1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/delay.h>
11 #include <asm/cmpxchg.h>
12 #include "net_driver.h"
15 #include "farch_regs.h"
16 #include "mcdi_pcol.h"
19 /**************************************************************************
21 * Management-Controller-to-Driver Interface
23 **************************************************************************
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
40 struct efx_mcdi_async_param
{
41 struct list_head list
;
46 efx_mcdi_async_completer
*complete
;
48 /* followed by request/response buffer */
51 static void efx_mcdi_timeout_async(unsigned long context
);
52 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
53 bool *was_attached_out
);
54 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
55 static void efx_mcdi_abandon(struct efx_nic
*efx
);
57 int efx_mcdi_init(struct efx_nic
*efx
)
59 struct efx_mcdi_iface
*mcdi
;
60 bool already_attached
;
63 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
69 init_waitqueue_head(&mcdi
->wq
);
70 spin_lock_init(&mcdi
->iface_lock
);
71 mcdi
->state
= MCDI_STATE_QUIESCENT
;
72 mcdi
->mode
= MCDI_MODE_POLL
;
73 spin_lock_init(&mcdi
->async_lock
);
74 INIT_LIST_HEAD(&mcdi
->async_list
);
75 setup_timer(&mcdi
->async_timer
, efx_mcdi_timeout_async
,
78 (void) efx_mcdi_poll_reboot(efx
);
79 mcdi
->new_epoch
= true;
81 /* Recover from a failed assertion before probing */
82 rc
= efx_mcdi_handle_assertion(efx
);
86 /* Let the MC (and BMC, if this is a LOM) know that the driver
87 * is loaded. We should do this before we reset the NIC.
89 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
91 netif_err(efx
, probe
, efx
->net_dev
,
92 "Unable to register driver with MCPU\n");
96 /* Not a fatal error */
97 netif_err(efx
, probe
, efx
->net_dev
,
98 "Host already registered with MCPU\n");
100 if (efx
->mcdi
->fn_flags
&
101 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
107 void efx_mcdi_fini(struct efx_nic
*efx
)
112 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
114 /* Relinquish the device (back to the BMC, if this is a LOM) */
115 efx_mcdi_drv_attach(efx
, false, NULL
);
120 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
121 const efx_dword_t
*inbuf
, size_t inlen
)
123 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
128 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
130 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
131 spin_lock_bh(&mcdi
->iface_lock
);
133 spin_unlock_bh(&mcdi
->iface_lock
);
135 seqno
= mcdi
->seqno
& SEQ_MASK
;
137 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
138 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
140 if (efx
->type
->mcdi_max_ver
== 1) {
142 EFX_POPULATE_DWORD_7(hdr
[0],
143 MCDI_HEADER_RESPONSE
, 0,
144 MCDI_HEADER_RESYNC
, 1,
145 MCDI_HEADER_CODE
, cmd
,
146 MCDI_HEADER_DATALEN
, inlen
,
147 MCDI_HEADER_SEQ
, seqno
,
148 MCDI_HEADER_XFLAGS
, xflags
,
149 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
153 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
154 EFX_POPULATE_DWORD_7(hdr
[0],
155 MCDI_HEADER_RESPONSE
, 0,
156 MCDI_HEADER_RESYNC
, 1,
157 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
158 MCDI_HEADER_DATALEN
, 0,
159 MCDI_HEADER_SEQ
, seqno
,
160 MCDI_HEADER_XFLAGS
, xflags
,
161 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
162 EFX_POPULATE_DWORD_2(hdr
[1],
163 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
164 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
168 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
170 mcdi
->new_epoch
= false;
173 static int efx_mcdi_errno(unsigned int mcdi_err
)
178 #define TRANSLATE_ERROR(name) \
179 case MC_CMD_ERR_ ## name: \
181 TRANSLATE_ERROR(EPERM
);
182 TRANSLATE_ERROR(ENOENT
);
183 TRANSLATE_ERROR(EINTR
);
184 TRANSLATE_ERROR(EAGAIN
);
185 TRANSLATE_ERROR(EACCES
);
186 TRANSLATE_ERROR(EBUSY
);
187 TRANSLATE_ERROR(EINVAL
);
188 TRANSLATE_ERROR(EDEADLK
);
189 TRANSLATE_ERROR(ENOSYS
);
190 TRANSLATE_ERROR(ETIME
);
191 TRANSLATE_ERROR(EALREADY
);
192 TRANSLATE_ERROR(ENOSPC
);
193 #undef TRANSLATE_ERROR
194 case MC_CMD_ERR_ENOTSUP
:
196 case MC_CMD_ERR_ALLOC_FAIL
:
198 case MC_CMD_ERR_MAC_EXIST
:
205 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
207 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
208 unsigned int respseq
, respcmd
, error
;
211 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
212 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
213 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
214 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
216 if (respcmd
!= MC_CMD_V2_EXTN
) {
217 mcdi
->resp_hdr_len
= 4;
218 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
220 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
221 mcdi
->resp_hdr_len
= 8;
222 mcdi
->resp_data_len
=
223 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
226 if (error
&& mcdi
->resp_data_len
== 0) {
227 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
229 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
230 netif_err(efx
, hw
, efx
->net_dev
,
231 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
232 respseq
, mcdi
->seqno
);
235 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
237 efx_mcdi_errno(EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
));
243 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
245 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
248 if (!efx
->type
->mcdi_poll_response(efx
))
251 spin_lock_bh(&mcdi
->iface_lock
);
252 efx_mcdi_read_response_header(efx
);
253 spin_unlock_bh(&mcdi
->iface_lock
);
258 static int efx_mcdi_poll(struct efx_nic
*efx
)
260 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
261 unsigned long time
, finish
;
265 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
266 rc
= efx_mcdi_poll_reboot(efx
);
268 spin_lock_bh(&mcdi
->iface_lock
);
270 mcdi
->resp_hdr_len
= 0;
271 mcdi
->resp_data_len
= 0;
272 spin_unlock_bh(&mcdi
->iface_lock
);
276 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
277 * because generally mcdi responses are fast. After that, back off
278 * and poll once a jiffy (approximately)
281 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
288 schedule_timeout_uninterruptible(1);
293 if (efx_mcdi_poll_once(efx
))
296 if (time_after(time
, finish
))
300 /* Return rc=0 like wait_event_timeout() */
304 /* Test and clear MC-rebooted flag for this port/function; reset
305 * software state as necessary.
307 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
312 return efx
->type
->mcdi_poll_reboot(efx
);
315 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
317 return cmpxchg(&mcdi
->state
,
318 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
319 MCDI_STATE_QUIESCENT
;
322 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
324 /* Wait until the interface becomes QUIESCENT and we win the race
325 * to mark it RUNNING_SYNC.
328 cmpxchg(&mcdi
->state
,
329 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
330 MCDI_STATE_QUIESCENT
);
333 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
335 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
337 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
338 MCDI_RPC_TIMEOUT
) == 0)
341 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
342 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
343 * completed the request first, then we'll just end up completing the
344 * request again, which is safe.
346 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
347 * wait_event_timeout() implicitly provides.
349 if (mcdi
->mode
== MCDI_MODE_POLL
)
350 return efx_mcdi_poll(efx
);
355 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
356 * requester. Return whether this was done. Does not take any locks.
358 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
360 if (cmpxchg(&mcdi
->state
,
361 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
362 MCDI_STATE_RUNNING_SYNC
) {
370 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
372 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
373 struct efx_mcdi_async_param
*async
;
374 struct efx_nic
*efx
= mcdi
->efx
;
376 /* Process the asynchronous request queue */
377 spin_lock_bh(&mcdi
->async_lock
);
378 async
= list_first_entry_or_null(
379 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
381 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
382 efx_mcdi_send_request(efx
, async
->cmd
,
383 (const efx_dword_t
*)(async
+ 1),
385 mod_timer(&mcdi
->async_timer
,
386 jiffies
+ MCDI_RPC_TIMEOUT
);
388 spin_unlock_bh(&mcdi
->async_lock
);
394 mcdi
->state
= MCDI_STATE_QUIESCENT
;
398 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
399 * asynchronous completion function, and release the interface.
400 * Return whether this was done. Must be called in bh-disabled
401 * context. Will take iface_lock and async_lock.
403 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
405 struct efx_nic
*efx
= mcdi
->efx
;
406 struct efx_mcdi_async_param
*async
;
407 size_t hdr_len
, data_len
, err_len
;
409 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf
, 0);
412 if (cmpxchg(&mcdi
->state
,
413 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
414 MCDI_STATE_RUNNING_ASYNC
)
417 spin_lock(&mcdi
->iface_lock
);
419 /* Ensure that if the completion event arrives later,
420 * the seqno check in efx_mcdi_ev_cpl() will fail
429 hdr_len
= mcdi
->resp_hdr_len
;
430 data_len
= mcdi
->resp_data_len
;
432 spin_unlock(&mcdi
->iface_lock
);
434 /* Stop the timer. In case the timer function is running, we
435 * must wait for it to return so that there is no possibility
436 * of it aborting the next request.
439 del_timer_sync(&mcdi
->async_timer
);
441 spin_lock(&mcdi
->async_lock
);
442 async
= list_first_entry(&mcdi
->async_list
,
443 struct efx_mcdi_async_param
, list
);
444 list_del(&async
->list
);
445 spin_unlock(&mcdi
->async_lock
);
447 outbuf
= (efx_dword_t
*)(async
+ 1);
448 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
449 min(async
->outlen
, data_len
));
450 if (!timeout
&& rc
&& !async
->quiet
) {
451 err_len
= min(sizeof(errbuf
), data_len
);
452 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
454 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
457 async
->complete(efx
, async
->cookie
, rc
, outbuf
, data_len
);
460 efx_mcdi_release(mcdi
);
465 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
466 unsigned int datalen
, unsigned int mcdi_err
)
468 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
471 spin_lock(&mcdi
->iface_lock
);
473 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
475 /* The request has been cancelled */
478 netif_err(efx
, hw
, efx
->net_dev
,
479 "MC response mismatch tx seq 0x%x rx "
480 "seq 0x%x\n", seqno
, mcdi
->seqno
);
482 if (efx
->type
->mcdi_max_ver
>= 2) {
483 /* MCDI v2 responses don't fit in an event */
484 efx_mcdi_read_response_header(efx
);
486 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
487 mcdi
->resp_hdr_len
= 4;
488 mcdi
->resp_data_len
= datalen
;
494 spin_unlock(&mcdi
->iface_lock
);
497 if (!efx_mcdi_complete_async(mcdi
, false))
498 (void) efx_mcdi_complete_sync(mcdi
);
500 /* If the interface isn't RUNNING_ASYNC or
501 * RUNNING_SYNC then we've received a duplicate
502 * completion after we've already transitioned back to
503 * QUIESCENT. [A subsequent invocation would increment
504 * seqno, so would have failed the seqno check].
509 static void efx_mcdi_timeout_async(unsigned long context
)
511 struct efx_mcdi_iface
*mcdi
= (struct efx_mcdi_iface
*)context
;
513 efx_mcdi_complete_async(mcdi
, true);
517 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
519 if (efx
->type
->mcdi_max_ver
< 0 ||
520 (efx
->type
->mcdi_max_ver
< 2 &&
521 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
524 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
525 (efx
->type
->mcdi_max_ver
< 2 &&
526 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
532 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
533 efx_dword_t
*outbuf
, size_t outlen
,
534 size_t *outlen_actual
, bool quiet
)
536 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
537 MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf
, 0);
540 if (mcdi
->mode
== MCDI_MODE_POLL
)
541 rc
= efx_mcdi_poll(efx
);
543 rc
= efx_mcdi_await_completion(efx
);
546 netif_err(efx
, hw
, efx
->net_dev
,
547 "MC command 0x%x inlen %d mode %d timed out\n",
548 cmd
, (int)inlen
, mcdi
->mode
);
550 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
551 netif_err(efx
, hw
, efx
->net_dev
,
552 "MCDI request was completed without an event\n");
556 efx_mcdi_abandon(efx
);
558 /* Close the race with efx_mcdi_ev_cpl() executing just too late
559 * and completing a request we've just cancelled, by ensuring
560 * that the seqno check therein fails.
562 spin_lock_bh(&mcdi
->iface_lock
);
565 spin_unlock_bh(&mcdi
->iface_lock
);
572 size_t hdr_len
, data_len
, err_len
;
574 /* At the very least we need a memory barrier here to ensure
575 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
576 * a spurious efx_mcdi_ev_cpl() running concurrently by
577 * acquiring the iface_lock. */
578 spin_lock_bh(&mcdi
->iface_lock
);
580 hdr_len
= mcdi
->resp_hdr_len
;
581 data_len
= mcdi
->resp_data_len
;
582 err_len
= min(sizeof(errbuf
), data_len
);
583 spin_unlock_bh(&mcdi
->iface_lock
);
587 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
588 min(outlen
, data_len
));
590 *outlen_actual
= data_len
;
592 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
594 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
595 /* Don't reset if MC_CMD_REBOOT returns EIO */
596 } else if (rc
== -EIO
|| rc
== -EINTR
) {
597 netif_err(efx
, hw
, efx
->net_dev
, "MC fatal error %d\n",
599 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
600 } else if (rc
&& !quiet
) {
601 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
605 if (rc
== -EIO
|| rc
== -EINTR
) {
606 msleep(MCDI_STATUS_SLEEP_MS
);
607 efx_mcdi_poll_reboot(efx
);
608 mcdi
->new_epoch
= true;
612 efx_mcdi_release(mcdi
);
616 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
617 const efx_dword_t
*inbuf
, size_t inlen
,
618 efx_dword_t
*outbuf
, size_t outlen
,
619 size_t *outlen_actual
, bool quiet
)
623 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
629 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
630 outlen_actual
, quiet
);
633 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
634 const efx_dword_t
*inbuf
, size_t inlen
,
635 efx_dword_t
*outbuf
, size_t outlen
,
636 size_t *outlen_actual
)
638 return _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
639 outlen_actual
, false);
642 /* Normally, on receiving an error code in the MCDI response,
643 * efx_mcdi_rpc will log an error message containing (among other
644 * things) the raw error code, by means of efx_mcdi_display_error.
645 * This _quiet version suppresses that; if the caller wishes to log
646 * the error conditionally on the return code, it should call this
647 * function and is then responsible for calling efx_mcdi_display_error
650 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
651 const efx_dword_t
*inbuf
, size_t inlen
,
652 efx_dword_t
*outbuf
, size_t outlen
,
653 size_t *outlen_actual
)
655 return _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
656 outlen_actual
, true);
659 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
660 const efx_dword_t
*inbuf
, size_t inlen
)
662 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
665 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
669 if (efx
->mc_bist_for_other_fn
)
672 if (mcdi
->mode
== MCDI_MODE_FAIL
)
675 efx_mcdi_acquire_sync(mcdi
);
676 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
680 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
681 const efx_dword_t
*inbuf
, size_t inlen
,
683 efx_mcdi_async_completer
*complete
,
684 unsigned long cookie
, bool quiet
)
686 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
687 struct efx_mcdi_async_param
*async
;
690 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
694 if (efx
->mc_bist_for_other_fn
)
697 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
703 async
->inlen
= inlen
;
704 async
->outlen
= outlen
;
705 async
->quiet
= quiet
;
706 async
->complete
= complete
;
707 async
->cookie
= cookie
;
708 memcpy(async
+ 1, inbuf
, inlen
);
710 spin_lock_bh(&mcdi
->async_lock
);
712 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
713 list_add_tail(&async
->list
, &mcdi
->async_list
);
715 /* If this is at the front of the queue, try to start it
718 if (mcdi
->async_list
.next
== &async
->list
&&
719 efx_mcdi_acquire_async(mcdi
)) {
720 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
721 mod_timer(&mcdi
->async_timer
,
722 jiffies
+ MCDI_RPC_TIMEOUT
);
729 spin_unlock_bh(&mcdi
->async_lock
);
735 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
736 * @efx: NIC through which to issue the command
737 * @cmd: Command type number
738 * @inbuf: Command parameters
739 * @inlen: Length of command parameters, in bytes
740 * @outlen: Length to allocate for response buffer, in bytes
741 * @complete: Function to be called on completion or cancellation.
742 * @cookie: Arbitrary value to be passed to @complete.
744 * This function does not sleep and therefore may be called in atomic
745 * context. It will fail if event queues are disabled or if MCDI
746 * event completions have been disabled due to an error.
748 * If it succeeds, the @complete function will be called exactly once
749 * in atomic context, when one of the following occurs:
750 * (a) the completion event is received (in NAPI context)
751 * (b) event queues are disabled (in the process that disables them)
752 * (c) the request times-out (in timer context)
755 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
756 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
757 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
759 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
763 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
764 const efx_dword_t
*inbuf
, size_t inlen
,
765 size_t outlen
, efx_mcdi_async_completer
*complete
,
766 unsigned long cookie
)
768 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
772 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
773 efx_dword_t
*outbuf
, size_t outlen
,
774 size_t *outlen_actual
)
776 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
777 outlen_actual
, false);
780 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
781 efx_dword_t
*outbuf
, size_t outlen
,
782 size_t *outlen_actual
)
784 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
785 outlen_actual
, true);
788 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
789 size_t inlen
, efx_dword_t
*outbuf
,
790 size_t outlen
, int rc
)
792 int code
= 0, err_arg
= 0;
794 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
795 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
796 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
797 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
798 netif_err(efx
, hw
, efx
->net_dev
,
799 "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n",
800 cmd
, (int)inlen
, rc
, code
, err_arg
);
803 /* Switch to polled MCDI completions. This can be called in various
804 * error conditions with various locks held, so it must be lockless.
805 * Caller is responsible for flushing asynchronous requests later.
807 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
809 struct efx_mcdi_iface
*mcdi
;
814 mcdi
= efx_mcdi(efx
);
815 /* If already in polling mode, nothing to do.
816 * If in fail-fast state, don't switch to polled completion.
817 * FLR recovery will do that later.
819 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
822 /* We can switch from event completion to polled completion, because
823 * mcdi requests are always completed in shared memory. We do this by
824 * switching the mode to POLL'd then completing the request.
825 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
827 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
828 * which efx_mcdi_complete_sync() provides for us.
830 mcdi
->mode
= MCDI_MODE_POLL
;
832 efx_mcdi_complete_sync(mcdi
);
835 /* Flush any running or queued asynchronous requests, after event processing
838 void efx_mcdi_flush_async(struct efx_nic
*efx
)
840 struct efx_mcdi_async_param
*async
, *next
;
841 struct efx_mcdi_iface
*mcdi
;
846 mcdi
= efx_mcdi(efx
);
848 /* We must be in poll or fail mode so no more requests can be queued */
849 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
851 del_timer_sync(&mcdi
->async_timer
);
853 /* If a request is still running, make sure we give the MC
854 * time to complete it so that the response won't overwrite our
857 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
859 mcdi
->state
= MCDI_STATE_QUIESCENT
;
862 /* Nothing else will access the async list now, so it is safe
863 * to walk it without holding async_lock. If we hold it while
864 * calling a completer then lockdep may warn that we have
865 * acquired locks in the wrong order.
867 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
868 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
869 list_del(&async
->list
);
874 void efx_mcdi_mode_event(struct efx_nic
*efx
)
876 struct efx_mcdi_iface
*mcdi
;
881 mcdi
= efx_mcdi(efx
);
882 /* If already in event completion mode, nothing to do.
883 * If in fail-fast state, don't switch to event completion. FLR
884 * recovery will do that later.
886 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
889 /* We can't switch from polled to event completion in the middle of a
890 * request, because the completion method is specified in the request.
891 * So acquire the interface to serialise the requestors. We don't need
892 * to acquire the iface_lock to change the mode here, but we do need a
893 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
894 * efx_mcdi_acquire() provides.
896 efx_mcdi_acquire_sync(mcdi
);
897 mcdi
->mode
= MCDI_MODE_EVENTS
;
898 efx_mcdi_release(mcdi
);
901 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
903 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
905 /* If there is an outstanding MCDI request, it has been terminated
906 * either by a BADASSERT or REBOOT event. If the mcdi interface is
907 * in polled mode, then do nothing because the MC reboot handler will
908 * set the header correctly. However, if the mcdi interface is waiting
909 * for a CMDDONE event it won't receive it [and since all MCDI events
910 * are sent to the same queue, we can't be racing with
913 * If there is an outstanding asynchronous request, we can't
914 * complete it now (efx_mcdi_complete() would deadlock). The
915 * reset process will take care of this.
917 * There's a race here with efx_mcdi_send_request(), because
918 * we might receive a REBOOT event *before* the request has
919 * been copied out. In polled mode (during startup) this is
920 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
921 * event mode, this condition is just an edge-case of
922 * receiving a REBOOT event after posting the MCDI
923 * request. Did the mc reboot before or after the copyout? The
924 * best we can do always is just return failure.
926 spin_lock(&mcdi
->iface_lock
);
927 if (efx_mcdi_complete_sync(mcdi
)) {
928 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
930 mcdi
->resp_hdr_len
= 0;
931 mcdi
->resp_data_len
= 0;
937 /* Consume the status word since efx_mcdi_rpc_finish() won't */
938 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
939 if (efx_mcdi_poll_reboot(efx
))
941 udelay(MCDI_STATUS_DELAY_US
);
943 mcdi
->new_epoch
= true;
945 /* Nobody was waiting for an MCDI request, so trigger a reset */
946 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
949 spin_unlock(&mcdi
->iface_lock
);
952 /* The MC is going down in to BIST mode. set the BIST flag to block
953 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
954 * (which doesn't actually execute a reset, it waits for the controlling
955 * function to reset it).
957 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
959 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
961 spin_lock(&mcdi
->iface_lock
);
962 efx
->mc_bist_for_other_fn
= true;
963 if (efx_mcdi_complete_sync(mcdi
)) {
964 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
966 mcdi
->resp_hdr_len
= 0;
967 mcdi
->resp_data_len
= 0;
971 mcdi
->new_epoch
= true;
972 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
973 spin_unlock(&mcdi
->iface_lock
);
976 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
979 static void efx_mcdi_abandon(struct efx_nic
*efx
)
981 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
983 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
984 return; /* it had already been done */
985 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
986 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
989 /* Called from falcon_process_eventq for MCDI events */
990 void efx_mcdi_process_event(struct efx_channel
*channel
,
993 struct efx_nic
*efx
= channel
->efx
;
994 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
995 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
998 case MCDI_EVENT_CODE_BADSSERT
:
999 netif_err(efx
, hw
, efx
->net_dev
,
1000 "MC watchdog or assertion failure at 0x%x\n", data
);
1001 efx_mcdi_ev_death(efx
, -EINTR
);
1004 case MCDI_EVENT_CODE_PMNOTICE
:
1005 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1008 case MCDI_EVENT_CODE_CMDDONE
:
1009 efx_mcdi_ev_cpl(efx
,
1010 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1011 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1012 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1015 case MCDI_EVENT_CODE_LINKCHANGE
:
1016 efx_mcdi_process_link_change(efx
, event
);
1018 case MCDI_EVENT_CODE_SENSOREVT
:
1019 efx_mcdi_sensor_event(efx
, event
);
1021 case MCDI_EVENT_CODE_SCHEDERR
:
1022 netif_dbg(efx
, hw
, efx
->net_dev
,
1023 "MC Scheduler alert (0x%x)\n", data
);
1025 case MCDI_EVENT_CODE_REBOOT
:
1026 case MCDI_EVENT_CODE_MC_REBOOT
:
1027 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1028 efx_mcdi_ev_death(efx
, -EIO
);
1030 case MCDI_EVENT_CODE_MC_BIST
:
1031 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1032 efx_mcdi_ev_bist(efx
);
1034 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1035 /* MAC stats are gather lazily. We can ignore this. */
1037 case MCDI_EVENT_CODE_FLR
:
1038 efx_siena_sriov_flr(efx
, MCDI_EVENT_FIELD(*event
, FLR_VF
));
1040 case MCDI_EVENT_CODE_PTP_RX
:
1041 case MCDI_EVENT_CODE_PTP_FAULT
:
1042 case MCDI_EVENT_CODE_PTP_PPS
:
1043 efx_ptp_event(efx
, event
);
1045 case MCDI_EVENT_CODE_PTP_TIME
:
1046 efx_time_sync_event(channel
, event
);
1048 case MCDI_EVENT_CODE_TX_FLUSH
:
1049 case MCDI_EVENT_CODE_RX_FLUSH
:
1050 /* Two flush events will be sent: one to the same event
1051 * queue as completions, and one to event queue 0.
1052 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1053 * flag will be set, and we should ignore the event
1054 * because we want to wait for all completions.
1056 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1057 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1058 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1059 efx_ef10_handle_drain_event(efx
);
1061 case MCDI_EVENT_CODE_TX_ERR
:
1062 case MCDI_EVENT_CODE_RX_ERR
:
1063 netif_err(efx
, hw
, efx
->net_dev
,
1064 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1065 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1066 EFX_QWORD_VAL(*event
));
1067 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1070 netif_err(efx
, hw
, efx
->net_dev
, "Unknown MCDI event 0x%x\n",
1075 /**************************************************************************
1077 * Specific request functions
1079 **************************************************************************
1082 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1084 MCDI_DECLARE_BUF(outbuf
,
1085 max(MC_CMD_GET_VERSION_OUT_LEN
,
1086 MC_CMD_GET_CAPABILITIES_OUT_LEN
));
1088 const __le16
*ver_words
;
1092 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1093 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1094 outbuf
, sizeof(outbuf
), &outlength
);
1097 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1102 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1103 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1104 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1105 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1107 /* EF10 may have multiple datapath firmware variants within a
1108 * single version. Report which variants are running.
1110 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1111 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN
!= 0);
1112 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_CAPABILITIES
, NULL
, 0,
1113 outbuf
, sizeof(outbuf
), &outlength
);
1114 if (rc
|| outlength
< MC_CMD_GET_CAPABILITIES_OUT_LEN
)
1116 buf
+ offset
, len
- offset
, " rx? tx?");
1119 buf
+ offset
, len
- offset
, " rx%x tx%x",
1121 GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID
),
1123 GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID
));
1125 /* It's theoretically possible for the string to exceed 31
1126 * characters, though in practice the first three version
1127 * components are short enough that this doesn't happen.
1129 if (WARN_ON(offset
>= len
))
1136 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1140 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1143 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1144 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1148 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1149 driver_operating
? 1 : 0);
1150 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1151 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1153 rc
= efx_mcdi_rpc(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1154 outbuf
, sizeof(outbuf
), &outlen
);
1157 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1162 if (driver_operating
) {
1163 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1164 efx
->mcdi
->fn_flags
=
1166 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1168 /* Synthesise flags for Siena */
1169 efx
->mcdi
->fn_flags
=
1170 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1171 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1172 (efx_port_num(efx
) == 0) <<
1173 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1177 /* We currently assume we have control of the external link
1178 * and are completely trusted by firmware. Abort probing
1179 * if that's not true for this function.
1181 if (driver_operating
&&
1182 (efx
->mcdi
->fn_flags
&
1183 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1184 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
)) !=
1185 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1186 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
)) {
1187 netif_err(efx
, probe
, efx
->net_dev
,
1188 "This driver version only supports one function per port\n");
1192 if (was_attached
!= NULL
)
1193 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1197 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1201 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1202 u16
*fw_subtype_list
, u32
*capabilities
)
1204 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1206 int port_num
= efx_port_num(efx
);
1209 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1210 /* we need __aligned(2) for ether_addr_copy */
1211 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1212 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1214 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1215 outbuf
, sizeof(outbuf
), &outlen
);
1219 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1225 ether_addr_copy(mac_address
,
1227 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1228 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1229 if (fw_subtype_list
) {
1231 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1232 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1234 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1235 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1236 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1237 fw_subtype_list
[i
] = 0;
1241 *capabilities
= MCDI_DWORD(outbuf
,
1242 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1244 *capabilities
= MCDI_DWORD(outbuf
,
1245 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1251 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1252 __func__
, rc
, (int)outlen
);
1257 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1259 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1264 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1266 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1268 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1269 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1271 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1273 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1278 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1280 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1284 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1286 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1287 outbuf
, sizeof(outbuf
), &outlen
);
1290 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1295 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1299 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1304 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1305 size_t *size_out
, size_t *erase_size_out
,
1306 bool *protected_out
)
1308 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1309 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1313 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1315 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1316 outbuf
, sizeof(outbuf
), &outlen
);
1319 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1324 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1325 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1326 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1327 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1331 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1335 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1337 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1338 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1341 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1343 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1344 outbuf
, sizeof(outbuf
), NULL
);
1348 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1349 case MC_CMD_NVRAM_TEST_PASS
:
1350 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1357 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1363 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1368 while (nvram_types
!= 0) {
1369 if (nvram_types
& 1) {
1370 rc
= efx_mcdi_nvram_test(efx
, type
);
1381 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1384 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1388 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1390 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1391 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1392 unsigned int flags
, index
;
1398 /* Attempt to read any stored assertion state before we reboot
1399 * the mcfw out of the assertion handler. Retry twice, once
1400 * because a boot-time assertion might cause this command to fail
1401 * with EINTR. And once again because GET_ASSERTS can race with
1402 * MC_CMD_REBOOT running on the other port. */
1405 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1406 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1407 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1408 outbuf
, sizeof(outbuf
), &outlen
);
1409 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1412 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1413 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1417 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1420 /* Print out any recorded assertion state */
1421 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1422 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1425 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1426 ? "system-level assertion"
1427 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1428 ? "thread-level assertion"
1429 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1431 : "unknown assertion";
1432 netif_err(efx
, hw
, efx
->net_dev
,
1433 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1434 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1435 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1437 /* Print out the registers */
1439 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1441 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1443 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1449 static void efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1451 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1453 /* If the MC is running debug firmware, it might now be
1454 * waiting for a debugger to attach, but we just want it to
1455 * reboot. We set a flag that makes the command a no-op if it
1456 * has already done so. We don't know what return code to
1457 * expect (0 or -EIO), so ignore it.
1459 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1460 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1461 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1462 (void) efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1466 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1470 rc
= efx_mcdi_read_assertion(efx
);
1474 efx_mcdi_exit_assertion(efx
);
1479 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1481 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1484 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1485 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1486 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1488 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1490 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1492 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1496 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1498 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1501 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1502 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1503 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1504 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1509 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1511 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1514 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1515 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1516 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1518 /* White is black, and up is down */
1526 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1528 return RESET_TYPE_RECOVER_OR_ALL
;
1531 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1535 /* If MCDI is down, we can't handle_assertion */
1536 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1537 rc
= pci_reset_function(efx
->pci_dev
);
1540 /* Re-enable polled MCDI completion */
1542 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1543 mcdi
->mode
= MCDI_MODE_POLL
;
1548 /* Recover from a failed assertion pre-reset */
1549 rc
= efx_mcdi_handle_assertion(efx
);
1553 if (method
== RESET_TYPE_WORLD
)
1554 return efx_mcdi_reset_mc(efx
);
1556 return efx_mcdi_reset_func(efx
);
1559 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1560 const u8
*mac
, int *id_out
)
1562 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1563 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1567 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1568 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1569 MC_CMD_FILTER_MODE_SIMPLE
);
1570 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1572 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1573 outbuf
, sizeof(outbuf
), &outlen
);
1577 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1582 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1588 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1595 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1597 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1601 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1603 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1607 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1608 outbuf
, sizeof(outbuf
), &outlen
);
1612 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1617 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1623 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1628 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1630 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1633 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1635 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1640 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1642 struct efx_channel
*channel
;
1643 struct efx_rx_queue
*rx_queue
;
1644 MCDI_DECLARE_BUF(inbuf
,
1645 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1648 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1649 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1652 efx_for_each_channel(channel
, efx
) {
1653 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1654 if (rx_queue
->flush_pending
) {
1655 rx_queue
->flush_pending
= false;
1656 atomic_dec(&efx
->rxq_flush_pending
);
1657 MCDI_SET_ARRAY_DWORD(
1658 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1659 count
, efx_rx_queue_index(rx_queue
));
1665 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1666 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
1672 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
1676 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
1680 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
)
1682 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
1684 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
1685 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
1686 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
1687 return efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
1691 #ifdef CONFIG_SFC_MTD
1693 #define EFX_MCDI_NVRAM_LEN_MAX 128
1695 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
1697 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_IN_LEN
);
1700 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
1702 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
1704 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
1709 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
1710 loff_t offset
, u8
*buffer
, size_t length
)
1712 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_LEN
);
1713 MCDI_DECLARE_BUF(outbuf
,
1714 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
1718 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
1719 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
1720 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
1722 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
1723 outbuf
, sizeof(outbuf
), &outlen
);
1727 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
1731 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
1732 loff_t offset
, const u8
*buffer
, size_t length
)
1734 MCDI_DECLARE_BUF(inbuf
,
1735 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
1738 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
1739 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
1740 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
1741 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
1743 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
1745 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
1746 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
1751 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
1752 loff_t offset
, size_t length
)
1754 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
1757 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
1758 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
1759 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
1761 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
1763 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
1768 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
1770 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN
);
1773 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
1775 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN
!= 0);
1777 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
1782 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
1783 size_t len
, size_t *retlen
, u8
*buffer
)
1785 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1786 struct efx_nic
*efx
= mtd
->priv
;
1787 loff_t offset
= start
;
1788 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1792 while (offset
< end
) {
1793 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
1794 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
1802 *retlen
= offset
- start
;
1806 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
1808 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1809 struct efx_nic
*efx
= mtd
->priv
;
1810 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
1811 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1812 size_t chunk
= part
->common
.mtd
.erasesize
;
1815 if (!part
->updating
) {
1816 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
1819 part
->updating
= true;
1822 /* The MCDI interface can in fact do multiple erase blocks at once;
1823 * but erasing may be slow, so we make multiple calls here to avoid
1824 * tripping the MCDI RPC timeout. */
1825 while (offset
< end
) {
1826 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
1836 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
1837 size_t len
, size_t *retlen
, const u8
*buffer
)
1839 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1840 struct efx_nic
*efx
= mtd
->priv
;
1841 loff_t offset
= start
;
1842 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
1846 if (!part
->updating
) {
1847 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
1850 part
->updating
= true;
1853 while (offset
< end
) {
1854 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
1855 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
1863 *retlen
= offset
- start
;
1867 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
1869 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
1870 struct efx_nic
*efx
= mtd
->priv
;
1873 if (part
->updating
) {
1874 part
->updating
= false;
1875 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
1881 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
1883 struct efx_mcdi_mtd_partition
*mcdi_part
=
1884 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
1885 struct efx_nic
*efx
= part
->mtd
.priv
;
1887 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
1888 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
1891 #endif /* CONFIG_SFC_MTD */