powerpc/eeh: Fix PE#0 check in eeh_add_to_parent_pe()
[linux/fpc-iii.git] / drivers / net / ethernet / sfc / mcdi.c
blobd37928f01949d1473938011a23635a8e5a71a8a8
1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
10 #include <linux/delay.h>
11 #include <asm/cmpxchg.h>
12 #include "net_driver.h"
13 #include "nic.h"
14 #include "io.h"
15 #include "farch_regs.h"
16 #include "mcdi_pcol.h"
17 #include "phy.h"
19 /**************************************************************************
21 * Management-Controller-to-Driver Interface
23 **************************************************************************
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
51 static void efx_mcdi_timeout_async(unsigned long context);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
57 int efx_mcdi_init(struct efx_nic *efx)
59 struct efx_mcdi_iface *mcdi;
60 bool already_attached;
61 int rc;
63 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
64 if (!efx->mcdi)
65 return -ENOMEM;
67 mcdi = efx_mcdi(efx);
68 mcdi->efx = efx;
69 init_waitqueue_head(&mcdi->wq);
70 spin_lock_init(&mcdi->iface_lock);
71 mcdi->state = MCDI_STATE_QUIESCENT;
72 mcdi->mode = MCDI_MODE_POLL;
73 spin_lock_init(&mcdi->async_lock);
74 INIT_LIST_HEAD(&mcdi->async_list);
75 setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
76 (unsigned long)mcdi);
78 (void) efx_mcdi_poll_reboot(efx);
79 mcdi->new_epoch = true;
81 /* Recover from a failed assertion before probing */
82 rc = efx_mcdi_handle_assertion(efx);
83 if (rc)
84 return rc;
86 /* Let the MC (and BMC, if this is a LOM) know that the driver
87 * is loaded. We should do this before we reset the NIC.
89 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
90 if (rc) {
91 netif_err(efx, probe, efx->net_dev,
92 "Unable to register driver with MCPU\n");
93 return rc;
95 if (already_attached)
96 /* Not a fatal error */
97 netif_err(efx, probe, efx->net_dev,
98 "Host already registered with MCPU\n");
100 if (efx->mcdi->fn_flags &
101 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
102 efx->primary = efx;
104 return 0;
107 void efx_mcdi_fini(struct efx_nic *efx)
109 if (!efx->mcdi)
110 return;
112 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
114 /* Relinquish the device (back to the BMC, if this is a LOM) */
115 efx_mcdi_drv_attach(efx, false, NULL);
117 kfree(efx->mcdi);
120 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
121 const efx_dword_t *inbuf, size_t inlen)
123 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
124 efx_dword_t hdr[2];
125 size_t hdr_len;
126 u32 xflags, seqno;
128 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
130 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
131 spin_lock_bh(&mcdi->iface_lock);
132 ++mcdi->seqno;
133 spin_unlock_bh(&mcdi->iface_lock);
135 seqno = mcdi->seqno & SEQ_MASK;
136 xflags = 0;
137 if (mcdi->mode == MCDI_MODE_EVENTS)
138 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
140 if (efx->type->mcdi_max_ver == 1) {
141 /* MCDI v1 */
142 EFX_POPULATE_DWORD_7(hdr[0],
143 MCDI_HEADER_RESPONSE, 0,
144 MCDI_HEADER_RESYNC, 1,
145 MCDI_HEADER_CODE, cmd,
146 MCDI_HEADER_DATALEN, inlen,
147 MCDI_HEADER_SEQ, seqno,
148 MCDI_HEADER_XFLAGS, xflags,
149 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
150 hdr_len = 4;
151 } else {
152 /* MCDI v2 */
153 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
154 EFX_POPULATE_DWORD_7(hdr[0],
155 MCDI_HEADER_RESPONSE, 0,
156 MCDI_HEADER_RESYNC, 1,
157 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
158 MCDI_HEADER_DATALEN, 0,
159 MCDI_HEADER_SEQ, seqno,
160 MCDI_HEADER_XFLAGS, xflags,
161 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
162 EFX_POPULATE_DWORD_2(hdr[1],
163 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
164 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
165 hdr_len = 8;
168 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
170 mcdi->new_epoch = false;
173 static int efx_mcdi_errno(unsigned int mcdi_err)
175 switch (mcdi_err) {
176 case 0:
177 return 0;
178 #define TRANSLATE_ERROR(name) \
179 case MC_CMD_ERR_ ## name: \
180 return -name;
181 TRANSLATE_ERROR(EPERM);
182 TRANSLATE_ERROR(ENOENT);
183 TRANSLATE_ERROR(EINTR);
184 TRANSLATE_ERROR(EAGAIN);
185 TRANSLATE_ERROR(EACCES);
186 TRANSLATE_ERROR(EBUSY);
187 TRANSLATE_ERROR(EINVAL);
188 TRANSLATE_ERROR(EDEADLK);
189 TRANSLATE_ERROR(ENOSYS);
190 TRANSLATE_ERROR(ETIME);
191 TRANSLATE_ERROR(EALREADY);
192 TRANSLATE_ERROR(ENOSPC);
193 #undef TRANSLATE_ERROR
194 case MC_CMD_ERR_ENOTSUP:
195 return -EOPNOTSUPP;
196 case MC_CMD_ERR_ALLOC_FAIL:
197 return -ENOBUFS;
198 case MC_CMD_ERR_MAC_EXIST:
199 return -EADDRINUSE;
200 default:
201 return -EPROTO;
205 static void efx_mcdi_read_response_header(struct efx_nic *efx)
207 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
208 unsigned int respseq, respcmd, error;
209 efx_dword_t hdr;
211 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
212 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
213 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
214 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
216 if (respcmd != MC_CMD_V2_EXTN) {
217 mcdi->resp_hdr_len = 4;
218 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
219 } else {
220 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
221 mcdi->resp_hdr_len = 8;
222 mcdi->resp_data_len =
223 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
226 if (error && mcdi->resp_data_len == 0) {
227 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
228 mcdi->resprc = -EIO;
229 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
230 netif_err(efx, hw, efx->net_dev,
231 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
232 respseq, mcdi->seqno);
233 mcdi->resprc = -EIO;
234 } else if (error) {
235 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
236 mcdi->resprc =
237 efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0));
238 } else {
239 mcdi->resprc = 0;
243 static bool efx_mcdi_poll_once(struct efx_nic *efx)
245 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
247 rmb();
248 if (!efx->type->mcdi_poll_response(efx))
249 return false;
251 spin_lock_bh(&mcdi->iface_lock);
252 efx_mcdi_read_response_header(efx);
253 spin_unlock_bh(&mcdi->iface_lock);
255 return true;
258 static int efx_mcdi_poll(struct efx_nic *efx)
260 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
261 unsigned long time, finish;
262 unsigned int spins;
263 int rc;
265 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
266 rc = efx_mcdi_poll_reboot(efx);
267 if (rc) {
268 spin_lock_bh(&mcdi->iface_lock);
269 mcdi->resprc = rc;
270 mcdi->resp_hdr_len = 0;
271 mcdi->resp_data_len = 0;
272 spin_unlock_bh(&mcdi->iface_lock);
273 return 0;
276 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
277 * because generally mcdi responses are fast. After that, back off
278 * and poll once a jiffy (approximately)
280 spins = TICK_USEC;
281 finish = jiffies + MCDI_RPC_TIMEOUT;
283 while (1) {
284 if (spins != 0) {
285 --spins;
286 udelay(1);
287 } else {
288 schedule_timeout_uninterruptible(1);
291 time = jiffies;
293 if (efx_mcdi_poll_once(efx))
294 break;
296 if (time_after(time, finish))
297 return -ETIMEDOUT;
300 /* Return rc=0 like wait_event_timeout() */
301 return 0;
304 /* Test and clear MC-rebooted flag for this port/function; reset
305 * software state as necessary.
307 int efx_mcdi_poll_reboot(struct efx_nic *efx)
309 if (!efx->mcdi)
310 return 0;
312 return efx->type->mcdi_poll_reboot(efx);
315 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
317 return cmpxchg(&mcdi->state,
318 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
319 MCDI_STATE_QUIESCENT;
322 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
324 /* Wait until the interface becomes QUIESCENT and we win the race
325 * to mark it RUNNING_SYNC.
327 wait_event(mcdi->wq,
328 cmpxchg(&mcdi->state,
329 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
330 MCDI_STATE_QUIESCENT);
333 static int efx_mcdi_await_completion(struct efx_nic *efx)
335 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
337 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
338 MCDI_RPC_TIMEOUT) == 0)
339 return -ETIMEDOUT;
341 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
342 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
343 * completed the request first, then we'll just end up completing the
344 * request again, which is safe.
346 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
347 * wait_event_timeout() implicitly provides.
349 if (mcdi->mode == MCDI_MODE_POLL)
350 return efx_mcdi_poll(efx);
352 return 0;
355 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
356 * requester. Return whether this was done. Does not take any locks.
358 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
360 if (cmpxchg(&mcdi->state,
361 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
362 MCDI_STATE_RUNNING_SYNC) {
363 wake_up(&mcdi->wq);
364 return true;
367 return false;
370 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
372 if (mcdi->mode == MCDI_MODE_EVENTS) {
373 struct efx_mcdi_async_param *async;
374 struct efx_nic *efx = mcdi->efx;
376 /* Process the asynchronous request queue */
377 spin_lock_bh(&mcdi->async_lock);
378 async = list_first_entry_or_null(
379 &mcdi->async_list, struct efx_mcdi_async_param, list);
380 if (async) {
381 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
382 efx_mcdi_send_request(efx, async->cmd,
383 (const efx_dword_t *)(async + 1),
384 async->inlen);
385 mod_timer(&mcdi->async_timer,
386 jiffies + MCDI_RPC_TIMEOUT);
388 spin_unlock_bh(&mcdi->async_lock);
390 if (async)
391 return;
394 mcdi->state = MCDI_STATE_QUIESCENT;
395 wake_up(&mcdi->wq);
398 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
399 * asynchronous completion function, and release the interface.
400 * Return whether this was done. Must be called in bh-disabled
401 * context. Will take iface_lock and async_lock.
403 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
405 struct efx_nic *efx = mcdi->efx;
406 struct efx_mcdi_async_param *async;
407 size_t hdr_len, data_len, err_len;
408 efx_dword_t *outbuf;
409 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
410 int rc;
412 if (cmpxchg(&mcdi->state,
413 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
414 MCDI_STATE_RUNNING_ASYNC)
415 return false;
417 spin_lock(&mcdi->iface_lock);
418 if (timeout) {
419 /* Ensure that if the completion event arrives later,
420 * the seqno check in efx_mcdi_ev_cpl() will fail
422 ++mcdi->seqno;
423 ++mcdi->credits;
424 rc = -ETIMEDOUT;
425 hdr_len = 0;
426 data_len = 0;
427 } else {
428 rc = mcdi->resprc;
429 hdr_len = mcdi->resp_hdr_len;
430 data_len = mcdi->resp_data_len;
432 spin_unlock(&mcdi->iface_lock);
434 /* Stop the timer. In case the timer function is running, we
435 * must wait for it to return so that there is no possibility
436 * of it aborting the next request.
438 if (!timeout)
439 del_timer_sync(&mcdi->async_timer);
441 spin_lock(&mcdi->async_lock);
442 async = list_first_entry(&mcdi->async_list,
443 struct efx_mcdi_async_param, list);
444 list_del(&async->list);
445 spin_unlock(&mcdi->async_lock);
447 outbuf = (efx_dword_t *)(async + 1);
448 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
449 min(async->outlen, data_len));
450 if (!timeout && rc && !async->quiet) {
451 err_len = min(sizeof(errbuf), data_len);
452 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
453 sizeof(errbuf));
454 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
455 err_len, rc);
457 async->complete(efx, async->cookie, rc, outbuf, data_len);
458 kfree(async);
460 efx_mcdi_release(mcdi);
462 return true;
465 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
466 unsigned int datalen, unsigned int mcdi_err)
468 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
469 bool wake = false;
471 spin_lock(&mcdi->iface_lock);
473 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
474 if (mcdi->credits)
475 /* The request has been cancelled */
476 --mcdi->credits;
477 else
478 netif_err(efx, hw, efx->net_dev,
479 "MC response mismatch tx seq 0x%x rx "
480 "seq 0x%x\n", seqno, mcdi->seqno);
481 } else {
482 if (efx->type->mcdi_max_ver >= 2) {
483 /* MCDI v2 responses don't fit in an event */
484 efx_mcdi_read_response_header(efx);
485 } else {
486 mcdi->resprc = efx_mcdi_errno(mcdi_err);
487 mcdi->resp_hdr_len = 4;
488 mcdi->resp_data_len = datalen;
491 wake = true;
494 spin_unlock(&mcdi->iface_lock);
496 if (wake) {
497 if (!efx_mcdi_complete_async(mcdi, false))
498 (void) efx_mcdi_complete_sync(mcdi);
500 /* If the interface isn't RUNNING_ASYNC or
501 * RUNNING_SYNC then we've received a duplicate
502 * completion after we've already transitioned back to
503 * QUIESCENT. [A subsequent invocation would increment
504 * seqno, so would have failed the seqno check].
509 static void efx_mcdi_timeout_async(unsigned long context)
511 struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
513 efx_mcdi_complete_async(mcdi, true);
516 static int
517 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
519 if (efx->type->mcdi_max_ver < 0 ||
520 (efx->type->mcdi_max_ver < 2 &&
521 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
522 return -EINVAL;
524 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
525 (efx->type->mcdi_max_ver < 2 &&
526 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
527 return -EMSGSIZE;
529 return 0;
532 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
533 efx_dword_t *outbuf, size_t outlen,
534 size_t *outlen_actual, bool quiet)
536 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
537 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0);
538 int rc;
540 if (mcdi->mode == MCDI_MODE_POLL)
541 rc = efx_mcdi_poll(efx);
542 else
543 rc = efx_mcdi_await_completion(efx);
545 if (rc != 0) {
546 netif_err(efx, hw, efx->net_dev,
547 "MC command 0x%x inlen %d mode %d timed out\n",
548 cmd, (int)inlen, mcdi->mode);
550 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
551 netif_err(efx, hw, efx->net_dev,
552 "MCDI request was completed without an event\n");
553 rc = 0;
556 efx_mcdi_abandon(efx);
558 /* Close the race with efx_mcdi_ev_cpl() executing just too late
559 * and completing a request we've just cancelled, by ensuring
560 * that the seqno check therein fails.
562 spin_lock_bh(&mcdi->iface_lock);
563 ++mcdi->seqno;
564 ++mcdi->credits;
565 spin_unlock_bh(&mcdi->iface_lock);
568 if (rc != 0) {
569 if (outlen_actual)
570 *outlen_actual = 0;
571 } else {
572 size_t hdr_len, data_len, err_len;
574 /* At the very least we need a memory barrier here to ensure
575 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
576 * a spurious efx_mcdi_ev_cpl() running concurrently by
577 * acquiring the iface_lock. */
578 spin_lock_bh(&mcdi->iface_lock);
579 rc = mcdi->resprc;
580 hdr_len = mcdi->resp_hdr_len;
581 data_len = mcdi->resp_data_len;
582 err_len = min(sizeof(errbuf), data_len);
583 spin_unlock_bh(&mcdi->iface_lock);
585 BUG_ON(rc > 0);
587 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
588 min(outlen, data_len));
589 if (outlen_actual)
590 *outlen_actual = data_len;
592 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
594 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
595 /* Don't reset if MC_CMD_REBOOT returns EIO */
596 } else if (rc == -EIO || rc == -EINTR) {
597 netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
598 -rc);
599 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
600 } else if (rc && !quiet) {
601 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
602 rc);
605 if (rc == -EIO || rc == -EINTR) {
606 msleep(MCDI_STATUS_SLEEP_MS);
607 efx_mcdi_poll_reboot(efx);
608 mcdi->new_epoch = true;
612 efx_mcdi_release(mcdi);
613 return rc;
616 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
617 const efx_dword_t *inbuf, size_t inlen,
618 efx_dword_t *outbuf, size_t outlen,
619 size_t *outlen_actual, bool quiet)
621 int rc;
623 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
624 if (rc) {
625 if (outlen_actual)
626 *outlen_actual = 0;
627 return rc;
629 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
630 outlen_actual, quiet);
633 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
634 const efx_dword_t *inbuf, size_t inlen,
635 efx_dword_t *outbuf, size_t outlen,
636 size_t *outlen_actual)
638 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
639 outlen_actual, false);
642 /* Normally, on receiving an error code in the MCDI response,
643 * efx_mcdi_rpc will log an error message containing (among other
644 * things) the raw error code, by means of efx_mcdi_display_error.
645 * This _quiet version suppresses that; if the caller wishes to log
646 * the error conditionally on the return code, it should call this
647 * function and is then responsible for calling efx_mcdi_display_error
648 * as needed.
650 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
651 const efx_dword_t *inbuf, size_t inlen,
652 efx_dword_t *outbuf, size_t outlen,
653 size_t *outlen_actual)
655 return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen,
656 outlen_actual, true);
659 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
660 const efx_dword_t *inbuf, size_t inlen)
662 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
663 int rc;
665 rc = efx_mcdi_check_supported(efx, cmd, inlen);
666 if (rc)
667 return rc;
669 if (efx->mc_bist_for_other_fn)
670 return -ENETDOWN;
672 if (mcdi->mode == MCDI_MODE_FAIL)
673 return -ENETDOWN;
675 efx_mcdi_acquire_sync(mcdi);
676 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
677 return 0;
680 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
681 const efx_dword_t *inbuf, size_t inlen,
682 size_t outlen,
683 efx_mcdi_async_completer *complete,
684 unsigned long cookie, bool quiet)
686 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
687 struct efx_mcdi_async_param *async;
688 int rc;
690 rc = efx_mcdi_check_supported(efx, cmd, inlen);
691 if (rc)
692 return rc;
694 if (efx->mc_bist_for_other_fn)
695 return -ENETDOWN;
697 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
698 GFP_ATOMIC);
699 if (!async)
700 return -ENOMEM;
702 async->cmd = cmd;
703 async->inlen = inlen;
704 async->outlen = outlen;
705 async->quiet = quiet;
706 async->complete = complete;
707 async->cookie = cookie;
708 memcpy(async + 1, inbuf, inlen);
710 spin_lock_bh(&mcdi->async_lock);
712 if (mcdi->mode == MCDI_MODE_EVENTS) {
713 list_add_tail(&async->list, &mcdi->async_list);
715 /* If this is at the front of the queue, try to start it
716 * immediately
718 if (mcdi->async_list.next == &async->list &&
719 efx_mcdi_acquire_async(mcdi)) {
720 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
721 mod_timer(&mcdi->async_timer,
722 jiffies + MCDI_RPC_TIMEOUT);
724 } else {
725 kfree(async);
726 rc = -ENETDOWN;
729 spin_unlock_bh(&mcdi->async_lock);
731 return rc;
735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
736 * @efx: NIC through which to issue the command
737 * @cmd: Command type number
738 * @inbuf: Command parameters
739 * @inlen: Length of command parameters, in bytes
740 * @outlen: Length to allocate for response buffer, in bytes
741 * @complete: Function to be called on completion or cancellation.
742 * @cookie: Arbitrary value to be passed to @complete.
744 * This function does not sleep and therefore may be called in atomic
745 * context. It will fail if event queues are disabled or if MCDI
746 * event completions have been disabled due to an error.
748 * If it succeeds, the @complete function will be called exactly once
749 * in atomic context, when one of the following occurs:
750 * (a) the completion event is received (in NAPI context)
751 * (b) event queues are disabled (in the process that disables them)
752 * (c) the request times-out (in timer context)
755 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
756 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
757 efx_mcdi_async_completer *complete, unsigned long cookie)
759 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
760 cookie, false);
763 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
764 const efx_dword_t *inbuf, size_t inlen,
765 size_t outlen, efx_mcdi_async_completer *complete,
766 unsigned long cookie)
768 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
769 cookie, true);
772 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
773 efx_dword_t *outbuf, size_t outlen,
774 size_t *outlen_actual)
776 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
777 outlen_actual, false);
780 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
781 efx_dword_t *outbuf, size_t outlen,
782 size_t *outlen_actual)
784 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
785 outlen_actual, true);
788 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
789 size_t inlen, efx_dword_t *outbuf,
790 size_t outlen, int rc)
792 int code = 0, err_arg = 0;
794 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
795 code = MCDI_DWORD(outbuf, ERR_CODE);
796 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
797 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
798 netif_err(efx, hw, efx->net_dev,
799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
800 cmd, (int)inlen, rc, code, err_arg);
803 /* Switch to polled MCDI completions. This can be called in various
804 * error conditions with various locks held, so it must be lockless.
805 * Caller is responsible for flushing asynchronous requests later.
807 void efx_mcdi_mode_poll(struct efx_nic *efx)
809 struct efx_mcdi_iface *mcdi;
811 if (!efx->mcdi)
812 return;
814 mcdi = efx_mcdi(efx);
815 /* If already in polling mode, nothing to do.
816 * If in fail-fast state, don't switch to polled completion.
817 * FLR recovery will do that later.
819 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
820 return;
822 /* We can switch from event completion to polled completion, because
823 * mcdi requests are always completed in shared memory. We do this by
824 * switching the mode to POLL'd then completing the request.
825 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
827 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
828 * which efx_mcdi_complete_sync() provides for us.
830 mcdi->mode = MCDI_MODE_POLL;
832 efx_mcdi_complete_sync(mcdi);
835 /* Flush any running or queued asynchronous requests, after event processing
836 * is stopped
838 void efx_mcdi_flush_async(struct efx_nic *efx)
840 struct efx_mcdi_async_param *async, *next;
841 struct efx_mcdi_iface *mcdi;
843 if (!efx->mcdi)
844 return;
846 mcdi = efx_mcdi(efx);
848 /* We must be in poll or fail mode so no more requests can be queued */
849 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
851 del_timer_sync(&mcdi->async_timer);
853 /* If a request is still running, make sure we give the MC
854 * time to complete it so that the response won't overwrite our
855 * next request.
857 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
858 efx_mcdi_poll(efx);
859 mcdi->state = MCDI_STATE_QUIESCENT;
862 /* Nothing else will access the async list now, so it is safe
863 * to walk it without holding async_lock. If we hold it while
864 * calling a completer then lockdep may warn that we have
865 * acquired locks in the wrong order.
867 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
868 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
869 list_del(&async->list);
870 kfree(async);
874 void efx_mcdi_mode_event(struct efx_nic *efx)
876 struct efx_mcdi_iface *mcdi;
878 if (!efx->mcdi)
879 return;
881 mcdi = efx_mcdi(efx);
882 /* If already in event completion mode, nothing to do.
883 * If in fail-fast state, don't switch to event completion. FLR
884 * recovery will do that later.
886 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
887 return;
889 /* We can't switch from polled to event completion in the middle of a
890 * request, because the completion method is specified in the request.
891 * So acquire the interface to serialise the requestors. We don't need
892 * to acquire the iface_lock to change the mode here, but we do need a
893 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
894 * efx_mcdi_acquire() provides.
896 efx_mcdi_acquire_sync(mcdi);
897 mcdi->mode = MCDI_MODE_EVENTS;
898 efx_mcdi_release(mcdi);
901 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
903 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
905 /* If there is an outstanding MCDI request, it has been terminated
906 * either by a BADASSERT or REBOOT event. If the mcdi interface is
907 * in polled mode, then do nothing because the MC reboot handler will
908 * set the header correctly. However, if the mcdi interface is waiting
909 * for a CMDDONE event it won't receive it [and since all MCDI events
910 * are sent to the same queue, we can't be racing with
911 * efx_mcdi_ev_cpl()]
913 * If there is an outstanding asynchronous request, we can't
914 * complete it now (efx_mcdi_complete() would deadlock). The
915 * reset process will take care of this.
917 * There's a race here with efx_mcdi_send_request(), because
918 * we might receive a REBOOT event *before* the request has
919 * been copied out. In polled mode (during startup) this is
920 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
921 * event mode, this condition is just an edge-case of
922 * receiving a REBOOT event after posting the MCDI
923 * request. Did the mc reboot before or after the copyout? The
924 * best we can do always is just return failure.
926 spin_lock(&mcdi->iface_lock);
927 if (efx_mcdi_complete_sync(mcdi)) {
928 if (mcdi->mode == MCDI_MODE_EVENTS) {
929 mcdi->resprc = rc;
930 mcdi->resp_hdr_len = 0;
931 mcdi->resp_data_len = 0;
932 ++mcdi->credits;
934 } else {
935 int count;
937 /* Consume the status word since efx_mcdi_rpc_finish() won't */
938 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
939 if (efx_mcdi_poll_reboot(efx))
940 break;
941 udelay(MCDI_STATUS_DELAY_US);
943 mcdi->new_epoch = true;
945 /* Nobody was waiting for an MCDI request, so trigger a reset */
946 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
949 spin_unlock(&mcdi->iface_lock);
952 /* The MC is going down in to BIST mode. set the BIST flag to block
953 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
954 * (which doesn't actually execute a reset, it waits for the controlling
955 * function to reset it).
957 static void efx_mcdi_ev_bist(struct efx_nic *efx)
959 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
961 spin_lock(&mcdi->iface_lock);
962 efx->mc_bist_for_other_fn = true;
963 if (efx_mcdi_complete_sync(mcdi)) {
964 if (mcdi->mode == MCDI_MODE_EVENTS) {
965 mcdi->resprc = -EIO;
966 mcdi->resp_hdr_len = 0;
967 mcdi->resp_data_len = 0;
968 ++mcdi->credits;
971 mcdi->new_epoch = true;
972 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
973 spin_unlock(&mcdi->iface_lock);
976 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
977 * to recover.
979 static void efx_mcdi_abandon(struct efx_nic *efx)
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
983 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
984 return; /* it had already been done */
985 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
986 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
989 /* Called from falcon_process_eventq for MCDI events */
990 void efx_mcdi_process_event(struct efx_channel *channel,
991 efx_qword_t *event)
993 struct efx_nic *efx = channel->efx;
994 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
995 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
997 switch (code) {
998 case MCDI_EVENT_CODE_BADSSERT:
999 netif_err(efx, hw, efx->net_dev,
1000 "MC watchdog or assertion failure at 0x%x\n", data);
1001 efx_mcdi_ev_death(efx, -EINTR);
1002 break;
1004 case MCDI_EVENT_CODE_PMNOTICE:
1005 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1006 break;
1008 case MCDI_EVENT_CODE_CMDDONE:
1009 efx_mcdi_ev_cpl(efx,
1010 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1011 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1012 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1013 break;
1015 case MCDI_EVENT_CODE_LINKCHANGE:
1016 efx_mcdi_process_link_change(efx, event);
1017 break;
1018 case MCDI_EVENT_CODE_SENSOREVT:
1019 efx_mcdi_sensor_event(efx, event);
1020 break;
1021 case MCDI_EVENT_CODE_SCHEDERR:
1022 netif_dbg(efx, hw, efx->net_dev,
1023 "MC Scheduler alert (0x%x)\n", data);
1024 break;
1025 case MCDI_EVENT_CODE_REBOOT:
1026 case MCDI_EVENT_CODE_MC_REBOOT:
1027 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1028 efx_mcdi_ev_death(efx, -EIO);
1029 break;
1030 case MCDI_EVENT_CODE_MC_BIST:
1031 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1032 efx_mcdi_ev_bist(efx);
1033 break;
1034 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1035 /* MAC stats are gather lazily. We can ignore this. */
1036 break;
1037 case MCDI_EVENT_CODE_FLR:
1038 efx_siena_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF));
1039 break;
1040 case MCDI_EVENT_CODE_PTP_RX:
1041 case MCDI_EVENT_CODE_PTP_FAULT:
1042 case MCDI_EVENT_CODE_PTP_PPS:
1043 efx_ptp_event(efx, event);
1044 break;
1045 case MCDI_EVENT_CODE_PTP_TIME:
1046 efx_time_sync_event(channel, event);
1047 break;
1048 case MCDI_EVENT_CODE_TX_FLUSH:
1049 case MCDI_EVENT_CODE_RX_FLUSH:
1050 /* Two flush events will be sent: one to the same event
1051 * queue as completions, and one to event queue 0.
1052 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1053 * flag will be set, and we should ignore the event
1054 * because we want to wait for all completions.
1056 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1057 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1058 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1059 efx_ef10_handle_drain_event(efx);
1060 break;
1061 case MCDI_EVENT_CODE_TX_ERR:
1062 case MCDI_EVENT_CODE_RX_ERR:
1063 netif_err(efx, hw, efx->net_dev,
1064 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1065 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1066 EFX_QWORD_VAL(*event));
1067 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1068 break;
1069 default:
1070 netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1071 code);
1075 /**************************************************************************
1077 * Specific request functions
1079 **************************************************************************
1082 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1084 MCDI_DECLARE_BUF(outbuf,
1085 max(MC_CMD_GET_VERSION_OUT_LEN,
1086 MC_CMD_GET_CAPABILITIES_OUT_LEN));
1087 size_t outlength;
1088 const __le16 *ver_words;
1089 size_t offset;
1090 int rc;
1092 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1093 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1094 outbuf, sizeof(outbuf), &outlength);
1095 if (rc)
1096 goto fail;
1097 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1098 rc = -EIO;
1099 goto fail;
1102 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1103 offset = snprintf(buf, len, "%u.%u.%u.%u",
1104 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1105 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1107 /* EF10 may have multiple datapath firmware variants within a
1108 * single version. Report which variants are running.
1110 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1111 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
1112 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
1113 outbuf, sizeof(outbuf), &outlength);
1114 if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN)
1115 offset += snprintf(
1116 buf + offset, len - offset, " rx? tx?");
1117 else
1118 offset += snprintf(
1119 buf + offset, len - offset, " rx%x tx%x",
1120 MCDI_WORD(outbuf,
1121 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID),
1122 MCDI_WORD(outbuf,
1123 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID));
1125 /* It's theoretically possible for the string to exceed 31
1126 * characters, though in practice the first three version
1127 * components are short enough that this doesn't happen.
1129 if (WARN_ON(offset >= len))
1130 buf[0] = 0;
1133 return;
1135 fail:
1136 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1137 buf[0] = 0;
1140 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1141 bool *was_attached)
1143 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1144 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1145 size_t outlen;
1146 int rc;
1148 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1149 driver_operating ? 1 : 0);
1150 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1151 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1153 rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1154 outbuf, sizeof(outbuf), &outlen);
1155 if (rc)
1156 goto fail;
1157 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1158 rc = -EIO;
1159 goto fail;
1162 if (driver_operating) {
1163 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1164 efx->mcdi->fn_flags =
1165 MCDI_DWORD(outbuf,
1166 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1167 } else {
1168 /* Synthesise flags for Siena */
1169 efx->mcdi->fn_flags =
1170 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1171 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1172 (efx_port_num(efx) == 0) <<
1173 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1177 /* We currently assume we have control of the external link
1178 * and are completely trusted by firmware. Abort probing
1179 * if that's not true for this function.
1181 if (driver_operating &&
1182 (efx->mcdi->fn_flags &
1183 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1184 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) !=
1185 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1186 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) {
1187 netif_err(efx, probe, efx->net_dev,
1188 "This driver version only supports one function per port\n");
1189 return -ENODEV;
1192 if (was_attached != NULL)
1193 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1194 return 0;
1196 fail:
1197 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1198 return rc;
1201 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1202 u16 *fw_subtype_list, u32 *capabilities)
1204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1205 size_t outlen, i;
1206 int port_num = efx_port_num(efx);
1207 int rc;
1209 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1210 /* we need __aligned(2) for ether_addr_copy */
1211 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1212 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1214 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1215 outbuf, sizeof(outbuf), &outlen);
1216 if (rc)
1217 goto fail;
1219 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1220 rc = -EIO;
1221 goto fail;
1224 if (mac_address)
1225 ether_addr_copy(mac_address,
1226 port_num ?
1227 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1228 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1229 if (fw_subtype_list) {
1230 for (i = 0;
1231 i < MCDI_VAR_ARRAY_LEN(outlen,
1232 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1233 i++)
1234 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1235 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1236 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1237 fw_subtype_list[i] = 0;
1239 if (capabilities) {
1240 if (port_num)
1241 *capabilities = MCDI_DWORD(outbuf,
1242 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1243 else
1244 *capabilities = MCDI_DWORD(outbuf,
1245 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1248 return 0;
1250 fail:
1251 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1252 __func__, rc, (int)outlen);
1254 return rc;
1257 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1259 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1260 u32 dest = 0;
1261 int rc;
1263 if (uart)
1264 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1265 if (evq)
1266 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1268 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1269 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1271 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1273 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1274 NULL, 0, NULL);
1275 return rc;
1278 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1280 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1281 size_t outlen;
1282 int rc;
1284 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1286 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1287 outbuf, sizeof(outbuf), &outlen);
1288 if (rc)
1289 goto fail;
1290 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1291 rc = -EIO;
1292 goto fail;
1295 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1296 return 0;
1298 fail:
1299 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1300 __func__, rc);
1301 return rc;
1304 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1305 size_t *size_out, size_t *erase_size_out,
1306 bool *protected_out)
1308 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1309 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1310 size_t outlen;
1311 int rc;
1313 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1315 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1316 outbuf, sizeof(outbuf), &outlen);
1317 if (rc)
1318 goto fail;
1319 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1320 rc = -EIO;
1321 goto fail;
1324 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1325 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1326 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1327 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1328 return 0;
1330 fail:
1331 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1332 return rc;
1335 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1337 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1338 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1339 int rc;
1341 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1343 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1344 outbuf, sizeof(outbuf), NULL);
1345 if (rc)
1346 return rc;
1348 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1349 case MC_CMD_NVRAM_TEST_PASS:
1350 case MC_CMD_NVRAM_TEST_NOTSUPP:
1351 return 0;
1352 default:
1353 return -EIO;
1357 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1359 u32 nvram_types;
1360 unsigned int type;
1361 int rc;
1363 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1364 if (rc)
1365 goto fail1;
1367 type = 0;
1368 while (nvram_types != 0) {
1369 if (nvram_types & 1) {
1370 rc = efx_mcdi_nvram_test(efx, type);
1371 if (rc)
1372 goto fail2;
1374 type++;
1375 nvram_types >>= 1;
1378 return 0;
1380 fail2:
1381 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1382 __func__, type);
1383 fail1:
1384 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1385 return rc;
1388 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1390 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1391 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1392 unsigned int flags, index;
1393 const char *reason;
1394 size_t outlen;
1395 int retry;
1396 int rc;
1398 /* Attempt to read any stored assertion state before we reboot
1399 * the mcfw out of the assertion handler. Retry twice, once
1400 * because a boot-time assertion might cause this command to fail
1401 * with EINTR. And once again because GET_ASSERTS can race with
1402 * MC_CMD_REBOOT running on the other port. */
1403 retry = 2;
1404 do {
1405 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1406 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1407 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1408 outbuf, sizeof(outbuf), &outlen);
1409 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1411 if (rc) {
1412 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1413 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1414 outlen, rc);
1415 return rc;
1417 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1418 return -EIO;
1420 /* Print out any recorded assertion state */
1421 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1422 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1423 return 0;
1425 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1426 ? "system-level assertion"
1427 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1428 ? "thread-level assertion"
1429 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1430 ? "watchdog reset"
1431 : "unknown assertion";
1432 netif_err(efx, hw, efx->net_dev,
1433 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1434 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1435 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1437 /* Print out the registers */
1438 for (index = 0;
1439 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1440 index++)
1441 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1442 1 + index,
1443 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1444 index));
1446 return 0;
1449 static void efx_mcdi_exit_assertion(struct efx_nic *efx)
1451 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1453 /* If the MC is running debug firmware, it might now be
1454 * waiting for a debugger to attach, but we just want it to
1455 * reboot. We set a flag that makes the command a no-op if it
1456 * has already done so. We don't know what return code to
1457 * expect (0 or -EIO), so ignore it.
1459 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1460 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1461 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1462 (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1463 NULL, 0, NULL);
1466 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1468 int rc;
1470 rc = efx_mcdi_read_assertion(efx);
1471 if (rc)
1472 return rc;
1474 efx_mcdi_exit_assertion(efx);
1476 return 0;
1479 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1481 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1482 int rc;
1484 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1485 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1486 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1488 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1490 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1492 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1493 NULL, 0, NULL);
1496 static int efx_mcdi_reset_func(struct efx_nic *efx)
1498 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1499 int rc;
1501 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1502 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1503 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1504 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1505 NULL, 0, NULL);
1506 return rc;
1509 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1511 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1512 int rc;
1514 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1515 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1516 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1517 NULL, 0, NULL);
1518 /* White is black, and up is down */
1519 if (rc == -EIO)
1520 return 0;
1521 if (rc == 0)
1522 rc = -EIO;
1523 return rc;
1526 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1528 return RESET_TYPE_RECOVER_OR_ALL;
1531 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1533 int rc;
1535 /* If MCDI is down, we can't handle_assertion */
1536 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1537 rc = pci_reset_function(efx->pci_dev);
1538 if (rc)
1539 return rc;
1540 /* Re-enable polled MCDI completion */
1541 if (efx->mcdi) {
1542 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1543 mcdi->mode = MCDI_MODE_POLL;
1545 return 0;
1548 /* Recover from a failed assertion pre-reset */
1549 rc = efx_mcdi_handle_assertion(efx);
1550 if (rc)
1551 return rc;
1553 if (method == RESET_TYPE_WORLD)
1554 return efx_mcdi_reset_mc(efx);
1555 else
1556 return efx_mcdi_reset_func(efx);
1559 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1560 const u8 *mac, int *id_out)
1562 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1563 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1564 size_t outlen;
1565 int rc;
1567 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1568 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1569 MC_CMD_FILTER_MODE_SIMPLE);
1570 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1572 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1573 outbuf, sizeof(outbuf), &outlen);
1574 if (rc)
1575 goto fail;
1577 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1578 rc = -EIO;
1579 goto fail;
1582 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1584 return 0;
1586 fail:
1587 *id_out = -1;
1588 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1589 return rc;
1595 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1597 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1601 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1603 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1604 size_t outlen;
1605 int rc;
1607 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1608 outbuf, sizeof(outbuf), &outlen);
1609 if (rc)
1610 goto fail;
1612 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1613 rc = -EIO;
1614 goto fail;
1617 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1619 return 0;
1621 fail:
1622 *id_out = -1;
1623 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1624 return rc;
1628 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1630 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1631 int rc;
1633 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1635 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1636 NULL, 0, NULL);
1637 return rc;
1640 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1642 struct efx_channel *channel;
1643 struct efx_rx_queue *rx_queue;
1644 MCDI_DECLARE_BUF(inbuf,
1645 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1646 int rc, count;
1648 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1649 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1651 count = 0;
1652 efx_for_each_channel(channel, efx) {
1653 efx_for_each_channel_rx_queue(rx_queue, channel) {
1654 if (rx_queue->flush_pending) {
1655 rx_queue->flush_pending = false;
1656 atomic_dec(&efx->rxq_flush_pending);
1657 MCDI_SET_ARRAY_DWORD(
1658 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1659 count, efx_rx_queue_index(rx_queue));
1660 count++;
1665 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1666 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1667 WARN_ON(rc < 0);
1669 return rc;
1672 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1674 int rc;
1676 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
1677 return rc;
1680 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled)
1682 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
1684 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
1685 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
1686 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
1687 return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
1688 NULL, 0, NULL);
1691 #ifdef CONFIG_SFC_MTD
1693 #define EFX_MCDI_NVRAM_LEN_MAX 128
1695 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
1697 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
1698 int rc;
1700 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
1702 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
1704 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
1705 NULL, 0, NULL);
1706 return rc;
1709 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
1710 loff_t offset, u8 *buffer, size_t length)
1712 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
1713 MCDI_DECLARE_BUF(outbuf,
1714 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1715 size_t outlen;
1716 int rc;
1718 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
1719 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
1720 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
1722 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
1723 outbuf, sizeof(outbuf), &outlen);
1724 if (rc)
1725 return rc;
1727 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
1728 return 0;
1731 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
1732 loff_t offset, const u8 *buffer, size_t length)
1734 MCDI_DECLARE_BUF(inbuf,
1735 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
1736 int rc;
1738 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
1739 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
1740 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
1741 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
1743 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
1745 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
1746 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
1747 NULL, 0, NULL);
1748 return rc;
1751 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
1752 loff_t offset, size_t length)
1754 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
1755 int rc;
1757 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
1758 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
1759 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
1761 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
1763 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
1764 NULL, 0, NULL);
1765 return rc;
1768 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
1770 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
1771 int rc;
1773 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
1775 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
1777 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
1778 NULL, 0, NULL);
1779 return rc;
1782 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
1783 size_t len, size_t *retlen, u8 *buffer)
1785 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1786 struct efx_nic *efx = mtd->priv;
1787 loff_t offset = start;
1788 loff_t end = min_t(loff_t, start + len, mtd->size);
1789 size_t chunk;
1790 int rc = 0;
1792 while (offset < end) {
1793 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1794 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
1795 buffer, chunk);
1796 if (rc)
1797 goto out;
1798 offset += chunk;
1799 buffer += chunk;
1801 out:
1802 *retlen = offset - start;
1803 return rc;
1806 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
1808 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1809 struct efx_nic *efx = mtd->priv;
1810 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
1811 loff_t end = min_t(loff_t, start + len, mtd->size);
1812 size_t chunk = part->common.mtd.erasesize;
1813 int rc = 0;
1815 if (!part->updating) {
1816 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1817 if (rc)
1818 goto out;
1819 part->updating = true;
1822 /* The MCDI interface can in fact do multiple erase blocks at once;
1823 * but erasing may be slow, so we make multiple calls here to avoid
1824 * tripping the MCDI RPC timeout. */
1825 while (offset < end) {
1826 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
1827 chunk);
1828 if (rc)
1829 goto out;
1830 offset += chunk;
1832 out:
1833 return rc;
1836 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
1837 size_t len, size_t *retlen, const u8 *buffer)
1839 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1840 struct efx_nic *efx = mtd->priv;
1841 loff_t offset = start;
1842 loff_t end = min_t(loff_t, start + len, mtd->size);
1843 size_t chunk;
1844 int rc = 0;
1846 if (!part->updating) {
1847 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
1848 if (rc)
1849 goto out;
1850 part->updating = true;
1853 while (offset < end) {
1854 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
1855 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
1856 buffer, chunk);
1857 if (rc)
1858 goto out;
1859 offset += chunk;
1860 buffer += chunk;
1862 out:
1863 *retlen = offset - start;
1864 return rc;
1867 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
1869 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
1870 struct efx_nic *efx = mtd->priv;
1871 int rc = 0;
1873 if (part->updating) {
1874 part->updating = false;
1875 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
1878 return rc;
1881 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
1883 struct efx_mcdi_mtd_partition *mcdi_part =
1884 container_of(part, struct efx_mcdi_mtd_partition, common);
1885 struct efx_nic *efx = part->mtd.priv;
1887 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
1888 efx->name, part->type_name, mcdi_part->fw_subtype);
1891 #endif /* CONFIG_SFC_MTD */