powerpc/eeh: Fix PE#0 check in eeh_add_to_parent_pe()
[linux/fpc-iii.git] / net / rds / send.c
blob42f65d4305c88dc5db279fec71d5fb844e708cc1
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
42 #include "rds.h"
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45 * time to time and briefly release the CPU. Otherwise the softlock watchdog
46 * will kick our shin.
47 * Also, it seems fairer to not let one busy connection stall all the
48 * others.
50 * send_batch_count is the number of times we'll loop in send_xmit. Setting
51 * it to 0 will restore the old behavior (where we looped until we had
52 * drained the queue).
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
61 * Reset the send state. Callers must ensure that this doesn't race with
62 * rds_send_xmit().
64 void rds_send_reset(struct rds_connection *conn)
66 struct rds_message *rm, *tmp;
67 unsigned long flags;
69 if (conn->c_xmit_rm) {
70 rm = conn->c_xmit_rm;
71 conn->c_xmit_rm = NULL;
72 /* Tell the user the RDMA op is no longer mapped by the
73 * transport. This isn't entirely true (it's flushed out
74 * independently) but as the connection is down, there's
75 * no ongoing RDMA to/from that memory */
76 rds_message_unmapped(rm);
77 rds_message_put(rm);
80 conn->c_xmit_sg = 0;
81 conn->c_xmit_hdr_off = 0;
82 conn->c_xmit_data_off = 0;
83 conn->c_xmit_atomic_sent = 0;
84 conn->c_xmit_rdma_sent = 0;
85 conn->c_xmit_data_sent = 0;
87 conn->c_map_queued = 0;
89 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn->c_lock, flags);
94 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 spin_unlock_irqrestore(&conn->c_lock, flags);
102 static int acquire_in_xmit(struct rds_connection *conn)
104 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
107 static void release_in_xmit(struct rds_connection *conn)
109 clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 smp_mb__after_atomic();
112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 * hot path and finding waiters is very rare. We don't want to walk
114 * the system-wide hashed waitqueue buckets in the fast path only to
115 * almost never find waiters.
117 if (waitqueue_active(&conn->c_waitq))
118 wake_up_all(&conn->c_waitq);
122 * We're making the conscious trade-off here to only send one message
123 * down the connection at a time.
124 * Pro:
125 * - tx queueing is a simple fifo list
126 * - reassembly is optional and easily done by transports per conn
127 * - no per flow rx lookup at all, straight to the socket
128 * - less per-frag memory and wire overhead
129 * Con:
130 * - queued acks can be delayed behind large messages
131 * Depends:
132 * - small message latency is higher behind queued large messages
133 * - large message latency isn't starved by intervening small sends
135 int rds_send_xmit(struct rds_connection *conn)
137 struct rds_message *rm;
138 unsigned long flags;
139 unsigned int tmp;
140 struct scatterlist *sg;
141 int ret = 0;
142 LIST_HEAD(to_be_dropped);
144 restart:
147 * sendmsg calls here after having queued its message on the send
148 * queue. We only have one task feeding the connection at a time. If
149 * another thread is already feeding the queue then we back off. This
150 * avoids blocking the caller and trading per-connection data between
151 * caches per message.
153 if (!acquire_in_xmit(conn)) {
154 rds_stats_inc(s_send_lock_contention);
155 ret = -ENOMEM;
156 goto out;
160 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
161 * we do the opposite to avoid races.
163 if (!rds_conn_up(conn)) {
164 release_in_xmit(conn);
165 ret = 0;
166 goto out;
169 if (conn->c_trans->xmit_prepare)
170 conn->c_trans->xmit_prepare(conn);
173 * spin trying to push headers and data down the connection until
174 * the connection doesn't make forward progress.
176 while (1) {
178 rm = conn->c_xmit_rm;
181 * If between sending messages, we can send a pending congestion
182 * map update.
184 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
185 rm = rds_cong_update_alloc(conn);
186 if (IS_ERR(rm)) {
187 ret = PTR_ERR(rm);
188 break;
190 rm->data.op_active = 1;
192 conn->c_xmit_rm = rm;
196 * If not already working on one, grab the next message.
198 * c_xmit_rm holds a ref while we're sending this message down
199 * the connction. We can use this ref while holding the
200 * send_sem.. rds_send_reset() is serialized with it.
202 if (!rm) {
203 unsigned int len;
205 spin_lock_irqsave(&conn->c_lock, flags);
207 if (!list_empty(&conn->c_send_queue)) {
208 rm = list_entry(conn->c_send_queue.next,
209 struct rds_message,
210 m_conn_item);
211 rds_message_addref(rm);
214 * Move the message from the send queue to the retransmit
215 * list right away.
217 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
220 spin_unlock_irqrestore(&conn->c_lock, flags);
222 if (!rm)
223 break;
225 /* Unfortunately, the way Infiniband deals with
226 * RDMA to a bad MR key is by moving the entire
227 * queue pair to error state. We cold possibly
228 * recover from that, but right now we drop the
229 * connection.
230 * Therefore, we never retransmit messages with RDMA ops.
232 if (rm->rdma.op_active &&
233 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
234 spin_lock_irqsave(&conn->c_lock, flags);
235 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
236 list_move(&rm->m_conn_item, &to_be_dropped);
237 spin_unlock_irqrestore(&conn->c_lock, flags);
238 continue;
241 /* Require an ACK every once in a while */
242 len = ntohl(rm->m_inc.i_hdr.h_len);
243 if (conn->c_unacked_packets == 0 ||
244 conn->c_unacked_bytes < len) {
245 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
247 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
248 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
249 rds_stats_inc(s_send_ack_required);
250 } else {
251 conn->c_unacked_bytes -= len;
252 conn->c_unacked_packets--;
255 conn->c_xmit_rm = rm;
258 /* The transport either sends the whole rdma or none of it */
259 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
260 rm->m_final_op = &rm->rdma;
261 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
262 if (ret)
263 break;
264 conn->c_xmit_rdma_sent = 1;
266 /* The transport owns the mapped memory for now.
267 * You can't unmap it while it's on the send queue */
268 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
271 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
272 rm->m_final_op = &rm->atomic;
273 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
274 if (ret)
275 break;
276 conn->c_xmit_atomic_sent = 1;
278 /* The transport owns the mapped memory for now.
279 * You can't unmap it while it's on the send queue */
280 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
284 * A number of cases require an RDS header to be sent
285 * even if there is no data.
286 * We permit 0-byte sends; rds-ping depends on this.
287 * However, if there are exclusively attached silent ops,
288 * we skip the hdr/data send, to enable silent operation.
290 if (rm->data.op_nents == 0) {
291 int ops_present;
292 int all_ops_are_silent = 1;
294 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
295 if (rm->atomic.op_active && !rm->atomic.op_silent)
296 all_ops_are_silent = 0;
297 if (rm->rdma.op_active && !rm->rdma.op_silent)
298 all_ops_are_silent = 0;
300 if (ops_present && all_ops_are_silent
301 && !rm->m_rdma_cookie)
302 rm->data.op_active = 0;
305 if (rm->data.op_active && !conn->c_xmit_data_sent) {
306 rm->m_final_op = &rm->data;
307 ret = conn->c_trans->xmit(conn, rm,
308 conn->c_xmit_hdr_off,
309 conn->c_xmit_sg,
310 conn->c_xmit_data_off);
311 if (ret <= 0)
312 break;
314 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
315 tmp = min_t(int, ret,
316 sizeof(struct rds_header) -
317 conn->c_xmit_hdr_off);
318 conn->c_xmit_hdr_off += tmp;
319 ret -= tmp;
322 sg = &rm->data.op_sg[conn->c_xmit_sg];
323 while (ret) {
324 tmp = min_t(int, ret, sg->length -
325 conn->c_xmit_data_off);
326 conn->c_xmit_data_off += tmp;
327 ret -= tmp;
328 if (conn->c_xmit_data_off == sg->length) {
329 conn->c_xmit_data_off = 0;
330 sg++;
331 conn->c_xmit_sg++;
332 BUG_ON(ret != 0 &&
333 conn->c_xmit_sg == rm->data.op_nents);
337 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
338 (conn->c_xmit_sg == rm->data.op_nents))
339 conn->c_xmit_data_sent = 1;
343 * A rm will only take multiple times through this loop
344 * if there is a data op. Thus, if the data is sent (or there was
345 * none), then we're done with the rm.
347 if (!rm->data.op_active || conn->c_xmit_data_sent) {
348 conn->c_xmit_rm = NULL;
349 conn->c_xmit_sg = 0;
350 conn->c_xmit_hdr_off = 0;
351 conn->c_xmit_data_off = 0;
352 conn->c_xmit_rdma_sent = 0;
353 conn->c_xmit_atomic_sent = 0;
354 conn->c_xmit_data_sent = 0;
356 rds_message_put(rm);
360 if (conn->c_trans->xmit_complete)
361 conn->c_trans->xmit_complete(conn);
363 release_in_xmit(conn);
365 /* Nuke any messages we decided not to retransmit. */
366 if (!list_empty(&to_be_dropped)) {
367 /* irqs on here, so we can put(), unlike above */
368 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
369 rds_message_put(rm);
370 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
374 * Other senders can queue a message after we last test the send queue
375 * but before we clear RDS_IN_XMIT. In that case they'd back off and
376 * not try and send their newly queued message. We need to check the
377 * send queue after having cleared RDS_IN_XMIT so that their message
378 * doesn't get stuck on the send queue.
380 * If the transport cannot continue (i.e ret != 0), then it must
381 * call us when more room is available, such as from the tx
382 * completion handler.
384 if (ret == 0) {
385 smp_mb();
386 if (!list_empty(&conn->c_send_queue)) {
387 rds_stats_inc(s_send_lock_queue_raced);
388 goto restart;
391 out:
392 return ret;
395 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
397 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
399 assert_spin_locked(&rs->rs_lock);
401 BUG_ON(rs->rs_snd_bytes < len);
402 rs->rs_snd_bytes -= len;
404 if (rs->rs_snd_bytes == 0)
405 rds_stats_inc(s_send_queue_empty);
408 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
409 is_acked_func is_acked)
411 if (is_acked)
412 return is_acked(rm, ack);
413 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
417 * This is pretty similar to what happens below in the ACK
418 * handling code - except that we call here as soon as we get
419 * the IB send completion on the RDMA op and the accompanying
420 * message.
422 void rds_rdma_send_complete(struct rds_message *rm, int status)
424 struct rds_sock *rs = NULL;
425 struct rm_rdma_op *ro;
426 struct rds_notifier *notifier;
427 unsigned long flags;
429 spin_lock_irqsave(&rm->m_rs_lock, flags);
431 ro = &rm->rdma;
432 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
433 ro->op_active && ro->op_notify && ro->op_notifier) {
434 notifier = ro->op_notifier;
435 rs = rm->m_rs;
436 sock_hold(rds_rs_to_sk(rs));
438 notifier->n_status = status;
439 spin_lock(&rs->rs_lock);
440 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
441 spin_unlock(&rs->rs_lock);
443 ro->op_notifier = NULL;
446 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
448 if (rs) {
449 rds_wake_sk_sleep(rs);
450 sock_put(rds_rs_to_sk(rs));
453 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
456 * Just like above, except looks at atomic op
458 void rds_atomic_send_complete(struct rds_message *rm, int status)
460 struct rds_sock *rs = NULL;
461 struct rm_atomic_op *ao;
462 struct rds_notifier *notifier;
463 unsigned long flags;
465 spin_lock_irqsave(&rm->m_rs_lock, flags);
467 ao = &rm->atomic;
468 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
469 && ao->op_active && ao->op_notify && ao->op_notifier) {
470 notifier = ao->op_notifier;
471 rs = rm->m_rs;
472 sock_hold(rds_rs_to_sk(rs));
474 notifier->n_status = status;
475 spin_lock(&rs->rs_lock);
476 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
477 spin_unlock(&rs->rs_lock);
479 ao->op_notifier = NULL;
482 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
484 if (rs) {
485 rds_wake_sk_sleep(rs);
486 sock_put(rds_rs_to_sk(rs));
489 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
492 * This is the same as rds_rdma_send_complete except we
493 * don't do any locking - we have all the ingredients (message,
494 * socket, socket lock) and can just move the notifier.
496 static inline void
497 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
499 struct rm_rdma_op *ro;
500 struct rm_atomic_op *ao;
502 ro = &rm->rdma;
503 if (ro->op_active && ro->op_notify && ro->op_notifier) {
504 ro->op_notifier->n_status = status;
505 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
506 ro->op_notifier = NULL;
509 ao = &rm->atomic;
510 if (ao->op_active && ao->op_notify && ao->op_notifier) {
511 ao->op_notifier->n_status = status;
512 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
513 ao->op_notifier = NULL;
516 /* No need to wake the app - caller does this */
520 * This is called from the IB send completion when we detect
521 * a RDMA operation that failed with remote access error.
522 * So speed is not an issue here.
524 struct rds_message *rds_send_get_message(struct rds_connection *conn,
525 struct rm_rdma_op *op)
527 struct rds_message *rm, *tmp, *found = NULL;
528 unsigned long flags;
530 spin_lock_irqsave(&conn->c_lock, flags);
532 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
533 if (&rm->rdma == op) {
534 atomic_inc(&rm->m_refcount);
535 found = rm;
536 goto out;
540 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
541 if (&rm->rdma == op) {
542 atomic_inc(&rm->m_refcount);
543 found = rm;
544 break;
548 out:
549 spin_unlock_irqrestore(&conn->c_lock, flags);
551 return found;
553 EXPORT_SYMBOL_GPL(rds_send_get_message);
556 * This removes messages from the socket's list if they're on it. The list
557 * argument must be private to the caller, we must be able to modify it
558 * without locks. The messages must have a reference held for their
559 * position on the list. This function will drop that reference after
560 * removing the messages from the 'messages' list regardless of if it found
561 * the messages on the socket list or not.
563 static void rds_send_remove_from_sock(struct list_head *messages, int status)
565 unsigned long flags;
566 struct rds_sock *rs = NULL;
567 struct rds_message *rm;
569 while (!list_empty(messages)) {
570 int was_on_sock = 0;
572 rm = list_entry(messages->next, struct rds_message,
573 m_conn_item);
574 list_del_init(&rm->m_conn_item);
577 * If we see this flag cleared then we're *sure* that someone
578 * else beat us to removing it from the sock. If we race
579 * with their flag update we'll get the lock and then really
580 * see that the flag has been cleared.
582 * The message spinlock makes sure nobody clears rm->m_rs
583 * while we're messing with it. It does not prevent the
584 * message from being removed from the socket, though.
586 spin_lock_irqsave(&rm->m_rs_lock, flags);
587 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
588 goto unlock_and_drop;
590 if (rs != rm->m_rs) {
591 if (rs) {
592 rds_wake_sk_sleep(rs);
593 sock_put(rds_rs_to_sk(rs));
595 rs = rm->m_rs;
596 if (rs)
597 sock_hold(rds_rs_to_sk(rs));
599 if (!rs)
600 goto unlock_and_drop;
601 spin_lock(&rs->rs_lock);
603 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
604 struct rm_rdma_op *ro = &rm->rdma;
605 struct rds_notifier *notifier;
607 list_del_init(&rm->m_sock_item);
608 rds_send_sndbuf_remove(rs, rm);
610 if (ro->op_active && ro->op_notifier &&
611 (ro->op_notify || (ro->op_recverr && status))) {
612 notifier = ro->op_notifier;
613 list_add_tail(&notifier->n_list,
614 &rs->rs_notify_queue);
615 if (!notifier->n_status)
616 notifier->n_status = status;
617 rm->rdma.op_notifier = NULL;
619 was_on_sock = 1;
620 rm->m_rs = NULL;
622 spin_unlock(&rs->rs_lock);
624 unlock_and_drop:
625 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
626 rds_message_put(rm);
627 if (was_on_sock)
628 rds_message_put(rm);
631 if (rs) {
632 rds_wake_sk_sleep(rs);
633 sock_put(rds_rs_to_sk(rs));
638 * Transports call here when they've determined that the receiver queued
639 * messages up to, and including, the given sequence number. Messages are
640 * moved to the retrans queue when rds_send_xmit picks them off the send
641 * queue. This means that in the TCP case, the message may not have been
642 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
643 * checks the RDS_MSG_HAS_ACK_SEQ bit.
645 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
646 is_acked_func is_acked)
648 struct rds_message *rm, *tmp;
649 unsigned long flags;
650 LIST_HEAD(list);
652 spin_lock_irqsave(&conn->c_lock, flags);
654 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
655 if (!rds_send_is_acked(rm, ack, is_acked))
656 break;
658 list_move(&rm->m_conn_item, &list);
659 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
662 /* order flag updates with spin locks */
663 if (!list_empty(&list))
664 smp_mb__after_atomic();
666 spin_unlock_irqrestore(&conn->c_lock, flags);
668 /* now remove the messages from the sock list as needed */
669 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
671 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
673 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
675 struct rds_message *rm, *tmp;
676 struct rds_connection *conn;
677 unsigned long flags;
678 LIST_HEAD(list);
680 /* get all the messages we're dropping under the rs lock */
681 spin_lock_irqsave(&rs->rs_lock, flags);
683 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
684 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
685 dest->sin_port != rm->m_inc.i_hdr.h_dport))
686 continue;
688 list_move(&rm->m_sock_item, &list);
689 rds_send_sndbuf_remove(rs, rm);
690 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
693 /* order flag updates with the rs lock */
694 smp_mb__after_atomic();
696 spin_unlock_irqrestore(&rs->rs_lock, flags);
698 if (list_empty(&list))
699 return;
701 /* Remove the messages from the conn */
702 list_for_each_entry(rm, &list, m_sock_item) {
704 conn = rm->m_inc.i_conn;
706 spin_lock_irqsave(&conn->c_lock, flags);
708 * Maybe someone else beat us to removing rm from the conn.
709 * If we race with their flag update we'll get the lock and
710 * then really see that the flag has been cleared.
712 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
713 spin_unlock_irqrestore(&conn->c_lock, flags);
714 spin_lock_irqsave(&rm->m_rs_lock, flags);
715 rm->m_rs = NULL;
716 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
717 continue;
719 list_del_init(&rm->m_conn_item);
720 spin_unlock_irqrestore(&conn->c_lock, flags);
723 * Couldn't grab m_rs_lock in top loop (lock ordering),
724 * but we can now.
726 spin_lock_irqsave(&rm->m_rs_lock, flags);
728 spin_lock(&rs->rs_lock);
729 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
730 spin_unlock(&rs->rs_lock);
732 rm->m_rs = NULL;
733 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
735 rds_message_put(rm);
738 rds_wake_sk_sleep(rs);
740 while (!list_empty(&list)) {
741 rm = list_entry(list.next, struct rds_message, m_sock_item);
742 list_del_init(&rm->m_sock_item);
744 rds_message_wait(rm);
745 rds_message_put(rm);
750 * we only want this to fire once so we use the callers 'queued'. It's
751 * possible that another thread can race with us and remove the
752 * message from the flow with RDS_CANCEL_SENT_TO.
754 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
755 struct rds_message *rm, __be16 sport,
756 __be16 dport, int *queued)
758 unsigned long flags;
759 u32 len;
761 if (*queued)
762 goto out;
764 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
766 /* this is the only place which holds both the socket's rs_lock
767 * and the connection's c_lock */
768 spin_lock_irqsave(&rs->rs_lock, flags);
771 * If there is a little space in sndbuf, we don't queue anything,
772 * and userspace gets -EAGAIN. But poll() indicates there's send
773 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
774 * freed up by incoming acks. So we check the *old* value of
775 * rs_snd_bytes here to allow the last msg to exceed the buffer,
776 * and poll() now knows no more data can be sent.
778 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
779 rs->rs_snd_bytes += len;
781 /* let recv side know we are close to send space exhaustion.
782 * This is probably not the optimal way to do it, as this
783 * means we set the flag on *all* messages as soon as our
784 * throughput hits a certain threshold.
786 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
787 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
789 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
790 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
791 rds_message_addref(rm);
792 rm->m_rs = rs;
794 /* The code ordering is a little weird, but we're
795 trying to minimize the time we hold c_lock */
796 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
797 rm->m_inc.i_conn = conn;
798 rds_message_addref(rm);
800 spin_lock(&conn->c_lock);
801 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
802 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
803 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
804 spin_unlock(&conn->c_lock);
806 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
807 rm, len, rs, rs->rs_snd_bytes,
808 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
810 *queued = 1;
813 spin_unlock_irqrestore(&rs->rs_lock, flags);
814 out:
815 return *queued;
819 * rds_message is getting to be quite complicated, and we'd like to allocate
820 * it all in one go. This figures out how big it needs to be up front.
822 static int rds_rm_size(struct msghdr *msg, int data_len)
824 struct cmsghdr *cmsg;
825 int size = 0;
826 int cmsg_groups = 0;
827 int retval;
829 for_each_cmsghdr(cmsg, msg) {
830 if (!CMSG_OK(msg, cmsg))
831 return -EINVAL;
833 if (cmsg->cmsg_level != SOL_RDS)
834 continue;
836 switch (cmsg->cmsg_type) {
837 case RDS_CMSG_RDMA_ARGS:
838 cmsg_groups |= 1;
839 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
840 if (retval < 0)
841 return retval;
842 size += retval;
844 break;
846 case RDS_CMSG_RDMA_DEST:
847 case RDS_CMSG_RDMA_MAP:
848 cmsg_groups |= 2;
849 /* these are valid but do no add any size */
850 break;
852 case RDS_CMSG_ATOMIC_CSWP:
853 case RDS_CMSG_ATOMIC_FADD:
854 case RDS_CMSG_MASKED_ATOMIC_CSWP:
855 case RDS_CMSG_MASKED_ATOMIC_FADD:
856 cmsg_groups |= 1;
857 size += sizeof(struct scatterlist);
858 break;
860 default:
861 return -EINVAL;
866 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
868 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
869 if (cmsg_groups == 3)
870 return -EINVAL;
872 return size;
875 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
876 struct msghdr *msg, int *allocated_mr)
878 struct cmsghdr *cmsg;
879 int ret = 0;
881 for_each_cmsghdr(cmsg, msg) {
882 if (!CMSG_OK(msg, cmsg))
883 return -EINVAL;
885 if (cmsg->cmsg_level != SOL_RDS)
886 continue;
888 /* As a side effect, RDMA_DEST and RDMA_MAP will set
889 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
891 switch (cmsg->cmsg_type) {
892 case RDS_CMSG_RDMA_ARGS:
893 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
894 break;
896 case RDS_CMSG_RDMA_DEST:
897 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
898 break;
900 case RDS_CMSG_RDMA_MAP:
901 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
902 if (!ret)
903 *allocated_mr = 1;
904 break;
905 case RDS_CMSG_ATOMIC_CSWP:
906 case RDS_CMSG_ATOMIC_FADD:
907 case RDS_CMSG_MASKED_ATOMIC_CSWP:
908 case RDS_CMSG_MASKED_ATOMIC_FADD:
909 ret = rds_cmsg_atomic(rs, rm, cmsg);
910 break;
912 default:
913 return -EINVAL;
916 if (ret)
917 break;
920 return ret;
923 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
924 size_t payload_len)
926 struct sock *sk = sock->sk;
927 struct rds_sock *rs = rds_sk_to_rs(sk);
928 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
929 __be32 daddr;
930 __be16 dport;
931 struct rds_message *rm = NULL;
932 struct rds_connection *conn;
933 int ret = 0;
934 int queued = 0, allocated_mr = 0;
935 int nonblock = msg->msg_flags & MSG_DONTWAIT;
936 long timeo = sock_sndtimeo(sk, nonblock);
938 /* Mirror Linux UDP mirror of BSD error message compatibility */
939 /* XXX: Perhaps MSG_MORE someday */
940 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
941 ret = -EOPNOTSUPP;
942 goto out;
945 if (msg->msg_namelen) {
946 /* XXX fail non-unicast destination IPs? */
947 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
948 ret = -EINVAL;
949 goto out;
951 daddr = usin->sin_addr.s_addr;
952 dport = usin->sin_port;
953 } else {
954 /* We only care about consistency with ->connect() */
955 lock_sock(sk);
956 daddr = rs->rs_conn_addr;
957 dport = rs->rs_conn_port;
958 release_sock(sk);
961 /* racing with another thread binding seems ok here */
962 if (daddr == 0 || rs->rs_bound_addr == 0) {
963 ret = -ENOTCONN; /* XXX not a great errno */
964 goto out;
967 /* size of rm including all sgs */
968 ret = rds_rm_size(msg, payload_len);
969 if (ret < 0)
970 goto out;
972 rm = rds_message_alloc(ret, GFP_KERNEL);
973 if (!rm) {
974 ret = -ENOMEM;
975 goto out;
978 /* Attach data to the rm */
979 if (payload_len) {
980 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
981 if (!rm->data.op_sg) {
982 ret = -ENOMEM;
983 goto out;
985 ret = rds_message_copy_from_user(rm, &msg->msg_iter);
986 if (ret)
987 goto out;
989 rm->data.op_active = 1;
991 rm->m_daddr = daddr;
993 /* rds_conn_create has a spinlock that runs with IRQ off.
994 * Caching the conn in the socket helps a lot. */
995 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
996 conn = rs->rs_conn;
997 else {
998 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
999 rs->rs_transport,
1000 sock->sk->sk_allocation);
1001 if (IS_ERR(conn)) {
1002 ret = PTR_ERR(conn);
1003 goto out;
1005 rs->rs_conn = conn;
1008 /* Parse any control messages the user may have included. */
1009 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1010 if (ret)
1011 goto out;
1013 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1014 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1015 &rm->rdma, conn->c_trans->xmit_rdma);
1016 ret = -EOPNOTSUPP;
1017 goto out;
1020 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1021 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1022 &rm->atomic, conn->c_trans->xmit_atomic);
1023 ret = -EOPNOTSUPP;
1024 goto out;
1027 rds_conn_connect_if_down(conn);
1029 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1030 if (ret) {
1031 rs->rs_seen_congestion = 1;
1032 goto out;
1035 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1036 dport, &queued)) {
1037 rds_stats_inc(s_send_queue_full);
1038 /* XXX make sure this is reasonable */
1039 if (payload_len > rds_sk_sndbuf(rs)) {
1040 ret = -EMSGSIZE;
1041 goto out;
1043 if (nonblock) {
1044 ret = -EAGAIN;
1045 goto out;
1048 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1049 rds_send_queue_rm(rs, conn, rm,
1050 rs->rs_bound_port,
1051 dport,
1052 &queued),
1053 timeo);
1054 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1055 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1056 continue;
1058 ret = timeo;
1059 if (ret == 0)
1060 ret = -ETIMEDOUT;
1061 goto out;
1065 * By now we've committed to the send. We reuse rds_send_worker()
1066 * to retry sends in the rds thread if the transport asks us to.
1068 rds_stats_inc(s_send_queued);
1070 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1071 rds_send_xmit(conn);
1073 rds_message_put(rm);
1074 return payload_len;
1076 out:
1077 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1078 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1079 * or in any other way, we need to destroy the MR again */
1080 if (allocated_mr)
1081 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1083 if (rm)
1084 rds_message_put(rm);
1085 return ret;
1089 * Reply to a ping packet.
1092 rds_send_pong(struct rds_connection *conn, __be16 dport)
1094 struct rds_message *rm;
1095 unsigned long flags;
1096 int ret = 0;
1098 rm = rds_message_alloc(0, GFP_ATOMIC);
1099 if (!rm) {
1100 ret = -ENOMEM;
1101 goto out;
1104 rm->m_daddr = conn->c_faddr;
1105 rm->data.op_active = 1;
1107 rds_conn_connect_if_down(conn);
1109 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1110 if (ret)
1111 goto out;
1113 spin_lock_irqsave(&conn->c_lock, flags);
1114 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1115 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1116 rds_message_addref(rm);
1117 rm->m_inc.i_conn = conn;
1119 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1120 conn->c_next_tx_seq);
1121 conn->c_next_tx_seq++;
1122 spin_unlock_irqrestore(&conn->c_lock, flags);
1124 rds_stats_inc(s_send_queued);
1125 rds_stats_inc(s_send_pong);
1127 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1128 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1130 rds_message_put(rm);
1131 return 0;
1133 out:
1134 if (rm)
1135 rds_message_put(rm);
1136 return ret;