genirq/debugfs: No need to check return value of debugfs_create functions
[linux/fpc-iii.git] / kernel / sched / topology.c
blob3f35ba1d8fde51589b8234a5fb0f7dc831aa0140
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5 #include "sched.h"
7 DEFINE_MUTEX(sched_domains_mutex);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init sched_debug_setup(char *str)
17 sched_debug_enabled = true;
19 return 0;
21 early_param("sched_debug", sched_debug_setup);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled;
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29 struct cpumask *groupmask)
31 struct sched_group *group = sd->groups;
33 cpumask_clear(groupmask);
35 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
37 if (!(sd->flags & SD_LOAD_BALANCE)) {
38 printk("does not load-balance\n");
39 if (sd->parent)
40 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41 return -1;
44 printk(KERN_CONT "span=%*pbl level=%s\n",
45 cpumask_pr_args(sched_domain_span(sd)), sd->name);
47 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
50 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
54 printk(KERN_DEBUG "%*s groups:", level + 1, "");
55 do {
56 if (!group) {
57 printk("\n");
58 printk(KERN_ERR "ERROR: group is NULL\n");
59 break;
62 if (!cpumask_weight(sched_group_span(group))) {
63 printk(KERN_CONT "\n");
64 printk(KERN_ERR "ERROR: empty group\n");
65 break;
68 if (!(sd->flags & SD_OVERLAP) &&
69 cpumask_intersects(groupmask, sched_group_span(group))) {
70 printk(KERN_CONT "\n");
71 printk(KERN_ERR "ERROR: repeated CPUs\n");
72 break;
75 cpumask_or(groupmask, groupmask, sched_group_span(group));
77 printk(KERN_CONT " %d:{ span=%*pbl",
78 group->sgc->id,
79 cpumask_pr_args(sched_group_span(group)));
81 if ((sd->flags & SD_OVERLAP) &&
82 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83 printk(KERN_CONT " mask=%*pbl",
84 cpumask_pr_args(group_balance_mask(group)));
87 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
90 if (group == sd->groups && sd->child &&
91 !cpumask_equal(sched_domain_span(sd->child),
92 sched_group_span(group))) {
93 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
96 printk(KERN_CONT " }");
98 group = group->next;
100 if (group != sd->groups)
101 printk(KERN_CONT ",");
103 } while (group != sd->groups);
104 printk(KERN_CONT "\n");
106 if (!cpumask_equal(sched_domain_span(sd), groupmask))
107 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
109 if (sd->parent &&
110 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112 return 0;
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
117 int level = 0;
119 if (!sched_debug_enabled)
120 return;
122 if (!sd) {
123 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124 return;
127 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
129 for (;;) {
130 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131 break;
132 level++;
133 sd = sd->parent;
134 if (!sd)
135 break;
138 #else /* !CONFIG_SCHED_DEBUG */
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
144 return false;
146 #endif /* CONFIG_SCHED_DEBUG */
148 static int sd_degenerate(struct sched_domain *sd)
150 if (cpumask_weight(sched_domain_span(sd)) == 1)
151 return 1;
153 /* Following flags need at least 2 groups */
154 if (sd->flags & (SD_LOAD_BALANCE |
155 SD_BALANCE_NEWIDLE |
156 SD_BALANCE_FORK |
157 SD_BALANCE_EXEC |
158 SD_SHARE_CPUCAPACITY |
159 SD_ASYM_CPUCAPACITY |
160 SD_SHARE_PKG_RESOURCES |
161 SD_SHARE_POWERDOMAIN)) {
162 if (sd->groups != sd->groups->next)
163 return 0;
166 /* Following flags don't use groups */
167 if (sd->flags & (SD_WAKE_AFFINE))
168 return 0;
170 return 1;
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
176 unsigned long cflags = sd->flags, pflags = parent->flags;
178 if (sd_degenerate(parent))
179 return 1;
181 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182 return 0;
184 /* Flags needing groups don't count if only 1 group in parent */
185 if (parent->groups == parent->groups->next) {
186 pflags &= ~(SD_LOAD_BALANCE |
187 SD_BALANCE_NEWIDLE |
188 SD_BALANCE_FORK |
189 SD_BALANCE_EXEC |
190 SD_ASYM_CPUCAPACITY |
191 SD_SHARE_CPUCAPACITY |
192 SD_SHARE_PKG_RESOURCES |
193 SD_PREFER_SIBLING |
194 SD_SHARE_POWERDOMAIN);
195 if (nr_node_ids == 1)
196 pflags &= ~SD_SERIALIZE;
198 if (~cflags & pflags)
199 return 0;
201 return 1;
204 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
205 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
206 DEFINE_MUTEX(sched_energy_mutex);
207 bool sched_energy_update;
209 static void free_pd(struct perf_domain *pd)
211 struct perf_domain *tmp;
213 while (pd) {
214 tmp = pd->next;
215 kfree(pd);
216 pd = tmp;
220 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
222 while (pd) {
223 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
224 return pd;
225 pd = pd->next;
228 return NULL;
231 static struct perf_domain *pd_init(int cpu)
233 struct em_perf_domain *obj = em_cpu_get(cpu);
234 struct perf_domain *pd;
236 if (!obj) {
237 if (sched_debug())
238 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
239 return NULL;
242 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
243 if (!pd)
244 return NULL;
245 pd->em_pd = obj;
247 return pd;
250 static void perf_domain_debug(const struct cpumask *cpu_map,
251 struct perf_domain *pd)
253 if (!sched_debug() || !pd)
254 return;
256 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
258 while (pd) {
259 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
260 cpumask_first(perf_domain_span(pd)),
261 cpumask_pr_args(perf_domain_span(pd)),
262 em_pd_nr_cap_states(pd->em_pd));
263 pd = pd->next;
266 printk(KERN_CONT "\n");
269 static void destroy_perf_domain_rcu(struct rcu_head *rp)
271 struct perf_domain *pd;
273 pd = container_of(rp, struct perf_domain, rcu);
274 free_pd(pd);
277 static void sched_energy_set(bool has_eas)
279 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
280 if (sched_debug())
281 pr_info("%s: stopping EAS\n", __func__);
282 static_branch_disable_cpuslocked(&sched_energy_present);
283 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
284 if (sched_debug())
285 pr_info("%s: starting EAS\n", __func__);
286 static_branch_enable_cpuslocked(&sched_energy_present);
291 * EAS can be used on a root domain if it meets all the following conditions:
292 * 1. an Energy Model (EM) is available;
293 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
294 * 3. the EM complexity is low enough to keep scheduling overheads low;
295 * 4. schedutil is driving the frequency of all CPUs of the rd;
297 * The complexity of the Energy Model is defined as:
299 * C = nr_pd * (nr_cpus + nr_cs)
301 * with parameters defined as:
302 * - nr_pd: the number of performance domains
303 * - nr_cpus: the number of CPUs
304 * - nr_cs: the sum of the number of capacity states of all performance
305 * domains (for example, on a system with 2 performance domains,
306 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
308 * It is generally not a good idea to use such a model in the wake-up path on
309 * very complex platforms because of the associated scheduling overheads. The
310 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
311 * with per-CPU DVFS and less than 8 capacity states each, for example.
313 #define EM_MAX_COMPLEXITY 2048
315 extern struct cpufreq_governor schedutil_gov;
316 static bool build_perf_domains(const struct cpumask *cpu_map)
318 int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
319 struct perf_domain *pd = NULL, *tmp;
320 int cpu = cpumask_first(cpu_map);
321 struct root_domain *rd = cpu_rq(cpu)->rd;
322 struct cpufreq_policy *policy;
323 struct cpufreq_governor *gov;
325 /* EAS is enabled for asymmetric CPU capacity topologies. */
326 if (!per_cpu(sd_asym_cpucapacity, cpu)) {
327 if (sched_debug()) {
328 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
329 cpumask_pr_args(cpu_map));
331 goto free;
334 for_each_cpu(i, cpu_map) {
335 /* Skip already covered CPUs. */
336 if (find_pd(pd, i))
337 continue;
339 /* Do not attempt EAS if schedutil is not being used. */
340 policy = cpufreq_cpu_get(i);
341 if (!policy)
342 goto free;
343 gov = policy->governor;
344 cpufreq_cpu_put(policy);
345 if (gov != &schedutil_gov) {
346 if (rd->pd)
347 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
348 cpumask_pr_args(cpu_map));
349 goto free;
352 /* Create the new pd and add it to the local list. */
353 tmp = pd_init(i);
354 if (!tmp)
355 goto free;
356 tmp->next = pd;
357 pd = tmp;
360 * Count performance domains and capacity states for the
361 * complexity check.
363 nr_pd++;
364 nr_cs += em_pd_nr_cap_states(pd->em_pd);
367 /* Bail out if the Energy Model complexity is too high. */
368 if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
369 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
370 cpumask_pr_args(cpu_map));
371 goto free;
374 perf_domain_debug(cpu_map, pd);
376 /* Attach the new list of performance domains to the root domain. */
377 tmp = rd->pd;
378 rcu_assign_pointer(rd->pd, pd);
379 if (tmp)
380 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
382 return !!pd;
384 free:
385 free_pd(pd);
386 tmp = rd->pd;
387 rcu_assign_pointer(rd->pd, NULL);
388 if (tmp)
389 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
391 return false;
393 #else
394 static void free_pd(struct perf_domain *pd) { }
395 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
397 static void free_rootdomain(struct rcu_head *rcu)
399 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
401 cpupri_cleanup(&rd->cpupri);
402 cpudl_cleanup(&rd->cpudl);
403 free_cpumask_var(rd->dlo_mask);
404 free_cpumask_var(rd->rto_mask);
405 free_cpumask_var(rd->online);
406 free_cpumask_var(rd->span);
407 free_pd(rd->pd);
408 kfree(rd);
411 void rq_attach_root(struct rq *rq, struct root_domain *rd)
413 struct root_domain *old_rd = NULL;
414 unsigned long flags;
416 raw_spin_lock_irqsave(&rq->lock, flags);
418 if (rq->rd) {
419 old_rd = rq->rd;
421 if (cpumask_test_cpu(rq->cpu, old_rd->online))
422 set_rq_offline(rq);
424 cpumask_clear_cpu(rq->cpu, old_rd->span);
427 * If we dont want to free the old_rd yet then
428 * set old_rd to NULL to skip the freeing later
429 * in this function:
431 if (!atomic_dec_and_test(&old_rd->refcount))
432 old_rd = NULL;
435 atomic_inc(&rd->refcount);
436 rq->rd = rd;
438 cpumask_set_cpu(rq->cpu, rd->span);
439 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
440 set_rq_online(rq);
442 raw_spin_unlock_irqrestore(&rq->lock, flags);
444 if (old_rd)
445 call_rcu_sched(&old_rd->rcu, free_rootdomain);
448 void sched_get_rd(struct root_domain *rd)
450 atomic_inc(&rd->refcount);
453 void sched_put_rd(struct root_domain *rd)
455 if (!atomic_dec_and_test(&rd->refcount))
456 return;
458 call_rcu_sched(&rd->rcu, free_rootdomain);
461 static int init_rootdomain(struct root_domain *rd)
463 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
464 goto out;
465 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
466 goto free_span;
467 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
468 goto free_online;
469 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
470 goto free_dlo_mask;
472 #ifdef HAVE_RT_PUSH_IPI
473 rd->rto_cpu = -1;
474 raw_spin_lock_init(&rd->rto_lock);
475 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
476 #endif
478 init_dl_bw(&rd->dl_bw);
479 if (cpudl_init(&rd->cpudl) != 0)
480 goto free_rto_mask;
482 if (cpupri_init(&rd->cpupri) != 0)
483 goto free_cpudl;
484 return 0;
486 free_cpudl:
487 cpudl_cleanup(&rd->cpudl);
488 free_rto_mask:
489 free_cpumask_var(rd->rto_mask);
490 free_dlo_mask:
491 free_cpumask_var(rd->dlo_mask);
492 free_online:
493 free_cpumask_var(rd->online);
494 free_span:
495 free_cpumask_var(rd->span);
496 out:
497 return -ENOMEM;
501 * By default the system creates a single root-domain with all CPUs as
502 * members (mimicking the global state we have today).
504 struct root_domain def_root_domain;
506 void init_defrootdomain(void)
508 init_rootdomain(&def_root_domain);
510 atomic_set(&def_root_domain.refcount, 1);
513 static struct root_domain *alloc_rootdomain(void)
515 struct root_domain *rd;
517 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
518 if (!rd)
519 return NULL;
521 if (init_rootdomain(rd) != 0) {
522 kfree(rd);
523 return NULL;
526 return rd;
529 static void free_sched_groups(struct sched_group *sg, int free_sgc)
531 struct sched_group *tmp, *first;
533 if (!sg)
534 return;
536 first = sg;
537 do {
538 tmp = sg->next;
540 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
541 kfree(sg->sgc);
543 if (atomic_dec_and_test(&sg->ref))
544 kfree(sg);
545 sg = tmp;
546 } while (sg != first);
549 static void destroy_sched_domain(struct sched_domain *sd)
552 * A normal sched domain may have multiple group references, an
553 * overlapping domain, having private groups, only one. Iterate,
554 * dropping group/capacity references, freeing where none remain.
556 free_sched_groups(sd->groups, 1);
558 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
559 kfree(sd->shared);
560 kfree(sd);
563 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
565 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
567 while (sd) {
568 struct sched_domain *parent = sd->parent;
569 destroy_sched_domain(sd);
570 sd = parent;
574 static void destroy_sched_domains(struct sched_domain *sd)
576 if (sd)
577 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
581 * Keep a special pointer to the highest sched_domain that has
582 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
583 * allows us to avoid some pointer chasing select_idle_sibling().
585 * Also keep a unique ID per domain (we use the first CPU number in
586 * the cpumask of the domain), this allows us to quickly tell if
587 * two CPUs are in the same cache domain, see cpus_share_cache().
589 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
590 DEFINE_PER_CPU(int, sd_llc_size);
591 DEFINE_PER_CPU(int, sd_llc_id);
592 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
593 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
594 DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing);
595 DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
596 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
598 static void update_top_cache_domain(int cpu)
600 struct sched_domain_shared *sds = NULL;
601 struct sched_domain *sd;
602 int id = cpu;
603 int size = 1;
605 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
606 if (sd) {
607 id = cpumask_first(sched_domain_span(sd));
608 size = cpumask_weight(sched_domain_span(sd));
609 sds = sd->shared;
612 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
613 per_cpu(sd_llc_size, cpu) = size;
614 per_cpu(sd_llc_id, cpu) = id;
615 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
617 sd = lowest_flag_domain(cpu, SD_NUMA);
618 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
620 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
621 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
623 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
624 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
628 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
629 * hold the hotplug lock.
631 static void
632 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
634 struct rq *rq = cpu_rq(cpu);
635 struct sched_domain *tmp;
637 /* Remove the sched domains which do not contribute to scheduling. */
638 for (tmp = sd; tmp; ) {
639 struct sched_domain *parent = tmp->parent;
640 if (!parent)
641 break;
643 if (sd_parent_degenerate(tmp, parent)) {
644 tmp->parent = parent->parent;
645 if (parent->parent)
646 parent->parent->child = tmp;
648 * Transfer SD_PREFER_SIBLING down in case of a
649 * degenerate parent; the spans match for this
650 * so the property transfers.
652 if (parent->flags & SD_PREFER_SIBLING)
653 tmp->flags |= SD_PREFER_SIBLING;
654 destroy_sched_domain(parent);
655 } else
656 tmp = tmp->parent;
659 if (sd && sd_degenerate(sd)) {
660 tmp = sd;
661 sd = sd->parent;
662 destroy_sched_domain(tmp);
663 if (sd)
664 sd->child = NULL;
667 sched_domain_debug(sd, cpu);
669 rq_attach_root(rq, rd);
670 tmp = rq->sd;
671 rcu_assign_pointer(rq->sd, sd);
672 dirty_sched_domain_sysctl(cpu);
673 destroy_sched_domains(tmp);
675 update_top_cache_domain(cpu);
678 struct s_data {
679 struct sched_domain ** __percpu sd;
680 struct root_domain *rd;
683 enum s_alloc {
684 sa_rootdomain,
685 sa_sd,
686 sa_sd_storage,
687 sa_none,
691 * Return the canonical balance CPU for this group, this is the first CPU
692 * of this group that's also in the balance mask.
694 * The balance mask are all those CPUs that could actually end up at this
695 * group. See build_balance_mask().
697 * Also see should_we_balance().
699 int group_balance_cpu(struct sched_group *sg)
701 return cpumask_first(group_balance_mask(sg));
706 * NUMA topology (first read the regular topology blurb below)
708 * Given a node-distance table, for example:
710 * node 0 1 2 3
711 * 0: 10 20 30 20
712 * 1: 20 10 20 30
713 * 2: 30 20 10 20
714 * 3: 20 30 20 10
716 * which represents a 4 node ring topology like:
718 * 0 ----- 1
719 * | |
720 * | |
721 * | |
722 * 3 ----- 2
724 * We want to construct domains and groups to represent this. The way we go
725 * about doing this is to build the domains on 'hops'. For each NUMA level we
726 * construct the mask of all nodes reachable in @level hops.
728 * For the above NUMA topology that gives 3 levels:
730 * NUMA-2 0-3 0-3 0-3 0-3
731 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
733 * NUMA-1 0-1,3 0-2 1-3 0,2-3
734 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
736 * NUMA-0 0 1 2 3
739 * As can be seen; things don't nicely line up as with the regular topology.
740 * When we iterate a domain in child domain chunks some nodes can be
741 * represented multiple times -- hence the "overlap" naming for this part of
742 * the topology.
744 * In order to minimize this overlap, we only build enough groups to cover the
745 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
747 * Because:
749 * - the first group of each domain is its child domain; this
750 * gets us the first 0-1,3
751 * - the only uncovered node is 2, who's child domain is 1-3.
753 * However, because of the overlap, computing a unique CPU for each group is
754 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
755 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
756 * end up at those groups (they would end up in group: 0-1,3).
758 * To correct this we have to introduce the group balance mask. This mask
759 * will contain those CPUs in the group that can reach this group given the
760 * (child) domain tree.
762 * With this we can once again compute balance_cpu and sched_group_capacity
763 * relations.
765 * XXX include words on how balance_cpu is unique and therefore can be
766 * used for sched_group_capacity links.
769 * Another 'interesting' topology is:
771 * node 0 1 2 3
772 * 0: 10 20 20 30
773 * 1: 20 10 20 20
774 * 2: 20 20 10 20
775 * 3: 30 20 20 10
777 * Which looks a little like:
779 * 0 ----- 1
780 * | / |
781 * | / |
782 * | / |
783 * 2 ----- 3
785 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
786 * are not.
788 * This leads to a few particularly weird cases where the sched_domain's are
789 * not of the same number for each CPU. Consider:
791 * NUMA-2 0-3 0-3
792 * groups: {0-2},{1-3} {1-3},{0-2}
794 * NUMA-1 0-2 0-3 0-3 1-3
796 * NUMA-0 0 1 2 3
802 * Build the balance mask; it contains only those CPUs that can arrive at this
803 * group and should be considered to continue balancing.
805 * We do this during the group creation pass, therefore the group information
806 * isn't complete yet, however since each group represents a (child) domain we
807 * can fully construct this using the sched_domain bits (which are already
808 * complete).
810 static void
811 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
813 const struct cpumask *sg_span = sched_group_span(sg);
814 struct sd_data *sdd = sd->private;
815 struct sched_domain *sibling;
816 int i;
818 cpumask_clear(mask);
820 for_each_cpu(i, sg_span) {
821 sibling = *per_cpu_ptr(sdd->sd, i);
824 * Can happen in the asymmetric case, where these siblings are
825 * unused. The mask will not be empty because those CPUs that
826 * do have the top domain _should_ span the domain.
828 if (!sibling->child)
829 continue;
831 /* If we would not end up here, we can't continue from here */
832 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
833 continue;
835 cpumask_set_cpu(i, mask);
838 /* We must not have empty masks here */
839 WARN_ON_ONCE(cpumask_empty(mask));
843 * XXX: This creates per-node group entries; since the load-balancer will
844 * immediately access remote memory to construct this group's load-balance
845 * statistics having the groups node local is of dubious benefit.
847 static struct sched_group *
848 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
850 struct sched_group *sg;
851 struct cpumask *sg_span;
853 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
854 GFP_KERNEL, cpu_to_node(cpu));
856 if (!sg)
857 return NULL;
859 sg_span = sched_group_span(sg);
860 if (sd->child)
861 cpumask_copy(sg_span, sched_domain_span(sd->child));
862 else
863 cpumask_copy(sg_span, sched_domain_span(sd));
865 atomic_inc(&sg->ref);
866 return sg;
869 static void init_overlap_sched_group(struct sched_domain *sd,
870 struct sched_group *sg)
872 struct cpumask *mask = sched_domains_tmpmask2;
873 struct sd_data *sdd = sd->private;
874 struct cpumask *sg_span;
875 int cpu;
877 build_balance_mask(sd, sg, mask);
878 cpu = cpumask_first_and(sched_group_span(sg), mask);
880 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
881 if (atomic_inc_return(&sg->sgc->ref) == 1)
882 cpumask_copy(group_balance_mask(sg), mask);
883 else
884 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
887 * Initialize sgc->capacity such that even if we mess up the
888 * domains and no possible iteration will get us here, we won't
889 * die on a /0 trap.
891 sg_span = sched_group_span(sg);
892 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
893 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
894 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
897 static int
898 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
900 struct sched_group *first = NULL, *last = NULL, *sg;
901 const struct cpumask *span = sched_domain_span(sd);
902 struct cpumask *covered = sched_domains_tmpmask;
903 struct sd_data *sdd = sd->private;
904 struct sched_domain *sibling;
905 int i;
907 cpumask_clear(covered);
909 for_each_cpu_wrap(i, span, cpu) {
910 struct cpumask *sg_span;
912 if (cpumask_test_cpu(i, covered))
913 continue;
915 sibling = *per_cpu_ptr(sdd->sd, i);
918 * Asymmetric node setups can result in situations where the
919 * domain tree is of unequal depth, make sure to skip domains
920 * that already cover the entire range.
922 * In that case build_sched_domains() will have terminated the
923 * iteration early and our sibling sd spans will be empty.
924 * Domains should always include the CPU they're built on, so
925 * check that.
927 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
928 continue;
930 sg = build_group_from_child_sched_domain(sibling, cpu);
931 if (!sg)
932 goto fail;
934 sg_span = sched_group_span(sg);
935 cpumask_or(covered, covered, sg_span);
937 init_overlap_sched_group(sd, sg);
939 if (!first)
940 first = sg;
941 if (last)
942 last->next = sg;
943 last = sg;
944 last->next = first;
946 sd->groups = first;
948 return 0;
950 fail:
951 free_sched_groups(first, 0);
953 return -ENOMEM;
958 * Package topology (also see the load-balance blurb in fair.c)
960 * The scheduler builds a tree structure to represent a number of important
961 * topology features. By default (default_topology[]) these include:
963 * - Simultaneous multithreading (SMT)
964 * - Multi-Core Cache (MC)
965 * - Package (DIE)
967 * Where the last one more or less denotes everything up to a NUMA node.
969 * The tree consists of 3 primary data structures:
971 * sched_domain -> sched_group -> sched_group_capacity
972 * ^ ^ ^ ^
973 * `-' `-'
975 * The sched_domains are per-CPU and have a two way link (parent & child) and
976 * denote the ever growing mask of CPUs belonging to that level of topology.
978 * Each sched_domain has a circular (double) linked list of sched_group's, each
979 * denoting the domains of the level below (or individual CPUs in case of the
980 * first domain level). The sched_group linked by a sched_domain includes the
981 * CPU of that sched_domain [*].
983 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
985 * CPU 0 1 2 3 4 5 6 7
987 * DIE [ ]
988 * MC [ ] [ ]
989 * SMT [ ] [ ] [ ] [ ]
991 * - or -
993 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
994 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
995 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
997 * CPU 0 1 2 3 4 5 6 7
999 * One way to think about it is: sched_domain moves you up and down among these
1000 * topology levels, while sched_group moves you sideways through it, at child
1001 * domain granularity.
1003 * sched_group_capacity ensures each unique sched_group has shared storage.
1005 * There are two related construction problems, both require a CPU that
1006 * uniquely identify each group (for a given domain):
1008 * - The first is the balance_cpu (see should_we_balance() and the
1009 * load-balance blub in fair.c); for each group we only want 1 CPU to
1010 * continue balancing at a higher domain.
1012 * - The second is the sched_group_capacity; we want all identical groups
1013 * to share a single sched_group_capacity.
1015 * Since these topologies are exclusive by construction. That is, its
1016 * impossible for an SMT thread to belong to multiple cores, and cores to
1017 * be part of multiple caches. There is a very clear and unique location
1018 * for each CPU in the hierarchy.
1020 * Therefore computing a unique CPU for each group is trivial (the iteration
1021 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1022 * group), we can simply pick the first CPU in each group.
1025 * [*] in other words, the first group of each domain is its child domain.
1028 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1030 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1031 struct sched_domain *child = sd->child;
1032 struct sched_group *sg;
1034 if (child)
1035 cpu = cpumask_first(sched_domain_span(child));
1037 sg = *per_cpu_ptr(sdd->sg, cpu);
1038 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1040 /* For claim_allocations: */
1041 atomic_inc(&sg->ref);
1042 atomic_inc(&sg->sgc->ref);
1044 if (child) {
1045 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1046 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1047 } else {
1048 cpumask_set_cpu(cpu, sched_group_span(sg));
1049 cpumask_set_cpu(cpu, group_balance_mask(sg));
1052 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1053 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1054 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1056 return sg;
1060 * build_sched_groups will build a circular linked list of the groups
1061 * covered by the given span, and will set each group's ->cpumask correctly,
1062 * and ->cpu_capacity to 0.
1064 * Assumes the sched_domain tree is fully constructed
1066 static int
1067 build_sched_groups(struct sched_domain *sd, int cpu)
1069 struct sched_group *first = NULL, *last = NULL;
1070 struct sd_data *sdd = sd->private;
1071 const struct cpumask *span = sched_domain_span(sd);
1072 struct cpumask *covered;
1073 int i;
1075 lockdep_assert_held(&sched_domains_mutex);
1076 covered = sched_domains_tmpmask;
1078 cpumask_clear(covered);
1080 for_each_cpu_wrap(i, span, cpu) {
1081 struct sched_group *sg;
1083 if (cpumask_test_cpu(i, covered))
1084 continue;
1086 sg = get_group(i, sdd);
1088 cpumask_or(covered, covered, sched_group_span(sg));
1090 if (!first)
1091 first = sg;
1092 if (last)
1093 last->next = sg;
1094 last = sg;
1096 last->next = first;
1097 sd->groups = first;
1099 return 0;
1103 * Initialize sched groups cpu_capacity.
1105 * cpu_capacity indicates the capacity of sched group, which is used while
1106 * distributing the load between different sched groups in a sched domain.
1107 * Typically cpu_capacity for all the groups in a sched domain will be same
1108 * unless there are asymmetries in the topology. If there are asymmetries,
1109 * group having more cpu_capacity will pickup more load compared to the
1110 * group having less cpu_capacity.
1112 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1114 struct sched_group *sg = sd->groups;
1116 WARN_ON(!sg);
1118 do {
1119 int cpu, max_cpu = -1;
1121 sg->group_weight = cpumask_weight(sched_group_span(sg));
1123 if (!(sd->flags & SD_ASYM_PACKING))
1124 goto next;
1126 for_each_cpu(cpu, sched_group_span(sg)) {
1127 if (max_cpu < 0)
1128 max_cpu = cpu;
1129 else if (sched_asym_prefer(cpu, max_cpu))
1130 max_cpu = cpu;
1132 sg->asym_prefer_cpu = max_cpu;
1134 next:
1135 sg = sg->next;
1136 } while (sg != sd->groups);
1138 if (cpu != group_balance_cpu(sg))
1139 return;
1141 update_group_capacity(sd, cpu);
1145 * Initializers for schedule domains
1146 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1149 static int default_relax_domain_level = -1;
1150 int sched_domain_level_max;
1152 static int __init setup_relax_domain_level(char *str)
1154 if (kstrtoint(str, 0, &default_relax_domain_level))
1155 pr_warn("Unable to set relax_domain_level\n");
1157 return 1;
1159 __setup("relax_domain_level=", setup_relax_domain_level);
1161 static void set_domain_attribute(struct sched_domain *sd,
1162 struct sched_domain_attr *attr)
1164 int request;
1166 if (!attr || attr->relax_domain_level < 0) {
1167 if (default_relax_domain_level < 0)
1168 return;
1169 else
1170 request = default_relax_domain_level;
1171 } else
1172 request = attr->relax_domain_level;
1173 if (request < sd->level) {
1174 /* Turn off idle balance on this domain: */
1175 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1176 } else {
1177 /* Turn on idle balance on this domain: */
1178 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1182 static void __sdt_free(const struct cpumask *cpu_map);
1183 static int __sdt_alloc(const struct cpumask *cpu_map);
1185 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1186 const struct cpumask *cpu_map)
1188 switch (what) {
1189 case sa_rootdomain:
1190 if (!atomic_read(&d->rd->refcount))
1191 free_rootdomain(&d->rd->rcu);
1192 /* Fall through */
1193 case sa_sd:
1194 free_percpu(d->sd);
1195 /* Fall through */
1196 case sa_sd_storage:
1197 __sdt_free(cpu_map);
1198 /* Fall through */
1199 case sa_none:
1200 break;
1204 static enum s_alloc
1205 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1207 memset(d, 0, sizeof(*d));
1209 if (__sdt_alloc(cpu_map))
1210 return sa_sd_storage;
1211 d->sd = alloc_percpu(struct sched_domain *);
1212 if (!d->sd)
1213 return sa_sd_storage;
1214 d->rd = alloc_rootdomain();
1215 if (!d->rd)
1216 return sa_sd;
1218 return sa_rootdomain;
1222 * NULL the sd_data elements we've used to build the sched_domain and
1223 * sched_group structure so that the subsequent __free_domain_allocs()
1224 * will not free the data we're using.
1226 static void claim_allocations(int cpu, struct sched_domain *sd)
1228 struct sd_data *sdd = sd->private;
1230 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1231 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1233 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1234 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1236 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1237 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1239 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1240 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1243 #ifdef CONFIG_NUMA
1244 enum numa_topology_type sched_numa_topology_type;
1246 static int sched_domains_numa_levels;
1247 static int sched_domains_curr_level;
1249 int sched_max_numa_distance;
1250 static int *sched_domains_numa_distance;
1251 static struct cpumask ***sched_domains_numa_masks;
1252 #endif
1255 * SD_flags allowed in topology descriptions.
1257 * These flags are purely descriptive of the topology and do not prescribe
1258 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1259 * function:
1261 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1262 * SD_SHARE_PKG_RESOURCES - describes shared caches
1263 * SD_NUMA - describes NUMA topologies
1264 * SD_SHARE_POWERDOMAIN - describes shared power domain
1266 * Odd one out, which beside describing the topology has a quirk also
1267 * prescribes the desired behaviour that goes along with it:
1269 * SD_ASYM_PACKING - describes SMT quirks
1271 #define TOPOLOGY_SD_FLAGS \
1272 (SD_SHARE_CPUCAPACITY | \
1273 SD_SHARE_PKG_RESOURCES | \
1274 SD_NUMA | \
1275 SD_ASYM_PACKING | \
1276 SD_SHARE_POWERDOMAIN)
1278 static struct sched_domain *
1279 sd_init(struct sched_domain_topology_level *tl,
1280 const struct cpumask *cpu_map,
1281 struct sched_domain *child, int dflags, int cpu)
1283 struct sd_data *sdd = &tl->data;
1284 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1285 int sd_id, sd_weight, sd_flags = 0;
1287 #ifdef CONFIG_NUMA
1289 * Ugly hack to pass state to sd_numa_mask()...
1291 sched_domains_curr_level = tl->numa_level;
1292 #endif
1294 sd_weight = cpumask_weight(tl->mask(cpu));
1296 if (tl->sd_flags)
1297 sd_flags = (*tl->sd_flags)();
1298 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1299 "wrong sd_flags in topology description\n"))
1300 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1302 /* Apply detected topology flags */
1303 sd_flags |= dflags;
1305 *sd = (struct sched_domain){
1306 .min_interval = sd_weight,
1307 .max_interval = 2*sd_weight,
1308 .busy_factor = 32,
1309 .imbalance_pct = 125,
1311 .cache_nice_tries = 0,
1312 .busy_idx = 0,
1313 .idle_idx = 0,
1314 .newidle_idx = 0,
1315 .wake_idx = 0,
1316 .forkexec_idx = 0,
1318 .flags = 1*SD_LOAD_BALANCE
1319 | 1*SD_BALANCE_NEWIDLE
1320 | 1*SD_BALANCE_EXEC
1321 | 1*SD_BALANCE_FORK
1322 | 0*SD_BALANCE_WAKE
1323 | 1*SD_WAKE_AFFINE
1324 | 0*SD_SHARE_CPUCAPACITY
1325 | 0*SD_SHARE_PKG_RESOURCES
1326 | 0*SD_SERIALIZE
1327 | 1*SD_PREFER_SIBLING
1328 | 0*SD_NUMA
1329 | sd_flags
1332 .last_balance = jiffies,
1333 .balance_interval = sd_weight,
1334 .max_newidle_lb_cost = 0,
1335 .next_decay_max_lb_cost = jiffies,
1336 .child = child,
1337 #ifdef CONFIG_SCHED_DEBUG
1338 .name = tl->name,
1339 #endif
1342 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1343 sd_id = cpumask_first(sched_domain_span(sd));
1346 * Convert topological properties into behaviour.
1349 if (sd->flags & SD_ASYM_CPUCAPACITY) {
1350 struct sched_domain *t = sd;
1353 * Don't attempt to spread across CPUs of different capacities.
1355 if (sd->child)
1356 sd->child->flags &= ~SD_PREFER_SIBLING;
1358 for_each_lower_domain(t)
1359 t->flags |= SD_BALANCE_WAKE;
1362 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1363 sd->imbalance_pct = 110;
1365 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1366 sd->imbalance_pct = 117;
1367 sd->cache_nice_tries = 1;
1368 sd->busy_idx = 2;
1370 #ifdef CONFIG_NUMA
1371 } else if (sd->flags & SD_NUMA) {
1372 sd->cache_nice_tries = 2;
1373 sd->busy_idx = 3;
1374 sd->idle_idx = 2;
1376 sd->flags &= ~SD_PREFER_SIBLING;
1377 sd->flags |= SD_SERIALIZE;
1378 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1379 sd->flags &= ~(SD_BALANCE_EXEC |
1380 SD_BALANCE_FORK |
1381 SD_WAKE_AFFINE);
1384 #endif
1385 } else {
1386 sd->cache_nice_tries = 1;
1387 sd->busy_idx = 2;
1388 sd->idle_idx = 1;
1392 * For all levels sharing cache; connect a sched_domain_shared
1393 * instance.
1395 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1396 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1397 atomic_inc(&sd->shared->ref);
1398 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1401 sd->private = sdd;
1403 return sd;
1407 * Topology list, bottom-up.
1409 static struct sched_domain_topology_level default_topology[] = {
1410 #ifdef CONFIG_SCHED_SMT
1411 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1412 #endif
1413 #ifdef CONFIG_SCHED_MC
1414 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1415 #endif
1416 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1417 { NULL, },
1420 static struct sched_domain_topology_level *sched_domain_topology =
1421 default_topology;
1423 #define for_each_sd_topology(tl) \
1424 for (tl = sched_domain_topology; tl->mask; tl++)
1426 void set_sched_topology(struct sched_domain_topology_level *tl)
1428 if (WARN_ON_ONCE(sched_smp_initialized))
1429 return;
1431 sched_domain_topology = tl;
1434 #ifdef CONFIG_NUMA
1436 static const struct cpumask *sd_numa_mask(int cpu)
1438 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1441 static void sched_numa_warn(const char *str)
1443 static int done = false;
1444 int i,j;
1446 if (done)
1447 return;
1449 done = true;
1451 printk(KERN_WARNING "ERROR: %s\n\n", str);
1453 for (i = 0; i < nr_node_ids; i++) {
1454 printk(KERN_WARNING " ");
1455 for (j = 0; j < nr_node_ids; j++)
1456 printk(KERN_CONT "%02d ", node_distance(i,j));
1457 printk(KERN_CONT "\n");
1459 printk(KERN_WARNING "\n");
1462 bool find_numa_distance(int distance)
1464 int i;
1466 if (distance == node_distance(0, 0))
1467 return true;
1469 for (i = 0; i < sched_domains_numa_levels; i++) {
1470 if (sched_domains_numa_distance[i] == distance)
1471 return true;
1474 return false;
1478 * A system can have three types of NUMA topology:
1479 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1480 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1481 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1483 * The difference between a glueless mesh topology and a backplane
1484 * topology lies in whether communication between not directly
1485 * connected nodes goes through intermediary nodes (where programs
1486 * could run), or through backplane controllers. This affects
1487 * placement of programs.
1489 * The type of topology can be discerned with the following tests:
1490 * - If the maximum distance between any nodes is 1 hop, the system
1491 * is directly connected.
1492 * - If for two nodes A and B, located N > 1 hops away from each other,
1493 * there is an intermediary node C, which is < N hops away from both
1494 * nodes A and B, the system is a glueless mesh.
1496 static void init_numa_topology_type(void)
1498 int a, b, c, n;
1500 n = sched_max_numa_distance;
1502 if (sched_domains_numa_levels <= 2) {
1503 sched_numa_topology_type = NUMA_DIRECT;
1504 return;
1507 for_each_online_node(a) {
1508 for_each_online_node(b) {
1509 /* Find two nodes furthest removed from each other. */
1510 if (node_distance(a, b) < n)
1511 continue;
1513 /* Is there an intermediary node between a and b? */
1514 for_each_online_node(c) {
1515 if (node_distance(a, c) < n &&
1516 node_distance(b, c) < n) {
1517 sched_numa_topology_type =
1518 NUMA_GLUELESS_MESH;
1519 return;
1523 sched_numa_topology_type = NUMA_BACKPLANE;
1524 return;
1529 void sched_init_numa(void)
1531 int next_distance, curr_distance = node_distance(0, 0);
1532 struct sched_domain_topology_level *tl;
1533 int level = 0;
1534 int i, j, k;
1536 sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1537 if (!sched_domains_numa_distance)
1538 return;
1540 /* Includes NUMA identity node at level 0. */
1541 sched_domains_numa_distance[level++] = curr_distance;
1542 sched_domains_numa_levels = level;
1545 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1546 * unique distances in the node_distance() table.
1548 * Assumes node_distance(0,j) includes all distances in
1549 * node_distance(i,j) in order to avoid cubic time.
1551 next_distance = curr_distance;
1552 for (i = 0; i < nr_node_ids; i++) {
1553 for (j = 0; j < nr_node_ids; j++) {
1554 for (k = 0; k < nr_node_ids; k++) {
1555 int distance = node_distance(i, k);
1557 if (distance > curr_distance &&
1558 (distance < next_distance ||
1559 next_distance == curr_distance))
1560 next_distance = distance;
1563 * While not a strong assumption it would be nice to know
1564 * about cases where if node A is connected to B, B is not
1565 * equally connected to A.
1567 if (sched_debug() && node_distance(k, i) != distance)
1568 sched_numa_warn("Node-distance not symmetric");
1570 if (sched_debug() && i && !find_numa_distance(distance))
1571 sched_numa_warn("Node-0 not representative");
1573 if (next_distance != curr_distance) {
1574 sched_domains_numa_distance[level++] = next_distance;
1575 sched_domains_numa_levels = level;
1576 curr_distance = next_distance;
1577 } else break;
1581 * In case of sched_debug() we verify the above assumption.
1583 if (!sched_debug())
1584 break;
1588 * 'level' contains the number of unique distances
1590 * The sched_domains_numa_distance[] array includes the actual distance
1591 * numbers.
1595 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1596 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1597 * the array will contain less then 'level' members. This could be
1598 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1599 * in other functions.
1601 * We reset it to 'level' at the end of this function.
1603 sched_domains_numa_levels = 0;
1605 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1606 if (!sched_domains_numa_masks)
1607 return;
1610 * Now for each level, construct a mask per node which contains all
1611 * CPUs of nodes that are that many hops away from us.
1613 for (i = 0; i < level; i++) {
1614 sched_domains_numa_masks[i] =
1615 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1616 if (!sched_domains_numa_masks[i])
1617 return;
1619 for (j = 0; j < nr_node_ids; j++) {
1620 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1621 if (!mask)
1622 return;
1624 sched_domains_numa_masks[i][j] = mask;
1626 for_each_node(k) {
1627 if (node_distance(j, k) > sched_domains_numa_distance[i])
1628 continue;
1630 cpumask_or(mask, mask, cpumask_of_node(k));
1635 /* Compute default topology size */
1636 for (i = 0; sched_domain_topology[i].mask; i++);
1638 tl = kzalloc((i + level + 1) *
1639 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1640 if (!tl)
1641 return;
1644 * Copy the default topology bits..
1646 for (i = 0; sched_domain_topology[i].mask; i++)
1647 tl[i] = sched_domain_topology[i];
1650 * Add the NUMA identity distance, aka single NODE.
1652 tl[i++] = (struct sched_domain_topology_level){
1653 .mask = sd_numa_mask,
1654 .numa_level = 0,
1655 SD_INIT_NAME(NODE)
1659 * .. and append 'j' levels of NUMA goodness.
1661 for (j = 1; j < level; i++, j++) {
1662 tl[i] = (struct sched_domain_topology_level){
1663 .mask = sd_numa_mask,
1664 .sd_flags = cpu_numa_flags,
1665 .flags = SDTL_OVERLAP,
1666 .numa_level = j,
1667 SD_INIT_NAME(NUMA)
1671 sched_domain_topology = tl;
1673 sched_domains_numa_levels = level;
1674 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1676 init_numa_topology_type();
1679 void sched_domains_numa_masks_set(unsigned int cpu)
1681 int node = cpu_to_node(cpu);
1682 int i, j;
1684 for (i = 0; i < sched_domains_numa_levels; i++) {
1685 for (j = 0; j < nr_node_ids; j++) {
1686 if (node_distance(j, node) <= sched_domains_numa_distance[i])
1687 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1692 void sched_domains_numa_masks_clear(unsigned int cpu)
1694 int i, j;
1696 for (i = 0; i < sched_domains_numa_levels; i++) {
1697 for (j = 0; j < nr_node_ids; j++)
1698 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1702 #endif /* CONFIG_NUMA */
1704 static int __sdt_alloc(const struct cpumask *cpu_map)
1706 struct sched_domain_topology_level *tl;
1707 int j;
1709 for_each_sd_topology(tl) {
1710 struct sd_data *sdd = &tl->data;
1712 sdd->sd = alloc_percpu(struct sched_domain *);
1713 if (!sdd->sd)
1714 return -ENOMEM;
1716 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1717 if (!sdd->sds)
1718 return -ENOMEM;
1720 sdd->sg = alloc_percpu(struct sched_group *);
1721 if (!sdd->sg)
1722 return -ENOMEM;
1724 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1725 if (!sdd->sgc)
1726 return -ENOMEM;
1728 for_each_cpu(j, cpu_map) {
1729 struct sched_domain *sd;
1730 struct sched_domain_shared *sds;
1731 struct sched_group *sg;
1732 struct sched_group_capacity *sgc;
1734 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1735 GFP_KERNEL, cpu_to_node(j));
1736 if (!sd)
1737 return -ENOMEM;
1739 *per_cpu_ptr(sdd->sd, j) = sd;
1741 sds = kzalloc_node(sizeof(struct sched_domain_shared),
1742 GFP_KERNEL, cpu_to_node(j));
1743 if (!sds)
1744 return -ENOMEM;
1746 *per_cpu_ptr(sdd->sds, j) = sds;
1748 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1749 GFP_KERNEL, cpu_to_node(j));
1750 if (!sg)
1751 return -ENOMEM;
1753 sg->next = sg;
1755 *per_cpu_ptr(sdd->sg, j) = sg;
1757 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1758 GFP_KERNEL, cpu_to_node(j));
1759 if (!sgc)
1760 return -ENOMEM;
1762 #ifdef CONFIG_SCHED_DEBUG
1763 sgc->id = j;
1764 #endif
1766 *per_cpu_ptr(sdd->sgc, j) = sgc;
1770 return 0;
1773 static void __sdt_free(const struct cpumask *cpu_map)
1775 struct sched_domain_topology_level *tl;
1776 int j;
1778 for_each_sd_topology(tl) {
1779 struct sd_data *sdd = &tl->data;
1781 for_each_cpu(j, cpu_map) {
1782 struct sched_domain *sd;
1784 if (sdd->sd) {
1785 sd = *per_cpu_ptr(sdd->sd, j);
1786 if (sd && (sd->flags & SD_OVERLAP))
1787 free_sched_groups(sd->groups, 0);
1788 kfree(*per_cpu_ptr(sdd->sd, j));
1791 if (sdd->sds)
1792 kfree(*per_cpu_ptr(sdd->sds, j));
1793 if (sdd->sg)
1794 kfree(*per_cpu_ptr(sdd->sg, j));
1795 if (sdd->sgc)
1796 kfree(*per_cpu_ptr(sdd->sgc, j));
1798 free_percpu(sdd->sd);
1799 sdd->sd = NULL;
1800 free_percpu(sdd->sds);
1801 sdd->sds = NULL;
1802 free_percpu(sdd->sg);
1803 sdd->sg = NULL;
1804 free_percpu(sdd->sgc);
1805 sdd->sgc = NULL;
1809 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1810 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1811 struct sched_domain *child, int dflags, int cpu)
1813 struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1815 if (child) {
1816 sd->level = child->level + 1;
1817 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1818 child->parent = sd;
1820 if (!cpumask_subset(sched_domain_span(child),
1821 sched_domain_span(sd))) {
1822 pr_err("BUG: arch topology borken\n");
1823 #ifdef CONFIG_SCHED_DEBUG
1824 pr_err(" the %s domain not a subset of the %s domain\n",
1825 child->name, sd->name);
1826 #endif
1827 /* Fixup, ensure @sd has at least @child CPUs. */
1828 cpumask_or(sched_domain_span(sd),
1829 sched_domain_span(sd),
1830 sched_domain_span(child));
1834 set_domain_attribute(sd, attr);
1836 return sd;
1840 * Find the sched_domain_topology_level where all CPU capacities are visible
1841 * for all CPUs.
1843 static struct sched_domain_topology_level
1844 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1846 int i, j, asym_level = 0;
1847 bool asym = false;
1848 struct sched_domain_topology_level *tl, *asym_tl = NULL;
1849 unsigned long cap;
1851 /* Is there any asymmetry? */
1852 cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1854 for_each_cpu(i, cpu_map) {
1855 if (arch_scale_cpu_capacity(NULL, i) != cap) {
1856 asym = true;
1857 break;
1861 if (!asym)
1862 return NULL;
1865 * Examine topology from all CPU's point of views to detect the lowest
1866 * sched_domain_topology_level where a highest capacity CPU is visible
1867 * to everyone.
1869 for_each_cpu(i, cpu_map) {
1870 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1871 int tl_id = 0;
1873 for_each_sd_topology(tl) {
1874 if (tl_id < asym_level)
1875 goto next_level;
1877 for_each_cpu_and(j, tl->mask(i), cpu_map) {
1878 unsigned long capacity;
1880 capacity = arch_scale_cpu_capacity(NULL, j);
1882 if (capacity <= max_capacity)
1883 continue;
1885 max_capacity = capacity;
1886 asym_level = tl_id;
1887 asym_tl = tl;
1889 next_level:
1890 tl_id++;
1894 return asym_tl;
1899 * Build sched domains for a given set of CPUs and attach the sched domains
1900 * to the individual CPUs
1902 static int
1903 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1905 enum s_alloc alloc_state;
1906 struct sched_domain *sd;
1907 struct s_data d;
1908 struct rq *rq = NULL;
1909 int i, ret = -ENOMEM;
1910 struct sched_domain_topology_level *tl_asym;
1911 bool has_asym = false;
1913 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1914 if (alloc_state != sa_rootdomain)
1915 goto error;
1917 tl_asym = asym_cpu_capacity_level(cpu_map);
1919 /* Set up domains for CPUs specified by the cpu_map: */
1920 for_each_cpu(i, cpu_map) {
1921 struct sched_domain_topology_level *tl;
1923 sd = NULL;
1924 for_each_sd_topology(tl) {
1925 int dflags = 0;
1927 if (tl == tl_asym) {
1928 dflags |= SD_ASYM_CPUCAPACITY;
1929 has_asym = true;
1932 sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1934 if (tl == sched_domain_topology)
1935 *per_cpu_ptr(d.sd, i) = sd;
1936 if (tl->flags & SDTL_OVERLAP)
1937 sd->flags |= SD_OVERLAP;
1938 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1939 break;
1943 /* Build the groups for the domains */
1944 for_each_cpu(i, cpu_map) {
1945 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1946 sd->span_weight = cpumask_weight(sched_domain_span(sd));
1947 if (sd->flags & SD_OVERLAP) {
1948 if (build_overlap_sched_groups(sd, i))
1949 goto error;
1950 } else {
1951 if (build_sched_groups(sd, i))
1952 goto error;
1957 /* Calculate CPU capacity for physical packages and nodes */
1958 for (i = nr_cpumask_bits-1; i >= 0; i--) {
1959 if (!cpumask_test_cpu(i, cpu_map))
1960 continue;
1962 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1963 claim_allocations(i, sd);
1964 init_sched_groups_capacity(i, sd);
1968 /* Attach the domains */
1969 rcu_read_lock();
1970 for_each_cpu(i, cpu_map) {
1971 rq = cpu_rq(i);
1972 sd = *per_cpu_ptr(d.sd, i);
1974 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1975 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1976 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1978 cpu_attach_domain(sd, d.rd, i);
1980 rcu_read_unlock();
1982 if (has_asym)
1983 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1985 if (rq && sched_debug_enabled) {
1986 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1987 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1990 ret = 0;
1991 error:
1992 __free_domain_allocs(&d, alloc_state, cpu_map);
1994 return ret;
1997 /* Current sched domains: */
1998 static cpumask_var_t *doms_cur;
2000 /* Number of sched domains in 'doms_cur': */
2001 static int ndoms_cur;
2003 /* Attribues of custom domains in 'doms_cur' */
2004 static struct sched_domain_attr *dattr_cur;
2007 * Special case: If a kmalloc() of a doms_cur partition (array of
2008 * cpumask) fails, then fallback to a single sched domain,
2009 * as determined by the single cpumask fallback_doms.
2011 static cpumask_var_t fallback_doms;
2014 * arch_update_cpu_topology lets virtualized architectures update the
2015 * CPU core maps. It is supposed to return 1 if the topology changed
2016 * or 0 if it stayed the same.
2018 int __weak arch_update_cpu_topology(void)
2020 return 0;
2023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2025 int i;
2026 cpumask_var_t *doms;
2028 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2029 if (!doms)
2030 return NULL;
2031 for (i = 0; i < ndoms; i++) {
2032 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2033 free_sched_domains(doms, i);
2034 return NULL;
2037 return doms;
2040 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2042 unsigned int i;
2043 for (i = 0; i < ndoms; i++)
2044 free_cpumask_var(doms[i]);
2045 kfree(doms);
2049 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2050 * For now this just excludes isolated CPUs, but could be used to
2051 * exclude other special cases in the future.
2053 int sched_init_domains(const struct cpumask *cpu_map)
2055 int err;
2057 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2058 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2059 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2061 arch_update_cpu_topology();
2062 ndoms_cur = 1;
2063 doms_cur = alloc_sched_domains(ndoms_cur);
2064 if (!doms_cur)
2065 doms_cur = &fallback_doms;
2066 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2067 err = build_sched_domains(doms_cur[0], NULL);
2068 register_sched_domain_sysctl();
2070 return err;
2074 * Detach sched domains from a group of CPUs specified in cpu_map
2075 * These CPUs will now be attached to the NULL domain
2077 static void detach_destroy_domains(const struct cpumask *cpu_map)
2079 int i;
2081 rcu_read_lock();
2082 for_each_cpu(i, cpu_map)
2083 cpu_attach_domain(NULL, &def_root_domain, i);
2084 rcu_read_unlock();
2087 /* handle null as "default" */
2088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2089 struct sched_domain_attr *new, int idx_new)
2091 struct sched_domain_attr tmp;
2093 /* Fast path: */
2094 if (!new && !cur)
2095 return 1;
2097 tmp = SD_ATTR_INIT;
2099 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2100 new ? (new + idx_new) : &tmp,
2101 sizeof(struct sched_domain_attr));
2105 * Partition sched domains as specified by the 'ndoms_new'
2106 * cpumasks in the array doms_new[] of cpumasks. This compares
2107 * doms_new[] to the current sched domain partitioning, doms_cur[].
2108 * It destroys each deleted domain and builds each new domain.
2110 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2111 * The masks don't intersect (don't overlap.) We should setup one
2112 * sched domain for each mask. CPUs not in any of the cpumasks will
2113 * not be load balanced. If the same cpumask appears both in the
2114 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2115 * it as it is.
2117 * The passed in 'doms_new' should be allocated using
2118 * alloc_sched_domains. This routine takes ownership of it and will
2119 * free_sched_domains it when done with it. If the caller failed the
2120 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2121 * and partition_sched_domains() will fallback to the single partition
2122 * 'fallback_doms', it also forces the domains to be rebuilt.
2124 * If doms_new == NULL it will be replaced with cpu_online_mask.
2125 * ndoms_new == 0 is a special case for destroying existing domains,
2126 * and it will not create the default domain.
2128 * Call with hotplug lock held
2130 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2131 struct sched_domain_attr *dattr_new)
2133 bool __maybe_unused has_eas = false;
2134 int i, j, n;
2135 int new_topology;
2137 mutex_lock(&sched_domains_mutex);
2139 /* Always unregister in case we don't destroy any domains: */
2140 unregister_sched_domain_sysctl();
2142 /* Let the architecture update CPU core mappings: */
2143 new_topology = arch_update_cpu_topology();
2145 if (!doms_new) {
2146 WARN_ON_ONCE(dattr_new);
2147 n = 0;
2148 doms_new = alloc_sched_domains(1);
2149 if (doms_new) {
2150 n = 1;
2151 cpumask_and(doms_new[0], cpu_active_mask,
2152 housekeeping_cpumask(HK_FLAG_DOMAIN));
2154 } else {
2155 n = ndoms_new;
2158 /* Destroy deleted domains: */
2159 for (i = 0; i < ndoms_cur; i++) {
2160 for (j = 0; j < n && !new_topology; j++) {
2161 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2162 dattrs_equal(dattr_cur, i, dattr_new, j))
2163 goto match1;
2165 /* No match - a current sched domain not in new doms_new[] */
2166 detach_destroy_domains(doms_cur[i]);
2167 match1:
2171 n = ndoms_cur;
2172 if (!doms_new) {
2173 n = 0;
2174 doms_new = &fallback_doms;
2175 cpumask_and(doms_new[0], cpu_active_mask,
2176 housekeeping_cpumask(HK_FLAG_DOMAIN));
2179 /* Build new domains: */
2180 for (i = 0; i < ndoms_new; i++) {
2181 for (j = 0; j < n && !new_topology; j++) {
2182 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2183 dattrs_equal(dattr_new, i, dattr_cur, j))
2184 goto match2;
2186 /* No match - add a new doms_new */
2187 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2188 match2:
2192 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2193 /* Build perf. domains: */
2194 for (i = 0; i < ndoms_new; i++) {
2195 for (j = 0; j < n && !sched_energy_update; j++) {
2196 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2197 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2198 has_eas = true;
2199 goto match3;
2202 /* No match - add perf. domains for a new rd */
2203 has_eas |= build_perf_domains(doms_new[i]);
2204 match3:
2207 sched_energy_set(has_eas);
2208 #endif
2210 /* Remember the new sched domains: */
2211 if (doms_cur != &fallback_doms)
2212 free_sched_domains(doms_cur, ndoms_cur);
2214 kfree(dattr_cur);
2215 doms_cur = doms_new;
2216 dattr_cur = dattr_new;
2217 ndoms_cur = ndoms_new;
2219 register_sched_domain_sysctl();
2221 mutex_unlock(&sched_domains_mutex);