1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask
;
11 static cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
29 struct cpumask
*groupmask
)
31 struct sched_group
*group
= sd
->groups
;
33 cpumask_clear(groupmask
);
35 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
37 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
38 printk("does not load-balance\n");
40 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
44 printk(KERN_CONT
"span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
47 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
48 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
50 if (group
&& !cpumask_test_cpu(cpu
, sched_group_span(group
))) {
51 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
54 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
58 printk(KERN_ERR
"ERROR: group is NULL\n");
62 if (!cpumask_weight(sched_group_span(group
))) {
63 printk(KERN_CONT
"\n");
64 printk(KERN_ERR
"ERROR: empty group\n");
68 if (!(sd
->flags
& SD_OVERLAP
) &&
69 cpumask_intersects(groupmask
, sched_group_span(group
))) {
70 printk(KERN_CONT
"\n");
71 printk(KERN_ERR
"ERROR: repeated CPUs\n");
75 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
77 printk(KERN_CONT
" %d:{ span=%*pbl",
79 cpumask_pr_args(sched_group_span(group
)));
81 if ((sd
->flags
& SD_OVERLAP
) &&
82 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
83 printk(KERN_CONT
" mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group
)));
87 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
88 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
90 if (group
== sd
->groups
&& sd
->child
&&
91 !cpumask_equal(sched_domain_span(sd
->child
),
92 sched_group_span(group
))) {
93 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT
" }");
100 if (group
!= sd
->groups
)
101 printk(KERN_CONT
",");
103 } while (group
!= sd
->groups
);
104 printk(KERN_CONT
"\n");
106 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
107 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
110 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
111 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
115 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
119 if (!sched_debug_enabled
)
123 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
127 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
130 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain
*sd
)
150 if (cpumask_weight(sched_domain_span(sd
)) == 1)
153 /* Following flags need at least 2 groups */
154 if (sd
->flags
& (SD_LOAD_BALANCE
|
158 SD_SHARE_CPUCAPACITY
|
159 SD_ASYM_CPUCAPACITY
|
160 SD_SHARE_PKG_RESOURCES
|
161 SD_SHARE_POWERDOMAIN
)) {
162 if (sd
->groups
!= sd
->groups
->next
)
166 /* Following flags don't use groups */
167 if (sd
->flags
& (SD_WAKE_AFFINE
))
174 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
176 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
178 if (sd_degenerate(parent
))
181 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent
->groups
== parent
->groups
->next
) {
186 pflags
&= ~(SD_LOAD_BALANCE
|
190 SD_ASYM_CPUCAPACITY
|
191 SD_SHARE_CPUCAPACITY
|
192 SD_SHARE_PKG_RESOURCES
|
194 SD_SHARE_POWERDOMAIN
);
195 if (nr_node_ids
== 1)
196 pflags
&= ~SD_SERIALIZE
;
198 if (~cflags
& pflags
)
204 DEFINE_STATIC_KEY_FALSE(sched_energy_present
);
205 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
206 DEFINE_MUTEX(sched_energy_mutex
);
207 bool sched_energy_update
;
209 static void free_pd(struct perf_domain
*pd
)
211 struct perf_domain
*tmp
;
220 static struct perf_domain
*find_pd(struct perf_domain
*pd
, int cpu
)
223 if (cpumask_test_cpu(cpu
, perf_domain_span(pd
)))
231 static struct perf_domain
*pd_init(int cpu
)
233 struct em_perf_domain
*obj
= em_cpu_get(cpu
);
234 struct perf_domain
*pd
;
238 pr_info("%s: no EM found for CPU%d\n", __func__
, cpu
);
242 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
250 static void perf_domain_debug(const struct cpumask
*cpu_map
,
251 struct perf_domain
*pd
)
253 if (!sched_debug() || !pd
)
256 printk(KERN_DEBUG
"root_domain %*pbl:", cpumask_pr_args(cpu_map
));
259 printk(KERN_CONT
" pd%d:{ cpus=%*pbl nr_cstate=%d }",
260 cpumask_first(perf_domain_span(pd
)),
261 cpumask_pr_args(perf_domain_span(pd
)),
262 em_pd_nr_cap_states(pd
->em_pd
));
266 printk(KERN_CONT
"\n");
269 static void destroy_perf_domain_rcu(struct rcu_head
*rp
)
271 struct perf_domain
*pd
;
273 pd
= container_of(rp
, struct perf_domain
, rcu
);
277 static void sched_energy_set(bool has_eas
)
279 if (!has_eas
&& static_branch_unlikely(&sched_energy_present
)) {
281 pr_info("%s: stopping EAS\n", __func__
);
282 static_branch_disable_cpuslocked(&sched_energy_present
);
283 } else if (has_eas
&& !static_branch_unlikely(&sched_energy_present
)) {
285 pr_info("%s: starting EAS\n", __func__
);
286 static_branch_enable_cpuslocked(&sched_energy_present
);
291 * EAS can be used on a root domain if it meets all the following conditions:
292 * 1. an Energy Model (EM) is available;
293 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
294 * 3. the EM complexity is low enough to keep scheduling overheads low;
295 * 4. schedutil is driving the frequency of all CPUs of the rd;
297 * The complexity of the Energy Model is defined as:
299 * C = nr_pd * (nr_cpus + nr_cs)
301 * with parameters defined as:
302 * - nr_pd: the number of performance domains
303 * - nr_cpus: the number of CPUs
304 * - nr_cs: the sum of the number of capacity states of all performance
305 * domains (for example, on a system with 2 performance domains,
306 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
308 * It is generally not a good idea to use such a model in the wake-up path on
309 * very complex platforms because of the associated scheduling overheads. The
310 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
311 * with per-CPU DVFS and less than 8 capacity states each, for example.
313 #define EM_MAX_COMPLEXITY 2048
315 extern struct cpufreq_governor schedutil_gov
;
316 static bool build_perf_domains(const struct cpumask
*cpu_map
)
318 int i
, nr_pd
= 0, nr_cs
= 0, nr_cpus
= cpumask_weight(cpu_map
);
319 struct perf_domain
*pd
= NULL
, *tmp
;
320 int cpu
= cpumask_first(cpu_map
);
321 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
322 struct cpufreq_policy
*policy
;
323 struct cpufreq_governor
*gov
;
325 /* EAS is enabled for asymmetric CPU capacity topologies. */
326 if (!per_cpu(sd_asym_cpucapacity
, cpu
)) {
328 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
329 cpumask_pr_args(cpu_map
));
334 for_each_cpu(i
, cpu_map
) {
335 /* Skip already covered CPUs. */
339 /* Do not attempt EAS if schedutil is not being used. */
340 policy
= cpufreq_cpu_get(i
);
343 gov
= policy
->governor
;
344 cpufreq_cpu_put(policy
);
345 if (gov
!= &schedutil_gov
) {
347 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
348 cpumask_pr_args(cpu_map
));
352 /* Create the new pd and add it to the local list. */
360 * Count performance domains and capacity states for the
364 nr_cs
+= em_pd_nr_cap_states(pd
->em_pd
);
367 /* Bail out if the Energy Model complexity is too high. */
368 if (nr_pd
* (nr_cs
+ nr_cpus
) > EM_MAX_COMPLEXITY
) {
369 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
370 cpumask_pr_args(cpu_map
));
374 perf_domain_debug(cpu_map
, pd
);
376 /* Attach the new list of performance domains to the root domain. */
378 rcu_assign_pointer(rd
->pd
, pd
);
380 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
387 rcu_assign_pointer(rd
->pd
, NULL
);
389 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
394 static void free_pd(struct perf_domain
*pd
) { }
395 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
397 static void free_rootdomain(struct rcu_head
*rcu
)
399 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
401 cpupri_cleanup(&rd
->cpupri
);
402 cpudl_cleanup(&rd
->cpudl
);
403 free_cpumask_var(rd
->dlo_mask
);
404 free_cpumask_var(rd
->rto_mask
);
405 free_cpumask_var(rd
->online
);
406 free_cpumask_var(rd
->span
);
411 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
413 struct root_domain
*old_rd
= NULL
;
416 raw_spin_lock_irqsave(&rq
->lock
, flags
);
421 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
424 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
427 * If we dont want to free the old_rd yet then
428 * set old_rd to NULL to skip the freeing later
431 if (!atomic_dec_and_test(&old_rd
->refcount
))
435 atomic_inc(&rd
->refcount
);
438 cpumask_set_cpu(rq
->cpu
, rd
->span
);
439 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
442 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
445 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
448 void sched_get_rd(struct root_domain
*rd
)
450 atomic_inc(&rd
->refcount
);
453 void sched_put_rd(struct root_domain
*rd
)
455 if (!atomic_dec_and_test(&rd
->refcount
))
458 call_rcu_sched(&rd
->rcu
, free_rootdomain
);
461 static int init_rootdomain(struct root_domain
*rd
)
463 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
465 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
467 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
469 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
472 #ifdef HAVE_RT_PUSH_IPI
474 raw_spin_lock_init(&rd
->rto_lock
);
475 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
478 init_dl_bw(&rd
->dl_bw
);
479 if (cpudl_init(&rd
->cpudl
) != 0)
482 if (cpupri_init(&rd
->cpupri
) != 0)
487 cpudl_cleanup(&rd
->cpudl
);
489 free_cpumask_var(rd
->rto_mask
);
491 free_cpumask_var(rd
->dlo_mask
);
493 free_cpumask_var(rd
->online
);
495 free_cpumask_var(rd
->span
);
501 * By default the system creates a single root-domain with all CPUs as
502 * members (mimicking the global state we have today).
504 struct root_domain def_root_domain
;
506 void init_defrootdomain(void)
508 init_rootdomain(&def_root_domain
);
510 atomic_set(&def_root_domain
.refcount
, 1);
513 static struct root_domain
*alloc_rootdomain(void)
515 struct root_domain
*rd
;
517 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
521 if (init_rootdomain(rd
) != 0) {
529 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
531 struct sched_group
*tmp
, *first
;
540 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
543 if (atomic_dec_and_test(&sg
->ref
))
546 } while (sg
!= first
);
549 static void destroy_sched_domain(struct sched_domain
*sd
)
552 * A normal sched domain may have multiple group references, an
553 * overlapping domain, having private groups, only one. Iterate,
554 * dropping group/capacity references, freeing where none remain.
556 free_sched_groups(sd
->groups
, 1);
558 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
563 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
565 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
568 struct sched_domain
*parent
= sd
->parent
;
569 destroy_sched_domain(sd
);
574 static void destroy_sched_domains(struct sched_domain
*sd
)
577 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
581 * Keep a special pointer to the highest sched_domain that has
582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
583 * allows us to avoid some pointer chasing select_idle_sibling().
585 * Also keep a unique ID per domain (we use the first CPU number in
586 * the cpumask of the domain), this allows us to quickly tell if
587 * two CPUs are in the same cache domain, see cpus_share_cache().
589 DEFINE_PER_CPU(struct sched_domain
*, sd_llc
);
590 DEFINE_PER_CPU(int, sd_llc_size
);
591 DEFINE_PER_CPU(int, sd_llc_id
);
592 DEFINE_PER_CPU(struct sched_domain_shared
*, sd_llc_shared
);
593 DEFINE_PER_CPU(struct sched_domain
*, sd_numa
);
594 DEFINE_PER_CPU(struct sched_domain
*, sd_asym_packing
);
595 DEFINE_PER_CPU(struct sched_domain
*, sd_asym_cpucapacity
);
596 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity
);
598 static void update_top_cache_domain(int cpu
)
600 struct sched_domain_shared
*sds
= NULL
;
601 struct sched_domain
*sd
;
605 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
607 id
= cpumask_first(sched_domain_span(sd
));
608 size
= cpumask_weight(sched_domain_span(sd
));
612 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
613 per_cpu(sd_llc_size
, cpu
) = size
;
614 per_cpu(sd_llc_id
, cpu
) = id
;
615 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
617 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
618 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
620 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
621 rcu_assign_pointer(per_cpu(sd_asym_packing
, cpu
), sd
);
623 sd
= lowest_flag_domain(cpu
, SD_ASYM_CPUCAPACITY
);
624 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity
, cpu
), sd
);
628 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
629 * hold the hotplug lock.
632 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
634 struct rq
*rq
= cpu_rq(cpu
);
635 struct sched_domain
*tmp
;
637 /* Remove the sched domains which do not contribute to scheduling. */
638 for (tmp
= sd
; tmp
; ) {
639 struct sched_domain
*parent
= tmp
->parent
;
643 if (sd_parent_degenerate(tmp
, parent
)) {
644 tmp
->parent
= parent
->parent
;
646 parent
->parent
->child
= tmp
;
648 * Transfer SD_PREFER_SIBLING down in case of a
649 * degenerate parent; the spans match for this
650 * so the property transfers.
652 if (parent
->flags
& SD_PREFER_SIBLING
)
653 tmp
->flags
|= SD_PREFER_SIBLING
;
654 destroy_sched_domain(parent
);
659 if (sd
&& sd_degenerate(sd
)) {
662 destroy_sched_domain(tmp
);
667 sched_domain_debug(sd
, cpu
);
669 rq_attach_root(rq
, rd
);
671 rcu_assign_pointer(rq
->sd
, sd
);
672 dirty_sched_domain_sysctl(cpu
);
673 destroy_sched_domains(tmp
);
675 update_top_cache_domain(cpu
);
679 struct sched_domain
** __percpu sd
;
680 struct root_domain
*rd
;
691 * Return the canonical balance CPU for this group, this is the first CPU
692 * of this group that's also in the balance mask.
694 * The balance mask are all those CPUs that could actually end up at this
695 * group. See build_balance_mask().
697 * Also see should_we_balance().
699 int group_balance_cpu(struct sched_group
*sg
)
701 return cpumask_first(group_balance_mask(sg
));
706 * NUMA topology (first read the regular topology blurb below)
708 * Given a node-distance table, for example:
716 * which represents a 4 node ring topology like:
724 * We want to construct domains and groups to represent this. The way we go
725 * about doing this is to build the domains on 'hops'. For each NUMA level we
726 * construct the mask of all nodes reachable in @level hops.
728 * For the above NUMA topology that gives 3 levels:
730 * NUMA-2 0-3 0-3 0-3 0-3
731 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
733 * NUMA-1 0-1,3 0-2 1-3 0,2-3
734 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
739 * As can be seen; things don't nicely line up as with the regular topology.
740 * When we iterate a domain in child domain chunks some nodes can be
741 * represented multiple times -- hence the "overlap" naming for this part of
744 * In order to minimize this overlap, we only build enough groups to cover the
745 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
749 * - the first group of each domain is its child domain; this
750 * gets us the first 0-1,3
751 * - the only uncovered node is 2, who's child domain is 1-3.
753 * However, because of the overlap, computing a unique CPU for each group is
754 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
755 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
756 * end up at those groups (they would end up in group: 0-1,3).
758 * To correct this we have to introduce the group balance mask. This mask
759 * will contain those CPUs in the group that can reach this group given the
760 * (child) domain tree.
762 * With this we can once again compute balance_cpu and sched_group_capacity
765 * XXX include words on how balance_cpu is unique and therefore can be
766 * used for sched_group_capacity links.
769 * Another 'interesting' topology is:
777 * Which looks a little like:
785 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
788 * This leads to a few particularly weird cases where the sched_domain's are
789 * not of the same number for each CPU. Consider:
792 * groups: {0-2},{1-3} {1-3},{0-2}
794 * NUMA-1 0-2 0-3 0-3 1-3
802 * Build the balance mask; it contains only those CPUs that can arrive at this
803 * group and should be considered to continue balancing.
805 * We do this during the group creation pass, therefore the group information
806 * isn't complete yet, however since each group represents a (child) domain we
807 * can fully construct this using the sched_domain bits (which are already
811 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
813 const struct cpumask
*sg_span
= sched_group_span(sg
);
814 struct sd_data
*sdd
= sd
->private;
815 struct sched_domain
*sibling
;
820 for_each_cpu(i
, sg_span
) {
821 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
824 * Can happen in the asymmetric case, where these siblings are
825 * unused. The mask will not be empty because those CPUs that
826 * do have the top domain _should_ span the domain.
831 /* If we would not end up here, we can't continue from here */
832 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
835 cpumask_set_cpu(i
, mask
);
838 /* We must not have empty masks here */
839 WARN_ON_ONCE(cpumask_empty(mask
));
843 * XXX: This creates per-node group entries; since the load-balancer will
844 * immediately access remote memory to construct this group's load-balance
845 * statistics having the groups node local is of dubious benefit.
847 static struct sched_group
*
848 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
850 struct sched_group
*sg
;
851 struct cpumask
*sg_span
;
853 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
854 GFP_KERNEL
, cpu_to_node(cpu
));
859 sg_span
= sched_group_span(sg
);
861 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
863 cpumask_copy(sg_span
, sched_domain_span(sd
));
865 atomic_inc(&sg
->ref
);
869 static void init_overlap_sched_group(struct sched_domain
*sd
,
870 struct sched_group
*sg
)
872 struct cpumask
*mask
= sched_domains_tmpmask2
;
873 struct sd_data
*sdd
= sd
->private;
874 struct cpumask
*sg_span
;
877 build_balance_mask(sd
, sg
, mask
);
878 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
880 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
881 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
882 cpumask_copy(group_balance_mask(sg
), mask
);
884 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
887 * Initialize sgc->capacity such that even if we mess up the
888 * domains and no possible iteration will get us here, we won't
891 sg_span
= sched_group_span(sg
);
892 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
893 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
894 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
898 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
900 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
901 const struct cpumask
*span
= sched_domain_span(sd
);
902 struct cpumask
*covered
= sched_domains_tmpmask
;
903 struct sd_data
*sdd
= sd
->private;
904 struct sched_domain
*sibling
;
907 cpumask_clear(covered
);
909 for_each_cpu_wrap(i
, span
, cpu
) {
910 struct cpumask
*sg_span
;
912 if (cpumask_test_cpu(i
, covered
))
915 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
918 * Asymmetric node setups can result in situations where the
919 * domain tree is of unequal depth, make sure to skip domains
920 * that already cover the entire range.
922 * In that case build_sched_domains() will have terminated the
923 * iteration early and our sibling sd spans will be empty.
924 * Domains should always include the CPU they're built on, so
927 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
930 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
934 sg_span
= sched_group_span(sg
);
935 cpumask_or(covered
, covered
, sg_span
);
937 init_overlap_sched_group(sd
, sg
);
951 free_sched_groups(first
, 0);
958 * Package topology (also see the load-balance blurb in fair.c)
960 * The scheduler builds a tree structure to represent a number of important
961 * topology features. By default (default_topology[]) these include:
963 * - Simultaneous multithreading (SMT)
964 * - Multi-Core Cache (MC)
967 * Where the last one more or less denotes everything up to a NUMA node.
969 * The tree consists of 3 primary data structures:
971 * sched_domain -> sched_group -> sched_group_capacity
975 * The sched_domains are per-CPU and have a two way link (parent & child) and
976 * denote the ever growing mask of CPUs belonging to that level of topology.
978 * Each sched_domain has a circular (double) linked list of sched_group's, each
979 * denoting the domains of the level below (or individual CPUs in case of the
980 * first domain level). The sched_group linked by a sched_domain includes the
981 * CPU of that sched_domain [*].
983 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
985 * CPU 0 1 2 3 4 5 6 7
989 * SMT [ ] [ ] [ ] [ ]
993 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
994 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
995 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
997 * CPU 0 1 2 3 4 5 6 7
999 * One way to think about it is: sched_domain moves you up and down among these
1000 * topology levels, while sched_group moves you sideways through it, at child
1001 * domain granularity.
1003 * sched_group_capacity ensures each unique sched_group has shared storage.
1005 * There are two related construction problems, both require a CPU that
1006 * uniquely identify each group (for a given domain):
1008 * - The first is the balance_cpu (see should_we_balance() and the
1009 * load-balance blub in fair.c); for each group we only want 1 CPU to
1010 * continue balancing at a higher domain.
1012 * - The second is the sched_group_capacity; we want all identical groups
1013 * to share a single sched_group_capacity.
1015 * Since these topologies are exclusive by construction. That is, its
1016 * impossible for an SMT thread to belong to multiple cores, and cores to
1017 * be part of multiple caches. There is a very clear and unique location
1018 * for each CPU in the hierarchy.
1020 * Therefore computing a unique CPU for each group is trivial (the iteration
1021 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1022 * group), we can simply pick the first CPU in each group.
1025 * [*] in other words, the first group of each domain is its child domain.
1028 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
1030 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1031 struct sched_domain
*child
= sd
->child
;
1032 struct sched_group
*sg
;
1035 cpu
= cpumask_first(sched_domain_span(child
));
1037 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
1038 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
1040 /* For claim_allocations: */
1041 atomic_inc(&sg
->ref
);
1042 atomic_inc(&sg
->sgc
->ref
);
1045 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
1046 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
1048 cpumask_set_cpu(cpu
, sched_group_span(sg
));
1049 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
1052 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
1053 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
1054 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
1060 * build_sched_groups will build a circular linked list of the groups
1061 * covered by the given span, and will set each group's ->cpumask correctly,
1062 * and ->cpu_capacity to 0.
1064 * Assumes the sched_domain tree is fully constructed
1067 build_sched_groups(struct sched_domain
*sd
, int cpu
)
1069 struct sched_group
*first
= NULL
, *last
= NULL
;
1070 struct sd_data
*sdd
= sd
->private;
1071 const struct cpumask
*span
= sched_domain_span(sd
);
1072 struct cpumask
*covered
;
1075 lockdep_assert_held(&sched_domains_mutex
);
1076 covered
= sched_domains_tmpmask
;
1078 cpumask_clear(covered
);
1080 for_each_cpu_wrap(i
, span
, cpu
) {
1081 struct sched_group
*sg
;
1083 if (cpumask_test_cpu(i
, covered
))
1086 sg
= get_group(i
, sdd
);
1088 cpumask_or(covered
, covered
, sched_group_span(sg
));
1103 * Initialize sched groups cpu_capacity.
1105 * cpu_capacity indicates the capacity of sched group, which is used while
1106 * distributing the load between different sched groups in a sched domain.
1107 * Typically cpu_capacity for all the groups in a sched domain will be same
1108 * unless there are asymmetries in the topology. If there are asymmetries,
1109 * group having more cpu_capacity will pickup more load compared to the
1110 * group having less cpu_capacity.
1112 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
1114 struct sched_group
*sg
= sd
->groups
;
1119 int cpu
, max_cpu
= -1;
1121 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
1123 if (!(sd
->flags
& SD_ASYM_PACKING
))
1126 for_each_cpu(cpu
, sched_group_span(sg
)) {
1129 else if (sched_asym_prefer(cpu
, max_cpu
))
1132 sg
->asym_prefer_cpu
= max_cpu
;
1136 } while (sg
!= sd
->groups
);
1138 if (cpu
!= group_balance_cpu(sg
))
1141 update_group_capacity(sd
, cpu
);
1145 * Initializers for schedule domains
1146 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1149 static int default_relax_domain_level
= -1;
1150 int sched_domain_level_max
;
1152 static int __init
setup_relax_domain_level(char *str
)
1154 if (kstrtoint(str
, 0, &default_relax_domain_level
))
1155 pr_warn("Unable to set relax_domain_level\n");
1159 __setup("relax_domain_level=", setup_relax_domain_level
);
1161 static void set_domain_attribute(struct sched_domain
*sd
,
1162 struct sched_domain_attr
*attr
)
1166 if (!attr
|| attr
->relax_domain_level
< 0) {
1167 if (default_relax_domain_level
< 0)
1170 request
= default_relax_domain_level
;
1172 request
= attr
->relax_domain_level
;
1173 if (request
< sd
->level
) {
1174 /* Turn off idle balance on this domain: */
1175 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
1177 /* Turn on idle balance on this domain: */
1178 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
1182 static void __sdt_free(const struct cpumask
*cpu_map
);
1183 static int __sdt_alloc(const struct cpumask
*cpu_map
);
1185 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
1186 const struct cpumask
*cpu_map
)
1190 if (!atomic_read(&d
->rd
->refcount
))
1191 free_rootdomain(&d
->rd
->rcu
);
1197 __sdt_free(cpu_map
);
1205 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1207 memset(d
, 0, sizeof(*d
));
1209 if (__sdt_alloc(cpu_map
))
1210 return sa_sd_storage
;
1211 d
->sd
= alloc_percpu(struct sched_domain
*);
1213 return sa_sd_storage
;
1214 d
->rd
= alloc_rootdomain();
1218 return sa_rootdomain
;
1222 * NULL the sd_data elements we've used to build the sched_domain and
1223 * sched_group structure so that the subsequent __free_domain_allocs()
1224 * will not free the data we're using.
1226 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1228 struct sd_data
*sdd
= sd
->private;
1230 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1231 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1233 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1234 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1236 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1237 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1239 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1240 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1244 enum numa_topology_type sched_numa_topology_type
;
1246 static int sched_domains_numa_levels
;
1247 static int sched_domains_curr_level
;
1249 int sched_max_numa_distance
;
1250 static int *sched_domains_numa_distance
;
1251 static struct cpumask
***sched_domains_numa_masks
;
1255 * SD_flags allowed in topology descriptions.
1257 * These flags are purely descriptive of the topology and do not prescribe
1258 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1261 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1262 * SD_SHARE_PKG_RESOURCES - describes shared caches
1263 * SD_NUMA - describes NUMA topologies
1264 * SD_SHARE_POWERDOMAIN - describes shared power domain
1266 * Odd one out, which beside describing the topology has a quirk also
1267 * prescribes the desired behaviour that goes along with it:
1269 * SD_ASYM_PACKING - describes SMT quirks
1271 #define TOPOLOGY_SD_FLAGS \
1272 (SD_SHARE_CPUCAPACITY | \
1273 SD_SHARE_PKG_RESOURCES | \
1276 SD_SHARE_POWERDOMAIN)
1278 static struct sched_domain
*
1279 sd_init(struct sched_domain_topology_level
*tl
,
1280 const struct cpumask
*cpu_map
,
1281 struct sched_domain
*child
, int dflags
, int cpu
)
1283 struct sd_data
*sdd
= &tl
->data
;
1284 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1285 int sd_id
, sd_weight
, sd_flags
= 0;
1289 * Ugly hack to pass state to sd_numa_mask()...
1291 sched_domains_curr_level
= tl
->numa_level
;
1294 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1297 sd_flags
= (*tl
->sd_flags
)();
1298 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1299 "wrong sd_flags in topology description\n"))
1300 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1302 /* Apply detected topology flags */
1305 *sd
= (struct sched_domain
){
1306 .min_interval
= sd_weight
,
1307 .max_interval
= 2*sd_weight
,
1309 .imbalance_pct
= 125,
1311 .cache_nice_tries
= 0,
1318 .flags
= 1*SD_LOAD_BALANCE
1319 | 1*SD_BALANCE_NEWIDLE
1324 | 0*SD_SHARE_CPUCAPACITY
1325 | 0*SD_SHARE_PKG_RESOURCES
1327 | 1*SD_PREFER_SIBLING
1332 .last_balance
= jiffies
,
1333 .balance_interval
= sd_weight
,
1334 .max_newidle_lb_cost
= 0,
1335 .next_decay_max_lb_cost
= jiffies
,
1337 #ifdef CONFIG_SCHED_DEBUG
1342 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1343 sd_id
= cpumask_first(sched_domain_span(sd
));
1346 * Convert topological properties into behaviour.
1349 if (sd
->flags
& SD_ASYM_CPUCAPACITY
) {
1350 struct sched_domain
*t
= sd
;
1353 * Don't attempt to spread across CPUs of different capacities.
1356 sd
->child
->flags
&= ~SD_PREFER_SIBLING
;
1358 for_each_lower_domain(t
)
1359 t
->flags
|= SD_BALANCE_WAKE
;
1362 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1363 sd
->imbalance_pct
= 110;
1365 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1366 sd
->imbalance_pct
= 117;
1367 sd
->cache_nice_tries
= 1;
1371 } else if (sd
->flags
& SD_NUMA
) {
1372 sd
->cache_nice_tries
= 2;
1376 sd
->flags
&= ~SD_PREFER_SIBLING
;
1377 sd
->flags
|= SD_SERIALIZE
;
1378 if (sched_domains_numa_distance
[tl
->numa_level
] > RECLAIM_DISTANCE
) {
1379 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1386 sd
->cache_nice_tries
= 1;
1392 * For all levels sharing cache; connect a sched_domain_shared
1395 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1396 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1397 atomic_inc(&sd
->shared
->ref
);
1398 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1407 * Topology list, bottom-up.
1409 static struct sched_domain_topology_level default_topology
[] = {
1410 #ifdef CONFIG_SCHED_SMT
1411 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1413 #ifdef CONFIG_SCHED_MC
1414 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1416 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1420 static struct sched_domain_topology_level
*sched_domain_topology
=
1423 #define for_each_sd_topology(tl) \
1424 for (tl = sched_domain_topology; tl->mask; tl++)
1426 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1428 if (WARN_ON_ONCE(sched_smp_initialized
))
1431 sched_domain_topology
= tl
;
1436 static const struct cpumask
*sd_numa_mask(int cpu
)
1438 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1441 static void sched_numa_warn(const char *str
)
1443 static int done
= false;
1451 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1453 for (i
= 0; i
< nr_node_ids
; i
++) {
1454 printk(KERN_WARNING
" ");
1455 for (j
= 0; j
< nr_node_ids
; j
++)
1456 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1457 printk(KERN_CONT
"\n");
1459 printk(KERN_WARNING
"\n");
1462 bool find_numa_distance(int distance
)
1466 if (distance
== node_distance(0, 0))
1469 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1470 if (sched_domains_numa_distance
[i
] == distance
)
1478 * A system can have three types of NUMA topology:
1479 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1480 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1481 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1483 * The difference between a glueless mesh topology and a backplane
1484 * topology lies in whether communication between not directly
1485 * connected nodes goes through intermediary nodes (where programs
1486 * could run), or through backplane controllers. This affects
1487 * placement of programs.
1489 * The type of topology can be discerned with the following tests:
1490 * - If the maximum distance between any nodes is 1 hop, the system
1491 * is directly connected.
1492 * - If for two nodes A and B, located N > 1 hops away from each other,
1493 * there is an intermediary node C, which is < N hops away from both
1494 * nodes A and B, the system is a glueless mesh.
1496 static void init_numa_topology_type(void)
1500 n
= sched_max_numa_distance
;
1502 if (sched_domains_numa_levels
<= 2) {
1503 sched_numa_topology_type
= NUMA_DIRECT
;
1507 for_each_online_node(a
) {
1508 for_each_online_node(b
) {
1509 /* Find two nodes furthest removed from each other. */
1510 if (node_distance(a
, b
) < n
)
1513 /* Is there an intermediary node between a and b? */
1514 for_each_online_node(c
) {
1515 if (node_distance(a
, c
) < n
&&
1516 node_distance(b
, c
) < n
) {
1517 sched_numa_topology_type
=
1523 sched_numa_topology_type
= NUMA_BACKPLANE
;
1529 void sched_init_numa(void)
1531 int next_distance
, curr_distance
= node_distance(0, 0);
1532 struct sched_domain_topology_level
*tl
;
1536 sched_domains_numa_distance
= kzalloc(sizeof(int) * (nr_node_ids
+ 1), GFP_KERNEL
);
1537 if (!sched_domains_numa_distance
)
1540 /* Includes NUMA identity node at level 0. */
1541 sched_domains_numa_distance
[level
++] = curr_distance
;
1542 sched_domains_numa_levels
= level
;
1545 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1546 * unique distances in the node_distance() table.
1548 * Assumes node_distance(0,j) includes all distances in
1549 * node_distance(i,j) in order to avoid cubic time.
1551 next_distance
= curr_distance
;
1552 for (i
= 0; i
< nr_node_ids
; i
++) {
1553 for (j
= 0; j
< nr_node_ids
; j
++) {
1554 for (k
= 0; k
< nr_node_ids
; k
++) {
1555 int distance
= node_distance(i
, k
);
1557 if (distance
> curr_distance
&&
1558 (distance
< next_distance
||
1559 next_distance
== curr_distance
))
1560 next_distance
= distance
;
1563 * While not a strong assumption it would be nice to know
1564 * about cases where if node A is connected to B, B is not
1565 * equally connected to A.
1567 if (sched_debug() && node_distance(k
, i
) != distance
)
1568 sched_numa_warn("Node-distance not symmetric");
1570 if (sched_debug() && i
&& !find_numa_distance(distance
))
1571 sched_numa_warn("Node-0 not representative");
1573 if (next_distance
!= curr_distance
) {
1574 sched_domains_numa_distance
[level
++] = next_distance
;
1575 sched_domains_numa_levels
= level
;
1576 curr_distance
= next_distance
;
1581 * In case of sched_debug() we verify the above assumption.
1588 * 'level' contains the number of unique distances
1590 * The sched_domains_numa_distance[] array includes the actual distance
1595 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1596 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1597 * the array will contain less then 'level' members. This could be
1598 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1599 * in other functions.
1601 * We reset it to 'level' at the end of this function.
1603 sched_domains_numa_levels
= 0;
1605 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1606 if (!sched_domains_numa_masks
)
1610 * Now for each level, construct a mask per node which contains all
1611 * CPUs of nodes that are that many hops away from us.
1613 for (i
= 0; i
< level
; i
++) {
1614 sched_domains_numa_masks
[i
] =
1615 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1616 if (!sched_domains_numa_masks
[i
])
1619 for (j
= 0; j
< nr_node_ids
; j
++) {
1620 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1624 sched_domains_numa_masks
[i
][j
] = mask
;
1627 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1630 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1635 /* Compute default topology size */
1636 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1638 tl
= kzalloc((i
+ level
+ 1) *
1639 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1644 * Copy the default topology bits..
1646 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1647 tl
[i
] = sched_domain_topology
[i
];
1650 * Add the NUMA identity distance, aka single NODE.
1652 tl
[i
++] = (struct sched_domain_topology_level
){
1653 .mask
= sd_numa_mask
,
1659 * .. and append 'j' levels of NUMA goodness.
1661 for (j
= 1; j
< level
; i
++, j
++) {
1662 tl
[i
] = (struct sched_domain_topology_level
){
1663 .mask
= sd_numa_mask
,
1664 .sd_flags
= cpu_numa_flags
,
1665 .flags
= SDTL_OVERLAP
,
1671 sched_domain_topology
= tl
;
1673 sched_domains_numa_levels
= level
;
1674 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1676 init_numa_topology_type();
1679 void sched_domains_numa_masks_set(unsigned int cpu
)
1681 int node
= cpu_to_node(cpu
);
1684 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1685 for (j
= 0; j
< nr_node_ids
; j
++) {
1686 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1687 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1692 void sched_domains_numa_masks_clear(unsigned int cpu
)
1696 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1697 for (j
= 0; j
< nr_node_ids
; j
++)
1698 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1702 #endif /* CONFIG_NUMA */
1704 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1706 struct sched_domain_topology_level
*tl
;
1709 for_each_sd_topology(tl
) {
1710 struct sd_data
*sdd
= &tl
->data
;
1712 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1716 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1720 sdd
->sg
= alloc_percpu(struct sched_group
*);
1724 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1728 for_each_cpu(j
, cpu_map
) {
1729 struct sched_domain
*sd
;
1730 struct sched_domain_shared
*sds
;
1731 struct sched_group
*sg
;
1732 struct sched_group_capacity
*sgc
;
1734 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1735 GFP_KERNEL
, cpu_to_node(j
));
1739 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1741 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1742 GFP_KERNEL
, cpu_to_node(j
));
1746 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1748 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1749 GFP_KERNEL
, cpu_to_node(j
));
1755 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1757 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1758 GFP_KERNEL
, cpu_to_node(j
));
1762 #ifdef CONFIG_SCHED_DEBUG
1766 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1773 static void __sdt_free(const struct cpumask
*cpu_map
)
1775 struct sched_domain_topology_level
*tl
;
1778 for_each_sd_topology(tl
) {
1779 struct sd_data
*sdd
= &tl
->data
;
1781 for_each_cpu(j
, cpu_map
) {
1782 struct sched_domain
*sd
;
1785 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1786 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1787 free_sched_groups(sd
->groups
, 0);
1788 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1792 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1794 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1796 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1798 free_percpu(sdd
->sd
);
1800 free_percpu(sdd
->sds
);
1802 free_percpu(sdd
->sg
);
1804 free_percpu(sdd
->sgc
);
1809 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1810 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1811 struct sched_domain
*child
, int dflags
, int cpu
)
1813 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, dflags
, cpu
);
1816 sd
->level
= child
->level
+ 1;
1817 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1820 if (!cpumask_subset(sched_domain_span(child
),
1821 sched_domain_span(sd
))) {
1822 pr_err("BUG: arch topology borken\n");
1823 #ifdef CONFIG_SCHED_DEBUG
1824 pr_err(" the %s domain not a subset of the %s domain\n",
1825 child
->name
, sd
->name
);
1827 /* Fixup, ensure @sd has at least @child CPUs. */
1828 cpumask_or(sched_domain_span(sd
),
1829 sched_domain_span(sd
),
1830 sched_domain_span(child
));
1834 set_domain_attribute(sd
, attr
);
1840 * Find the sched_domain_topology_level where all CPU capacities are visible
1843 static struct sched_domain_topology_level
1844 *asym_cpu_capacity_level(const struct cpumask
*cpu_map
)
1846 int i
, j
, asym_level
= 0;
1848 struct sched_domain_topology_level
*tl
, *asym_tl
= NULL
;
1851 /* Is there any asymmetry? */
1852 cap
= arch_scale_cpu_capacity(NULL
, cpumask_first(cpu_map
));
1854 for_each_cpu(i
, cpu_map
) {
1855 if (arch_scale_cpu_capacity(NULL
, i
) != cap
) {
1865 * Examine topology from all CPU's point of views to detect the lowest
1866 * sched_domain_topology_level where a highest capacity CPU is visible
1869 for_each_cpu(i
, cpu_map
) {
1870 unsigned long max_capacity
= arch_scale_cpu_capacity(NULL
, i
);
1873 for_each_sd_topology(tl
) {
1874 if (tl_id
< asym_level
)
1877 for_each_cpu_and(j
, tl
->mask(i
), cpu_map
) {
1878 unsigned long capacity
;
1880 capacity
= arch_scale_cpu_capacity(NULL
, j
);
1882 if (capacity
<= max_capacity
)
1885 max_capacity
= capacity
;
1899 * Build sched domains for a given set of CPUs and attach the sched domains
1900 * to the individual CPUs
1903 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1905 enum s_alloc alloc_state
;
1906 struct sched_domain
*sd
;
1908 struct rq
*rq
= NULL
;
1909 int i
, ret
= -ENOMEM
;
1910 struct sched_domain_topology_level
*tl_asym
;
1911 bool has_asym
= false;
1913 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1914 if (alloc_state
!= sa_rootdomain
)
1917 tl_asym
= asym_cpu_capacity_level(cpu_map
);
1919 /* Set up domains for CPUs specified by the cpu_map: */
1920 for_each_cpu(i
, cpu_map
) {
1921 struct sched_domain_topology_level
*tl
;
1924 for_each_sd_topology(tl
) {
1927 if (tl
== tl_asym
) {
1928 dflags
|= SD_ASYM_CPUCAPACITY
;
1932 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, dflags
, i
);
1934 if (tl
== sched_domain_topology
)
1935 *per_cpu_ptr(d
.sd
, i
) = sd
;
1936 if (tl
->flags
& SDTL_OVERLAP
)
1937 sd
->flags
|= SD_OVERLAP
;
1938 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
1943 /* Build the groups for the domains */
1944 for_each_cpu(i
, cpu_map
) {
1945 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1946 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
1947 if (sd
->flags
& SD_OVERLAP
) {
1948 if (build_overlap_sched_groups(sd
, i
))
1951 if (build_sched_groups(sd
, i
))
1957 /* Calculate CPU capacity for physical packages and nodes */
1958 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
1959 if (!cpumask_test_cpu(i
, cpu_map
))
1962 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
1963 claim_allocations(i
, sd
);
1964 init_sched_groups_capacity(i
, sd
);
1968 /* Attach the domains */
1970 for_each_cpu(i
, cpu_map
) {
1972 sd
= *per_cpu_ptr(d
.sd
, i
);
1974 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1975 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
1976 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
1978 cpu_attach_domain(sd
, d
.rd
, i
);
1983 static_branch_enable_cpuslocked(&sched_asym_cpucapacity
);
1985 if (rq
&& sched_debug_enabled
) {
1986 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1987 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
1992 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
1997 /* Current sched domains: */
1998 static cpumask_var_t
*doms_cur
;
2000 /* Number of sched domains in 'doms_cur': */
2001 static int ndoms_cur
;
2003 /* Attribues of custom domains in 'doms_cur' */
2004 static struct sched_domain_attr
*dattr_cur
;
2007 * Special case: If a kmalloc() of a doms_cur partition (array of
2008 * cpumask) fails, then fallback to a single sched domain,
2009 * as determined by the single cpumask fallback_doms.
2011 static cpumask_var_t fallback_doms
;
2014 * arch_update_cpu_topology lets virtualized architectures update the
2015 * CPU core maps. It is supposed to return 1 if the topology changed
2016 * or 0 if it stayed the same.
2018 int __weak
arch_update_cpu_topology(void)
2023 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
2026 cpumask_var_t
*doms
;
2028 doms
= kmalloc_array(ndoms
, sizeof(*doms
), GFP_KERNEL
);
2031 for (i
= 0; i
< ndoms
; i
++) {
2032 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
2033 free_sched_domains(doms
, i
);
2040 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
2043 for (i
= 0; i
< ndoms
; i
++)
2044 free_cpumask_var(doms
[i
]);
2049 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2050 * For now this just excludes isolated CPUs, but could be used to
2051 * exclude other special cases in the future.
2053 int sched_init_domains(const struct cpumask
*cpu_map
)
2057 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
2058 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
2059 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
2061 arch_update_cpu_topology();
2063 doms_cur
= alloc_sched_domains(ndoms_cur
);
2065 doms_cur
= &fallback_doms
;
2066 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
2067 err
= build_sched_domains(doms_cur
[0], NULL
);
2068 register_sched_domain_sysctl();
2074 * Detach sched domains from a group of CPUs specified in cpu_map
2075 * These CPUs will now be attached to the NULL domain
2077 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
2082 for_each_cpu(i
, cpu_map
)
2083 cpu_attach_domain(NULL
, &def_root_domain
, i
);
2087 /* handle null as "default" */
2088 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
2089 struct sched_domain_attr
*new, int idx_new
)
2091 struct sched_domain_attr tmp
;
2099 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
2100 new ? (new + idx_new
) : &tmp
,
2101 sizeof(struct sched_domain_attr
));
2105 * Partition sched domains as specified by the 'ndoms_new'
2106 * cpumasks in the array doms_new[] of cpumasks. This compares
2107 * doms_new[] to the current sched domain partitioning, doms_cur[].
2108 * It destroys each deleted domain and builds each new domain.
2110 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2111 * The masks don't intersect (don't overlap.) We should setup one
2112 * sched domain for each mask. CPUs not in any of the cpumasks will
2113 * not be load balanced. If the same cpumask appears both in the
2114 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2117 * The passed in 'doms_new' should be allocated using
2118 * alloc_sched_domains. This routine takes ownership of it and will
2119 * free_sched_domains it when done with it. If the caller failed the
2120 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2121 * and partition_sched_domains() will fallback to the single partition
2122 * 'fallback_doms', it also forces the domains to be rebuilt.
2124 * If doms_new == NULL it will be replaced with cpu_online_mask.
2125 * ndoms_new == 0 is a special case for destroying existing domains,
2126 * and it will not create the default domain.
2128 * Call with hotplug lock held
2130 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
2131 struct sched_domain_attr
*dattr_new
)
2133 bool __maybe_unused has_eas
= false;
2137 mutex_lock(&sched_domains_mutex
);
2139 /* Always unregister in case we don't destroy any domains: */
2140 unregister_sched_domain_sysctl();
2142 /* Let the architecture update CPU core mappings: */
2143 new_topology
= arch_update_cpu_topology();
2146 WARN_ON_ONCE(dattr_new
);
2148 doms_new
= alloc_sched_domains(1);
2151 cpumask_and(doms_new
[0], cpu_active_mask
,
2152 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2158 /* Destroy deleted domains: */
2159 for (i
= 0; i
< ndoms_cur
; i
++) {
2160 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2161 if (cpumask_equal(doms_cur
[i
], doms_new
[j
]) &&
2162 dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
2165 /* No match - a current sched domain not in new doms_new[] */
2166 detach_destroy_domains(doms_cur
[i
]);
2174 doms_new
= &fallback_doms
;
2175 cpumask_and(doms_new
[0], cpu_active_mask
,
2176 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2179 /* Build new domains: */
2180 for (i
= 0; i
< ndoms_new
; i
++) {
2181 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2182 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2183 dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
2186 /* No match - add a new doms_new */
2187 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
2192 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2193 /* Build perf. domains: */
2194 for (i
= 0; i
< ndoms_new
; i
++) {
2195 for (j
= 0; j
< n
&& !sched_energy_update
; j
++) {
2196 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2197 cpu_rq(cpumask_first(doms_cur
[j
]))->rd
->pd
) {
2202 /* No match - add perf. domains for a new rd */
2203 has_eas
|= build_perf_domains(doms_new
[i
]);
2207 sched_energy_set(has_eas
);
2210 /* Remember the new sched domains: */
2211 if (doms_cur
!= &fallback_doms
)
2212 free_sched_domains(doms_cur
, ndoms_cur
);
2215 doms_cur
= doms_new
;
2216 dattr_cur
= dattr_new
;
2217 ndoms_cur
= ndoms_new
;
2219 register_sched_domain_sysctl();
2221 mutex_unlock(&sched_domains_mutex
);