuming an IBM numbering scheme, which
3285 * for PowerPC (tm) is usually the case) in the register holds
3286 * the entry.
3288 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3290 u32 tempval;
3291 struct gfar_private *priv = netdev_priv(dev);
3292 u32 result = ether_crc(ETH_ALEN, addr);
3293 int width = priv->hash_width;
3294 u8 whichbit = (result >> (32 - width)) & 0x1f;
3295 u8 whichreg = result >> (32 - width + 5);
3296 u32 value = (1 << (31-whichbit));
3298 tempval = gfar_read(priv->hash_regs[whichreg]);
3299 tempval |= value;
3300 gfar_write(priv->hash_regs[whichreg], tempval);
3304 /* There are multiple MAC Address register pairs on some controllers
3305 * This function sets the numth pair to a given address
3307 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3308 const u8 *addr)
3310 struct gfar_private *priv = netdev_priv(dev);
3311 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3312 u32 tempval;
3313 u32 __iomem *macptr = &regs->macstnaddr1;
3315 macptr += num*2;
3317 /* For a station address of 0x12345678ABCD in transmission
3318 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3319 * MACnADDR2 is set to 0x34120000.
3321 tempval = (addr[5] << 24) | (addr[4] << 16) |
3322 (addr[3] << 8) | addr[2];
3324 gfar_write(macptr, tempval);
3326 tempval = (addr[1] << 24) | (addr[0] << 16);
3328 gfar_write(macptr+1, tempval);
3331 /* GFAR error interrupt handler */
3332 static irqreturn_t gfar_error(int irq, void *grp_id)
3334 struct gfar_priv_grp *gfargrp = grp_id;
3335 struct gfar __iomem *regs = gfargrp->regs;
3336 struct gfar_private *priv= gfargrp->priv;
3337 struct net_device *dev = priv->ndev;
3339 /* Save ievent for future reference */
3340 u32 events = gfar_read(&regs->ievent);
3342 /* Clear IEVENT */
3343 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3345 /* Magic Packet is not an error. */
3346 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3347 (events & IEVENT_MAG))
3348 events &= ~IEVENT_MAG;
3350 /* Hmm... */
3351 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3352 netdev_dbg(dev,
3353 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3354 events, gfar_read(&regs->imask));
3356 /* Update the error counters */
3357 if (events & IEVENT_TXE) {
3358 dev->stats.tx_errors++;
3360 if (events & IEVENT_LC)
3361 dev->stats.tx_window_errors++;
3362 if (events & IEVENT_CRL)
3363 dev->stats.tx_aborted_errors++;
3364 if (events & IEVENT_XFUN) {
3365 unsigned long flags;
3367 netif_dbg(priv, tx_err, dev,
3368 "TX FIFO underrun, packet dropped\n");
3369 dev->stats.tx_dropped++;
3370 atomic64_inc(&priv->extra_stats.tx_underrun);
3372 local_irq_save(flags);
3373 lock_tx_qs(priv);
3375 /* Reactivate the Tx Queues */
3376 gfar_write(&regs->tstat, gfargrp->tstat);
3378 unlock_tx_qs(priv);
3379 local_irq_restore(flags);
3381 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3383 if (events & IEVENT_BSY) {
3384 dev->stats.rx_errors++;
3385 atomic64_inc(&priv->extra_stats.rx_bsy);
3387 gfar_receive(irq, grp_id);
3389 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3390 gfar_read(&regs->rstat));
3392 if (events & IEVENT_BABR) {
3393 dev->stats.rx_errors++;
3394 atomic64_inc(&priv->extra_stats.rx_babr);
3396 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3398 if (events & IEVENT_EBERR) {
3399 atomic64_inc(&priv->extra_stats.eberr);
3400 netif_dbg(priv, rx_err, dev, "bus error\n");
3402 if (events & IEVENT_RXC)
3403 netif_dbg(priv, rx_status, dev, "control frame\n");
3405 if (events & IEVENT_BABT) {
3406 atomic64_inc(&priv->extra_stats.tx_babt);
3407 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3409 return IRQ_HANDLED;
3412 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3414 struct phy_device *phydev = priv->phydev;
3415 u32 val = 0;
3417 if (!phydev->duplex)
3418 return val;
3420 if (!priv->pause_aneg_en) {
3421 if (priv->tx_pause_en)
3422 val |= MACCFG1_TX_FLOW;
3423 if (priv->rx_pause_en)
3424 val |= MACCFG1_RX_FLOW;
3425 } else {
3426 u16 lcl_adv, rmt_adv;
3427 u8 flowctrl;
3428 /* get link partner capabilities */
3429 rmt_adv = 0;
3430 if (phydev->pause)
3431 rmt_adv = LPA_PAUSE_CAP;
3432 if (phydev->asym_pause)
3433 rmt_adv |= LPA_PAUSE_ASYM;
3435 lcl_adv = 0;
3436 if (phydev->advertising & ADVERTISED_Pause)
3437 lcl_adv |= ADVERTISE_PAUSE_CAP;
3438 if (phydev->advertising & ADVERTISED_Asym_Pause)
3439 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3441 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3442 if (flowctrl & FLOW_CTRL_TX)
3443 val |= MACCFG1_TX_FLOW;
3444 if (flowctrl & FLOW_CTRL_RX)
3445 val |= MACCFG1_RX_FLOW;
3448 return val;
3451 static noinline void gfar_update_link_state(struct gfar_private *priv)
3453 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3454 struct phy_device *phydev = priv->phydev;
3455 struct gfar_priv_rx_q *rx_queue = NULL;
3456 int i;
3457 struct rxbd8 *bdp;
3459 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3460 return;
3462 if (phydev->link) {
3463 u32 tempval1 = gfar_read(&regs->maccfg1);
3464 u32 tempval = gfar_read(&regs->maccfg2);
3465 u32 ecntrl = gfar_read(&regs->ecntrl);
3466 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3468 if (phydev->duplex != priv->oldduplex) {
3469 if (!(phydev->duplex))
3470 tempval &= ~(MACCFG2_FULL_DUPLEX);
3471 else
3472 tempval |= MACCFG2_FULL_DUPLEX;
3474 priv->oldduplex = phydev->duplex;
3477 if (phydev->speed != priv->oldspeed) {
3478 switch (phydev->speed) {
3479 case 1000:
3480 tempval =
3481 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3483 ecntrl &= ~(ECNTRL_R100);
3484 break;
3485 case 100:
3486 case 10:
3487 tempval =
3488 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3490 /* Reduced mode distinguishes
3491 * between 10 and 100
3493 if (phydev->speed == SPEED_100)
3494 ecntrl |= ECNTRL_R100;
3495 else
3496 ecntrl &= ~(ECNTRL_R100);
3497 break;
3498 default:
3499 netif_warn(priv, link, priv->ndev,
3500 "Ack! Speed (%d) is not 10/100/1000!\n",
3501 phydev->speed);
3502 break;
3505 priv->oldspeed = phydev->speed;
3508 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3509 tempval1 |= gfar_get_flowctrl_cfg(priv);
3511 /* Turn last free buffer recording on */
3512 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3513 for (i = 0; i < priv->num_rx_queues; i++) {
3514 rx_queue = priv->rx_queue[i];
3515 bdp = rx_queue->cur_rx;
3516 /* skip to previous bd */
3517 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3518 rx_queue->rx_bd_base,
3519 rx_queue->rx_ring_size);
3521 if (rx_queue->rfbptr)
3522 gfar_write(rx_queue->rfbptr, (u32)bdp);
3525 priv->tx_actual_en = 1;
3528 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3529 priv->tx_actual_en = 0;
3531 gfar_write(&regs->maccfg1, tempval1);
3532 gfar_write(&regs->maccfg2, tempval);
3533 gfar_write(&regs->ecntrl, ecntrl);
3535 if (!priv->oldlink)
3536 priv->oldlink = 1;
3538 } else if (priv->oldlink) {
3539 priv->oldlink = 0;
3540 priv->oldspeed = 0;
3541 priv->oldduplex = -1;
3544 if (netif_msg_link(priv))
3545 phy_print_status(phydev);
3548 static struct of_device_id gfar_match[] =
3551 .type = "network",
3552 .compatible = "gianfar",
3555 .compatible = "fsl,etsec2",
3559 MODULE_DEVICE_TABLE(of, gfar_match);
3561 /* Structure for a device driver */
3562 static struct platform_driver gfar_driver = {
3563 .driver = {
3564 .name = "fsl-gianfar",
3565 .pm = GFAR_PM_OPS,
3566 .of_match_table = gfar_match,
3568 .probe = gfar_probe,
3569 .remove = gfar_remove,
3572 module_platform_driver(gfar_driver);