2 * linux/kernel/profile.c
3 * Simple profiling. Manages a direct-mapped profile hit count buffer,
4 * with configurable resolution, support for restricting the cpus on
5 * which profiling is done, and switching between cpu time and
6 * schedule() calls via kernel command line parameters passed at boot.
8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
10 * Consolidation of architecture support code for profiling,
11 * Nadia Yvette Chambers, Oracle, July 2004
12 * Amortized hit count accounting via per-cpu open-addressed hashtables
13 * to resolve timer interrupt livelocks, Nadia Yvette Chambers,
17 #include <linux/export.h>
18 #include <linux/profile.h>
19 #include <linux/memblock.h>
20 #include <linux/notifier.h>
22 #include <linux/cpumask.h>
23 #include <linux/cpu.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched/stat.h>
30 #include <asm/sections.h>
31 #include <asm/irq_regs.h>
32 #include <asm/ptrace.h>
37 #define PROFILE_GRPSHIFT 3
38 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
39 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
40 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
42 static atomic_t
*prof_buffer
;
43 static unsigned long prof_len
, prof_shift
;
45 int prof_on __read_mostly
;
46 EXPORT_SYMBOL_GPL(prof_on
);
48 static cpumask_var_t prof_cpu_mask
;
49 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
50 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
51 static DEFINE_PER_CPU(int, cpu_profile_flip
);
52 static DEFINE_MUTEX(profile_flip_mutex
);
53 #endif /* CONFIG_SMP */
55 int profile_setup(char *str
)
57 static const char schedstr
[] = "schedule";
58 static const char sleepstr
[] = "sleep";
59 static const char kvmstr
[] = "kvm";
62 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
63 #ifdef CONFIG_SCHEDSTATS
64 force_schedstat_enabled();
65 prof_on
= SLEEP_PROFILING
;
66 if (str
[strlen(sleepstr
)] == ',')
67 str
+= strlen(sleepstr
) + 1;
68 if (get_option(&str
, &par
))
70 pr_info("kernel sleep profiling enabled (shift: %ld)\n",
73 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
74 #endif /* CONFIG_SCHEDSTATS */
75 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
76 prof_on
= SCHED_PROFILING
;
77 if (str
[strlen(schedstr
)] == ',')
78 str
+= strlen(schedstr
) + 1;
79 if (get_option(&str
, &par
))
81 pr_info("kernel schedule profiling enabled (shift: %ld)\n",
83 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
84 prof_on
= KVM_PROFILING
;
85 if (str
[strlen(kvmstr
)] == ',')
86 str
+= strlen(kvmstr
) + 1;
87 if (get_option(&str
, &par
))
89 pr_info("kernel KVM profiling enabled (shift: %ld)\n",
91 } else if (get_option(&str
, &par
)) {
93 prof_on
= CPU_PROFILING
;
94 pr_info("kernel profiling enabled (shift: %ld)\n",
99 __setup("profile=", profile_setup
);
102 int __ref
profile_init(void)
108 /* only text is profiled */
109 prof_len
= (_etext
- _stext
) >> prof_shift
;
110 buffer_bytes
= prof_len
*sizeof(atomic_t
);
112 if (!alloc_cpumask_var(&prof_cpu_mask
, GFP_KERNEL
))
115 cpumask_copy(prof_cpu_mask
, cpu_possible_mask
);
117 prof_buffer
= kzalloc(buffer_bytes
, GFP_KERNEL
|__GFP_NOWARN
);
121 prof_buffer
= alloc_pages_exact(buffer_bytes
,
122 GFP_KERNEL
|__GFP_ZERO
|__GFP_NOWARN
);
126 prof_buffer
= vzalloc(buffer_bytes
);
130 free_cpumask_var(prof_cpu_mask
);
134 /* Profile event notifications */
136 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
137 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
138 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
140 void profile_task_exit(struct task_struct
*task
)
142 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
145 int profile_handoff_task(struct task_struct
*task
)
148 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
149 return (ret
== NOTIFY_OK
) ? 1 : 0;
152 void profile_munmap(unsigned long addr
)
154 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
157 int task_handoff_register(struct notifier_block
*n
)
159 return atomic_notifier_chain_register(&task_free_notifier
, n
);
161 EXPORT_SYMBOL_GPL(task_handoff_register
);
163 int task_handoff_unregister(struct notifier_block
*n
)
165 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
167 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
169 int profile_event_register(enum profile_type type
, struct notifier_block
*n
)
174 case PROFILE_TASK_EXIT
:
175 err
= blocking_notifier_chain_register(
176 &task_exit_notifier
, n
);
179 err
= blocking_notifier_chain_register(
180 &munmap_notifier
, n
);
186 EXPORT_SYMBOL_GPL(profile_event_register
);
188 int profile_event_unregister(enum profile_type type
, struct notifier_block
*n
)
193 case PROFILE_TASK_EXIT
:
194 err
= blocking_notifier_chain_unregister(
195 &task_exit_notifier
, n
);
198 err
= blocking_notifier_chain_unregister(
199 &munmap_notifier
, n
);
205 EXPORT_SYMBOL_GPL(profile_event_unregister
);
207 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
209 * Each cpu has a pair of open-addressed hashtables for pending
210 * profile hits. read_profile() IPI's all cpus to request them
211 * to flip buffers and flushes their contents to prof_buffer itself.
212 * Flip requests are serialized by the profile_flip_mutex. The sole
213 * use of having a second hashtable is for avoiding cacheline
214 * contention that would otherwise happen during flushes of pending
215 * profile hits required for the accuracy of reported profile hits
216 * and so resurrect the interrupt livelock issue.
218 * The open-addressed hashtables are indexed by profile buffer slot
219 * and hold the number of pending hits to that profile buffer slot on
220 * a cpu in an entry. When the hashtable overflows, all pending hits
221 * are accounted to their corresponding profile buffer slots with
222 * atomic_add() and the hashtable emptied. As numerous pending hits
223 * may be accounted to a profile buffer slot in a hashtable entry,
224 * this amortizes a number of atomic profile buffer increments likely
225 * to be far larger than the number of entries in the hashtable,
226 * particularly given that the number of distinct profile buffer
227 * positions to which hits are accounted during short intervals (e.g.
228 * several seconds) is usually very small. Exclusion from buffer
229 * flipping is provided by interrupt disablement (note that for
230 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
232 * The hash function is meant to be lightweight as opposed to strong,
233 * and was vaguely inspired by ppc64 firmware-supported inverted
234 * pagetable hash functions, but uses a full hashtable full of finite
235 * collision chains, not just pairs of them.
239 static void __profile_flip_buffers(void *unused
)
241 int cpu
= smp_processor_id();
243 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
246 static void profile_flip_buffers(void)
250 mutex_lock(&profile_flip_mutex
);
251 j
= per_cpu(cpu_profile_flip
, get_cpu());
253 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
254 for_each_online_cpu(cpu
) {
255 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
256 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
262 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
263 hits
[i
].hits
= hits
[i
].pc
= 0;
266 mutex_unlock(&profile_flip_mutex
);
269 static void profile_discard_flip_buffers(void)
273 mutex_lock(&profile_flip_mutex
);
274 i
= per_cpu(cpu_profile_flip
, get_cpu());
276 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
277 for_each_online_cpu(cpu
) {
278 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
279 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
281 mutex_unlock(&profile_flip_mutex
);
284 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
286 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
288 struct profile_hit
*hits
;
290 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
291 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
292 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
294 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
300 * We buffer the global profiler buffer into a per-CPU
301 * queue and thus reduce the number of global (and possibly
302 * NUMA-alien) accesses. The write-queue is self-coalescing:
304 local_irq_save(flags
);
306 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
307 if (hits
[i
+ j
].pc
== pc
) {
308 hits
[i
+ j
].hits
+= nr_hits
;
310 } else if (!hits
[i
+ j
].hits
) {
312 hits
[i
+ j
].hits
= nr_hits
;
316 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
317 } while (i
!= primary
);
320 * Add the current hit(s) and flush the write-queue out
321 * to the global buffer:
323 atomic_add(nr_hits
, &prof_buffer
[pc
]);
324 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
325 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
326 hits
[i
].pc
= hits
[i
].hits
= 0;
329 local_irq_restore(flags
);
333 static int profile_dead_cpu(unsigned int cpu
)
338 if (prof_cpu_mask
!= NULL
)
339 cpumask_clear_cpu(cpu
, prof_cpu_mask
);
341 for (i
= 0; i
< 2; i
++) {
342 if (per_cpu(cpu_profile_hits
, cpu
)[i
]) {
343 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[i
]);
344 per_cpu(cpu_profile_hits
, cpu
)[i
] = NULL
;
351 static int profile_prepare_cpu(unsigned int cpu
)
353 int i
, node
= cpu_to_mem(cpu
);
356 per_cpu(cpu_profile_flip
, cpu
) = 0;
358 for (i
= 0; i
< 2; i
++) {
359 if (per_cpu(cpu_profile_hits
, cpu
)[i
])
362 page
= __alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
364 profile_dead_cpu(cpu
);
367 per_cpu(cpu_profile_hits
, cpu
)[i
] = page_address(page
);
373 static int profile_online_cpu(unsigned int cpu
)
375 if (prof_cpu_mask
!= NULL
)
376 cpumask_set_cpu(cpu
, prof_cpu_mask
);
381 #else /* !CONFIG_SMP */
382 #define profile_flip_buffers() do { } while (0)
383 #define profile_discard_flip_buffers() do { } while (0)
385 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
388 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
389 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
391 #endif /* !CONFIG_SMP */
393 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
395 if (prof_on
!= type
|| !prof_buffer
)
397 do_profile_hits(type
, __pc
, nr_hits
);
399 EXPORT_SYMBOL_GPL(profile_hits
);
401 void profile_tick(int type
)
403 struct pt_regs
*regs
= get_irq_regs();
405 if (!user_mode(regs
) && prof_cpu_mask
!= NULL
&&
406 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask
))
407 profile_hit(type
, (void *)profile_pc(regs
));
410 #ifdef CONFIG_PROC_FS
411 #include <linux/proc_fs.h>
412 #include <linux/seq_file.h>
413 #include <linux/uaccess.h>
415 static int prof_cpu_mask_proc_show(struct seq_file
*m
, void *v
)
417 seq_printf(m
, "%*pb\n", cpumask_pr_args(prof_cpu_mask
));
421 static int prof_cpu_mask_proc_open(struct inode
*inode
, struct file
*file
)
423 return single_open(file
, prof_cpu_mask_proc_show
, NULL
);
426 static ssize_t
prof_cpu_mask_proc_write(struct file
*file
,
427 const char __user
*buffer
, size_t count
, loff_t
*pos
)
429 cpumask_var_t new_value
;
432 if (!alloc_cpumask_var(&new_value
, GFP_KERNEL
))
435 err
= cpumask_parse_user(buffer
, count
, new_value
);
437 cpumask_copy(prof_cpu_mask
, new_value
);
440 free_cpumask_var(new_value
);
444 static const struct file_operations prof_cpu_mask_proc_fops
= {
445 .open
= prof_cpu_mask_proc_open
,
448 .release
= single_release
,
449 .write
= prof_cpu_mask_proc_write
,
452 void create_prof_cpu_mask(void)
454 /* create /proc/irq/prof_cpu_mask */
455 proc_create("irq/prof_cpu_mask", 0600, NULL
, &prof_cpu_mask_proc_fops
);
459 * This function accesses profiling information. The returned data is
460 * binary: the sampling step and the actual contents of the profile
461 * buffer. Use of the program readprofile is recommended in order to
462 * get meaningful info out of these data.
465 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
467 unsigned long p
= *ppos
;
470 unsigned int sample_step
= 1 << prof_shift
;
472 profile_flip_buffers();
473 if (p
>= (prof_len
+1)*sizeof(unsigned int))
475 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
476 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
479 while (p
< sizeof(unsigned int) && count
> 0) {
480 if (put_user(*((char *)(&sample_step
)+p
), buf
))
482 buf
++; p
++; count
--; read
++;
484 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
485 if (copy_to_user(buf
, (void *)pnt
, count
))
493 * Writing to /proc/profile resets the counters
495 * Writing a 'profiling multiplier' value into it also re-sets the profiling
496 * interrupt frequency, on architectures that support this.
498 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
499 size_t count
, loff_t
*ppos
)
502 extern int setup_profiling_timer(unsigned int multiplier
);
504 if (count
== sizeof(int)) {
505 unsigned int multiplier
;
507 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
510 if (setup_profiling_timer(multiplier
))
514 profile_discard_flip_buffers();
515 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
519 static const struct file_operations proc_profile_operations
= {
520 .read
= read_profile
,
521 .write
= write_profile
,
522 .llseek
= default_llseek
,
525 int __ref
create_proc_profile(void)
527 struct proc_dir_entry
*entry
;
529 enum cpuhp_state online_state
;
537 err
= cpuhp_setup_state(CPUHP_PROFILE_PREPARE
, "PROFILE_PREPARE",
538 profile_prepare_cpu
, profile_dead_cpu
);
542 err
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "AP_PROFILE_ONLINE",
543 profile_online_cpu
, NULL
);
549 entry
= proc_create("profile", S_IWUSR
| S_IRUGO
,
550 NULL
, &proc_profile_operations
);
553 proc_set_size(entry
, (1 + prof_len
) * sizeof(atomic_t
));
558 cpuhp_remove_state(online_state
);
560 cpuhp_remove_state(CPUHP_PROFILE_PREPARE
);
564 subsys_initcall(create_proc_profile
);
565 #endif /* CONFIG_PROC_FS */