4 * Print the CFS rbtree and other debugging details
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 static DEFINE_SPINLOCK(sched_debug_lock
);
17 * This allows printing both to /proc/sched_debug and
20 #define SEQ_printf(m, x...) \
29 * Ease the printing of nsec fields:
31 static long long nsec_high(unsigned long long nsec
)
33 if ((long long)nsec
< 0) {
35 do_div(nsec
, 1000000);
38 do_div(nsec
, 1000000);
43 static unsigned long nsec_low(unsigned long long nsec
)
45 if ((long long)nsec
< 0)
48 return do_div(nsec
, 1000000);
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
53 #define SCHED_FEAT(name, enabled) \
56 static const char * const sched_feat_names
[] = {
62 static int sched_feat_show(struct seq_file
*m
, void *v
)
66 for (i
= 0; i
< __SCHED_FEAT_NR
; i
++) {
67 if (!(sysctl_sched_features
& (1UL << i
)))
69 seq_printf(m
, "%s ", sched_feat_names
[i
]);
76 #ifdef CONFIG_JUMP_LABEL
78 #define jump_label_key__true STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
81 #define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
84 struct static_key sched_feat_keys
[__SCHED_FEAT_NR
] = {
90 static void sched_feat_disable(int i
)
92 static_key_disable_cpuslocked(&sched_feat_keys
[i
]);
95 static void sched_feat_enable(int i
)
97 static_key_enable_cpuslocked(&sched_feat_keys
[i
]);
100 static void sched_feat_disable(int i
) { };
101 static void sched_feat_enable(int i
) { };
102 #endif /* CONFIG_JUMP_LABEL */
104 static int sched_feat_set(char *cmp
)
109 if (strncmp(cmp
, "NO_", 3) == 0) {
114 i
= match_string(sched_feat_names
, __SCHED_FEAT_NR
, cmp
);
119 sysctl_sched_features
&= ~(1UL << i
);
120 sched_feat_disable(i
);
122 sysctl_sched_features
|= (1UL << i
);
123 sched_feat_enable(i
);
130 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
131 size_t cnt
, loff_t
*ppos
)
141 if (copy_from_user(&buf
, ubuf
, cnt
))
147 /* Ensure the static_key remains in a consistent state */
148 inode
= file_inode(filp
);
151 ret
= sched_feat_set(cmp
);
162 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
164 return single_open(filp
, sched_feat_show
, NULL
);
167 static const struct file_operations sched_feat_fops
= {
168 .open
= sched_feat_open
,
169 .write
= sched_feat_write
,
172 .release
= single_release
,
175 __read_mostly
bool sched_debug_enabled
;
177 static __init
int sched_init_debug(void)
179 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
182 debugfs_create_bool("sched_debug", 0644, NULL
,
183 &sched_debug_enabled
);
187 late_initcall(sched_init_debug
);
193 static struct ctl_table sd_ctl_dir
[] = {
195 .procname
= "sched_domain",
201 static struct ctl_table sd_ctl_root
[] = {
203 .procname
= "kernel",
210 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
212 struct ctl_table
*entry
=
213 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
218 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
220 struct ctl_table
*entry
;
223 * In the intermediate directories, both the child directory and
224 * procname are dynamically allocated and could fail but the mode
225 * will always be set. In the lowest directory the names are
226 * static strings and all have proc handlers.
228 for (entry
= *tablep
; entry
->mode
; entry
++) {
230 sd_free_ctl_entry(&entry
->child
);
231 if (entry
->proc_handler
== NULL
)
232 kfree(entry
->procname
);
239 static int min_load_idx
= 0;
240 static int max_load_idx
= CPU_LOAD_IDX_MAX
-1;
243 set_table_entry(struct ctl_table
*entry
,
244 const char *procname
, void *data
, int maxlen
,
245 umode_t mode
, proc_handler
*proc_handler
,
248 entry
->procname
= procname
;
250 entry
->maxlen
= maxlen
;
252 entry
->proc_handler
= proc_handler
;
255 entry
->extra1
= &min_load_idx
;
256 entry
->extra2
= &max_load_idx
;
260 static struct ctl_table
*
261 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
263 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
268 set_table_entry(&table
[0] , "min_interval", &sd
->min_interval
, sizeof(long), 0644, proc_doulongvec_minmax
, false);
269 set_table_entry(&table
[1] , "max_interval", &sd
->max_interval
, sizeof(long), 0644, proc_doulongvec_minmax
, false);
270 set_table_entry(&table
[2] , "busy_idx", &sd
->busy_idx
, sizeof(int) , 0644, proc_dointvec_minmax
, true );
271 set_table_entry(&table
[3] , "idle_idx", &sd
->idle_idx
, sizeof(int) , 0644, proc_dointvec_minmax
, true );
272 set_table_entry(&table
[4] , "newidle_idx", &sd
->newidle_idx
, sizeof(int) , 0644, proc_dointvec_minmax
, true );
273 set_table_entry(&table
[5] , "wake_idx", &sd
->wake_idx
, sizeof(int) , 0644, proc_dointvec_minmax
, true );
274 set_table_entry(&table
[6] , "forkexec_idx", &sd
->forkexec_idx
, sizeof(int) , 0644, proc_dointvec_minmax
, true );
275 set_table_entry(&table
[7] , "busy_factor", &sd
->busy_factor
, sizeof(int) , 0644, proc_dointvec_minmax
, false);
276 set_table_entry(&table
[8] , "imbalance_pct", &sd
->imbalance_pct
, sizeof(int) , 0644, proc_dointvec_minmax
, false);
277 set_table_entry(&table
[9] , "cache_nice_tries", &sd
->cache_nice_tries
, sizeof(int) , 0644, proc_dointvec_minmax
, false);
278 set_table_entry(&table
[10], "flags", &sd
->flags
, sizeof(int) , 0644, proc_dointvec_minmax
, false);
279 set_table_entry(&table
[11], "max_newidle_lb_cost", &sd
->max_newidle_lb_cost
, sizeof(long), 0644, proc_doulongvec_minmax
, false);
280 set_table_entry(&table
[12], "name", sd
->name
, CORENAME_MAX_SIZE
, 0444, proc_dostring
, false);
281 /* &table[13] is terminator */
286 static struct ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
288 struct ctl_table
*entry
, *table
;
289 struct sched_domain
*sd
;
290 int domain_num
= 0, i
;
293 for_each_domain(cpu
, sd
)
295 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
300 for_each_domain(cpu
, sd
) {
301 snprintf(buf
, 32, "domain%d", i
);
302 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
304 entry
->child
= sd_alloc_ctl_domain_table(sd
);
311 static cpumask_var_t sd_sysctl_cpus
;
312 static struct ctl_table_header
*sd_sysctl_header
;
314 void register_sched_domain_sysctl(void)
316 static struct ctl_table
*cpu_entries
;
317 static struct ctl_table
**cpu_idx
;
322 cpu_entries
= sd_alloc_ctl_entry(num_possible_cpus() + 1);
326 WARN_ON(sd_ctl_dir
[0].child
);
327 sd_ctl_dir
[0].child
= cpu_entries
;
331 struct ctl_table
*e
= cpu_entries
;
333 cpu_idx
= kcalloc(nr_cpu_ids
, sizeof(struct ctl_table
*), GFP_KERNEL
);
337 /* deal with sparse possible map */
338 for_each_possible_cpu(i
) {
344 if (!cpumask_available(sd_sysctl_cpus
)) {
345 if (!alloc_cpumask_var(&sd_sysctl_cpus
, GFP_KERNEL
))
348 /* init to possible to not have holes in @cpu_entries */
349 cpumask_copy(sd_sysctl_cpus
, cpu_possible_mask
);
352 for_each_cpu(i
, sd_sysctl_cpus
) {
353 struct ctl_table
*e
= cpu_idx
[i
];
356 sd_free_ctl_entry(&e
->child
);
359 snprintf(buf
, 32, "cpu%d", i
);
360 e
->procname
= kstrdup(buf
, GFP_KERNEL
);
363 e
->child
= sd_alloc_ctl_cpu_table(i
);
365 __cpumask_clear_cpu(i
, sd_sysctl_cpus
);
368 WARN_ON(sd_sysctl_header
);
369 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
372 void dirty_sched_domain_sysctl(int cpu
)
374 if (cpumask_available(sd_sysctl_cpus
))
375 __cpumask_set_cpu(cpu
, sd_sysctl_cpus
);
378 /* may be called multiple times per register */
379 void unregister_sched_domain_sysctl(void)
381 unregister_sysctl_table(sd_sysctl_header
);
382 sd_sysctl_header
= NULL
;
384 #endif /* CONFIG_SYSCTL */
385 #endif /* CONFIG_SMP */
387 #ifdef CONFIG_FAIR_GROUP_SCHED
388 static void print_cfs_group_stats(struct seq_file
*m
, int cpu
, struct task_group
*tg
)
390 struct sched_entity
*se
= tg
->se
[cpu
];
392 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
393 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
394 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
395 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
402 PN(se
->sum_exec_runtime
);
404 if (schedstat_enabled()) {
405 PN_SCHEDSTAT(se
->statistics
.wait_start
);
406 PN_SCHEDSTAT(se
->statistics
.sleep_start
);
407 PN_SCHEDSTAT(se
->statistics
.block_start
);
408 PN_SCHEDSTAT(se
->statistics
.sleep_max
);
409 PN_SCHEDSTAT(se
->statistics
.block_max
);
410 PN_SCHEDSTAT(se
->statistics
.exec_max
);
411 PN_SCHEDSTAT(se
->statistics
.slice_max
);
412 PN_SCHEDSTAT(se
->statistics
.wait_max
);
413 PN_SCHEDSTAT(se
->statistics
.wait_sum
);
414 P_SCHEDSTAT(se
->statistics
.wait_count
);
418 P(se
->runnable_weight
);
422 P(se
->avg
.runnable_load_avg
);
432 #ifdef CONFIG_CGROUP_SCHED
433 static char group_path
[PATH_MAX
];
435 static char *task_group_path(struct task_group
*tg
)
437 if (autogroup_path(tg
, group_path
, PATH_MAX
))
440 cgroup_path(tg
->css
.cgroup
, group_path
, PATH_MAX
);
447 print_task(struct seq_file
*m
, struct rq
*rq
, struct task_struct
*p
)
452 SEQ_printf(m
, " %c", task_state_to_char(p
));
454 SEQ_printf(m
, "%15s %5d %9Ld.%06ld %9Ld %5d ",
455 p
->comm
, task_pid_nr(p
),
456 SPLIT_NS(p
->se
.vruntime
),
457 (long long)(p
->nvcsw
+ p
->nivcsw
),
460 SEQ_printf(m
, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
461 SPLIT_NS(schedstat_val_or_zero(p
->se
.statistics
.wait_sum
)),
462 SPLIT_NS(p
->se
.sum_exec_runtime
),
463 SPLIT_NS(schedstat_val_or_zero(p
->se
.statistics
.sum_sleep_runtime
)));
465 #ifdef CONFIG_NUMA_BALANCING
466 SEQ_printf(m
, " %d %d", task_node(p
), task_numa_group_id(p
));
468 #ifdef CONFIG_CGROUP_SCHED
469 SEQ_printf(m
, " %s", task_group_path(task_group(p
)));
475 static void print_rq(struct seq_file
*m
, struct rq
*rq
, int rq_cpu
)
477 struct task_struct
*g
, *p
;
480 SEQ_printf(m
, "runnable tasks:\n");
481 SEQ_printf(m
, " S task PID tree-key switches prio"
482 " wait-time sum-exec sum-sleep\n");
483 SEQ_printf(m
, "-------------------------------------------------------"
484 "----------------------------------------------------\n");
487 for_each_process_thread(g
, p
) {
488 if (task_cpu(p
) != rq_cpu
)
491 print_task(m
, rq
, p
);
496 void print_cfs_rq(struct seq_file
*m
, int cpu
, struct cfs_rq
*cfs_rq
)
498 s64 MIN_vruntime
= -1, min_vruntime
, max_vruntime
= -1,
499 spread
, rq0_min_vruntime
, spread0
;
500 struct rq
*rq
= cpu_rq(cpu
);
501 struct sched_entity
*last
;
504 #ifdef CONFIG_FAIR_GROUP_SCHED
506 SEQ_printf(m
, "cfs_rq[%d]:%s\n", cpu
, task_group_path(cfs_rq
->tg
));
509 SEQ_printf(m
, "cfs_rq[%d]:\n", cpu
);
511 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "exec_clock",
512 SPLIT_NS(cfs_rq
->exec_clock
));
514 raw_spin_lock_irqsave(&rq
->lock
, flags
);
515 if (rb_first_cached(&cfs_rq
->tasks_timeline
))
516 MIN_vruntime
= (__pick_first_entity(cfs_rq
))->vruntime
;
517 last
= __pick_last_entity(cfs_rq
);
519 max_vruntime
= last
->vruntime
;
520 min_vruntime
= cfs_rq
->min_vruntime
;
521 rq0_min_vruntime
= cpu_rq(0)->cfs
.min_vruntime
;
522 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
523 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
524 SPLIT_NS(MIN_vruntime
));
525 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "min_vruntime",
526 SPLIT_NS(min_vruntime
));
527 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "max_vruntime",
528 SPLIT_NS(max_vruntime
));
529 spread
= max_vruntime
- MIN_vruntime
;
530 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "spread",
532 spread0
= min_vruntime
- rq0_min_vruntime
;
533 SEQ_printf(m
, " .%-30s: %Ld.%06ld\n", "spread0",
535 SEQ_printf(m
, " .%-30s: %d\n", "nr_spread_over",
536 cfs_rq
->nr_spread_over
);
537 SEQ_printf(m
, " .%-30s: %d\n", "nr_running", cfs_rq
->nr_running
);
538 SEQ_printf(m
, " .%-30s: %ld\n", "load", cfs_rq
->load
.weight
);
540 SEQ_printf(m
, " .%-30s: %ld\n", "runnable_weight", cfs_rq
->runnable_weight
);
541 SEQ_printf(m
, " .%-30s: %lu\n", "load_avg",
542 cfs_rq
->avg
.load_avg
);
543 SEQ_printf(m
, " .%-30s: %lu\n", "runnable_load_avg",
544 cfs_rq
->avg
.runnable_load_avg
);
545 SEQ_printf(m
, " .%-30s: %lu\n", "util_avg",
546 cfs_rq
->avg
.util_avg
);
547 SEQ_printf(m
, " .%-30s: %u\n", "util_est_enqueued",
548 cfs_rq
->avg
.util_est
.enqueued
);
549 SEQ_printf(m
, " .%-30s: %ld\n", "removed.load_avg",
550 cfs_rq
->removed
.load_avg
);
551 SEQ_printf(m
, " .%-30s: %ld\n", "removed.util_avg",
552 cfs_rq
->removed
.util_avg
);
553 SEQ_printf(m
, " .%-30s: %ld\n", "removed.runnable_sum",
554 cfs_rq
->removed
.runnable_sum
);
555 #ifdef CONFIG_FAIR_GROUP_SCHED
556 SEQ_printf(m
, " .%-30s: %lu\n", "tg_load_avg_contrib",
557 cfs_rq
->tg_load_avg_contrib
);
558 SEQ_printf(m
, " .%-30s: %ld\n", "tg_load_avg",
559 atomic_long_read(&cfs_rq
->tg
->load_avg
));
562 #ifdef CONFIG_CFS_BANDWIDTH
563 SEQ_printf(m
, " .%-30s: %d\n", "throttled",
565 SEQ_printf(m
, " .%-30s: %d\n", "throttle_count",
566 cfs_rq
->throttle_count
);
569 #ifdef CONFIG_FAIR_GROUP_SCHED
570 print_cfs_group_stats(m
, cpu
, cfs_rq
->tg
);
574 void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
)
576 #ifdef CONFIG_RT_GROUP_SCHED
578 SEQ_printf(m
, "rt_rq[%d]:%s\n", cpu
, task_group_path(rt_rq
->tg
));
581 SEQ_printf(m
, "rt_rq[%d]:\n", cpu
);
585 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
587 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
604 void print_dl_rq(struct seq_file
*m
, int cpu
, struct dl_rq
*dl_rq
)
609 SEQ_printf(m
, "dl_rq[%d]:\n", cpu
);
612 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
617 dl_bw
= &cpu_rq(cpu
)->rd
->dl_bw
;
619 dl_bw
= &dl_rq
->dl_bw
;
621 SEQ_printf(m
, " .%-30s: %lld\n", "dl_bw->bw", dl_bw
->bw
);
622 SEQ_printf(m
, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw
->total_bw
);
627 static void print_cpu(struct seq_file
*m
, int cpu
)
629 struct rq
*rq
= cpu_rq(cpu
);
634 unsigned int freq
= cpu_khz
? : 1;
636 SEQ_printf(m
, "cpu#%d, %u.%03u MHz\n",
637 cpu
, freq
/ 1000, (freq
% 1000));
640 SEQ_printf(m
, "cpu#%d\n", cpu
);
645 if (sizeof(rq->x) == 4) \
646 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
648 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
652 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
655 SEQ_printf(m
, " .%-30s: %lu\n", "load",
659 P(nr_uninterruptible
);
661 SEQ_printf(m
, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq
->curr
)));
673 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
675 P64(max_idle_balance_cost
);
679 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
680 if (schedstat_enabled()) {
689 spin_lock_irqsave(&sched_debug_lock
, flags
);
690 print_cfs_stats(m
, cpu
);
691 print_rt_stats(m
, cpu
);
692 print_dl_stats(m
, cpu
);
694 print_rq(m
, rq
, cpu
);
695 spin_unlock_irqrestore(&sched_debug_lock
, flags
);
699 static const char *sched_tunable_scaling_names
[] = {
705 static void sched_debug_header(struct seq_file
*m
)
707 u64 ktime
, sched_clk
, cpu_clk
;
710 local_irq_save(flags
);
711 ktime
= ktime_to_ns(ktime_get());
712 sched_clk
= sched_clock();
713 cpu_clk
= local_clock();
714 local_irq_restore(flags
);
716 SEQ_printf(m
, "Sched Debug Version: v0.11, %s %.*s\n",
717 init_utsname()->release
,
718 (int)strcspn(init_utsname()->version
, " "),
719 init_utsname()->version
);
722 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
729 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
730 P(sched_clock_stable());
736 SEQ_printf(m
, "sysctl_sched\n");
739 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
741 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
742 PN(sysctl_sched_latency
);
743 PN(sysctl_sched_min_granularity
);
744 PN(sysctl_sched_wakeup_granularity
);
745 P(sysctl_sched_child_runs_first
);
746 P(sysctl_sched_features
);
750 SEQ_printf(m
, " .%-40s: %d (%s)\n",
751 "sysctl_sched_tunable_scaling",
752 sysctl_sched_tunable_scaling
,
753 sched_tunable_scaling_names
[sysctl_sched_tunable_scaling
]);
757 static int sched_debug_show(struct seq_file
*m
, void *v
)
759 int cpu
= (unsigned long)(v
- 2);
764 sched_debug_header(m
);
769 void sysrq_sched_debug_show(void)
773 sched_debug_header(NULL
);
774 for_each_online_cpu(cpu
)
775 print_cpu(NULL
, cpu
);
780 * This itererator needs some explanation.
781 * It returns 1 for the header position.
782 * This means 2 is CPU 0.
783 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
784 * to use cpumask_* to iterate over the CPUs.
786 static void *sched_debug_start(struct seq_file
*file
, loff_t
*offset
)
788 unsigned long n
= *offset
;
796 n
= cpumask_next(n
- 1, cpu_online_mask
);
798 n
= cpumask_first(cpu_online_mask
);
803 return (void *)(unsigned long)(n
+ 2);
808 static void *sched_debug_next(struct seq_file
*file
, void *data
, loff_t
*offset
)
811 return sched_debug_start(file
, offset
);
814 static void sched_debug_stop(struct seq_file
*file
, void *data
)
818 static const struct seq_operations sched_debug_sops
= {
819 .start
= sched_debug_start
,
820 .next
= sched_debug_next
,
821 .stop
= sched_debug_stop
,
822 .show
= sched_debug_show
,
825 static int __init
init_sched_debug_procfs(void)
827 if (!proc_create_seq("sched_debug", 0444, NULL
, &sched_debug_sops
))
832 __initcall(init_sched_debug_procfs
);
834 #define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
835 #define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
836 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
837 #define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
840 #ifdef CONFIG_NUMA_BALANCING
841 void print_numa_stats(struct seq_file
*m
, int node
, unsigned long tsf
,
842 unsigned long tpf
, unsigned long gsf
, unsigned long gpf
)
844 SEQ_printf(m
, "numa_faults node=%d ", node
);
845 SEQ_printf(m
, "task_private=%lu task_shared=%lu ", tpf
, tsf
);
846 SEQ_printf(m
, "group_private=%lu group_shared=%lu\n", gpf
, gsf
);
851 static void sched_show_numa(struct task_struct
*p
, struct seq_file
*m
)
853 #ifdef CONFIG_NUMA_BALANCING
854 struct mempolicy
*pol
;
857 P(mm
->numa_scan_seq
);
861 if (pol
&& !(pol
->flags
& MPOL_F_MORON
))
866 P(numa_pages_migrated
);
867 P(numa_preferred_nid
);
868 P(total_numa_faults
);
869 SEQ_printf(m
, "current_node=%d, numa_group_id=%d\n",
870 task_node(p
), task_numa_group_id(p
));
871 show_numa_stats(p
, m
);
876 void proc_sched_show_task(struct task_struct
*p
, struct pid_namespace
*ns
,
879 unsigned long nr_switches
;
881 SEQ_printf(m
, "%s (%d, #threads: %d)\n", p
->comm
, task_pid_nr_ns(p
, ns
),
884 "---------------------------------------------------------"
887 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
889 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
890 #define P_SCHEDSTAT(F) \
891 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
893 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
895 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
896 #define PN_SCHEDSTAT(F) \
897 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
901 PN(se
.sum_exec_runtime
);
903 nr_switches
= p
->nvcsw
+ p
->nivcsw
;
907 if (schedstat_enabled()) {
908 u64 avg_atom
, avg_per_cpu
;
910 PN_SCHEDSTAT(se
.statistics
.sum_sleep_runtime
);
911 PN_SCHEDSTAT(se
.statistics
.wait_start
);
912 PN_SCHEDSTAT(se
.statistics
.sleep_start
);
913 PN_SCHEDSTAT(se
.statistics
.block_start
);
914 PN_SCHEDSTAT(se
.statistics
.sleep_max
);
915 PN_SCHEDSTAT(se
.statistics
.block_max
);
916 PN_SCHEDSTAT(se
.statistics
.exec_max
);
917 PN_SCHEDSTAT(se
.statistics
.slice_max
);
918 PN_SCHEDSTAT(se
.statistics
.wait_max
);
919 PN_SCHEDSTAT(se
.statistics
.wait_sum
);
920 P_SCHEDSTAT(se
.statistics
.wait_count
);
921 PN_SCHEDSTAT(se
.statistics
.iowait_sum
);
922 P_SCHEDSTAT(se
.statistics
.iowait_count
);
923 P_SCHEDSTAT(se
.statistics
.nr_migrations_cold
);
924 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_affine
);
925 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_running
);
926 P_SCHEDSTAT(se
.statistics
.nr_failed_migrations_hot
);
927 P_SCHEDSTAT(se
.statistics
.nr_forced_migrations
);
928 P_SCHEDSTAT(se
.statistics
.nr_wakeups
);
929 P_SCHEDSTAT(se
.statistics
.nr_wakeups_sync
);
930 P_SCHEDSTAT(se
.statistics
.nr_wakeups_migrate
);
931 P_SCHEDSTAT(se
.statistics
.nr_wakeups_local
);
932 P_SCHEDSTAT(se
.statistics
.nr_wakeups_remote
);
933 P_SCHEDSTAT(se
.statistics
.nr_wakeups_affine
);
934 P_SCHEDSTAT(se
.statistics
.nr_wakeups_affine_attempts
);
935 P_SCHEDSTAT(se
.statistics
.nr_wakeups_passive
);
936 P_SCHEDSTAT(se
.statistics
.nr_wakeups_idle
);
938 avg_atom
= p
->se
.sum_exec_runtime
;
940 avg_atom
= div64_ul(avg_atom
, nr_switches
);
944 avg_per_cpu
= p
->se
.sum_exec_runtime
;
945 if (p
->se
.nr_migrations
) {
946 avg_per_cpu
= div64_u64(avg_per_cpu
,
947 p
->se
.nr_migrations
);
957 SEQ_printf(m
, "%-45s:%21Ld\n",
958 "nr_voluntary_switches", (long long)p
->nvcsw
);
959 SEQ_printf(m
, "%-45s:%21Ld\n",
960 "nr_involuntary_switches", (long long)p
->nivcsw
);
963 P(se
.runnable_weight
);
966 P(se
.avg
.runnable_load_sum
);
969 P(se
.avg
.runnable_load_avg
);
971 P(se
.avg
.last_update_time
);
972 P(se
.avg
.util_est
.ewma
);
973 P(se
.avg
.util_est
.enqueued
);
977 if (task_has_dl_policy(p
)) {
989 unsigned int this_cpu
= raw_smp_processor_id();
992 t0
= cpu_clock(this_cpu
);
993 t1
= cpu_clock(this_cpu
);
994 SEQ_printf(m
, "%-45s:%21Ld\n",
995 "clock-delta", (long long)(t1
-t0
));
998 sched_show_numa(p
, m
);
1001 void proc_sched_set_task(struct task_struct
*p
)
1003 #ifdef CONFIG_SCHEDSTATS
1004 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));