genirq/debugfs: No need to check return value of debugfs_create functions
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob1b3dd2fc0cd64b7004a8f1fbad857617fa7fb0f7
1 /*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads.
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
48 #else /* #ifdef CONFIG_RCU_BOOST */
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 #ifdef CONFIG_RCU_NOCB_CPU
62 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
63 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
70 static void __init rcu_bootup_announce_oddness(void)
72 if (IS_ENABLED(CONFIG_RCU_TRACE))
73 pr_info("\tRCU event tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
77 RCU_FANOUT);
78 if (rcu_fanout_exact)
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS >= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF != 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 RCU_FANOUT_LEAF);
89 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
91 rcu_fanout_leaf);
92 if (nr_cpu_ids != NR_CPUS)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
94 #ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
96 kthread_prio, CONFIG_RCU_BOOST_DELAY);
97 #endif
98 if (blimit != DEFAULT_RCU_BLIMIT)
99 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
100 if (qhimark != DEFAULT_RCU_QHIMARK)
101 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
102 if (qlowmark != DEFAULT_RCU_QLOMARK)
103 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
104 if (jiffies_till_first_fqs != ULONG_MAX)
105 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
106 if (jiffies_till_next_fqs != ULONG_MAX)
107 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
108 if (jiffies_till_sched_qs != ULONG_MAX)
109 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
110 if (rcu_kick_kthreads)
111 pr_info("\tKick kthreads if too-long grace period.\n");
112 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
113 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
114 if (gp_preinit_delay)
115 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
116 if (gp_init_delay)
117 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
118 if (gp_cleanup_delay)
119 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
120 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
121 pr_info("\tRCU debug extended QS entry/exit.\n");
122 rcupdate_announce_bootup_oddness();
125 #ifdef CONFIG_PREEMPT_RCU
127 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
128 static void rcu_read_unlock_special(struct task_struct *t);
131 * Tell them what RCU they are running.
133 static void __init rcu_bootup_announce(void)
135 pr_info("Preemptible hierarchical RCU implementation.\n");
136 rcu_bootup_announce_oddness();
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS 0x8
141 #define RCU_EXP_TASKS 0x4
142 #define RCU_GP_BLKD 0x2
143 #define RCU_EXP_BLKD 0x1
146 * Queues a task preempted within an RCU-preempt read-side critical
147 * section into the appropriate location within the ->blkd_tasks list,
148 * depending on the states of any ongoing normal and expedited grace
149 * periods. The ->gp_tasks pointer indicates which element the normal
150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151 * indicates which element the expedited grace period is waiting on (again,
152 * NULL if none). If a grace period is waiting on a given element in the
153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
154 * adding a task to the tail of the list blocks any grace period that is
155 * already waiting on one of the elements. In contrast, adding a task
156 * to the head of the list won't block any grace period that is already
157 * waiting on one of the elements.
159 * This queuing is imprecise, and can sometimes make an ongoing grace
160 * period wait for a task that is not strictly speaking blocking it.
161 * Given the choice, we needlessly block a normal grace period rather than
162 * blocking an expedited grace period.
164 * Note that an endless sequence of expedited grace periods still cannot
165 * indefinitely postpone a normal grace period. Eventually, all of the
166 * fixed number of preempted tasks blocking the normal grace period that are
167 * not also blocking the expedited grace period will resume and complete
168 * their RCU read-side critical sections. At that point, the ->gp_tasks
169 * pointer will equal the ->exp_tasks pointer, at which point the end of
170 * the corresponding expedited grace period will also be the end of the
171 * normal grace period.
173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 __releases(rnp->lock) /* But leaves rrupts disabled. */
176 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 struct task_struct *t = current;
182 raw_lockdep_assert_held_rcu_node(rnp);
183 WARN_ON_ONCE(rdp->mynode != rnp);
184 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
185 /* RCU better not be waiting on newly onlined CPUs! */
186 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
187 rdp->grpmask);
190 * Decide where to queue the newly blocked task. In theory,
191 * this could be an if-statement. In practice, when I tried
192 * that, it was quite messy.
194 switch (blkd_state) {
195 case 0:
196 case RCU_EXP_TASKS:
197 case RCU_EXP_TASKS + RCU_GP_BLKD:
198 case RCU_GP_TASKS:
199 case RCU_GP_TASKS + RCU_EXP_TASKS:
202 * Blocking neither GP, or first task blocking the normal
203 * GP but not blocking the already-waiting expedited GP.
204 * Queue at the head of the list to avoid unnecessarily
205 * blocking the already-waiting GPs.
207 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
208 break;
210 case RCU_EXP_BLKD:
211 case RCU_GP_BLKD:
212 case RCU_GP_BLKD + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_EXP_BLKD:
214 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
215 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
218 * First task arriving that blocks either GP, or first task
219 * arriving that blocks the expedited GP (with the normal
220 * GP already waiting), or a task arriving that blocks
221 * both GPs with both GPs already waiting. Queue at the
222 * tail of the list to avoid any GP waiting on any of the
223 * already queued tasks that are not blocking it.
225 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
226 break;
228 case RCU_EXP_TASKS + RCU_EXP_BLKD:
229 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
230 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
233 * Second or subsequent task blocking the expedited GP.
234 * The task either does not block the normal GP, or is the
235 * first task blocking the normal GP. Queue just after
236 * the first task blocking the expedited GP.
238 list_add(&t->rcu_node_entry, rnp->exp_tasks);
239 break;
241 case RCU_GP_TASKS + RCU_GP_BLKD:
242 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
245 * Second or subsequent task blocking the normal GP.
246 * The task does not block the expedited GP. Queue just
247 * after the first task blocking the normal GP.
249 list_add(&t->rcu_node_entry, rnp->gp_tasks);
250 break;
252 default:
254 /* Yet another exercise in excessive paranoia. */
255 WARN_ON_ONCE(1);
256 break;
260 * We have now queued the task. If it was the first one to
261 * block either grace period, update the ->gp_tasks and/or
262 * ->exp_tasks pointers, respectively, to reference the newly
263 * blocked tasks.
265 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
266 rnp->gp_tasks = &t->rcu_node_entry;
267 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
269 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
270 rnp->exp_tasks = &t->rcu_node_entry;
271 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
272 !(rnp->qsmask & rdp->grpmask));
273 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
274 !(rnp->expmask & rdp->grpmask));
275 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
278 * Report the quiescent state for the expedited GP. This expedited
279 * GP should not be able to end until we report, so there should be
280 * no need to check for a subsequent expedited GP. (Though we are
281 * still in a quiescent state in any case.)
283 if (blkd_state & RCU_EXP_BLKD && rdp->deferred_qs)
284 rcu_report_exp_rdp(rdp);
285 else
286 WARN_ON_ONCE(rdp->deferred_qs);
290 * Record a preemptible-RCU quiescent state for the specified CPU.
291 * Note that this does not necessarily mean that the task currently running
292 * on the CPU is in a quiescent state: Instead, it means that the current
293 * grace period need not wait on any RCU read-side critical section that
294 * starts later on this CPU. It also means that if the current task is
295 * in an RCU read-side critical section, it has already added itself to
296 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
297 * current task, there might be any number of other tasks blocked while
298 * in an RCU read-side critical section.
300 * Callers to this function must disable preemption.
302 static void rcu_qs(void)
304 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
305 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
306 trace_rcu_grace_period(TPS("rcu_preempt"),
307 __this_cpu_read(rcu_data.gp_seq),
308 TPS("cpuqs"));
309 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
310 barrier(); /* Coordinate with rcu_flavor_check_callbacks(). */
311 current->rcu_read_unlock_special.b.need_qs = false;
316 * We have entered the scheduler, and the current task might soon be
317 * context-switched away from. If this task is in an RCU read-side
318 * critical section, we will no longer be able to rely on the CPU to
319 * record that fact, so we enqueue the task on the blkd_tasks list.
320 * The task will dequeue itself when it exits the outermost enclosing
321 * RCU read-side critical section. Therefore, the current grace period
322 * cannot be permitted to complete until the blkd_tasks list entries
323 * predating the current grace period drain, in other words, until
324 * rnp->gp_tasks becomes NULL.
326 * Caller must disable interrupts.
328 void rcu_note_context_switch(bool preempt)
330 struct task_struct *t = current;
331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
332 struct rcu_node *rnp;
334 barrier(); /* Avoid RCU read-side critical sections leaking down. */
335 trace_rcu_utilization(TPS("Start context switch"));
336 lockdep_assert_irqs_disabled();
337 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
338 if (t->rcu_read_lock_nesting > 0 &&
339 !t->rcu_read_unlock_special.b.blocked) {
341 /* Possibly blocking in an RCU read-side critical section. */
342 rnp = rdp->mynode;
343 raw_spin_lock_rcu_node(rnp);
344 t->rcu_read_unlock_special.b.blocked = true;
345 t->rcu_blocked_node = rnp;
348 * Verify the CPU's sanity, trace the preemption, and
349 * then queue the task as required based on the states
350 * of any ongoing and expedited grace periods.
352 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
353 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
354 trace_rcu_preempt_task(rcu_state.name,
355 t->pid,
356 (rnp->qsmask & rdp->grpmask)
357 ? rnp->gp_seq
358 : rcu_seq_snap(&rnp->gp_seq));
359 rcu_preempt_ctxt_queue(rnp, rdp);
360 } else if (t->rcu_read_lock_nesting < 0 &&
361 t->rcu_read_unlock_special.s) {
364 * Complete exit from RCU read-side critical section on
365 * behalf of preempted instance of __rcu_read_unlock().
367 rcu_read_unlock_special(t);
368 rcu_preempt_deferred_qs(t);
369 } else {
370 rcu_preempt_deferred_qs(t);
374 * Either we were not in an RCU read-side critical section to
375 * begin with, or we have now recorded that critical section
376 * globally. Either way, we can now note a quiescent state
377 * for this CPU. Again, if we were in an RCU read-side critical
378 * section, and if that critical section was blocking the current
379 * grace period, then the fact that the task has been enqueued
380 * means that we continue to block the current grace period.
382 rcu_qs();
383 if (rdp->deferred_qs)
384 rcu_report_exp_rdp(rdp);
385 trace_rcu_utilization(TPS("End context switch"));
386 barrier(); /* Avoid RCU read-side critical sections leaking up. */
388 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
391 * Check for preempted RCU readers blocking the current grace period
392 * for the specified rcu_node structure. If the caller needs a reliable
393 * answer, it must hold the rcu_node's ->lock.
395 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
397 return rnp->gp_tasks != NULL;
400 /* Bias and limit values for ->rcu_read_lock_nesting. */
401 #define RCU_NEST_BIAS INT_MAX
402 #define RCU_NEST_NMAX (-INT_MAX / 2)
403 #define RCU_NEST_PMAX (INT_MAX / 2)
406 * Preemptible RCU implementation for rcu_read_lock().
407 * Just increment ->rcu_read_lock_nesting, shared state will be updated
408 * if we block.
410 void __rcu_read_lock(void)
412 current->rcu_read_lock_nesting++;
413 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
414 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
415 barrier(); /* critical section after entry code. */
417 EXPORT_SYMBOL_GPL(__rcu_read_lock);
420 * Preemptible RCU implementation for rcu_read_unlock().
421 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
422 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
423 * invoke rcu_read_unlock_special() to clean up after a context switch
424 * in an RCU read-side critical section and other special cases.
426 void __rcu_read_unlock(void)
428 struct task_struct *t = current;
430 if (t->rcu_read_lock_nesting != 1) {
431 --t->rcu_read_lock_nesting;
432 } else {
433 barrier(); /* critical section before exit code. */
434 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
435 barrier(); /* assign before ->rcu_read_unlock_special load */
436 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
437 rcu_read_unlock_special(t);
438 barrier(); /* ->rcu_read_unlock_special load before assign */
439 t->rcu_read_lock_nesting = 0;
441 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
442 int rrln = t->rcu_read_lock_nesting;
444 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
447 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
450 * Advance a ->blkd_tasks-list pointer to the next entry, instead
451 * returning NULL if at the end of the list.
453 static struct list_head *rcu_next_node_entry(struct task_struct *t,
454 struct rcu_node *rnp)
456 struct list_head *np;
458 np = t->rcu_node_entry.next;
459 if (np == &rnp->blkd_tasks)
460 np = NULL;
461 return np;
465 * Return true if the specified rcu_node structure has tasks that were
466 * preempted within an RCU read-side critical section.
468 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
470 return !list_empty(&rnp->blkd_tasks);
474 * Report deferred quiescent states. The deferral time can
475 * be quite short, for example, in the case of the call from
476 * rcu_read_unlock_special().
478 static void
479 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
481 bool empty_exp;
482 bool empty_norm;
483 bool empty_exp_now;
484 struct list_head *np;
485 bool drop_boost_mutex = false;
486 struct rcu_data *rdp;
487 struct rcu_node *rnp;
488 union rcu_special special;
491 * If RCU core is waiting for this CPU to exit its critical section,
492 * report the fact that it has exited. Because irqs are disabled,
493 * t->rcu_read_unlock_special cannot change.
495 special = t->rcu_read_unlock_special;
496 rdp = this_cpu_ptr(&rcu_data);
497 if (!special.s && !rdp->deferred_qs) {
498 local_irq_restore(flags);
499 return;
501 if (special.b.need_qs) {
502 rcu_qs();
503 t->rcu_read_unlock_special.b.need_qs = false;
504 if (!t->rcu_read_unlock_special.s && !rdp->deferred_qs) {
505 local_irq_restore(flags);
506 return;
511 * Respond to a request by an expedited grace period for a
512 * quiescent state from this CPU. Note that requests from
513 * tasks are handled when removing the task from the
514 * blocked-tasks list below.
516 if (rdp->deferred_qs) {
517 rcu_report_exp_rdp(rdp);
518 if (!t->rcu_read_unlock_special.s) {
519 local_irq_restore(flags);
520 return;
524 /* Clean up if blocked during RCU read-side critical section. */
525 if (special.b.blocked) {
526 t->rcu_read_unlock_special.b.blocked = false;
529 * Remove this task from the list it blocked on. The task
530 * now remains queued on the rcu_node corresponding to the
531 * CPU it first blocked on, so there is no longer any need
532 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
534 rnp = t->rcu_blocked_node;
535 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
536 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
537 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
538 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
539 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
540 (!empty_norm || rnp->qsmask));
541 empty_exp = sync_rcu_preempt_exp_done(rnp);
542 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
543 np = rcu_next_node_entry(t, rnp);
544 list_del_init(&t->rcu_node_entry);
545 t->rcu_blocked_node = NULL;
546 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
547 rnp->gp_seq, t->pid);
548 if (&t->rcu_node_entry == rnp->gp_tasks)
549 rnp->gp_tasks = np;
550 if (&t->rcu_node_entry == rnp->exp_tasks)
551 rnp->exp_tasks = np;
552 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
553 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
554 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
555 if (&t->rcu_node_entry == rnp->boost_tasks)
556 rnp->boost_tasks = np;
560 * If this was the last task on the current list, and if
561 * we aren't waiting on any CPUs, report the quiescent state.
562 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
563 * so we must take a snapshot of the expedited state.
565 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
566 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
567 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
568 rnp->gp_seq,
569 0, rnp->qsmask,
570 rnp->level,
571 rnp->grplo,
572 rnp->grphi,
573 !!rnp->gp_tasks);
574 rcu_report_unblock_qs_rnp(rnp, flags);
575 } else {
576 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
579 /* Unboost if we were boosted. */
580 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
581 rt_mutex_futex_unlock(&rnp->boost_mtx);
584 * If this was the last task on the expedited lists,
585 * then we need to report up the rcu_node hierarchy.
587 if (!empty_exp && empty_exp_now)
588 rcu_report_exp_rnp(rnp, true);
589 } else {
590 local_irq_restore(flags);
595 * Is a deferred quiescent-state pending, and are we also not in
596 * an RCU read-side critical section? It is the caller's responsibility
597 * to ensure it is otherwise safe to report any deferred quiescent
598 * states. The reason for this is that it is safe to report a
599 * quiescent state during context switch even though preemption
600 * is disabled. This function cannot be expected to understand these
601 * nuances, so the caller must handle them.
603 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
605 return (__this_cpu_read(rcu_data.deferred_qs) ||
606 READ_ONCE(t->rcu_read_unlock_special.s)) &&
607 t->rcu_read_lock_nesting <= 0;
611 * Report a deferred quiescent state if needed and safe to do so.
612 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
613 * not being in an RCU read-side critical section. The caller must
614 * evaluate safety in terms of interrupt, softirq, and preemption
615 * disabling.
617 static void rcu_preempt_deferred_qs(struct task_struct *t)
619 unsigned long flags;
620 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
622 if (!rcu_preempt_need_deferred_qs(t))
623 return;
624 if (couldrecurse)
625 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
626 local_irq_save(flags);
627 rcu_preempt_deferred_qs_irqrestore(t, flags);
628 if (couldrecurse)
629 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
633 * Handle special cases during rcu_read_unlock(), such as needing to
634 * notify RCU core processing or task having blocked during the RCU
635 * read-side critical section.
637 static void rcu_read_unlock_special(struct task_struct *t)
639 unsigned long flags;
640 bool preempt_bh_were_disabled =
641 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
642 bool irqs_were_disabled;
644 /* NMI handlers cannot block and cannot safely manipulate state. */
645 if (in_nmi())
646 return;
648 local_irq_save(flags);
649 irqs_were_disabled = irqs_disabled_flags(flags);
650 if (preempt_bh_were_disabled || irqs_were_disabled) {
651 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
652 /* Need to defer quiescent state until everything is enabled. */
653 if (irqs_were_disabled) {
654 /* Enabling irqs does not reschedule, so... */
655 raise_softirq_irqoff(RCU_SOFTIRQ);
656 } else {
657 /* Enabling BH or preempt does reschedule, so... */
658 set_tsk_need_resched(current);
659 set_preempt_need_resched();
661 local_irq_restore(flags);
662 return;
664 WRITE_ONCE(t->rcu_read_unlock_special.b.exp_hint, false);
665 rcu_preempt_deferred_qs_irqrestore(t, flags);
669 * Dump detailed information for all tasks blocking the current RCU
670 * grace period on the specified rcu_node structure.
672 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
674 unsigned long flags;
675 struct task_struct *t;
677 raw_spin_lock_irqsave_rcu_node(rnp, flags);
678 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
679 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
680 return;
682 t = list_entry(rnp->gp_tasks->prev,
683 struct task_struct, rcu_node_entry);
684 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
686 * We could be printing a lot while holding a spinlock.
687 * Avoid triggering hard lockup.
689 touch_nmi_watchdog();
690 sched_show_task(t);
692 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
696 * Dump detailed information for all tasks blocking the current RCU
697 * grace period.
699 static void rcu_print_detail_task_stall(void)
701 struct rcu_node *rnp = rcu_get_root();
703 rcu_print_detail_task_stall_rnp(rnp);
704 rcu_for_each_leaf_node(rnp)
705 rcu_print_detail_task_stall_rnp(rnp);
708 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
710 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
711 rnp->level, rnp->grplo, rnp->grphi);
714 static void rcu_print_task_stall_end(void)
716 pr_cont("\n");
720 * Scan the current list of tasks blocked within RCU read-side critical
721 * sections, printing out the tid of each.
723 static int rcu_print_task_stall(struct rcu_node *rnp)
725 struct task_struct *t;
726 int ndetected = 0;
728 if (!rcu_preempt_blocked_readers_cgp(rnp))
729 return 0;
730 rcu_print_task_stall_begin(rnp);
731 t = list_entry(rnp->gp_tasks->prev,
732 struct task_struct, rcu_node_entry);
733 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
734 pr_cont(" P%d", t->pid);
735 ndetected++;
737 rcu_print_task_stall_end();
738 return ndetected;
742 * Scan the current list of tasks blocked within RCU read-side critical
743 * sections, printing out the tid of each that is blocking the current
744 * expedited grace period.
746 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
748 struct task_struct *t;
749 int ndetected = 0;
751 if (!rnp->exp_tasks)
752 return 0;
753 t = list_entry(rnp->exp_tasks->prev,
754 struct task_struct, rcu_node_entry);
755 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
756 pr_cont(" P%d", t->pid);
757 ndetected++;
759 return ndetected;
763 * Check that the list of blocked tasks for the newly completed grace
764 * period is in fact empty. It is a serious bug to complete a grace
765 * period that still has RCU readers blocked! This function must be
766 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
767 * must be held by the caller.
769 * Also, if there are blocked tasks on the list, they automatically
770 * block the newly created grace period, so set up ->gp_tasks accordingly.
772 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
774 struct task_struct *t;
776 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
777 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
778 dump_blkd_tasks(rnp, 10);
779 if (rcu_preempt_has_tasks(rnp) &&
780 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
781 rnp->gp_tasks = rnp->blkd_tasks.next;
782 t = container_of(rnp->gp_tasks, struct task_struct,
783 rcu_node_entry);
784 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
785 rnp->gp_seq, t->pid);
787 WARN_ON_ONCE(rnp->qsmask);
791 * Check for a quiescent state from the current CPU. When a task blocks,
792 * the task is recorded in the corresponding CPU's rcu_node structure,
793 * which is checked elsewhere.
795 * Caller must disable hard irqs.
797 static void rcu_flavor_check_callbacks(int user)
799 struct task_struct *t = current;
801 if (user || rcu_is_cpu_rrupt_from_idle()) {
802 rcu_note_voluntary_context_switch(current);
804 if (t->rcu_read_lock_nesting > 0 ||
805 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
806 /* No QS, force context switch if deferred. */
807 if (rcu_preempt_need_deferred_qs(t)) {
808 set_tsk_need_resched(t);
809 set_preempt_need_resched();
811 } else if (rcu_preempt_need_deferred_qs(t)) {
812 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
813 return;
814 } else if (!t->rcu_read_lock_nesting) {
815 rcu_qs(); /* Report immediate QS. */
816 return;
819 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
820 if (t->rcu_read_lock_nesting > 0 &&
821 __this_cpu_read(rcu_data.core_needs_qs) &&
822 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
823 !t->rcu_read_unlock_special.b.need_qs &&
824 time_after(jiffies, rcu_state.gp_start + HZ))
825 t->rcu_read_unlock_special.b.need_qs = true;
829 * synchronize_rcu - wait until a grace period has elapsed.
831 * Control will return to the caller some time after a full grace
832 * period has elapsed, in other words after all currently executing RCU
833 * read-side critical sections have completed. Note, however, that
834 * upon return from synchronize_rcu(), the caller might well be executing
835 * concurrently with new RCU read-side critical sections that began while
836 * synchronize_rcu() was waiting. RCU read-side critical sections are
837 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
838 * In addition, regions of code across which interrupts, preemption, or
839 * softirqs have been disabled also serve as RCU read-side critical
840 * sections. This includes hardware interrupt handlers, softirq handlers,
841 * and NMI handlers.
843 * Note that this guarantee implies further memory-ordering guarantees.
844 * On systems with more than one CPU, when synchronize_rcu() returns,
845 * each CPU is guaranteed to have executed a full memory barrier since
846 * the end of its last RCU read-side critical section whose beginning
847 * preceded the call to synchronize_rcu(). In addition, each CPU having
848 * an RCU read-side critical section that extends beyond the return from
849 * synchronize_rcu() is guaranteed to have executed a full memory barrier
850 * after the beginning of synchronize_rcu() and before the beginning of
851 * that RCU read-side critical section. Note that these guarantees include
852 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
853 * that are executing in the kernel.
855 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
856 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
857 * to have executed a full memory barrier during the execution of
858 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
859 * again only if the system has more than one CPU).
861 void synchronize_rcu(void)
863 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
864 lock_is_held(&rcu_lock_map) ||
865 lock_is_held(&rcu_sched_lock_map),
866 "Illegal synchronize_rcu() in RCU read-side critical section");
867 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
868 return;
869 if (rcu_gp_is_expedited())
870 synchronize_rcu_expedited();
871 else
872 wait_rcu_gp(call_rcu);
874 EXPORT_SYMBOL_GPL(synchronize_rcu);
877 * Check for a task exiting while in a preemptible-RCU read-side
878 * critical section, clean up if so. No need to issue warnings,
879 * as debug_check_no_locks_held() already does this if lockdep
880 * is enabled.
882 void exit_rcu(void)
884 struct task_struct *t = current;
886 if (likely(list_empty(&current->rcu_node_entry)))
887 return;
888 t->rcu_read_lock_nesting = 1;
889 barrier();
890 t->rcu_read_unlock_special.b.blocked = true;
891 __rcu_read_unlock();
892 rcu_preempt_deferred_qs(current);
896 * Dump the blocked-tasks state, but limit the list dump to the
897 * specified number of elements.
899 static void
900 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
902 int cpu;
903 int i;
904 struct list_head *lhp;
905 bool onl;
906 struct rcu_data *rdp;
907 struct rcu_node *rnp1;
909 raw_lockdep_assert_held_rcu_node(rnp);
910 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
911 __func__, rnp->grplo, rnp->grphi, rnp->level,
912 (long)rnp->gp_seq, (long)rnp->completedqs);
913 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
914 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
915 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
916 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
917 __func__, rnp->gp_tasks, rnp->boost_tasks, rnp->exp_tasks);
918 pr_info("%s: ->blkd_tasks", __func__);
919 i = 0;
920 list_for_each(lhp, &rnp->blkd_tasks) {
921 pr_cont(" %p", lhp);
922 if (++i >= 10)
923 break;
925 pr_cont("\n");
926 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
927 rdp = per_cpu_ptr(&rcu_data, cpu);
928 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
929 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
930 cpu, ".o"[onl],
931 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
932 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
936 #else /* #ifdef CONFIG_PREEMPT_RCU */
939 * Tell them what RCU they are running.
941 static void __init rcu_bootup_announce(void)
943 pr_info("Hierarchical RCU implementation.\n");
944 rcu_bootup_announce_oddness();
948 * Note a quiescent state for PREEMPT=n. Because we do not need to know
949 * how many quiescent states passed, just if there was at least one since
950 * the start of the grace period, this just sets a flag. The caller must
951 * have disabled preemption.
953 static void rcu_qs(void)
955 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
956 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
957 return;
958 trace_rcu_grace_period(TPS("rcu_sched"),
959 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
960 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
961 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
962 return;
963 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
964 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
968 * Register an urgently needed quiescent state. If there is an
969 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
970 * dyntick-idle quiescent state visible to other CPUs, which will in
971 * some cases serve for expedited as well as normal grace periods.
972 * Either way, register a lightweight quiescent state.
974 * The barrier() calls are redundant in the common case when this is
975 * called externally, but just in case this is called from within this
976 * file.
979 void rcu_all_qs(void)
981 unsigned long flags;
983 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
984 return;
985 preempt_disable();
986 /* Load rcu_urgent_qs before other flags. */
987 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
988 preempt_enable();
989 return;
991 this_cpu_write(rcu_data.rcu_urgent_qs, false);
992 barrier(); /* Avoid RCU read-side critical sections leaking down. */
993 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
994 local_irq_save(flags);
995 rcu_momentary_dyntick_idle();
996 local_irq_restore(flags);
998 rcu_qs();
999 barrier(); /* Avoid RCU read-side critical sections leaking up. */
1000 preempt_enable();
1002 EXPORT_SYMBOL_GPL(rcu_all_qs);
1005 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
1007 void rcu_note_context_switch(bool preempt)
1009 barrier(); /* Avoid RCU read-side critical sections leaking down. */
1010 trace_rcu_utilization(TPS("Start context switch"));
1011 rcu_qs();
1012 /* Load rcu_urgent_qs before other flags. */
1013 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
1014 goto out;
1015 this_cpu_write(rcu_data.rcu_urgent_qs, false);
1016 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
1017 rcu_momentary_dyntick_idle();
1018 if (!preempt)
1019 rcu_tasks_qs(current);
1020 out:
1021 trace_rcu_utilization(TPS("End context switch"));
1022 barrier(); /* Avoid RCU read-side critical sections leaking up. */
1024 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
1027 * Because preemptible RCU does not exist, there are never any preempted
1028 * RCU readers.
1030 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
1032 return 0;
1036 * Because there is no preemptible RCU, there can be no readers blocked.
1038 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
1040 return false;
1044 * Because there is no preemptible RCU, there can be no deferred quiescent
1045 * states.
1047 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
1049 return false;
1051 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
1054 * Because preemptible RCU does not exist, we never have to check for
1055 * tasks blocked within RCU read-side critical sections.
1057 static void rcu_print_detail_task_stall(void)
1062 * Because preemptible RCU does not exist, we never have to check for
1063 * tasks blocked within RCU read-side critical sections.
1065 static int rcu_print_task_stall(struct rcu_node *rnp)
1067 return 0;
1071 * Because preemptible RCU does not exist, we never have to check for
1072 * tasks blocked within RCU read-side critical sections that are
1073 * blocking the current expedited grace period.
1075 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
1077 return 0;
1081 * Because there is no preemptible RCU, there can be no readers blocked,
1082 * so there is no need to check for blocked tasks. So check only for
1083 * bogus qsmask values.
1085 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1087 WARN_ON_ONCE(rnp->qsmask);
1091 * Check to see if this CPU is in a non-context-switch quiescent state
1092 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1093 * Also schedule RCU core processing.
1095 * This function must be called from hardirq context. It is normally
1096 * invoked from the scheduling-clock interrupt.
1098 static void rcu_flavor_check_callbacks(int user)
1100 if (user || rcu_is_cpu_rrupt_from_idle()) {
1103 * Get here if this CPU took its interrupt from user
1104 * mode or from the idle loop, and if this is not a
1105 * nested interrupt. In this case, the CPU is in
1106 * a quiescent state, so note it.
1108 * No memory barrier is required here because rcu_qs()
1109 * references only CPU-local variables that other CPUs
1110 * neither access nor modify, at least not while the
1111 * corresponding CPU is online.
1114 rcu_qs();
1118 /* PREEMPT=n implementation of synchronize_rcu(). */
1119 void synchronize_rcu(void)
1121 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
1122 lock_is_held(&rcu_lock_map) ||
1123 lock_is_held(&rcu_sched_lock_map),
1124 "Illegal synchronize_rcu() in RCU read-side critical section");
1125 if (rcu_blocking_is_gp())
1126 return;
1127 if (rcu_gp_is_expedited())
1128 synchronize_rcu_expedited();
1129 else
1130 wait_rcu_gp(call_rcu);
1132 EXPORT_SYMBOL_GPL(synchronize_rcu);
1135 * Because preemptible RCU does not exist, tasks cannot possibly exit
1136 * while in preemptible RCU read-side critical sections.
1138 void exit_rcu(void)
1143 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1145 static void
1146 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
1148 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
1151 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1153 #ifdef CONFIG_RCU_BOOST
1155 static void rcu_wake_cond(struct task_struct *t, int status)
1158 * If the thread is yielding, only wake it when this
1159 * is invoked from idle
1161 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1162 wake_up_process(t);
1166 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1167 * or ->boost_tasks, advancing the pointer to the next task in the
1168 * ->blkd_tasks list.
1170 * Note that irqs must be enabled: boosting the task can block.
1171 * Returns 1 if there are more tasks needing to be boosted.
1173 static int rcu_boost(struct rcu_node *rnp)
1175 unsigned long flags;
1176 struct task_struct *t;
1177 struct list_head *tb;
1179 if (READ_ONCE(rnp->exp_tasks) == NULL &&
1180 READ_ONCE(rnp->boost_tasks) == NULL)
1181 return 0; /* Nothing left to boost. */
1183 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1186 * Recheck under the lock: all tasks in need of boosting
1187 * might exit their RCU read-side critical sections on their own.
1189 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1191 return 0;
1195 * Preferentially boost tasks blocking expedited grace periods.
1196 * This cannot starve the normal grace periods because a second
1197 * expedited grace period must boost all blocked tasks, including
1198 * those blocking the pre-existing normal grace period.
1200 if (rnp->exp_tasks != NULL)
1201 tb = rnp->exp_tasks;
1202 else
1203 tb = rnp->boost_tasks;
1206 * We boost task t by manufacturing an rt_mutex that appears to
1207 * be held by task t. We leave a pointer to that rt_mutex where
1208 * task t can find it, and task t will release the mutex when it
1209 * exits its outermost RCU read-side critical section. Then
1210 * simply acquiring this artificial rt_mutex will boost task
1211 * t's priority. (Thanks to tglx for suggesting this approach!)
1213 * Note that task t must acquire rnp->lock to remove itself from
1214 * the ->blkd_tasks list, which it will do from exit() if from
1215 * nowhere else. We therefore are guaranteed that task t will
1216 * stay around at least until we drop rnp->lock. Note that
1217 * rnp->lock also resolves races between our priority boosting
1218 * and task t's exiting its outermost RCU read-side critical
1219 * section.
1221 t = container_of(tb, struct task_struct, rcu_node_entry);
1222 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1223 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1224 /* Lock only for side effect: boosts task t's priority. */
1225 rt_mutex_lock(&rnp->boost_mtx);
1226 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1228 return READ_ONCE(rnp->exp_tasks) != NULL ||
1229 READ_ONCE(rnp->boost_tasks) != NULL;
1233 * Priority-boosting kthread, one per leaf rcu_node.
1235 static int rcu_boost_kthread(void *arg)
1237 struct rcu_node *rnp = (struct rcu_node *)arg;
1238 int spincnt = 0;
1239 int more2boost;
1241 trace_rcu_utilization(TPS("Start boost kthread@init"));
1242 for (;;) {
1243 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1244 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1245 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1246 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1247 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1248 more2boost = rcu_boost(rnp);
1249 if (more2boost)
1250 spincnt++;
1251 else
1252 spincnt = 0;
1253 if (spincnt > 10) {
1254 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1255 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1256 schedule_timeout_interruptible(2);
1257 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1258 spincnt = 0;
1261 /* NOTREACHED */
1262 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1263 return 0;
1267 * Check to see if it is time to start boosting RCU readers that are
1268 * blocking the current grace period, and, if so, tell the per-rcu_node
1269 * kthread to start boosting them. If there is an expedited grace
1270 * period in progress, it is always time to boost.
1272 * The caller must hold rnp->lock, which this function releases.
1273 * The ->boost_kthread_task is immortal, so we don't need to worry
1274 * about it going away.
1276 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1277 __releases(rnp->lock)
1279 struct task_struct *t;
1281 raw_lockdep_assert_held_rcu_node(rnp);
1282 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1283 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1284 return;
1286 if (rnp->exp_tasks != NULL ||
1287 (rnp->gp_tasks != NULL &&
1288 rnp->boost_tasks == NULL &&
1289 rnp->qsmask == 0 &&
1290 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1291 if (rnp->exp_tasks == NULL)
1292 rnp->boost_tasks = rnp->gp_tasks;
1293 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1294 t = rnp->boost_kthread_task;
1295 if (t)
1296 rcu_wake_cond(t, rnp->boost_kthread_status);
1297 } else {
1298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1303 * Wake up the per-CPU kthread to invoke RCU callbacks.
1305 static void invoke_rcu_callbacks_kthread(void)
1307 unsigned long flags;
1309 local_irq_save(flags);
1310 __this_cpu_write(rcu_cpu_has_work, 1);
1311 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1312 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1313 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1314 __this_cpu_read(rcu_cpu_kthread_status));
1316 local_irq_restore(flags);
1320 * Is the current CPU running the RCU-callbacks kthread?
1321 * Caller must have preemption disabled.
1323 static bool rcu_is_callbacks_kthread(void)
1325 return __this_cpu_read(rcu_cpu_kthread_task) == current;
1328 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1331 * Do priority-boost accounting for the start of a new grace period.
1333 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1335 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1339 * Create an RCU-boost kthread for the specified node if one does not
1340 * already exist. We only create this kthread for preemptible RCU.
1341 * Returns zero if all is well, a negated errno otherwise.
1343 static int rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1345 int rnp_index = rnp - rcu_get_root();
1346 unsigned long flags;
1347 struct sched_param sp;
1348 struct task_struct *t;
1350 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1351 return 0;
1353 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1354 return 0;
1356 rcu_state.boost = 1;
1357 if (rnp->boost_kthread_task != NULL)
1358 return 0;
1359 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1360 "rcub/%d", rnp_index);
1361 if (IS_ERR(t))
1362 return PTR_ERR(t);
1363 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1364 rnp->boost_kthread_task = t;
1365 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1366 sp.sched_priority = kthread_prio;
1367 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1368 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1369 return 0;
1372 static void rcu_kthread_do_work(void)
1374 rcu_do_batch(this_cpu_ptr(&rcu_data));
1377 static void rcu_cpu_kthread_setup(unsigned int cpu)
1379 struct sched_param sp;
1381 sp.sched_priority = kthread_prio;
1382 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1385 static void rcu_cpu_kthread_park(unsigned int cpu)
1387 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1390 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1392 return __this_cpu_read(rcu_cpu_has_work);
1396 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
1397 * the RCU softirq used in configurations of RCU that do not support RCU
1398 * priority boosting.
1400 static void rcu_cpu_kthread(unsigned int cpu)
1402 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1403 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1404 int spincnt;
1406 for (spincnt = 0; spincnt < 10; spincnt++) {
1407 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1408 local_bh_disable();
1409 *statusp = RCU_KTHREAD_RUNNING;
1410 this_cpu_inc(rcu_cpu_kthread_loops);
1411 local_irq_disable();
1412 work = *workp;
1413 *workp = 0;
1414 local_irq_enable();
1415 if (work)
1416 rcu_kthread_do_work();
1417 local_bh_enable();
1418 if (*workp == 0) {
1419 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1420 *statusp = RCU_KTHREAD_WAITING;
1421 return;
1424 *statusp = RCU_KTHREAD_YIELDING;
1425 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1426 schedule_timeout_interruptible(2);
1427 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1428 *statusp = RCU_KTHREAD_WAITING;
1432 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1433 * served by the rcu_node in question. The CPU hotplug lock is still
1434 * held, so the value of rnp->qsmaskinit will be stable.
1436 * We don't include outgoingcpu in the affinity set, use -1 if there is
1437 * no outgoing CPU. If there are no CPUs left in the affinity set,
1438 * this function allows the kthread to execute on any CPU.
1440 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1442 struct task_struct *t = rnp->boost_kthread_task;
1443 unsigned long mask = rcu_rnp_online_cpus(rnp);
1444 cpumask_var_t cm;
1445 int cpu;
1447 if (!t)
1448 return;
1449 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1450 return;
1451 for_each_leaf_node_possible_cpu(rnp, cpu)
1452 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1453 cpu != outgoingcpu)
1454 cpumask_set_cpu(cpu, cm);
1455 if (cpumask_weight(cm) == 0)
1456 cpumask_setall(cm);
1457 set_cpus_allowed_ptr(t, cm);
1458 free_cpumask_var(cm);
1461 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1462 .store = &rcu_cpu_kthread_task,
1463 .thread_should_run = rcu_cpu_kthread_should_run,
1464 .thread_fn = rcu_cpu_kthread,
1465 .thread_comm = "rcuc/%u",
1466 .setup = rcu_cpu_kthread_setup,
1467 .park = rcu_cpu_kthread_park,
1471 * Spawn boost kthreads -- called as soon as the scheduler is running.
1473 static void __init rcu_spawn_boost_kthreads(void)
1475 struct rcu_node *rnp;
1476 int cpu;
1478 for_each_possible_cpu(cpu)
1479 per_cpu(rcu_cpu_has_work, cpu) = 0;
1480 if (WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), "%s: Could not start rcub kthread, OOM is now expected behavior\n", __func__))
1481 return;
1482 rcu_for_each_leaf_node(rnp)
1483 (void)rcu_spawn_one_boost_kthread(rnp);
1486 static void rcu_prepare_kthreads(int cpu)
1488 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1489 struct rcu_node *rnp = rdp->mynode;
1491 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1492 if (rcu_scheduler_fully_active)
1493 (void)rcu_spawn_one_boost_kthread(rnp);
1496 #else /* #ifdef CONFIG_RCU_BOOST */
1498 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1499 __releases(rnp->lock)
1501 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1504 static void invoke_rcu_callbacks_kthread(void)
1506 WARN_ON_ONCE(1);
1509 static bool rcu_is_callbacks_kthread(void)
1511 return false;
1514 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1518 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1522 static void __init rcu_spawn_boost_kthreads(void)
1526 static void rcu_prepare_kthreads(int cpu)
1530 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1532 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1535 * Check to see if any future RCU-related work will need to be done
1536 * by the current CPU, even if none need be done immediately, returning
1537 * 1 if so. This function is part of the RCU implementation; it is -not-
1538 * an exported member of the RCU API.
1540 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1541 * CPU has RCU callbacks queued.
1543 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1545 *nextevt = KTIME_MAX;
1546 return rcu_cpu_has_callbacks(NULL);
1550 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1551 * after it.
1553 static void rcu_cleanup_after_idle(void)
1558 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1559 * is nothing.
1561 static void rcu_prepare_for_idle(void)
1566 * Don't bother keeping a running count of the number of RCU callbacks
1567 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1569 static void rcu_idle_count_callbacks_posted(void)
1573 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1576 * This code is invoked when a CPU goes idle, at which point we want
1577 * to have the CPU do everything required for RCU so that it can enter
1578 * the energy-efficient dyntick-idle mode. This is handled by a
1579 * state machine implemented by rcu_prepare_for_idle() below.
1581 * The following three proprocessor symbols control this state machine:
1583 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1584 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1585 * is sized to be roughly one RCU grace period. Those energy-efficiency
1586 * benchmarkers who might otherwise be tempted to set this to a large
1587 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1588 * system. And if you are -that- concerned about energy efficiency,
1589 * just power the system down and be done with it!
1590 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1591 * permitted to sleep in dyntick-idle mode with only lazy RCU
1592 * callbacks pending. Setting this too high can OOM your system.
1594 * The values below work well in practice. If future workloads require
1595 * adjustment, they can be converted into kernel config parameters, though
1596 * making the state machine smarter might be a better option.
1598 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1599 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1601 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1602 module_param(rcu_idle_gp_delay, int, 0644);
1603 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1604 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1607 * Try to advance callbacks on the current CPU, but only if it has been
1608 * awhile since the last time we did so. Afterwards, if there are any
1609 * callbacks ready for immediate invocation, return true.
1611 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1613 bool cbs_ready = false;
1614 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1615 struct rcu_node *rnp;
1617 /* Exit early if we advanced recently. */
1618 if (jiffies == rdp->last_advance_all)
1619 return false;
1620 rdp->last_advance_all = jiffies;
1622 rnp = rdp->mynode;
1625 * Don't bother checking unless a grace period has
1626 * completed since we last checked and there are
1627 * callbacks not yet ready to invoke.
1629 if ((rcu_seq_completed_gp(rdp->gp_seq,
1630 rcu_seq_current(&rnp->gp_seq)) ||
1631 unlikely(READ_ONCE(rdp->gpwrap))) &&
1632 rcu_segcblist_pend_cbs(&rdp->cblist))
1633 note_gp_changes(rdp);
1635 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1636 cbs_ready = true;
1637 return cbs_ready;
1641 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1642 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1643 * caller to set the timeout based on whether or not there are non-lazy
1644 * callbacks.
1646 * The caller must have disabled interrupts.
1648 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1650 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1651 unsigned long dj;
1653 lockdep_assert_irqs_disabled();
1655 /* Snapshot to detect later posting of non-lazy callback. */
1656 rdp->nonlazy_posted_snap = rdp->nonlazy_posted;
1658 /* If no callbacks, RCU doesn't need the CPU. */
1659 if (!rcu_cpu_has_callbacks(&rdp->all_lazy)) {
1660 *nextevt = KTIME_MAX;
1661 return 0;
1664 /* Attempt to advance callbacks. */
1665 if (rcu_try_advance_all_cbs()) {
1666 /* Some ready to invoke, so initiate later invocation. */
1667 invoke_rcu_core();
1668 return 1;
1670 rdp->last_accelerate = jiffies;
1672 /* Request timer delay depending on laziness, and round. */
1673 if (!rdp->all_lazy) {
1674 dj = round_up(rcu_idle_gp_delay + jiffies,
1675 rcu_idle_gp_delay) - jiffies;
1676 } else {
1677 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1679 *nextevt = basemono + dj * TICK_NSEC;
1680 return 0;
1684 * Prepare a CPU for idle from an RCU perspective. The first major task
1685 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1686 * The second major task is to check to see if a non-lazy callback has
1687 * arrived at a CPU that previously had only lazy callbacks. The third
1688 * major task is to accelerate (that is, assign grace-period numbers to)
1689 * any recently arrived callbacks.
1691 * The caller must have disabled interrupts.
1693 static void rcu_prepare_for_idle(void)
1695 bool needwake;
1696 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1697 struct rcu_node *rnp;
1698 int tne;
1700 lockdep_assert_irqs_disabled();
1701 if (rcu_is_nocb_cpu(smp_processor_id()))
1702 return;
1704 /* Handle nohz enablement switches conservatively. */
1705 tne = READ_ONCE(tick_nohz_active);
1706 if (tne != rdp->tick_nohz_enabled_snap) {
1707 if (rcu_cpu_has_callbacks(NULL))
1708 invoke_rcu_core(); /* force nohz to see update. */
1709 rdp->tick_nohz_enabled_snap = tne;
1710 return;
1712 if (!tne)
1713 return;
1716 * If a non-lazy callback arrived at a CPU having only lazy
1717 * callbacks, invoke RCU core for the side-effect of recalculating
1718 * idle duration on re-entry to idle.
1720 if (rdp->all_lazy &&
1721 rdp->nonlazy_posted != rdp->nonlazy_posted_snap) {
1722 rdp->all_lazy = false;
1723 rdp->nonlazy_posted_snap = rdp->nonlazy_posted;
1724 invoke_rcu_core();
1725 return;
1729 * If we have not yet accelerated this jiffy, accelerate all
1730 * callbacks on this CPU.
1732 if (rdp->last_accelerate == jiffies)
1733 return;
1734 rdp->last_accelerate = jiffies;
1735 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1736 rnp = rdp->mynode;
1737 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1738 needwake = rcu_accelerate_cbs(rnp, rdp);
1739 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1740 if (needwake)
1741 rcu_gp_kthread_wake();
1746 * Clean up for exit from idle. Attempt to advance callbacks based on
1747 * any grace periods that elapsed while the CPU was idle, and if any
1748 * callbacks are now ready to invoke, initiate invocation.
1750 static void rcu_cleanup_after_idle(void)
1752 lockdep_assert_irqs_disabled();
1753 if (rcu_is_nocb_cpu(smp_processor_id()))
1754 return;
1755 if (rcu_try_advance_all_cbs())
1756 invoke_rcu_core();
1760 * Keep a running count of the number of non-lazy callbacks posted
1761 * on this CPU. This running counter (which is never decremented) allows
1762 * rcu_prepare_for_idle() to detect when something out of the idle loop
1763 * posts a callback, even if an equal number of callbacks are invoked.
1764 * Of course, callbacks should only be posted from within a trace event
1765 * designed to be called from idle or from within RCU_NONIDLE().
1767 static void rcu_idle_count_callbacks_posted(void)
1769 __this_cpu_add(rcu_data.nonlazy_posted, 1);
1772 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1774 #ifdef CONFIG_RCU_FAST_NO_HZ
1776 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1778 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
1779 unsigned long nlpd = rdp->nonlazy_posted - rdp->nonlazy_posted_snap;
1781 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1782 rdp->last_accelerate & 0xffff, jiffies & 0xffff,
1783 ulong2long(nlpd),
1784 rdp->all_lazy ? 'L' : '.',
1785 rdp->tick_nohz_enabled_snap ? '.' : 'D');
1788 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1790 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1792 *cp = '\0';
1795 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1797 /* Initiate the stall-info list. */
1798 static void print_cpu_stall_info_begin(void)
1800 pr_cont("\n");
1804 * Print out diagnostic information for the specified stalled CPU.
1806 * If the specified CPU is aware of the current RCU grace period, then
1807 * print the number of scheduling clock interrupts the CPU has taken
1808 * during the time that it has been aware. Otherwise, print the number
1809 * of RCU grace periods that this CPU is ignorant of, for example, "1"
1810 * if the CPU was aware of the previous grace period.
1812 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1814 static void print_cpu_stall_info(int cpu)
1816 unsigned long delta;
1817 char fast_no_hz[72];
1818 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1819 char *ticks_title;
1820 unsigned long ticks_value;
1823 * We could be printing a lot while holding a spinlock. Avoid
1824 * triggering hard lockup.
1826 touch_nmi_watchdog();
1828 ticks_value = rcu_seq_ctr(rcu_state.gp_seq - rdp->gp_seq);
1829 if (ticks_value) {
1830 ticks_title = "GPs behind";
1831 } else {
1832 ticks_title = "ticks this GP";
1833 ticks_value = rdp->ticks_this_gp;
1835 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1836 delta = rcu_seq_ctr(rdp->mynode->gp_seq - rdp->rcu_iw_gp_seq);
1837 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1838 cpu,
1839 "O."[!!cpu_online(cpu)],
1840 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1841 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1842 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1843 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1844 "!."[!delta],
1845 ticks_value, ticks_title,
1846 rcu_dynticks_snap(rdp) & 0xfff,
1847 rdp->dynticks_nesting, rdp->dynticks_nmi_nesting,
1848 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1849 READ_ONCE(rcu_state.n_force_qs) - rcu_state.n_force_qs_gpstart,
1850 fast_no_hz);
1853 /* Terminate the stall-info list. */
1854 static void print_cpu_stall_info_end(void)
1856 pr_err("\t");
1859 /* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */
1860 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1862 rdp->ticks_this_gp = 0;
1863 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1864 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1867 #ifdef CONFIG_RCU_NOCB_CPU
1870 * Offload callback processing from the boot-time-specified set of CPUs
1871 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1872 * kthread created that pulls the callbacks from the corresponding CPU,
1873 * waits for a grace period to elapse, and invokes the callbacks.
1874 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1875 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1876 * has been specified, in which case each kthread actively polls its
1877 * CPU. (Which isn't so great for energy efficiency, but which does
1878 * reduce RCU's overhead on that CPU.)
1880 * This is intended to be used in conjunction with Frederic Weisbecker's
1881 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1882 * running CPU-bound user-mode computations.
1884 * Offloading of callback processing could also in theory be used as
1885 * an energy-efficiency measure because CPUs with no RCU callbacks
1886 * queued are more aggressive about entering dyntick-idle mode.
1890 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1891 static int __init rcu_nocb_setup(char *str)
1893 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1894 cpulist_parse(str, rcu_nocb_mask);
1895 return 1;
1897 __setup("rcu_nocbs=", rcu_nocb_setup);
1899 static int __init parse_rcu_nocb_poll(char *arg)
1901 rcu_nocb_poll = true;
1902 return 0;
1904 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1907 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1908 * grace period.
1910 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1912 swake_up_all(sq);
1915 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1917 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1920 static void rcu_init_one_nocb(struct rcu_node *rnp)
1922 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1923 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1926 /* Is the specified CPU a no-CBs CPU? */
1927 bool rcu_is_nocb_cpu(int cpu)
1929 if (cpumask_available(rcu_nocb_mask))
1930 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1931 return false;
1935 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1936 * and this function releases it.
1938 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1939 unsigned long flags)
1940 __releases(rdp->nocb_lock)
1942 struct rcu_data *rdp_leader = rdp->nocb_leader;
1944 lockdep_assert_held(&rdp->nocb_lock);
1945 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1946 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1947 return;
1949 if (rdp_leader->nocb_leader_sleep || force) {
1950 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1951 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1952 del_timer(&rdp->nocb_timer);
1953 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1954 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1955 swake_up_one(&rdp_leader->nocb_wq);
1956 } else {
1957 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1962 * Kick the leader kthread for this NOCB group, but caller has not
1963 * acquired locks.
1965 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1967 unsigned long flags;
1969 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1970 __wake_nocb_leader(rdp, force, flags);
1974 * Arrange to wake the leader kthread for this NOCB group at some
1975 * future time when it is safe to do so.
1977 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1978 const char *reason)
1980 unsigned long flags;
1982 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1983 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1984 mod_timer(&rdp->nocb_timer, jiffies + 1);
1985 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1986 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1987 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1991 * Does the specified CPU need an RCU callback for this invocation
1992 * of rcu_barrier()?
1994 static bool rcu_nocb_cpu_needs_barrier(int cpu)
1996 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1997 unsigned long ret;
1998 #ifdef CONFIG_PROVE_RCU
1999 struct rcu_head *rhp;
2000 #endif /* #ifdef CONFIG_PROVE_RCU */
2003 * Check count of all no-CBs callbacks awaiting invocation.
2004 * There needs to be a barrier before this function is called,
2005 * but associated with a prior determination that no more
2006 * callbacks would be posted. In the worst case, the first
2007 * barrier in rcu_barrier() suffices (but the caller cannot
2008 * necessarily rely on this, not a substitute for the caller
2009 * getting the concurrency design right!). There must also be
2010 * a barrier between the following load an posting of a callback
2011 * (if a callback is in fact needed). This is associated with an
2012 * atomic_inc() in the caller.
2014 ret = rcu_get_n_cbs_nocb_cpu(rdp);
2016 #ifdef CONFIG_PROVE_RCU
2017 rhp = READ_ONCE(rdp->nocb_head);
2018 if (!rhp)
2019 rhp = READ_ONCE(rdp->nocb_gp_head);
2020 if (!rhp)
2021 rhp = READ_ONCE(rdp->nocb_follower_head);
2023 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2024 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
2025 rcu_scheduler_fully_active) {
2026 /* RCU callback enqueued before CPU first came online??? */
2027 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2028 cpu, rhp->func);
2029 WARN_ON_ONCE(1);
2031 #endif /* #ifdef CONFIG_PROVE_RCU */
2033 return !!ret;
2037 * Enqueue the specified string of rcu_head structures onto the specified
2038 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2039 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2040 * counts are supplied by rhcount and rhcount_lazy.
2042 * If warranted, also wake up the kthread servicing this CPUs queues.
2044 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2045 struct rcu_head *rhp,
2046 struct rcu_head **rhtp,
2047 int rhcount, int rhcount_lazy,
2048 unsigned long flags)
2050 int len;
2051 struct rcu_head **old_rhpp;
2052 struct task_struct *t;
2054 /* Enqueue the callback on the nocb list and update counts. */
2055 atomic_long_add(rhcount, &rdp->nocb_q_count);
2056 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2057 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2058 WRITE_ONCE(*old_rhpp, rhp);
2059 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2060 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2062 /* If we are not being polled and there is a kthread, awaken it ... */
2063 t = READ_ONCE(rdp->nocb_kthread);
2064 if (rcu_nocb_poll || !t) {
2065 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2066 TPS("WakeNotPoll"));
2067 return;
2069 len = rcu_get_n_cbs_nocb_cpu(rdp);
2070 if (old_rhpp == &rdp->nocb_head) {
2071 if (!irqs_disabled_flags(flags)) {
2072 /* ... if queue was empty ... */
2073 wake_nocb_leader(rdp, false);
2074 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2075 TPS("WakeEmpty"));
2076 } else {
2077 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
2078 TPS("WakeEmptyIsDeferred"));
2080 rdp->qlen_last_fqs_check = 0;
2081 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2082 /* ... or if many callbacks queued. */
2083 if (!irqs_disabled_flags(flags)) {
2084 wake_nocb_leader(rdp, true);
2085 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2086 TPS("WakeOvf"));
2087 } else {
2088 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE_FORCE,
2089 TPS("WakeOvfIsDeferred"));
2091 rdp->qlen_last_fqs_check = LONG_MAX / 2;
2092 } else {
2093 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
2095 return;
2099 * This is a helper for __call_rcu(), which invokes this when the normal
2100 * callback queue is inoperable. If this is not a no-CBs CPU, this
2101 * function returns failure back to __call_rcu(), which can complain
2102 * appropriately.
2104 * Otherwise, this function queues the callback where the corresponding
2105 * "rcuo" kthread can find it.
2107 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2108 bool lazy, unsigned long flags)
2111 if (!rcu_is_nocb_cpu(rdp->cpu))
2112 return false;
2113 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
2114 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2115 trace_rcu_kfree_callback(rcu_state.name, rhp,
2116 (unsigned long)rhp->func,
2117 -atomic_long_read(&rdp->nocb_q_count_lazy),
2118 -rcu_get_n_cbs_nocb_cpu(rdp));
2119 else
2120 trace_rcu_callback(rcu_state.name, rhp,
2121 -atomic_long_read(&rdp->nocb_q_count_lazy),
2122 -rcu_get_n_cbs_nocb_cpu(rdp));
2125 * If called from an extended quiescent state with interrupts
2126 * disabled, invoke the RCU core in order to allow the idle-entry
2127 * deferred-wakeup check to function.
2129 if (irqs_disabled_flags(flags) &&
2130 !rcu_is_watching() &&
2131 cpu_online(smp_processor_id()))
2132 invoke_rcu_core();
2134 return true;
2138 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2139 * not a no-CBs CPU.
2141 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2142 struct rcu_data *rdp,
2143 unsigned long flags)
2145 lockdep_assert_irqs_disabled();
2146 if (!rcu_is_nocb_cpu(smp_processor_id()))
2147 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2148 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2149 rcu_segcblist_tail(&rdp->cblist),
2150 rcu_segcblist_n_cbs(&rdp->cblist),
2151 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2152 rcu_segcblist_init(&rdp->cblist);
2153 rcu_segcblist_disable(&rdp->cblist);
2154 return true;
2158 * If necessary, kick off a new grace period, and either way wait
2159 * for a subsequent grace period to complete.
2161 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2163 unsigned long c;
2164 bool d;
2165 unsigned long flags;
2166 bool needwake;
2167 struct rcu_node *rnp = rdp->mynode;
2169 local_irq_save(flags);
2170 c = rcu_seq_snap(&rcu_state.gp_seq);
2171 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
2172 local_irq_restore(flags);
2173 } else {
2174 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2175 needwake = rcu_start_this_gp(rnp, rdp, c);
2176 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2177 if (needwake)
2178 rcu_gp_kthread_wake();
2182 * Wait for the grace period. Do so interruptibly to avoid messing
2183 * up the load average.
2185 trace_rcu_this_gp(rnp, rdp, c, TPS("StartWait"));
2186 for (;;) {
2187 swait_event_interruptible_exclusive(
2188 rnp->nocb_gp_wq[rcu_seq_ctr(c) & 0x1],
2189 (d = rcu_seq_done(&rnp->gp_seq, c)));
2190 if (likely(d))
2191 break;
2192 WARN_ON(signal_pending(current));
2193 trace_rcu_this_gp(rnp, rdp, c, TPS("ResumeWait"));
2195 trace_rcu_this_gp(rnp, rdp, c, TPS("EndWait"));
2196 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2200 * Leaders come here to wait for additional callbacks to show up.
2201 * This function does not return until callbacks appear.
2203 static void nocb_leader_wait(struct rcu_data *my_rdp)
2205 bool firsttime = true;
2206 unsigned long flags;
2207 bool gotcbs;
2208 struct rcu_data *rdp;
2209 struct rcu_head **tail;
2211 wait_again:
2213 /* Wait for callbacks to appear. */
2214 if (!rcu_nocb_poll) {
2215 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Sleep"));
2216 swait_event_interruptible_exclusive(my_rdp->nocb_wq,
2217 !READ_ONCE(my_rdp->nocb_leader_sleep));
2218 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2219 my_rdp->nocb_leader_sleep = true;
2220 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2221 del_timer(&my_rdp->nocb_timer);
2222 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2223 } else if (firsttime) {
2224 firsttime = false; /* Don't drown trace log with "Poll"! */
2225 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu, TPS("Poll"));
2229 * Each pass through the following loop checks a follower for CBs.
2230 * We are our own first follower. Any CBs found are moved to
2231 * nocb_gp_head, where they await a grace period.
2233 gotcbs = false;
2234 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2235 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2236 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2237 if (!rdp->nocb_gp_head)
2238 continue; /* No CBs here, try next follower. */
2240 /* Move callbacks to wait-for-GP list, which is empty. */
2241 WRITE_ONCE(rdp->nocb_head, NULL);
2242 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2243 gotcbs = true;
2246 /* No callbacks? Sleep a bit if polling, and go retry. */
2247 if (unlikely(!gotcbs)) {
2248 WARN_ON(signal_pending(current));
2249 if (rcu_nocb_poll) {
2250 schedule_timeout_interruptible(1);
2251 } else {
2252 trace_rcu_nocb_wake(rcu_state.name, my_rdp->cpu,
2253 TPS("WokeEmpty"));
2255 goto wait_again;
2258 /* Wait for one grace period. */
2259 rcu_nocb_wait_gp(my_rdp);
2261 /* Each pass through the following loop wakes a follower, if needed. */
2262 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2263 if (!rcu_nocb_poll &&
2264 READ_ONCE(rdp->nocb_head) &&
2265 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2266 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2267 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2268 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2270 if (!rdp->nocb_gp_head)
2271 continue; /* No CBs, so no need to wake follower. */
2273 /* Append callbacks to follower's "done" list. */
2274 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2275 tail = rdp->nocb_follower_tail;
2276 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2277 *tail = rdp->nocb_gp_head;
2278 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2279 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2280 /* List was empty, so wake up the follower. */
2281 swake_up_one(&rdp->nocb_wq);
2285 /* If we (the leader) don't have CBs, go wait some more. */
2286 if (!my_rdp->nocb_follower_head)
2287 goto wait_again;
2291 * Followers come here to wait for additional callbacks to show up.
2292 * This function does not return until callbacks appear.
2294 static void nocb_follower_wait(struct rcu_data *rdp)
2296 for (;;) {
2297 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FollowerSleep"));
2298 swait_event_interruptible_exclusive(rdp->nocb_wq,
2299 READ_ONCE(rdp->nocb_follower_head));
2300 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2301 /* ^^^ Ensure CB invocation follows _head test. */
2302 return;
2304 WARN_ON(signal_pending(current));
2305 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2310 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2311 * callbacks queued by the corresponding no-CBs CPU, however, there is
2312 * an optional leader-follower relationship so that the grace-period
2313 * kthreads don't have to do quite so many wakeups.
2315 static int rcu_nocb_kthread(void *arg)
2317 int c, cl;
2318 unsigned long flags;
2319 struct rcu_head *list;
2320 struct rcu_head *next;
2321 struct rcu_head **tail;
2322 struct rcu_data *rdp = arg;
2324 /* Each pass through this loop invokes one batch of callbacks */
2325 for (;;) {
2326 /* Wait for callbacks. */
2327 if (rdp->nocb_leader == rdp)
2328 nocb_leader_wait(rdp);
2329 else
2330 nocb_follower_wait(rdp);
2332 /* Pull the ready-to-invoke callbacks onto local list. */
2333 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2334 list = rdp->nocb_follower_head;
2335 rdp->nocb_follower_head = NULL;
2336 tail = rdp->nocb_follower_tail;
2337 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2338 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2339 if (WARN_ON_ONCE(!list))
2340 continue;
2341 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeNonEmpty"));
2343 /* Each pass through the following loop invokes a callback. */
2344 trace_rcu_batch_start(rcu_state.name,
2345 atomic_long_read(&rdp->nocb_q_count_lazy),
2346 rcu_get_n_cbs_nocb_cpu(rdp), -1);
2347 c = cl = 0;
2348 while (list) {
2349 next = list->next;
2350 /* Wait for enqueuing to complete, if needed. */
2351 while (next == NULL && &list->next != tail) {
2352 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2353 TPS("WaitQueue"));
2354 schedule_timeout_interruptible(1);
2355 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
2356 TPS("WokeQueue"));
2357 next = list->next;
2359 debug_rcu_head_unqueue(list);
2360 local_bh_disable();
2361 if (__rcu_reclaim(rcu_state.name, list))
2362 cl++;
2363 c++;
2364 local_bh_enable();
2365 cond_resched_tasks_rcu_qs();
2366 list = next;
2368 trace_rcu_batch_end(rcu_state.name, c, !!list, 0, 0, 1);
2369 smp_mb__before_atomic(); /* _add after CB invocation. */
2370 atomic_long_add(-c, &rdp->nocb_q_count);
2371 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2373 return 0;
2376 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2377 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2379 return READ_ONCE(rdp->nocb_defer_wakeup);
2382 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2383 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2385 unsigned long flags;
2386 int ndw;
2388 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2389 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2390 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2391 return;
2393 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2394 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2395 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2396 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2399 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2400 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2402 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2404 do_nocb_deferred_wakeup_common(rdp);
2408 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2409 * This means we do an inexact common-case check. Note that if
2410 * we miss, ->nocb_timer will eventually clean things up.
2412 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2414 if (rcu_nocb_need_deferred_wakeup(rdp))
2415 do_nocb_deferred_wakeup_common(rdp);
2418 void __init rcu_init_nohz(void)
2420 int cpu;
2421 bool need_rcu_nocb_mask = false;
2423 #if defined(CONFIG_NO_HZ_FULL)
2424 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2425 need_rcu_nocb_mask = true;
2426 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2428 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2429 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2430 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2431 return;
2434 if (!cpumask_available(rcu_nocb_mask))
2435 return;
2437 #if defined(CONFIG_NO_HZ_FULL)
2438 if (tick_nohz_full_running)
2439 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2440 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2442 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2443 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2444 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2445 rcu_nocb_mask);
2447 if (cpumask_empty(rcu_nocb_mask))
2448 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2449 else
2450 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2451 cpumask_pr_args(rcu_nocb_mask));
2452 if (rcu_nocb_poll)
2453 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2455 for_each_cpu(cpu, rcu_nocb_mask)
2456 init_nocb_callback_list(per_cpu_ptr(&rcu_data, cpu));
2457 rcu_organize_nocb_kthreads();
2460 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2461 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2463 rdp->nocb_tail = &rdp->nocb_head;
2464 init_swait_queue_head(&rdp->nocb_wq);
2465 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2466 raw_spin_lock_init(&rdp->nocb_lock);
2467 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2471 * If the specified CPU is a no-CBs CPU that does not already have its
2472 * rcuo kthread, spawn it. If the CPUs are brought online out of order,
2473 * this can require re-organizing the leader-follower relationships.
2475 static void rcu_spawn_one_nocb_kthread(int cpu)
2477 struct rcu_data *rdp;
2478 struct rcu_data *rdp_last;
2479 struct rcu_data *rdp_old_leader;
2480 struct rcu_data *rdp_spawn = per_cpu_ptr(&rcu_data, cpu);
2481 struct task_struct *t;
2484 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2485 * then nothing to do.
2487 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2488 return;
2490 /* If we didn't spawn the leader first, reorganize! */
2491 rdp_old_leader = rdp_spawn->nocb_leader;
2492 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2493 rdp_last = NULL;
2494 rdp = rdp_old_leader;
2495 do {
2496 rdp->nocb_leader = rdp_spawn;
2497 if (rdp_last && rdp != rdp_spawn)
2498 rdp_last->nocb_next_follower = rdp;
2499 if (rdp == rdp_spawn) {
2500 rdp = rdp->nocb_next_follower;
2501 } else {
2502 rdp_last = rdp;
2503 rdp = rdp->nocb_next_follower;
2504 rdp_last->nocb_next_follower = NULL;
2506 } while (rdp);
2507 rdp_spawn->nocb_next_follower = rdp_old_leader;
2510 /* Spawn the kthread for this CPU. */
2511 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2512 "rcuo%c/%d", rcu_state.abbr, cpu);
2513 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo kthread, OOM is now expected behavior\n", __func__))
2514 return;
2515 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2519 * If the specified CPU is a no-CBs CPU that does not already have its
2520 * rcuo kthreads, spawn them.
2522 static void rcu_spawn_all_nocb_kthreads(int cpu)
2524 if (rcu_scheduler_fully_active)
2525 rcu_spawn_one_nocb_kthread(cpu);
2529 * Once the scheduler is running, spawn rcuo kthreads for all online
2530 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2531 * non-boot CPUs come online -- if this changes, we will need to add
2532 * some mutual exclusion.
2534 static void __init rcu_spawn_nocb_kthreads(void)
2536 int cpu;
2538 for_each_online_cpu(cpu)
2539 rcu_spawn_all_nocb_kthreads(cpu);
2542 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2543 static int rcu_nocb_leader_stride = -1;
2544 module_param(rcu_nocb_leader_stride, int, 0444);
2547 * Initialize leader-follower relationships for all no-CBs CPU.
2549 static void __init rcu_organize_nocb_kthreads(void)
2551 int cpu;
2552 int ls = rcu_nocb_leader_stride;
2553 int nl = 0; /* Next leader. */
2554 struct rcu_data *rdp;
2555 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2556 struct rcu_data *rdp_prev = NULL;
2558 if (!cpumask_available(rcu_nocb_mask))
2559 return;
2560 if (ls == -1) {
2561 ls = int_sqrt(nr_cpu_ids);
2562 rcu_nocb_leader_stride = ls;
2566 * Each pass through this loop sets up one rcu_data structure.
2567 * Should the corresponding CPU come online in the future, then
2568 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2570 for_each_cpu(cpu, rcu_nocb_mask) {
2571 rdp = per_cpu_ptr(&rcu_data, cpu);
2572 if (rdp->cpu >= nl) {
2573 /* New leader, set up for followers & next leader. */
2574 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2575 rdp->nocb_leader = rdp;
2576 rdp_leader = rdp;
2577 } else {
2578 /* Another follower, link to previous leader. */
2579 rdp->nocb_leader = rdp_leader;
2580 rdp_prev->nocb_next_follower = rdp;
2582 rdp_prev = rdp;
2586 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2587 static bool init_nocb_callback_list(struct rcu_data *rdp)
2589 if (!rcu_is_nocb_cpu(rdp->cpu))
2590 return false;
2592 /* If there are early-boot callbacks, move them to nocb lists. */
2593 if (!rcu_segcblist_empty(&rdp->cblist)) {
2594 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2595 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2596 atomic_long_set(&rdp->nocb_q_count,
2597 rcu_segcblist_n_cbs(&rdp->cblist));
2598 atomic_long_set(&rdp->nocb_q_count_lazy,
2599 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2600 rcu_segcblist_init(&rdp->cblist);
2602 rcu_segcblist_disable(&rdp->cblist);
2603 return true;
2607 * Bind the current task to the offloaded CPUs. If there are no offloaded
2608 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2610 void rcu_bind_current_to_nocb(void)
2612 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2613 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2615 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2618 * Return the number of RCU callbacks still queued from the specified
2619 * CPU, which must be a nocbs CPU.
2621 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2623 return atomic_long_read(&rdp->nocb_q_count);
2626 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2628 static bool rcu_nocb_cpu_needs_barrier(int cpu)
2630 WARN_ON_ONCE(1); /* Should be dead code. */
2631 return false;
2634 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2638 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2640 return NULL;
2643 static void rcu_init_one_nocb(struct rcu_node *rnp)
2647 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2648 bool lazy, unsigned long flags)
2650 return false;
2653 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2654 struct rcu_data *rdp,
2655 unsigned long flags)
2657 return false;
2660 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2664 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2666 return false;
2669 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2673 static void rcu_spawn_all_nocb_kthreads(int cpu)
2677 static void __init rcu_spawn_nocb_kthreads(void)
2681 static bool init_nocb_callback_list(struct rcu_data *rdp)
2683 return false;
2686 static unsigned long rcu_get_n_cbs_nocb_cpu(struct rcu_data *rdp)
2688 return 0;
2691 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2694 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2695 * grace-period kthread will do force_quiescent_state() processing?
2696 * The idea is to avoid waking up RCU core processing on such a
2697 * CPU unless the grace period has extended for too long.
2699 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2700 * CONFIG_RCU_NOCB_CPU CPUs.
2702 static bool rcu_nohz_full_cpu(void)
2704 #ifdef CONFIG_NO_HZ_FULL
2705 if (tick_nohz_full_cpu(smp_processor_id()) &&
2706 (!rcu_gp_in_progress() ||
2707 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2708 return true;
2709 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2710 return false;
2714 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2716 static void rcu_bind_gp_kthread(void)
2718 if (!tick_nohz_full_enabled())
2719 return;
2720 housekeeping_affine(current, HK_FLAG_RCU);
2723 /* Record the current task on dyntick-idle entry. */
2724 static void rcu_dynticks_task_enter(void)
2726 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2727 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2728 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2731 /* Record no current task on dyntick-idle exit. */
2732 static void rcu_dynticks_task_exit(void)
2734 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2735 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2736 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */