2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock
);
159 static DEFINE_SPINLOCK(offload_lock
);
160 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
161 struct list_head ptype_all __read_mostly
; /* Taps */
162 static struct list_head offload_base __read_mostly
;
164 static int netif_rx_internal(struct sk_buff
*skb
);
165 static int call_netdevice_notifiers_info(unsigned long val
,
166 struct netdev_notifier_info
*info
);
167 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
188 DEFINE_RWLOCK(dev_base_lock
);
189 EXPORT_SYMBOL(dev_base_lock
);
191 static DEFINE_MUTEX(ifalias_mutex
);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock
);
196 static unsigned int napi_gen_id
= NR_CPUS
;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
199 static seqcount_t devnet_rename_seq
;
201 static inline void dev_base_seq_inc(struct net
*net
)
203 while (++net
->dev_base_seq
== 0)
207 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
209 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
211 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
214 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
216 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
219 static inline void rps_lock(struct softnet_data
*sd
)
222 spin_lock(&sd
->input_pkt_queue
.lock
);
226 static inline void rps_unlock(struct softnet_data
*sd
)
229 spin_unlock(&sd
->input_pkt_queue
.lock
);
233 /* Device list insertion */
234 static void list_netdevice(struct net_device
*dev
)
236 struct net
*net
= dev_net(dev
);
240 write_lock_bh(&dev_base_lock
);
241 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
242 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
243 hlist_add_head_rcu(&dev
->index_hlist
,
244 dev_index_hash(net
, dev
->ifindex
));
245 write_unlock_bh(&dev_base_lock
);
247 dev_base_seq_inc(net
);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device
*dev
)
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock
);
259 list_del_rcu(&dev
->dev_list
);
260 hlist_del_rcu(&dev
->name_hlist
);
261 hlist_del_rcu(&dev
->index_hlist
);
262 write_unlock_bh(&dev_base_lock
);
264 dev_base_seq_inc(dev_net(dev
));
271 static RAW_NOTIFIER_HEAD(netdev_chain
);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
279 EXPORT_PER_CPU_SYMBOL(softnet_data
);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type
[] = {
287 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
288 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
289 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
290 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
291 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
292 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
293 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
294 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
295 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
296 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
297 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
298 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
299 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
300 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
301 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
303 static const char *const netdev_lock_name
[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
321 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
327 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
328 if (netdev_lock_type
[i
] == dev_type
)
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type
) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
335 unsigned short dev_type
)
339 i
= netdev_lock_pos(dev_type
);
340 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
341 netdev_lock_name
[i
]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
348 i
= netdev_lock_pos(dev
->type
);
349 lockdep_set_class_and_name(&dev
->addr_list_lock
,
350 &netdev_addr_lock_key
[i
],
351 netdev_lock_name
[i
]);
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
355 unsigned short dev_type
)
358 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
386 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
388 if (pt
->type
== htons(ETH_P_ALL
))
389 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
391 return pt
->dev
? &pt
->dev
->ptype_specific
:
392 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type
*pt
)
410 struct list_head
*head
= ptype_head(pt
);
412 spin_lock(&ptype_lock
);
413 list_add_rcu(&pt
->list
, head
);
414 spin_unlock(&ptype_lock
);
416 EXPORT_SYMBOL(dev_add_pack
);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type
*pt
)
433 struct list_head
*head
= ptype_head(pt
);
434 struct packet_type
*pt1
;
436 spin_lock(&ptype_lock
);
438 list_for_each_entry(pt1
, head
, list
) {
440 list_del_rcu(&pt
->list
);
445 pr_warn("dev_remove_pack: %p not found\n", pt
);
447 spin_unlock(&ptype_lock
);
449 EXPORT_SYMBOL(__dev_remove_pack
);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
460 * This call sleeps to guarantee that no CPU is looking at the packet
463 void dev_remove_pack(struct packet_type
*pt
)
465 __dev_remove_pack(pt
);
469 EXPORT_SYMBOL(dev_remove_pack
);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload
*po
)
486 struct packet_offload
*elem
;
488 spin_lock(&offload_lock
);
489 list_for_each_entry(elem
, &offload_base
, list
) {
490 if (po
->priority
< elem
->priority
)
493 list_add_rcu(&po
->list
, elem
->list
.prev
);
494 spin_unlock(&offload_lock
);
496 EXPORT_SYMBOL(dev_add_offload
);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload
*po
)
513 struct list_head
*head
= &offload_base
;
514 struct packet_offload
*po1
;
516 spin_lock(&offload_lock
);
518 list_for_each_entry(po1
, head
, list
) {
520 list_del_rcu(&po
->list
);
525 pr_warn("dev_remove_offload: %p not found\n", po
);
527 spin_unlock(&offload_lock
);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
539 * This call sleeps to guarantee that no CPU is looking at the packet
542 void dev_remove_offload(struct packet_offload
*po
)
544 __dev_remove_offload(po
);
548 EXPORT_SYMBOL(dev_remove_offload
);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
568 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
570 struct netdev_boot_setup
*s
;
574 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
575 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
576 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
577 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
578 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
583 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device
*dev
)
597 struct netdev_boot_setup
*s
= dev_boot_setup
;
600 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
601 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
602 !strcmp(dev
->name
, s
[i
].name
)) {
603 dev
->irq
= s
[i
].map
.irq
;
604 dev
->base_addr
= s
[i
].map
.base_addr
;
605 dev
->mem_start
= s
[i
].map
.mem_start
;
606 dev
->mem_end
= s
[i
].map
.mem_end
;
612 EXPORT_SYMBOL(netdev_boot_setup_check
);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix
, int unit
)
627 const struct netdev_boot_setup
*s
= dev_boot_setup
;
631 sprintf(name
, "%s%d", prefix
, unit
);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net
, name
))
640 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
641 if (!strcmp(name
, s
[i
].name
))
642 return s
[i
].map
.base_addr
;
647 * Saves at boot time configured settings for any netdevice.
649 int __init
netdev_boot_setup(char *str
)
654 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
659 memset(&map
, 0, sizeof(map
));
663 map
.base_addr
= ints
[2];
665 map
.mem_start
= ints
[3];
667 map
.mem_end
= ints
[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str
, &map
);
673 __setup("netdev=", netdev_boot_setup
);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device
*dev
)
691 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
692 return dev
->netdev_ops
->ndo_get_iflink(dev
);
696 EXPORT_SYMBOL(dev_get_iflink
);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
709 struct ip_tunnel_info
*info
;
711 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
714 info
= skb_tunnel_info_unclone(skb
);
717 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
720 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
738 struct net_device
*dev
;
739 struct hlist_head
*head
= dev_name_hash(net
, name
);
741 hlist_for_each_entry(dev
, head
, name_hlist
)
742 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
747 EXPORT_SYMBOL(__dev_get_by_name
);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
763 struct net_device
*dev
;
764 struct hlist_head
*head
= dev_name_hash(net
, name
);
766 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
767 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
772 EXPORT_SYMBOL(dev_get_by_name_rcu
);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
788 struct net_device
*dev
;
791 dev
= dev_get_by_name_rcu(net
, name
);
797 EXPORT_SYMBOL(dev_get_by_name
);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
811 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
813 struct net_device
*dev
;
814 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
816 hlist_for_each_entry(dev
, head
, index_hlist
)
817 if (dev
->ifindex
== ifindex
)
822 EXPORT_SYMBOL(__dev_get_by_index
);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
837 struct net_device
*dev
;
838 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
840 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
841 if (dev
->ifindex
== ifindex
)
846 EXPORT_SYMBOL(dev_get_by_index_rcu
);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
862 struct net_device
*dev
;
865 dev
= dev_get_by_index_rcu(net
, ifindex
);
871 EXPORT_SYMBOL(dev_get_by_index
);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
885 struct napi_struct
*napi
;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id
< MIN_NAPI_ID
)
892 napi
= napi_by_id(napi_id
);
894 return napi
? napi
->dev
: NULL
;
896 EXPORT_SYMBOL(dev_get_by_napi_id
);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
908 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
910 struct net_device
*dev
;
914 seq
= raw_seqcount_begin(&devnet_rename_seq
);
916 dev
= dev_get_by_index_rcu(net
, ifindex
);
922 strcpy(name
, dev
->name
);
924 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
946 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
949 struct net_device
*dev
;
951 for_each_netdev_rcu(net
, dev
)
952 if (dev
->type
== type
&&
953 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
960 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
962 struct net_device
*dev
;
965 for_each_netdev(net
, dev
)
966 if (dev
->type
== type
)
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
973 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
975 struct net_device
*dev
, *ret
= NULL
;
978 for_each_netdev_rcu(net
, dev
)
979 if (dev
->type
== type
) {
987 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
1000 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1001 unsigned short mask
)
1003 struct net_device
*dev
, *ret
;
1008 for_each_netdev(net
, dev
) {
1009 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1016 EXPORT_SYMBOL(__dev_get_by_flags
);
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1026 bool dev_valid_name(const char *name
)
1030 if (strlen(name
) >= IFNAMSIZ
)
1032 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1036 if (*name
== '/' || *name
== ':' || isspace(*name
))
1042 EXPORT_SYMBOL(dev_valid_name
);
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1059 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1063 const int max_netdevices
= 8*PAGE_SIZE
;
1064 unsigned long *inuse
;
1065 struct net_device
*d
;
1067 if (!dev_valid_name(name
))
1070 p
= strchr(name
, '%');
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1077 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1080 /* Use one page as a bit array of possible slots */
1081 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1085 for_each_netdev(net
, d
) {
1086 if (!sscanf(d
->name
, name
, &i
))
1088 if (i
< 0 || i
>= max_netdevices
)
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf
, IFNAMSIZ
, name
, i
);
1093 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1097 i
= find_first_zero_bit(inuse
, max_netdevices
);
1098 free_page((unsigned long) inuse
);
1101 snprintf(buf
, IFNAMSIZ
, name
, i
);
1102 if (!__dev_get_by_name(net
, buf
))
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1109 return p
? -ENFILE
: -EEXIST
;
1112 static int dev_alloc_name_ns(struct net
*net
,
1113 struct net_device
*dev
,
1120 ret
= __dev_alloc_name(net
, name
, buf
);
1122 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1127 * dev_alloc_name - allocate a name for a device
1129 * @name: name format string
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1140 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1142 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1144 EXPORT_SYMBOL(dev_alloc_name
);
1146 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1149 return dev_alloc_name_ns(net
, dev
, name
);
1151 EXPORT_SYMBOL(dev_get_valid_name
);
1154 * dev_change_name - change name of a device
1156 * @newname: name (or format string) must be at least IFNAMSIZ
1158 * Change name of a device, can pass format strings "eth%d".
1161 int dev_change_name(struct net_device
*dev
, const char *newname
)
1163 unsigned char old_assign_type
;
1164 char oldname
[IFNAMSIZ
];
1170 BUG_ON(!dev_net(dev
));
1173 if (dev
->flags
& IFF_UP
)
1176 write_seqcount_begin(&devnet_rename_seq
);
1178 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1179 write_seqcount_end(&devnet_rename_seq
);
1183 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1185 err
= dev_get_valid_name(net
, dev
, newname
);
1187 write_seqcount_end(&devnet_rename_seq
);
1191 if (oldname
[0] && !strchr(oldname
, '%'))
1192 netdev_info(dev
, "renamed from %s\n", oldname
);
1194 old_assign_type
= dev
->name_assign_type
;
1195 dev
->name_assign_type
= NET_NAME_RENAMED
;
1198 ret
= device_rename(&dev
->dev
, dev
->name
);
1200 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1201 dev
->name_assign_type
= old_assign_type
;
1202 write_seqcount_end(&devnet_rename_seq
);
1206 write_seqcount_end(&devnet_rename_seq
);
1208 netdev_adjacent_rename_links(dev
, oldname
);
1210 write_lock_bh(&dev_base_lock
);
1211 hlist_del_rcu(&dev
->name_hlist
);
1212 write_unlock_bh(&dev_base_lock
);
1216 write_lock_bh(&dev_base_lock
);
1217 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1218 write_unlock_bh(&dev_base_lock
);
1220 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1221 ret
= notifier_to_errno(ret
);
1224 /* err >= 0 after dev_alloc_name() or stores the first errno */
1227 write_seqcount_begin(&devnet_rename_seq
);
1228 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1229 memcpy(oldname
, newname
, IFNAMSIZ
);
1230 dev
->name_assign_type
= old_assign_type
;
1231 old_assign_type
= NET_NAME_RENAMED
;
1234 pr_err("%s: name change rollback failed: %d\n",
1243 * dev_set_alias - change ifalias of a device
1245 * @alias: name up to IFALIASZ
1246 * @len: limit of bytes to copy from info
1248 * Set ifalias for a device,
1250 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1252 struct dev_ifalias
*new_alias
= NULL
;
1254 if (len
>= IFALIASZ
)
1258 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1262 memcpy(new_alias
->ifalias
, alias
, len
);
1263 new_alias
->ifalias
[len
] = 0;
1266 mutex_lock(&ifalias_mutex
);
1267 rcu_swap_protected(dev
->ifalias
, new_alias
,
1268 mutex_is_locked(&ifalias_mutex
));
1269 mutex_unlock(&ifalias_mutex
);
1272 kfree_rcu(new_alias
, rcuhead
);
1278 * dev_get_alias - get ifalias of a device
1280 * @name: buffer to store name of ifalias
1281 * @len: size of buffer
1283 * get ifalias for a device. Caller must make sure dev cannot go
1284 * away, e.g. rcu read lock or own a reference count to device.
1286 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1288 const struct dev_ifalias
*alias
;
1292 alias
= rcu_dereference(dev
->ifalias
);
1294 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1301 * netdev_features_change - device changes features
1302 * @dev: device to cause notification
1304 * Called to indicate a device has changed features.
1306 void netdev_features_change(struct net_device
*dev
)
1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1310 EXPORT_SYMBOL(netdev_features_change
);
1313 * netdev_state_change - device changes state
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed state. This function calls
1317 * the notifier chains for netdev_chain and sends a NEWLINK message
1318 * to the routing socket.
1320 void netdev_state_change(struct net_device
*dev
)
1322 if (dev
->flags
& IFF_UP
) {
1323 struct netdev_notifier_change_info change_info
= {
1327 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1329 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1332 EXPORT_SYMBOL(netdev_state_change
);
1335 * netdev_notify_peers - notify network peers about existence of @dev
1336 * @dev: network device
1338 * Generate traffic such that interested network peers are aware of
1339 * @dev, such as by generating a gratuitous ARP. This may be used when
1340 * a device wants to inform the rest of the network about some sort of
1341 * reconfiguration such as a failover event or virtual machine
1344 void netdev_notify_peers(struct net_device
*dev
)
1347 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1348 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1351 EXPORT_SYMBOL(netdev_notify_peers
);
1353 static int __dev_open(struct net_device
*dev
)
1355 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1360 if (!netif_device_present(dev
))
1363 /* Block netpoll from trying to do any rx path servicing.
1364 * If we don't do this there is a chance ndo_poll_controller
1365 * or ndo_poll may be running while we open the device
1367 netpoll_poll_disable(dev
);
1369 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1370 ret
= notifier_to_errno(ret
);
1374 set_bit(__LINK_STATE_START
, &dev
->state
);
1376 if (ops
->ndo_validate_addr
)
1377 ret
= ops
->ndo_validate_addr(dev
);
1379 if (!ret
&& ops
->ndo_open
)
1380 ret
= ops
->ndo_open(dev
);
1382 netpoll_poll_enable(dev
);
1385 clear_bit(__LINK_STATE_START
, &dev
->state
);
1387 dev
->flags
|= IFF_UP
;
1388 dev_set_rx_mode(dev
);
1390 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1397 * dev_open - prepare an interface for use.
1398 * @dev: device to open
1400 * Takes a device from down to up state. The device's private open
1401 * function is invoked and then the multicast lists are loaded. Finally
1402 * the device is moved into the up state and a %NETDEV_UP message is
1403 * sent to the netdev notifier chain.
1405 * Calling this function on an active interface is a nop. On a failure
1406 * a negative errno code is returned.
1408 int dev_open(struct net_device
*dev
)
1412 if (dev
->flags
& IFF_UP
)
1415 ret
= __dev_open(dev
);
1419 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1420 call_netdevice_notifiers(NETDEV_UP
, dev
);
1424 EXPORT_SYMBOL(dev_open
);
1426 static void __dev_close_many(struct list_head
*head
)
1428 struct net_device
*dev
;
1433 list_for_each_entry(dev
, head
, close_list
) {
1434 /* Temporarily disable netpoll until the interface is down */
1435 netpoll_poll_disable(dev
);
1437 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1439 clear_bit(__LINK_STATE_START
, &dev
->state
);
1441 /* Synchronize to scheduled poll. We cannot touch poll list, it
1442 * can be even on different cpu. So just clear netif_running().
1444 * dev->stop() will invoke napi_disable() on all of it's
1445 * napi_struct instances on this device.
1447 smp_mb__after_atomic(); /* Commit netif_running(). */
1450 dev_deactivate_many(head
);
1452 list_for_each_entry(dev
, head
, close_list
) {
1453 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1456 * Call the device specific close. This cannot fail.
1457 * Only if device is UP
1459 * We allow it to be called even after a DETACH hot-plug
1465 dev
->flags
&= ~IFF_UP
;
1466 netpoll_poll_enable(dev
);
1470 static void __dev_close(struct net_device
*dev
)
1474 list_add(&dev
->close_list
, &single
);
1475 __dev_close_many(&single
);
1479 void dev_close_many(struct list_head
*head
, bool unlink
)
1481 struct net_device
*dev
, *tmp
;
1483 /* Remove the devices that don't need to be closed */
1484 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1485 if (!(dev
->flags
& IFF_UP
))
1486 list_del_init(&dev
->close_list
);
1488 __dev_close_many(head
);
1490 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1491 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1492 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1494 list_del_init(&dev
->close_list
);
1497 EXPORT_SYMBOL(dev_close_many
);
1500 * dev_close - shutdown an interface.
1501 * @dev: device to shutdown
1503 * This function moves an active device into down state. A
1504 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1508 void dev_close(struct net_device
*dev
)
1510 if (dev
->flags
& IFF_UP
) {
1513 list_add(&dev
->close_list
, &single
);
1514 dev_close_many(&single
, true);
1518 EXPORT_SYMBOL(dev_close
);
1522 * dev_disable_lro - disable Large Receive Offload on a device
1525 * Disable Large Receive Offload (LRO) on a net device. Must be
1526 * called under RTNL. This is needed if received packets may be
1527 * forwarded to another interface.
1529 void dev_disable_lro(struct net_device
*dev
)
1531 struct net_device
*lower_dev
;
1532 struct list_head
*iter
;
1534 dev
->wanted_features
&= ~NETIF_F_LRO
;
1535 netdev_update_features(dev
);
1537 if (unlikely(dev
->features
& NETIF_F_LRO
))
1538 netdev_WARN(dev
, "failed to disable LRO!\n");
1540 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1541 dev_disable_lro(lower_dev
);
1543 EXPORT_SYMBOL(dev_disable_lro
);
1545 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1546 struct net_device
*dev
)
1548 struct netdev_notifier_info info
= {
1552 return nb
->notifier_call(nb
, val
, &info
);
1555 static int dev_boot_phase
= 1;
1558 * register_netdevice_notifier - register a network notifier block
1561 * Register a notifier to be called when network device events occur.
1562 * The notifier passed is linked into the kernel structures and must
1563 * not be reused until it has been unregistered. A negative errno code
1564 * is returned on a failure.
1566 * When registered all registration and up events are replayed
1567 * to the new notifier to allow device to have a race free
1568 * view of the network device list.
1571 int register_netdevice_notifier(struct notifier_block
*nb
)
1573 struct net_device
*dev
;
1574 struct net_device
*last
;
1579 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1585 for_each_netdev(net
, dev
) {
1586 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1587 err
= notifier_to_errno(err
);
1591 if (!(dev
->flags
& IFF_UP
))
1594 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1605 for_each_netdev(net
, dev
) {
1609 if (dev
->flags
& IFF_UP
) {
1610 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1612 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1614 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1619 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1622 EXPORT_SYMBOL(register_netdevice_notifier
);
1625 * unregister_netdevice_notifier - unregister a network notifier block
1628 * Unregister a notifier previously registered by
1629 * register_netdevice_notifier(). The notifier is unlinked into the
1630 * kernel structures and may then be reused. A negative errno code
1631 * is returned on a failure.
1633 * After unregistering unregister and down device events are synthesized
1634 * for all devices on the device list to the removed notifier to remove
1635 * the need for special case cleanup code.
1638 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1640 struct net_device
*dev
;
1645 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1650 for_each_netdev(net
, dev
) {
1651 if (dev
->flags
& IFF_UP
) {
1652 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1654 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1656 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1663 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1666 * call_netdevice_notifiers_info - call all network notifier blocks
1667 * @val: value passed unmodified to notifier function
1668 * @dev: net_device pointer passed unmodified to notifier function
1669 * @info: notifier information data
1671 * Call all network notifier blocks. Parameters and return value
1672 * are as for raw_notifier_call_chain().
1675 static int call_netdevice_notifiers_info(unsigned long val
,
1676 struct netdev_notifier_info
*info
)
1679 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1683 * call_netdevice_notifiers - call all network notifier blocks
1684 * @val: value passed unmodified to notifier function
1685 * @dev: net_device pointer passed unmodified to notifier function
1687 * Call all network notifier blocks. Parameters and return value
1688 * are as for raw_notifier_call_chain().
1691 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1693 struct netdev_notifier_info info
= {
1697 return call_netdevice_notifiers_info(val
, &info
);
1699 EXPORT_SYMBOL(call_netdevice_notifiers
);
1701 #ifdef CONFIG_NET_INGRESS
1702 static struct static_key ingress_needed __read_mostly
;
1704 void net_inc_ingress_queue(void)
1706 static_key_slow_inc(&ingress_needed
);
1708 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1710 void net_dec_ingress_queue(void)
1712 static_key_slow_dec(&ingress_needed
);
1714 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1717 #ifdef CONFIG_NET_EGRESS
1718 static struct static_key egress_needed __read_mostly
;
1720 void net_inc_egress_queue(void)
1722 static_key_slow_inc(&egress_needed
);
1724 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1726 void net_dec_egress_queue(void)
1728 static_key_slow_dec(&egress_needed
);
1730 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1733 static struct static_key netstamp_needed __read_mostly
;
1734 #ifdef HAVE_JUMP_LABEL
1735 static atomic_t netstamp_needed_deferred
;
1736 static atomic_t netstamp_wanted
;
1737 static void netstamp_clear(struct work_struct
*work
)
1739 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1742 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1744 static_key_enable(&netstamp_needed
);
1746 static_key_disable(&netstamp_needed
);
1748 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1751 void net_enable_timestamp(void)
1753 #ifdef HAVE_JUMP_LABEL
1757 wanted
= atomic_read(&netstamp_wanted
);
1760 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1763 atomic_inc(&netstamp_needed_deferred
);
1764 schedule_work(&netstamp_work
);
1766 static_key_slow_inc(&netstamp_needed
);
1769 EXPORT_SYMBOL(net_enable_timestamp
);
1771 void net_disable_timestamp(void)
1773 #ifdef HAVE_JUMP_LABEL
1777 wanted
= atomic_read(&netstamp_wanted
);
1780 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1783 atomic_dec(&netstamp_needed_deferred
);
1784 schedule_work(&netstamp_work
);
1786 static_key_slow_dec(&netstamp_needed
);
1789 EXPORT_SYMBOL(net_disable_timestamp
);
1791 static inline void net_timestamp_set(struct sk_buff
*skb
)
1794 if (static_key_false(&netstamp_needed
))
1795 __net_timestamp(skb
);
1798 #define net_timestamp_check(COND, SKB) \
1799 if (static_key_false(&netstamp_needed)) { \
1800 if ((COND) && !(SKB)->tstamp) \
1801 __net_timestamp(SKB); \
1804 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1808 if (!(dev
->flags
& IFF_UP
))
1811 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1812 if (skb
->len
<= len
)
1815 /* if TSO is enabled, we don't care about the length as the packet
1816 * could be forwarded without being segmented before
1818 if (skb_is_gso(skb
))
1823 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1825 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1827 int ret
= ____dev_forward_skb(dev
, skb
);
1830 skb
->protocol
= eth_type_trans(skb
, dev
);
1831 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1836 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1839 * dev_forward_skb - loopback an skb to another netif
1841 * @dev: destination network device
1842 * @skb: buffer to forward
1845 * NET_RX_SUCCESS (no congestion)
1846 * NET_RX_DROP (packet was dropped, but freed)
1848 * dev_forward_skb can be used for injecting an skb from the
1849 * start_xmit function of one device into the receive queue
1850 * of another device.
1852 * The receiving device may be in another namespace, so
1853 * we have to clear all information in the skb that could
1854 * impact namespace isolation.
1856 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1858 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1860 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1862 static inline int deliver_skb(struct sk_buff
*skb
,
1863 struct packet_type
*pt_prev
,
1864 struct net_device
*orig_dev
)
1866 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1868 refcount_inc(&skb
->users
);
1869 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1872 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1873 struct packet_type
**pt
,
1874 struct net_device
*orig_dev
,
1876 struct list_head
*ptype_list
)
1878 struct packet_type
*ptype
, *pt_prev
= *pt
;
1880 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1881 if (ptype
->type
!= type
)
1884 deliver_skb(skb
, pt_prev
, orig_dev
);
1890 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1892 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1895 if (ptype
->id_match
)
1896 return ptype
->id_match(ptype
, skb
->sk
);
1897 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1904 * Support routine. Sends outgoing frames to any network
1905 * taps currently in use.
1908 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1910 struct packet_type
*ptype
;
1911 struct sk_buff
*skb2
= NULL
;
1912 struct packet_type
*pt_prev
= NULL
;
1913 struct list_head
*ptype_list
= &ptype_all
;
1917 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1918 /* Never send packets back to the socket
1919 * they originated from - MvS (miquels@drinkel.ow.org)
1921 if (skb_loop_sk(ptype
, skb
))
1925 deliver_skb(skb2
, pt_prev
, skb
->dev
);
1930 /* need to clone skb, done only once */
1931 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1935 net_timestamp_set(skb2
);
1937 /* skb->nh should be correctly
1938 * set by sender, so that the second statement is
1939 * just protection against buggy protocols.
1941 skb_reset_mac_header(skb2
);
1943 if (skb_network_header(skb2
) < skb2
->data
||
1944 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
1945 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1946 ntohs(skb2
->protocol
),
1948 skb_reset_network_header(skb2
);
1951 skb2
->transport_header
= skb2
->network_header
;
1952 skb2
->pkt_type
= PACKET_OUTGOING
;
1956 if (ptype_list
== &ptype_all
) {
1957 ptype_list
= &dev
->ptype_all
;
1962 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
1963 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
1969 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
1972 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1973 * @dev: Network device
1974 * @txq: number of queues available
1976 * If real_num_tx_queues is changed the tc mappings may no longer be
1977 * valid. To resolve this verify the tc mapping remains valid and if
1978 * not NULL the mapping. With no priorities mapping to this
1979 * offset/count pair it will no longer be used. In the worst case TC0
1980 * is invalid nothing can be done so disable priority mappings. If is
1981 * expected that drivers will fix this mapping if they can before
1982 * calling netif_set_real_num_tx_queues.
1984 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
1987 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
1989 /* If TC0 is invalidated disable TC mapping */
1990 if (tc
->offset
+ tc
->count
> txq
) {
1991 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1996 /* Invalidated prio to tc mappings set to TC0 */
1997 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
1998 int q
= netdev_get_prio_tc_map(dev
, i
);
2000 tc
= &dev
->tc_to_txq
[q
];
2001 if (tc
->offset
+ tc
->count
> txq
) {
2002 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2004 netdev_set_prio_tc_map(dev
, i
, 0);
2009 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2012 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2015 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2016 if ((txq
- tc
->offset
) < tc
->count
)
2025 EXPORT_SYMBOL(netdev_txq_to_tc
);
2028 static DEFINE_MUTEX(xps_map_mutex
);
2029 #define xmap_dereference(P) \
2030 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2032 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2035 struct xps_map
*map
= NULL
;
2039 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2043 for (pos
= map
->len
; pos
--;) {
2044 if (map
->queues
[pos
] != index
)
2048 map
->queues
[pos
] = map
->queues
[--map
->len
];
2052 RCU_INIT_POINTER(dev_maps
->cpu_map
[tci
], NULL
);
2053 kfree_rcu(map
, rcu
);
2060 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2061 struct xps_dev_maps
*dev_maps
,
2062 int cpu
, u16 offset
, u16 count
)
2064 int num_tc
= dev
->num_tc
? : 1;
2065 bool active
= false;
2068 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2071 for (i
= count
, j
= offset
; i
--; j
++) {
2072 if (!remove_xps_queue(dev_maps
, cpu
, j
))
2082 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2085 struct xps_dev_maps
*dev_maps
;
2087 bool active
= false;
2089 mutex_lock(&xps_map_mutex
);
2090 dev_maps
= xmap_dereference(dev
->xps_maps
);
2095 for_each_possible_cpu(cpu
)
2096 active
|= remove_xps_queue_cpu(dev
, dev_maps
, cpu
,
2100 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2101 kfree_rcu(dev_maps
, rcu
);
2104 for (i
= offset
+ (count
- 1); count
--; i
--)
2105 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, i
),
2109 mutex_unlock(&xps_map_mutex
);
2112 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2114 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2117 static struct xps_map
*expand_xps_map(struct xps_map
*map
,
2120 struct xps_map
*new_map
;
2121 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2124 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2125 if (map
->queues
[pos
] != index
)
2130 /* Need to add queue to this CPU's existing map */
2132 if (pos
< map
->alloc_len
)
2135 alloc_len
= map
->alloc_len
* 2;
2138 /* Need to allocate new map to store queue on this CPU's map */
2139 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2144 for (i
= 0; i
< pos
; i
++)
2145 new_map
->queues
[i
] = map
->queues
[i
];
2146 new_map
->alloc_len
= alloc_len
;
2152 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2155 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2156 int i
, cpu
, tci
, numa_node_id
= -2;
2157 int maps_sz
, num_tc
= 1, tc
= 0;
2158 struct xps_map
*map
, *new_map
;
2159 bool active
= false;
2162 num_tc
= dev
->num_tc
;
2163 tc
= netdev_txq_to_tc(dev
, index
);
2168 maps_sz
= XPS_DEV_MAPS_SIZE(num_tc
);
2169 if (maps_sz
< L1_CACHE_BYTES
)
2170 maps_sz
= L1_CACHE_BYTES
;
2172 mutex_lock(&xps_map_mutex
);
2174 dev_maps
= xmap_dereference(dev
->xps_maps
);
2176 /* allocate memory for queue storage */
2177 for_each_cpu_and(cpu
, cpu_online_mask
, mask
) {
2179 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2180 if (!new_dev_maps
) {
2181 mutex_unlock(&xps_map_mutex
);
2185 tci
= cpu
* num_tc
+ tc
;
2186 map
= dev_maps
? xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2189 map
= expand_xps_map(map
, cpu
, index
);
2193 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2197 goto out_no_new_maps
;
2199 for_each_possible_cpu(cpu
) {
2200 /* copy maps belonging to foreign traffic classes */
2201 for (i
= tc
, tci
= cpu
* num_tc
; dev_maps
&& i
--; tci
++) {
2202 /* fill in the new device map from the old device map */
2203 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2204 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2207 /* We need to explicitly update tci as prevous loop
2208 * could break out early if dev_maps is NULL.
2210 tci
= cpu
* num_tc
+ tc
;
2212 if (cpumask_test_cpu(cpu
, mask
) && cpu_online(cpu
)) {
2213 /* add queue to CPU maps */
2216 map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2217 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2220 if (pos
== map
->len
)
2221 map
->queues
[map
->len
++] = index
;
2223 if (numa_node_id
== -2)
2224 numa_node_id
= cpu_to_node(cpu
);
2225 else if (numa_node_id
!= cpu_to_node(cpu
))
2228 } else if (dev_maps
) {
2229 /* fill in the new device map from the old device map */
2230 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2231 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2234 /* copy maps belonging to foreign traffic classes */
2235 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2236 /* fill in the new device map from the old device map */
2237 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2238 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2242 rcu_assign_pointer(dev
->xps_maps
, new_dev_maps
);
2244 /* Cleanup old maps */
2246 goto out_no_old_maps
;
2248 for_each_possible_cpu(cpu
) {
2249 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2250 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2251 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2252 if (map
&& map
!= new_map
)
2253 kfree_rcu(map
, rcu
);
2257 kfree_rcu(dev_maps
, rcu
);
2260 dev_maps
= new_dev_maps
;
2264 /* update Tx queue numa node */
2265 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2266 (numa_node_id
>= 0) ? numa_node_id
:
2272 /* removes queue from unused CPUs */
2273 for_each_possible_cpu(cpu
) {
2274 for (i
= tc
, tci
= cpu
* num_tc
; i
--; tci
++)
2275 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2276 if (!cpumask_test_cpu(cpu
, mask
) || !cpu_online(cpu
))
2277 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2278 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2279 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2282 /* free map if not active */
2284 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2285 kfree_rcu(dev_maps
, rcu
);
2289 mutex_unlock(&xps_map_mutex
);
2293 /* remove any maps that we added */
2294 for_each_possible_cpu(cpu
) {
2295 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2296 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2298 xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2300 if (new_map
&& new_map
!= map
)
2305 mutex_unlock(&xps_map_mutex
);
2307 kfree(new_dev_maps
);
2310 EXPORT_SYMBOL(netif_set_xps_queue
);
2313 void netdev_reset_tc(struct net_device
*dev
)
2316 netif_reset_xps_queues_gt(dev
, 0);
2319 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2320 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2322 EXPORT_SYMBOL(netdev_reset_tc
);
2324 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2326 if (tc
>= dev
->num_tc
)
2330 netif_reset_xps_queues(dev
, offset
, count
);
2332 dev
->tc_to_txq
[tc
].count
= count
;
2333 dev
->tc_to_txq
[tc
].offset
= offset
;
2336 EXPORT_SYMBOL(netdev_set_tc_queue
);
2338 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2340 if (num_tc
> TC_MAX_QUEUE
)
2344 netif_reset_xps_queues_gt(dev
, 0);
2346 dev
->num_tc
= num_tc
;
2349 EXPORT_SYMBOL(netdev_set_num_tc
);
2352 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2353 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2355 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2359 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2362 if (dev
->reg_state
== NETREG_REGISTERED
||
2363 dev
->reg_state
== NETREG_UNREGISTERING
) {
2366 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2372 netif_setup_tc(dev
, txq
);
2374 if (txq
< dev
->real_num_tx_queues
) {
2375 qdisc_reset_all_tx_gt(dev
, txq
);
2377 netif_reset_xps_queues_gt(dev
, txq
);
2382 dev
->real_num_tx_queues
= txq
;
2385 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2389 * netif_set_real_num_rx_queues - set actual number of RX queues used
2390 * @dev: Network device
2391 * @rxq: Actual number of RX queues
2393 * This must be called either with the rtnl_lock held or before
2394 * registration of the net device. Returns 0 on success, or a
2395 * negative error code. If called before registration, it always
2398 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2402 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2405 if (dev
->reg_state
== NETREG_REGISTERED
) {
2408 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2414 dev
->real_num_rx_queues
= rxq
;
2417 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2421 * netif_get_num_default_rss_queues - default number of RSS queues
2423 * This routine should set an upper limit on the number of RSS queues
2424 * used by default by multiqueue devices.
2426 int netif_get_num_default_rss_queues(void)
2428 return is_kdump_kernel() ?
2429 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2431 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2433 static void __netif_reschedule(struct Qdisc
*q
)
2435 struct softnet_data
*sd
;
2436 unsigned long flags
;
2438 local_irq_save(flags
);
2439 sd
= this_cpu_ptr(&softnet_data
);
2440 q
->next_sched
= NULL
;
2441 *sd
->output_queue_tailp
= q
;
2442 sd
->output_queue_tailp
= &q
->next_sched
;
2443 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2444 local_irq_restore(flags
);
2447 void __netif_schedule(struct Qdisc
*q
)
2449 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2450 __netif_reschedule(q
);
2452 EXPORT_SYMBOL(__netif_schedule
);
2454 struct dev_kfree_skb_cb
{
2455 enum skb_free_reason reason
;
2458 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2460 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2463 void netif_schedule_queue(struct netdev_queue
*txq
)
2466 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2467 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2469 __netif_schedule(q
);
2473 EXPORT_SYMBOL(netif_schedule_queue
);
2475 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2477 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2481 q
= rcu_dereference(dev_queue
->qdisc
);
2482 __netif_schedule(q
);
2486 EXPORT_SYMBOL(netif_tx_wake_queue
);
2488 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2490 unsigned long flags
;
2495 if (likely(refcount_read(&skb
->users
) == 1)) {
2497 refcount_set(&skb
->users
, 0);
2498 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2501 get_kfree_skb_cb(skb
)->reason
= reason
;
2502 local_irq_save(flags
);
2503 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2504 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2505 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2506 local_irq_restore(flags
);
2508 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2510 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2512 if (in_irq() || irqs_disabled())
2513 __dev_kfree_skb_irq(skb
, reason
);
2517 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2521 * netif_device_detach - mark device as removed
2522 * @dev: network device
2524 * Mark device as removed from system and therefore no longer available.
2526 void netif_device_detach(struct net_device
*dev
)
2528 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2529 netif_running(dev
)) {
2530 netif_tx_stop_all_queues(dev
);
2533 EXPORT_SYMBOL(netif_device_detach
);
2536 * netif_device_attach - mark device as attached
2537 * @dev: network device
2539 * Mark device as attached from system and restart if needed.
2541 void netif_device_attach(struct net_device
*dev
)
2543 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2544 netif_running(dev
)) {
2545 netif_tx_wake_all_queues(dev
);
2546 __netdev_watchdog_up(dev
);
2549 EXPORT_SYMBOL(netif_device_attach
);
2552 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2553 * to be used as a distribution range.
2555 u16
__skb_tx_hash(const struct net_device
*dev
, struct sk_buff
*skb
,
2556 unsigned int num_tx_queues
)
2560 u16 qcount
= num_tx_queues
;
2562 if (skb_rx_queue_recorded(skb
)) {
2563 hash
= skb_get_rx_queue(skb
);
2564 while (unlikely(hash
>= num_tx_queues
))
2565 hash
-= num_tx_queues
;
2570 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2572 qoffset
= dev
->tc_to_txq
[tc
].offset
;
2573 qcount
= dev
->tc_to_txq
[tc
].count
;
2576 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2578 EXPORT_SYMBOL(__skb_tx_hash
);
2580 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2582 static const netdev_features_t null_features
;
2583 struct net_device
*dev
= skb
->dev
;
2584 const char *name
= "";
2586 if (!net_ratelimit())
2590 if (dev
->dev
.parent
)
2591 name
= dev_driver_string(dev
->dev
.parent
);
2593 name
= netdev_name(dev
);
2595 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2596 "gso_type=%d ip_summed=%d\n",
2597 name
, dev
? &dev
->features
: &null_features
,
2598 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2599 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2600 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2604 * Invalidate hardware checksum when packet is to be mangled, and
2605 * complete checksum manually on outgoing path.
2607 int skb_checksum_help(struct sk_buff
*skb
)
2610 int ret
= 0, offset
;
2612 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2613 goto out_set_summed
;
2615 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2616 skb_warn_bad_offload(skb
);
2620 /* Before computing a checksum, we should make sure no frag could
2621 * be modified by an external entity : checksum could be wrong.
2623 if (skb_has_shared_frag(skb
)) {
2624 ret
= __skb_linearize(skb
);
2629 offset
= skb_checksum_start_offset(skb
);
2630 BUG_ON(offset
>= skb_headlen(skb
));
2631 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2633 offset
+= skb
->csum_offset
;
2634 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2636 if (skb_cloned(skb
) &&
2637 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2638 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2643 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2645 skb
->ip_summed
= CHECKSUM_NONE
;
2649 EXPORT_SYMBOL(skb_checksum_help
);
2651 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2654 int ret
= 0, offset
, start
;
2656 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2659 if (unlikely(skb_is_gso(skb
)))
2662 /* Before computing a checksum, we should make sure no frag could
2663 * be modified by an external entity : checksum could be wrong.
2665 if (unlikely(skb_has_shared_frag(skb
))) {
2666 ret
= __skb_linearize(skb
);
2670 start
= skb_checksum_start_offset(skb
);
2671 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2672 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2676 if (skb_cloned(skb
) &&
2677 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2678 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2682 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2683 skb
->len
- start
, ~(__u32
)0,
2685 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2686 skb
->ip_summed
= CHECKSUM_NONE
;
2687 skb
->csum_not_inet
= 0;
2692 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2694 __be16 type
= skb
->protocol
;
2696 /* Tunnel gso handlers can set protocol to ethernet. */
2697 if (type
== htons(ETH_P_TEB
)) {
2700 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2703 eth
= (struct ethhdr
*)skb_mac_header(skb
);
2704 type
= eth
->h_proto
;
2707 return __vlan_get_protocol(skb
, type
, depth
);
2711 * skb_mac_gso_segment - mac layer segmentation handler.
2712 * @skb: buffer to segment
2713 * @features: features for the output path (see dev->features)
2715 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
2716 netdev_features_t features
)
2718 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
2719 struct packet_offload
*ptype
;
2720 int vlan_depth
= skb
->mac_len
;
2721 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
2723 if (unlikely(!type
))
2724 return ERR_PTR(-EINVAL
);
2726 __skb_pull(skb
, vlan_depth
);
2729 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
2730 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
2731 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
2737 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
2741 EXPORT_SYMBOL(skb_mac_gso_segment
);
2744 /* openvswitch calls this on rx path, so we need a different check.
2746 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
2749 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
2750 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
2752 return skb
->ip_summed
== CHECKSUM_NONE
;
2756 * __skb_gso_segment - Perform segmentation on skb.
2757 * @skb: buffer to segment
2758 * @features: features for the output path (see dev->features)
2759 * @tx_path: whether it is called in TX path
2761 * This function segments the given skb and returns a list of segments.
2763 * It may return NULL if the skb requires no segmentation. This is
2764 * only possible when GSO is used for verifying header integrity.
2766 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2768 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
2769 netdev_features_t features
, bool tx_path
)
2771 struct sk_buff
*segs
;
2773 if (unlikely(skb_needs_check(skb
, tx_path
))) {
2776 /* We're going to init ->check field in TCP or UDP header */
2777 err
= skb_cow_head(skb
, 0);
2779 return ERR_PTR(err
);
2782 /* Only report GSO partial support if it will enable us to
2783 * support segmentation on this frame without needing additional
2786 if (features
& NETIF_F_GSO_PARTIAL
) {
2787 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
2788 struct net_device
*dev
= skb
->dev
;
2790 partial_features
|= dev
->features
& dev
->gso_partial_features
;
2791 if (!skb_gso_ok(skb
, features
| partial_features
))
2792 features
&= ~NETIF_F_GSO_PARTIAL
;
2795 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
2796 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
2798 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
2799 SKB_GSO_CB(skb
)->encap_level
= 0;
2801 skb_reset_mac_header(skb
);
2802 skb_reset_mac_len(skb
);
2804 segs
= skb_mac_gso_segment(skb
, features
);
2806 if (unlikely(skb_needs_check(skb
, tx_path
)))
2807 skb_warn_bad_offload(skb
);
2811 EXPORT_SYMBOL(__skb_gso_segment
);
2813 /* Take action when hardware reception checksum errors are detected. */
2815 void netdev_rx_csum_fault(struct net_device
*dev
)
2817 if (net_ratelimit()) {
2818 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
2822 EXPORT_SYMBOL(netdev_rx_csum_fault
);
2825 /* Actually, we should eliminate this check as soon as we know, that:
2826 * 1. IOMMU is present and allows to map all the memory.
2827 * 2. No high memory really exists on this machine.
2830 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
2832 #ifdef CONFIG_HIGHMEM
2835 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
2836 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2837 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2839 if (PageHighMem(skb_frag_page(frag
)))
2844 if (PCI_DMA_BUS_IS_PHYS
) {
2845 struct device
*pdev
= dev
->dev
.parent
;
2849 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2850 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2851 dma_addr_t addr
= page_to_phys(skb_frag_page(frag
));
2853 if (!pdev
->dma_mask
|| addr
+ PAGE_SIZE
- 1 > *pdev
->dma_mask
)
2861 /* If MPLS offload request, verify we are testing hardware MPLS features
2862 * instead of standard features for the netdev.
2864 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2865 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2866 netdev_features_t features
,
2869 if (eth_p_mpls(type
))
2870 features
&= skb
->dev
->mpls_features
;
2875 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2876 netdev_features_t features
,
2883 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
2884 netdev_features_t features
)
2889 type
= skb_network_protocol(skb
, &tmp
);
2890 features
= net_mpls_features(skb
, features
, type
);
2892 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
2893 !can_checksum_protocol(features
, type
)) {
2894 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
2896 if (illegal_highdma(skb
->dev
, skb
))
2897 features
&= ~NETIF_F_SG
;
2902 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
2903 struct net_device
*dev
,
2904 netdev_features_t features
)
2908 EXPORT_SYMBOL(passthru_features_check
);
2910 static netdev_features_t
dflt_features_check(const struct sk_buff
*skb
,
2911 struct net_device
*dev
,
2912 netdev_features_t features
)
2914 return vlan_features_check(skb
, features
);
2917 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
2918 struct net_device
*dev
,
2919 netdev_features_t features
)
2921 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
2923 if (gso_segs
> dev
->gso_max_segs
)
2924 return features
& ~NETIF_F_GSO_MASK
;
2926 /* Support for GSO partial features requires software
2927 * intervention before we can actually process the packets
2928 * so we need to strip support for any partial features now
2929 * and we can pull them back in after we have partially
2930 * segmented the frame.
2932 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
2933 features
&= ~dev
->gso_partial_features
;
2935 /* Make sure to clear the IPv4 ID mangling feature if the
2936 * IPv4 header has the potential to be fragmented.
2938 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
2939 struct iphdr
*iph
= skb
->encapsulation
?
2940 inner_ip_hdr(skb
) : ip_hdr(skb
);
2942 if (!(iph
->frag_off
& htons(IP_DF
)))
2943 features
&= ~NETIF_F_TSO_MANGLEID
;
2949 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
2951 struct net_device
*dev
= skb
->dev
;
2952 netdev_features_t features
= dev
->features
;
2954 if (skb_is_gso(skb
))
2955 features
= gso_features_check(skb
, dev
, features
);
2957 /* If encapsulation offload request, verify we are testing
2958 * hardware encapsulation features instead of standard
2959 * features for the netdev
2961 if (skb
->encapsulation
)
2962 features
&= dev
->hw_enc_features
;
2964 if (skb_vlan_tagged(skb
))
2965 features
= netdev_intersect_features(features
,
2966 dev
->vlan_features
|
2967 NETIF_F_HW_VLAN_CTAG_TX
|
2968 NETIF_F_HW_VLAN_STAG_TX
);
2970 if (dev
->netdev_ops
->ndo_features_check
)
2971 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
2974 features
&= dflt_features_check(skb
, dev
, features
);
2976 return harmonize_features(skb
, features
);
2978 EXPORT_SYMBOL(netif_skb_features
);
2980 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
2981 struct netdev_queue
*txq
, bool more
)
2986 if (!list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
))
2987 dev_queue_xmit_nit(skb
, dev
);
2990 trace_net_dev_start_xmit(skb
, dev
);
2991 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
2992 trace_net_dev_xmit(skb
, rc
, dev
, len
);
2997 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
2998 struct netdev_queue
*txq
, int *ret
)
3000 struct sk_buff
*skb
= first
;
3001 int rc
= NETDEV_TX_OK
;
3004 struct sk_buff
*next
= skb
->next
;
3007 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3008 if (unlikely(!dev_xmit_complete(rc
))) {
3014 if (netif_xmit_stopped(txq
) && skb
) {
3015 rc
= NETDEV_TX_BUSY
;
3025 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3026 netdev_features_t features
)
3028 if (skb_vlan_tag_present(skb
) &&
3029 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3030 skb
= __vlan_hwaccel_push_inside(skb
);
3034 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3035 const netdev_features_t features
)
3037 if (unlikely(skb
->csum_not_inet
))
3038 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3039 skb_crc32c_csum_help(skb
);
3041 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3043 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3045 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
)
3047 netdev_features_t features
;
3049 features
= netif_skb_features(skb
);
3050 skb
= validate_xmit_vlan(skb
, features
);
3054 if (netif_needs_gso(skb
, features
)) {
3055 struct sk_buff
*segs
;
3057 segs
= skb_gso_segment(skb
, features
);
3065 if (skb_needs_linearize(skb
, features
) &&
3066 __skb_linearize(skb
))
3069 if (validate_xmit_xfrm(skb
, features
))
3072 /* If packet is not checksummed and device does not
3073 * support checksumming for this protocol, complete
3074 * checksumming here.
3076 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3077 if (skb
->encapsulation
)
3078 skb_set_inner_transport_header(skb
,
3079 skb_checksum_start_offset(skb
));
3081 skb_set_transport_header(skb
,
3082 skb_checksum_start_offset(skb
));
3083 if (skb_csum_hwoffload_help(skb
, features
))
3093 atomic_long_inc(&dev
->tx_dropped
);
3097 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
)
3099 struct sk_buff
*next
, *head
= NULL
, *tail
;
3101 for (; skb
!= NULL
; skb
= next
) {
3105 /* in case skb wont be segmented, point to itself */
3108 skb
= validate_xmit_skb(skb
, dev
);
3116 /* If skb was segmented, skb->prev points to
3117 * the last segment. If not, it still contains skb.
3123 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3125 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3127 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3129 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3131 /* To get more precise estimation of bytes sent on wire,
3132 * we add to pkt_len the headers size of all segments
3134 if (shinfo
->gso_size
) {
3135 unsigned int hdr_len
;
3136 u16 gso_segs
= shinfo
->gso_segs
;
3138 /* mac layer + network layer */
3139 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3141 /* + transport layer */
3142 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)))
3143 hdr_len
+= tcp_hdrlen(skb
);
3145 hdr_len
+= sizeof(struct udphdr
);
3147 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3148 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3151 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3155 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3156 struct net_device
*dev
,
3157 struct netdev_queue
*txq
)
3159 spinlock_t
*root_lock
= qdisc_lock(q
);
3160 struct sk_buff
*to_free
= NULL
;
3164 qdisc_calculate_pkt_len(skb
, q
);
3166 * Heuristic to force contended enqueues to serialize on a
3167 * separate lock before trying to get qdisc main lock.
3168 * This permits qdisc->running owner to get the lock more
3169 * often and dequeue packets faster.
3171 contended
= qdisc_is_running(q
);
3172 if (unlikely(contended
))
3173 spin_lock(&q
->busylock
);
3175 spin_lock(root_lock
);
3176 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3177 __qdisc_drop(skb
, &to_free
);
3179 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3180 qdisc_run_begin(q
)) {
3182 * This is a work-conserving queue; there are no old skbs
3183 * waiting to be sent out; and the qdisc is not running -
3184 * xmit the skb directly.
3187 qdisc_bstats_update(q
, skb
);
3189 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3190 if (unlikely(contended
)) {
3191 spin_unlock(&q
->busylock
);
3198 rc
= NET_XMIT_SUCCESS
;
3200 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3201 if (qdisc_run_begin(q
)) {
3202 if (unlikely(contended
)) {
3203 spin_unlock(&q
->busylock
);
3209 spin_unlock(root_lock
);
3210 if (unlikely(to_free
))
3211 kfree_skb_list(to_free
);
3212 if (unlikely(contended
))
3213 spin_unlock(&q
->busylock
);
3217 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3218 static void skb_update_prio(struct sk_buff
*skb
)
3220 struct netprio_map
*map
= rcu_dereference_bh(skb
->dev
->priomap
);
3222 if (!skb
->priority
&& skb
->sk
&& map
) {
3223 unsigned int prioidx
=
3224 sock_cgroup_prioidx(&skb
->sk
->sk_cgrp_data
);
3226 if (prioidx
< map
->priomap_len
)
3227 skb
->priority
= map
->priomap
[prioidx
];
3231 #define skb_update_prio(skb)
3234 DEFINE_PER_CPU(int, xmit_recursion
);
3235 EXPORT_SYMBOL(xmit_recursion
);
3238 * dev_loopback_xmit - loop back @skb
3239 * @net: network namespace this loopback is happening in
3240 * @sk: sk needed to be a netfilter okfn
3241 * @skb: buffer to transmit
3243 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3245 skb_reset_mac_header(skb
);
3246 __skb_pull(skb
, skb_network_offset(skb
));
3247 skb
->pkt_type
= PACKET_LOOPBACK
;
3248 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3249 WARN_ON(!skb_dst(skb
));
3254 EXPORT_SYMBOL(dev_loopback_xmit
);
3256 #ifdef CONFIG_NET_EGRESS
3257 static struct sk_buff
*
3258 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3260 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3261 struct tcf_result cl_res
;
3266 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3267 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3269 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3271 case TC_ACT_RECLASSIFY
:
3272 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3275 mini_qdisc_qstats_cpu_drop(miniq
);
3276 *ret
= NET_XMIT_DROP
;
3282 *ret
= NET_XMIT_SUCCESS
;
3285 case TC_ACT_REDIRECT
:
3286 /* No need to push/pop skb's mac_header here on egress! */
3287 skb_do_redirect(skb
);
3288 *ret
= NET_XMIT_SUCCESS
;
3296 #endif /* CONFIG_NET_EGRESS */
3298 static inline int get_xps_queue(struct net_device
*dev
, struct sk_buff
*skb
)
3301 struct xps_dev_maps
*dev_maps
;
3302 struct xps_map
*map
;
3303 int queue_index
= -1;
3306 dev_maps
= rcu_dereference(dev
->xps_maps
);
3308 unsigned int tci
= skb
->sender_cpu
- 1;
3312 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3315 map
= rcu_dereference(dev_maps
->cpu_map
[tci
]);
3318 queue_index
= map
->queues
[0];
3320 queue_index
= map
->queues
[reciprocal_scale(skb_get_hash(skb
),
3322 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3334 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
)
3336 struct sock
*sk
= skb
->sk
;
3337 int queue_index
= sk_tx_queue_get(sk
);
3339 if (queue_index
< 0 || skb
->ooo_okay
||
3340 queue_index
>= dev
->real_num_tx_queues
) {
3341 int new_index
= get_xps_queue(dev
, skb
);
3344 new_index
= skb_tx_hash(dev
, skb
);
3346 if (queue_index
!= new_index
&& sk
&&
3348 rcu_access_pointer(sk
->sk_dst_cache
))
3349 sk_tx_queue_set(sk
, new_index
);
3351 queue_index
= new_index
;
3357 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3358 struct sk_buff
*skb
,
3361 int queue_index
= 0;
3364 u32 sender_cpu
= skb
->sender_cpu
- 1;
3366 if (sender_cpu
>= (u32
)NR_CPUS
)
3367 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3370 if (dev
->real_num_tx_queues
!= 1) {
3371 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3373 if (ops
->ndo_select_queue
)
3374 queue_index
= ops
->ndo_select_queue(dev
, skb
, accel_priv
,
3377 queue_index
= __netdev_pick_tx(dev
, skb
);
3380 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3383 skb_set_queue_mapping(skb
, queue_index
);
3384 return netdev_get_tx_queue(dev
, queue_index
);
3388 * __dev_queue_xmit - transmit a buffer
3389 * @skb: buffer to transmit
3390 * @accel_priv: private data used for L2 forwarding offload
3392 * Queue a buffer for transmission to a network device. The caller must
3393 * have set the device and priority and built the buffer before calling
3394 * this function. The function can be called from an interrupt.
3396 * A negative errno code is returned on a failure. A success does not
3397 * guarantee the frame will be transmitted as it may be dropped due
3398 * to congestion or traffic shaping.
3400 * -----------------------------------------------------------------------------------
3401 * I notice this method can also return errors from the queue disciplines,
3402 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3405 * Regardless of the return value, the skb is consumed, so it is currently
3406 * difficult to retry a send to this method. (You can bump the ref count
3407 * before sending to hold a reference for retry if you are careful.)
3409 * When calling this method, interrupts MUST be enabled. This is because
3410 * the BH enable code must have IRQs enabled so that it will not deadlock.
3413 static int __dev_queue_xmit(struct sk_buff
*skb
, void *accel_priv
)
3415 struct net_device
*dev
= skb
->dev
;
3416 struct netdev_queue
*txq
;
3420 skb_reset_mac_header(skb
);
3422 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3423 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3425 /* Disable soft irqs for various locks below. Also
3426 * stops preemption for RCU.
3430 skb_update_prio(skb
);
3432 qdisc_pkt_len_init(skb
);
3433 #ifdef CONFIG_NET_CLS_ACT
3434 skb
->tc_at_ingress
= 0;
3435 # ifdef CONFIG_NET_EGRESS
3436 if (static_key_false(&egress_needed
)) {
3437 skb
= sch_handle_egress(skb
, &rc
, dev
);
3443 /* If device/qdisc don't need skb->dst, release it right now while
3444 * its hot in this cpu cache.
3446 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3451 txq
= netdev_pick_tx(dev
, skb
, accel_priv
);
3452 q
= rcu_dereference_bh(txq
->qdisc
);
3454 trace_net_dev_queue(skb
);
3456 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3460 /* The device has no queue. Common case for software devices:
3461 * loopback, all the sorts of tunnels...
3463 * Really, it is unlikely that netif_tx_lock protection is necessary
3464 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3466 * However, it is possible, that they rely on protection
3469 * Check this and shot the lock. It is not prone from deadlocks.
3470 *Either shot noqueue qdisc, it is even simpler 8)
3472 if (dev
->flags
& IFF_UP
) {
3473 int cpu
= smp_processor_id(); /* ok because BHs are off */
3475 if (txq
->xmit_lock_owner
!= cpu
) {
3476 if (unlikely(__this_cpu_read(xmit_recursion
) >
3477 XMIT_RECURSION_LIMIT
))
3478 goto recursion_alert
;
3480 skb
= validate_xmit_skb(skb
, dev
);
3484 HARD_TX_LOCK(dev
, txq
, cpu
);
3486 if (!netif_xmit_stopped(txq
)) {
3487 __this_cpu_inc(xmit_recursion
);
3488 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3489 __this_cpu_dec(xmit_recursion
);
3490 if (dev_xmit_complete(rc
)) {
3491 HARD_TX_UNLOCK(dev
, txq
);
3495 HARD_TX_UNLOCK(dev
, txq
);
3496 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3499 /* Recursion is detected! It is possible,
3503 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3509 rcu_read_unlock_bh();
3511 atomic_long_inc(&dev
->tx_dropped
);
3512 kfree_skb_list(skb
);
3515 rcu_read_unlock_bh();
3519 int dev_queue_xmit(struct sk_buff
*skb
)
3521 return __dev_queue_xmit(skb
, NULL
);
3523 EXPORT_SYMBOL(dev_queue_xmit
);
3525 int dev_queue_xmit_accel(struct sk_buff
*skb
, void *accel_priv
)
3527 return __dev_queue_xmit(skb
, accel_priv
);
3529 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3532 /*************************************************************************
3534 *************************************************************************/
3536 int netdev_max_backlog __read_mostly
= 1000;
3537 EXPORT_SYMBOL(netdev_max_backlog
);
3539 int netdev_tstamp_prequeue __read_mostly
= 1;
3540 int netdev_budget __read_mostly
= 300;
3541 unsigned int __read_mostly netdev_budget_usecs
= 2000;
3542 int weight_p __read_mostly
= 64; /* old backlog weight */
3543 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3544 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3545 int dev_rx_weight __read_mostly
= 64;
3546 int dev_tx_weight __read_mostly
= 64;
3548 /* Called with irq disabled */
3549 static inline void ____napi_schedule(struct softnet_data
*sd
,
3550 struct napi_struct
*napi
)
3552 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3553 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3558 /* One global table that all flow-based protocols share. */
3559 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3560 EXPORT_SYMBOL(rps_sock_flow_table
);
3561 u32 rps_cpu_mask __read_mostly
;
3562 EXPORT_SYMBOL(rps_cpu_mask
);
3564 struct static_key rps_needed __read_mostly
;
3565 EXPORT_SYMBOL(rps_needed
);
3566 struct static_key rfs_needed __read_mostly
;
3567 EXPORT_SYMBOL(rfs_needed
);
3569 static struct rps_dev_flow
*
3570 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3571 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3573 if (next_cpu
< nr_cpu_ids
) {
3574 #ifdef CONFIG_RFS_ACCEL
3575 struct netdev_rx_queue
*rxqueue
;
3576 struct rps_dev_flow_table
*flow_table
;
3577 struct rps_dev_flow
*old_rflow
;
3582 /* Should we steer this flow to a different hardware queue? */
3583 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3584 !(dev
->features
& NETIF_F_NTUPLE
))
3586 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3587 if (rxq_index
== skb_get_rx_queue(skb
))
3590 rxqueue
= dev
->_rx
+ rxq_index
;
3591 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3594 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3595 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3596 rxq_index
, flow_id
);
3600 rflow
= &flow_table
->flows
[flow_id
];
3602 if (old_rflow
->filter
== rflow
->filter
)
3603 old_rflow
->filter
= RPS_NO_FILTER
;
3607 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
3610 rflow
->cpu
= next_cpu
;
3615 * get_rps_cpu is called from netif_receive_skb and returns the target
3616 * CPU from the RPS map of the receiving queue for a given skb.
3617 * rcu_read_lock must be held on entry.
3619 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3620 struct rps_dev_flow
**rflowp
)
3622 const struct rps_sock_flow_table
*sock_flow_table
;
3623 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
3624 struct rps_dev_flow_table
*flow_table
;
3625 struct rps_map
*map
;
3630 if (skb_rx_queue_recorded(skb
)) {
3631 u16 index
= skb_get_rx_queue(skb
);
3633 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
3634 WARN_ONCE(dev
->real_num_rx_queues
> 1,
3635 "%s received packet on queue %u, but number "
3636 "of RX queues is %u\n",
3637 dev
->name
, index
, dev
->real_num_rx_queues
);
3643 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3645 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3646 map
= rcu_dereference(rxqueue
->rps_map
);
3647 if (!flow_table
&& !map
)
3650 skb_reset_network_header(skb
);
3651 hash
= skb_get_hash(skb
);
3655 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
3656 if (flow_table
&& sock_flow_table
) {
3657 struct rps_dev_flow
*rflow
;
3661 /* First check into global flow table if there is a match */
3662 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
3663 if ((ident
^ hash
) & ~rps_cpu_mask
)
3666 next_cpu
= ident
& rps_cpu_mask
;
3668 /* OK, now we know there is a match,
3669 * we can look at the local (per receive queue) flow table
3671 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
3675 * If the desired CPU (where last recvmsg was done) is
3676 * different from current CPU (one in the rx-queue flow
3677 * table entry), switch if one of the following holds:
3678 * - Current CPU is unset (>= nr_cpu_ids).
3679 * - Current CPU is offline.
3680 * - The current CPU's queue tail has advanced beyond the
3681 * last packet that was enqueued using this table entry.
3682 * This guarantees that all previous packets for the flow
3683 * have been dequeued, thus preserving in order delivery.
3685 if (unlikely(tcpu
!= next_cpu
) &&
3686 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
3687 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
3688 rflow
->last_qtail
)) >= 0)) {
3690 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
3693 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
3703 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
3704 if (cpu_online(tcpu
)) {
3714 #ifdef CONFIG_RFS_ACCEL
3717 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3718 * @dev: Device on which the filter was set
3719 * @rxq_index: RX queue index
3720 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3721 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3723 * Drivers that implement ndo_rx_flow_steer() should periodically call
3724 * this function for each installed filter and remove the filters for
3725 * which it returns %true.
3727 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
3728 u32 flow_id
, u16 filter_id
)
3730 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
3731 struct rps_dev_flow_table
*flow_table
;
3732 struct rps_dev_flow
*rflow
;
3737 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3738 if (flow_table
&& flow_id
<= flow_table
->mask
) {
3739 rflow
= &flow_table
->flows
[flow_id
];
3740 cpu
= READ_ONCE(rflow
->cpu
);
3741 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
3742 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
3743 rflow
->last_qtail
) <
3744 (int)(10 * flow_table
->mask
)))
3750 EXPORT_SYMBOL(rps_may_expire_flow
);
3752 #endif /* CONFIG_RFS_ACCEL */
3754 /* Called from hardirq (IPI) context */
3755 static void rps_trigger_softirq(void *data
)
3757 struct softnet_data
*sd
= data
;
3759 ____napi_schedule(sd
, &sd
->backlog
);
3763 #endif /* CONFIG_RPS */
3766 * Check if this softnet_data structure is another cpu one
3767 * If yes, queue it to our IPI list and return 1
3770 static int rps_ipi_queued(struct softnet_data
*sd
)
3773 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
3776 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
3777 mysd
->rps_ipi_list
= sd
;
3779 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3782 #endif /* CONFIG_RPS */
3786 #ifdef CONFIG_NET_FLOW_LIMIT
3787 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
3790 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
3792 #ifdef CONFIG_NET_FLOW_LIMIT
3793 struct sd_flow_limit
*fl
;
3794 struct softnet_data
*sd
;
3795 unsigned int old_flow
, new_flow
;
3797 if (qlen
< (netdev_max_backlog
>> 1))
3800 sd
= this_cpu_ptr(&softnet_data
);
3803 fl
= rcu_dereference(sd
->flow_limit
);
3805 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
3806 old_flow
= fl
->history
[fl
->history_head
];
3807 fl
->history
[fl
->history_head
] = new_flow
;
3810 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
3812 if (likely(fl
->buckets
[old_flow
]))
3813 fl
->buckets
[old_flow
]--;
3815 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
3827 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3828 * queue (may be a remote CPU queue).
3830 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
3831 unsigned int *qtail
)
3833 struct softnet_data
*sd
;
3834 unsigned long flags
;
3837 sd
= &per_cpu(softnet_data
, cpu
);
3839 local_irq_save(flags
);
3842 if (!netif_running(skb
->dev
))
3844 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
3845 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
3848 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
3849 input_queue_tail_incr_save(sd
, qtail
);
3851 local_irq_restore(flags
);
3852 return NET_RX_SUCCESS
;
3855 /* Schedule NAPI for backlog device
3856 * We can use non atomic operation since we own the queue lock
3858 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
3859 if (!rps_ipi_queued(sd
))
3860 ____napi_schedule(sd
, &sd
->backlog
);
3869 local_irq_restore(flags
);
3871 atomic_long_inc(&skb
->dev
->rx_dropped
);
3876 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
3877 struct bpf_prog
*xdp_prog
)
3879 u32 metalen
, act
= XDP_DROP
;
3880 struct xdp_buff xdp
;
3885 /* Reinjected packets coming from act_mirred or similar should
3886 * not get XDP generic processing.
3888 if (skb_cloned(skb
))
3891 /* XDP packets must be linear and must have sufficient headroom
3892 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3893 * native XDP provides, thus we need to do it here as well.
3895 if (skb_is_nonlinear(skb
) ||
3896 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
3897 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
3898 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
3900 /* In case we have to go down the path and also linearize,
3901 * then lets do the pskb_expand_head() work just once here.
3903 if (pskb_expand_head(skb
,
3904 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
3905 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
3907 if (troom
> 0 && __skb_linearize(skb
))
3911 /* The XDP program wants to see the packet starting at the MAC
3914 mac_len
= skb
->data
- skb_mac_header(skb
);
3915 hlen
= skb_headlen(skb
) + mac_len
;
3916 xdp
.data
= skb
->data
- mac_len
;
3917 xdp
.data_meta
= xdp
.data
;
3918 xdp
.data_end
= xdp
.data
+ hlen
;
3919 xdp
.data_hard_start
= skb
->data
- skb_headroom(skb
);
3920 orig_data
= xdp
.data
;
3922 act
= bpf_prog_run_xdp(xdp_prog
, &xdp
);
3924 off
= xdp
.data
- orig_data
;
3926 __skb_pull(skb
, off
);
3928 __skb_push(skb
, -off
);
3929 skb
->mac_header
+= off
;
3934 __skb_push(skb
, mac_len
);
3937 metalen
= xdp
.data
- xdp
.data_meta
;
3939 skb_metadata_set(skb
, metalen
);
3942 bpf_warn_invalid_xdp_action(act
);
3945 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
3956 /* When doing generic XDP we have to bypass the qdisc layer and the
3957 * network taps in order to match in-driver-XDP behavior.
3959 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
3961 struct net_device
*dev
= skb
->dev
;
3962 struct netdev_queue
*txq
;
3963 bool free_skb
= true;
3966 txq
= netdev_pick_tx(dev
, skb
, NULL
);
3967 cpu
= smp_processor_id();
3968 HARD_TX_LOCK(dev
, txq
, cpu
);
3969 if (!netif_xmit_stopped(txq
)) {
3970 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
3971 if (dev_xmit_complete(rc
))
3974 HARD_TX_UNLOCK(dev
, txq
);
3976 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
3980 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
3982 static struct static_key generic_xdp_needed __read_mostly
;
3984 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
3987 u32 act
= netif_receive_generic_xdp(skb
, xdp_prog
);
3990 if (act
!= XDP_PASS
) {
3993 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
3997 /* fallthru to submit skb */
3999 generic_xdp_tx(skb
, xdp_prog
);
4010 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4012 static int netif_rx_internal(struct sk_buff
*skb
)
4016 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4018 trace_netif_rx(skb
);
4020 if (static_key_false(&generic_xdp_needed
)) {
4025 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4029 /* Consider XDP consuming the packet a success from
4030 * the netdev point of view we do not want to count
4033 if (ret
!= XDP_PASS
)
4034 return NET_RX_SUCCESS
;
4038 if (static_key_false(&rps_needed
)) {
4039 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4045 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4047 cpu
= smp_processor_id();
4049 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4058 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4065 * netif_rx - post buffer to the network code
4066 * @skb: buffer to post
4068 * This function receives a packet from a device driver and queues it for
4069 * the upper (protocol) levels to process. It always succeeds. The buffer
4070 * may be dropped during processing for congestion control or by the
4074 * NET_RX_SUCCESS (no congestion)
4075 * NET_RX_DROP (packet was dropped)
4079 int netif_rx(struct sk_buff
*skb
)
4081 trace_netif_rx_entry(skb
);
4083 return netif_rx_internal(skb
);
4085 EXPORT_SYMBOL(netif_rx
);
4087 int netif_rx_ni(struct sk_buff
*skb
)
4091 trace_netif_rx_ni_entry(skb
);
4094 err
= netif_rx_internal(skb
);
4095 if (local_softirq_pending())
4101 EXPORT_SYMBOL(netif_rx_ni
);
4103 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4105 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4107 if (sd
->completion_queue
) {
4108 struct sk_buff
*clist
;
4110 local_irq_disable();
4111 clist
= sd
->completion_queue
;
4112 sd
->completion_queue
= NULL
;
4116 struct sk_buff
*skb
= clist
;
4118 clist
= clist
->next
;
4120 WARN_ON(refcount_read(&skb
->users
));
4121 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4122 trace_consume_skb(skb
);
4124 trace_kfree_skb(skb
, net_tx_action
);
4126 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4129 __kfree_skb_defer(skb
);
4132 __kfree_skb_flush();
4135 if (sd
->output_queue
) {
4138 local_irq_disable();
4139 head
= sd
->output_queue
;
4140 sd
->output_queue
= NULL
;
4141 sd
->output_queue_tailp
= &sd
->output_queue
;
4145 struct Qdisc
*q
= head
;
4146 spinlock_t
*root_lock
;
4148 head
= head
->next_sched
;
4150 root_lock
= qdisc_lock(q
);
4151 spin_lock(root_lock
);
4152 /* We need to make sure head->next_sched is read
4153 * before clearing __QDISC_STATE_SCHED
4155 smp_mb__before_atomic();
4156 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4158 spin_unlock(root_lock
);
4163 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4164 /* This hook is defined here for ATM LANE */
4165 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4166 unsigned char *addr
) __read_mostly
;
4167 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4170 static inline struct sk_buff
*
4171 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4172 struct net_device
*orig_dev
)
4174 #ifdef CONFIG_NET_CLS_ACT
4175 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4176 struct tcf_result cl_res
;
4178 /* If there's at least one ingress present somewhere (so
4179 * we get here via enabled static key), remaining devices
4180 * that are not configured with an ingress qdisc will bail
4187 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4191 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4192 skb
->tc_at_ingress
= 1;
4193 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4195 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4197 case TC_ACT_RECLASSIFY
:
4198 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4201 mini_qdisc_qstats_cpu_drop(miniq
);
4209 case TC_ACT_REDIRECT
:
4210 /* skb_mac_header check was done by cls/act_bpf, so
4211 * we can safely push the L2 header back before
4212 * redirecting to another netdev
4214 __skb_push(skb
, skb
->mac_len
);
4215 skb_do_redirect(skb
);
4220 #endif /* CONFIG_NET_CLS_ACT */
4225 * netdev_is_rx_handler_busy - check if receive handler is registered
4226 * @dev: device to check
4228 * Check if a receive handler is already registered for a given device.
4229 * Return true if there one.
4231 * The caller must hold the rtnl_mutex.
4233 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4236 return dev
&& rtnl_dereference(dev
->rx_handler
);
4238 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4241 * netdev_rx_handler_register - register receive handler
4242 * @dev: device to register a handler for
4243 * @rx_handler: receive handler to register
4244 * @rx_handler_data: data pointer that is used by rx handler
4246 * Register a receive handler for a device. This handler will then be
4247 * called from __netif_receive_skb. A negative errno code is returned
4250 * The caller must hold the rtnl_mutex.
4252 * For a general description of rx_handler, see enum rx_handler_result.
4254 int netdev_rx_handler_register(struct net_device
*dev
,
4255 rx_handler_func_t
*rx_handler
,
4256 void *rx_handler_data
)
4258 if (netdev_is_rx_handler_busy(dev
))
4261 /* Note: rx_handler_data must be set before rx_handler */
4262 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4263 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4267 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4270 * netdev_rx_handler_unregister - unregister receive handler
4271 * @dev: device to unregister a handler from
4273 * Unregister a receive handler from a device.
4275 * The caller must hold the rtnl_mutex.
4277 void netdev_rx_handler_unregister(struct net_device
*dev
)
4281 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4282 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4283 * section has a guarantee to see a non NULL rx_handler_data
4287 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4289 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4292 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4293 * the special handling of PFMEMALLOC skbs.
4295 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4297 switch (skb
->protocol
) {
4298 case htons(ETH_P_ARP
):
4299 case htons(ETH_P_IP
):
4300 case htons(ETH_P_IPV6
):
4301 case htons(ETH_P_8021Q
):
4302 case htons(ETH_P_8021AD
):
4309 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4310 int *ret
, struct net_device
*orig_dev
)
4312 #ifdef CONFIG_NETFILTER_INGRESS
4313 if (nf_hook_ingress_active(skb
)) {
4317 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4322 ingress_retval
= nf_hook_ingress(skb
);
4324 return ingress_retval
;
4326 #endif /* CONFIG_NETFILTER_INGRESS */
4330 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
)
4332 struct packet_type
*ptype
, *pt_prev
;
4333 rx_handler_func_t
*rx_handler
;
4334 struct net_device
*orig_dev
;
4335 bool deliver_exact
= false;
4336 int ret
= NET_RX_DROP
;
4339 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4341 trace_netif_receive_skb(skb
);
4343 orig_dev
= skb
->dev
;
4345 skb_reset_network_header(skb
);
4346 if (!skb_transport_header_was_set(skb
))
4347 skb_reset_transport_header(skb
);
4348 skb_reset_mac_len(skb
);
4353 skb
->skb_iif
= skb
->dev
->ifindex
;
4355 __this_cpu_inc(softnet_data
.processed
);
4357 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4358 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4359 skb
= skb_vlan_untag(skb
);
4364 if (skb_skip_tc_classify(skb
))
4370 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4372 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4376 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4378 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4383 #ifdef CONFIG_NET_INGRESS
4384 if (static_key_false(&ingress_needed
)) {
4385 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4389 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4395 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4398 if (skb_vlan_tag_present(skb
)) {
4400 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4403 if (vlan_do_receive(&skb
))
4405 else if (unlikely(!skb
))
4409 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4412 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4415 switch (rx_handler(&skb
)) {
4416 case RX_HANDLER_CONSUMED
:
4417 ret
= NET_RX_SUCCESS
;
4419 case RX_HANDLER_ANOTHER
:
4421 case RX_HANDLER_EXACT
:
4422 deliver_exact
= true;
4423 case RX_HANDLER_PASS
:
4430 if (unlikely(skb_vlan_tag_present(skb
))) {
4431 if (skb_vlan_tag_get_id(skb
))
4432 skb
->pkt_type
= PACKET_OTHERHOST
;
4433 /* Note: we might in the future use prio bits
4434 * and set skb->priority like in vlan_do_receive()
4435 * For the time being, just ignore Priority Code Point
4440 type
= skb
->protocol
;
4442 /* deliver only exact match when indicated */
4443 if (likely(!deliver_exact
)) {
4444 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4445 &ptype_base
[ntohs(type
) &
4449 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4450 &orig_dev
->ptype_specific
);
4452 if (unlikely(skb
->dev
!= orig_dev
)) {
4453 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4454 &skb
->dev
->ptype_specific
);
4458 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4461 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4465 atomic_long_inc(&skb
->dev
->rx_dropped
);
4467 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4469 /* Jamal, now you will not able to escape explaining
4470 * me how you were going to use this. :-)
4480 * netif_receive_skb_core - special purpose version of netif_receive_skb
4481 * @skb: buffer to process
4483 * More direct receive version of netif_receive_skb(). It should
4484 * only be used by callers that have a need to skip RPS and Generic XDP.
4485 * Caller must also take care of handling if (page_is_)pfmemalloc.
4487 * This function may only be called from softirq context and interrupts
4488 * should be enabled.
4490 * Return values (usually ignored):
4491 * NET_RX_SUCCESS: no congestion
4492 * NET_RX_DROP: packet was dropped
4494 int netif_receive_skb_core(struct sk_buff
*skb
)
4499 ret
= __netif_receive_skb_core(skb
, false);
4504 EXPORT_SYMBOL(netif_receive_skb_core
);
4506 static int __netif_receive_skb(struct sk_buff
*skb
)
4510 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
4511 unsigned int noreclaim_flag
;
4514 * PFMEMALLOC skbs are special, they should
4515 * - be delivered to SOCK_MEMALLOC sockets only
4516 * - stay away from userspace
4517 * - have bounded memory usage
4519 * Use PF_MEMALLOC as this saves us from propagating the allocation
4520 * context down to all allocation sites.
4522 noreclaim_flag
= memalloc_noreclaim_save();
4523 ret
= __netif_receive_skb_core(skb
, true);
4524 memalloc_noreclaim_restore(noreclaim_flag
);
4526 ret
= __netif_receive_skb_core(skb
, false);
4531 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
4533 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
4534 struct bpf_prog
*new = xdp
->prog
;
4537 switch (xdp
->command
) {
4538 case XDP_SETUP_PROG
:
4539 rcu_assign_pointer(dev
->xdp_prog
, new);
4544 static_key_slow_dec(&generic_xdp_needed
);
4545 } else if (new && !old
) {
4546 static_key_slow_inc(&generic_xdp_needed
);
4547 dev_disable_lro(dev
);
4551 case XDP_QUERY_PROG
:
4552 xdp
->prog_attached
= !!old
;
4553 xdp
->prog_id
= old
? old
->aux
->id
: 0;
4564 static int netif_receive_skb_internal(struct sk_buff
*skb
)
4568 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4570 if (skb_defer_rx_timestamp(skb
))
4571 return NET_RX_SUCCESS
;
4573 if (static_key_false(&generic_xdp_needed
)) {
4578 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4582 if (ret
!= XDP_PASS
)
4588 if (static_key_false(&rps_needed
)) {
4589 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4590 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4593 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4599 ret
= __netif_receive_skb(skb
);
4605 * netif_receive_skb - process receive buffer from network
4606 * @skb: buffer to process
4608 * netif_receive_skb() is the main receive data processing function.
4609 * It always succeeds. The buffer may be dropped during processing
4610 * for congestion control or by the protocol layers.
4612 * This function may only be called from softirq context and interrupts
4613 * should be enabled.
4615 * Return values (usually ignored):
4616 * NET_RX_SUCCESS: no congestion
4617 * NET_RX_DROP: packet was dropped
4619 int netif_receive_skb(struct sk_buff
*skb
)
4621 trace_netif_receive_skb_entry(skb
);
4623 return netif_receive_skb_internal(skb
);
4625 EXPORT_SYMBOL(netif_receive_skb
);
4627 DEFINE_PER_CPU(struct work_struct
, flush_works
);
4629 /* Network device is going away, flush any packets still pending */
4630 static void flush_backlog(struct work_struct
*work
)
4632 struct sk_buff
*skb
, *tmp
;
4633 struct softnet_data
*sd
;
4636 sd
= this_cpu_ptr(&softnet_data
);
4638 local_irq_disable();
4640 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
4641 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4642 __skb_unlink(skb
, &sd
->input_pkt_queue
);
4644 input_queue_head_incr(sd
);
4650 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
4651 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4652 __skb_unlink(skb
, &sd
->process_queue
);
4654 input_queue_head_incr(sd
);
4660 static void flush_all_backlogs(void)
4666 for_each_online_cpu(cpu
)
4667 queue_work_on(cpu
, system_highpri_wq
,
4668 per_cpu_ptr(&flush_works
, cpu
));
4670 for_each_online_cpu(cpu
)
4671 flush_work(per_cpu_ptr(&flush_works
, cpu
));
4676 static int napi_gro_complete(struct sk_buff
*skb
)
4678 struct packet_offload
*ptype
;
4679 __be16 type
= skb
->protocol
;
4680 struct list_head
*head
= &offload_base
;
4683 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
4685 if (NAPI_GRO_CB(skb
)->count
== 1) {
4686 skb_shinfo(skb
)->gso_size
= 0;
4691 list_for_each_entry_rcu(ptype
, head
, list
) {
4692 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
4695 err
= ptype
->callbacks
.gro_complete(skb
, 0);
4701 WARN_ON(&ptype
->list
== head
);
4703 return NET_RX_SUCCESS
;
4707 return netif_receive_skb_internal(skb
);
4710 /* napi->gro_list contains packets ordered by age.
4711 * youngest packets at the head of it.
4712 * Complete skbs in reverse order to reduce latencies.
4714 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
4716 struct sk_buff
*skb
, *prev
= NULL
;
4718 /* scan list and build reverse chain */
4719 for (skb
= napi
->gro_list
; skb
!= NULL
; skb
= skb
->next
) {
4724 for (skb
= prev
; skb
; skb
= prev
) {
4727 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
4731 napi_gro_complete(skb
);
4735 napi
->gro_list
= NULL
;
4737 EXPORT_SYMBOL(napi_gro_flush
);
4739 static void gro_list_prepare(struct napi_struct
*napi
, struct sk_buff
*skb
)
4742 unsigned int maclen
= skb
->dev
->hard_header_len
;
4743 u32 hash
= skb_get_hash_raw(skb
);
4745 for (p
= napi
->gro_list
; p
; p
= p
->next
) {
4746 unsigned long diffs
;
4748 NAPI_GRO_CB(p
)->flush
= 0;
4750 if (hash
!= skb_get_hash_raw(p
)) {
4751 NAPI_GRO_CB(p
)->same_flow
= 0;
4755 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
4756 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
4757 diffs
|= skb_metadata_dst_cmp(p
, skb
);
4758 diffs
|= skb_metadata_differs(p
, skb
);
4759 if (maclen
== ETH_HLEN
)
4760 diffs
|= compare_ether_header(skb_mac_header(p
),
4761 skb_mac_header(skb
));
4763 diffs
= memcmp(skb_mac_header(p
),
4764 skb_mac_header(skb
),
4766 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
4770 static void skb_gro_reset_offset(struct sk_buff
*skb
)
4772 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4773 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
4775 NAPI_GRO_CB(skb
)->data_offset
= 0;
4776 NAPI_GRO_CB(skb
)->frag0
= NULL
;
4777 NAPI_GRO_CB(skb
)->frag0_len
= 0;
4779 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
4781 !PageHighMem(skb_frag_page(frag0
))) {
4782 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
4783 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
4784 skb_frag_size(frag0
),
4785 skb
->end
- skb
->tail
);
4789 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
4791 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4793 BUG_ON(skb
->end
- skb
->tail
< grow
);
4795 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
4797 skb
->data_len
-= grow
;
4800 pinfo
->frags
[0].page_offset
+= grow
;
4801 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
4803 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
4804 skb_frag_unref(skb
, 0);
4805 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
4806 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
4810 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
4812 struct sk_buff
**pp
= NULL
;
4813 struct packet_offload
*ptype
;
4814 __be16 type
= skb
->protocol
;
4815 struct list_head
*head
= &offload_base
;
4817 enum gro_result ret
;
4820 if (netif_elide_gro(skb
->dev
))
4823 gro_list_prepare(napi
, skb
);
4826 list_for_each_entry_rcu(ptype
, head
, list
) {
4827 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
4830 skb_set_network_header(skb
, skb_gro_offset(skb
));
4831 skb_reset_mac_len(skb
);
4832 NAPI_GRO_CB(skb
)->same_flow
= 0;
4833 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
4834 NAPI_GRO_CB(skb
)->free
= 0;
4835 NAPI_GRO_CB(skb
)->encap_mark
= 0;
4836 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
4837 NAPI_GRO_CB(skb
)->is_fou
= 0;
4838 NAPI_GRO_CB(skb
)->is_atomic
= 1;
4839 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
4841 /* Setup for GRO checksum validation */
4842 switch (skb
->ip_summed
) {
4843 case CHECKSUM_COMPLETE
:
4844 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
4845 NAPI_GRO_CB(skb
)->csum_valid
= 1;
4846 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4848 case CHECKSUM_UNNECESSARY
:
4849 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
4850 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4853 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4854 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4857 pp
= ptype
->callbacks
.gro_receive(&napi
->gro_list
, skb
);
4862 if (&ptype
->list
== head
)
4865 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
4870 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
4871 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
4874 struct sk_buff
*nskb
= *pp
;
4878 napi_gro_complete(nskb
);
4885 if (NAPI_GRO_CB(skb
)->flush
)
4888 if (unlikely(napi
->gro_count
>= MAX_GRO_SKBS
)) {
4889 struct sk_buff
*nskb
= napi
->gro_list
;
4891 /* locate the end of the list to select the 'oldest' flow */
4892 while (nskb
->next
) {
4898 napi_gro_complete(nskb
);
4902 NAPI_GRO_CB(skb
)->count
= 1;
4903 NAPI_GRO_CB(skb
)->age
= jiffies
;
4904 NAPI_GRO_CB(skb
)->last
= skb
;
4905 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
4906 skb
->next
= napi
->gro_list
;
4907 napi
->gro_list
= skb
;
4911 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
4913 gro_pull_from_frag0(skb
, grow
);
4922 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
4924 struct list_head
*offload_head
= &offload_base
;
4925 struct packet_offload
*ptype
;
4927 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
4928 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
4934 EXPORT_SYMBOL(gro_find_receive_by_type
);
4936 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
4938 struct list_head
*offload_head
= &offload_base
;
4939 struct packet_offload
*ptype
;
4941 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
4942 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
4948 EXPORT_SYMBOL(gro_find_complete_by_type
);
4950 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
4954 kmem_cache_free(skbuff_head_cache
, skb
);
4957 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
4961 if (netif_receive_skb_internal(skb
))
4969 case GRO_MERGED_FREE
:
4970 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
4971 napi_skb_free_stolen_head(skb
);
4985 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
4987 skb_mark_napi_id(skb
, napi
);
4988 trace_napi_gro_receive_entry(skb
);
4990 skb_gro_reset_offset(skb
);
4992 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
4994 EXPORT_SYMBOL(napi_gro_receive
);
4996 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
4998 if (unlikely(skb
->pfmemalloc
)) {
5002 __skb_pull(skb
, skb_headlen(skb
));
5003 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5004 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5006 skb
->dev
= napi
->dev
;
5008 skb
->encapsulation
= 0;
5009 skb_shinfo(skb
)->gso_type
= 0;
5010 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5016 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5018 struct sk_buff
*skb
= napi
->skb
;
5021 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5024 skb_mark_napi_id(skb
, napi
);
5029 EXPORT_SYMBOL(napi_get_frags
);
5031 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5032 struct sk_buff
*skb
,
5038 __skb_push(skb
, ETH_HLEN
);
5039 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5040 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5045 napi_reuse_skb(napi
, skb
);
5048 case GRO_MERGED_FREE
:
5049 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5050 napi_skb_free_stolen_head(skb
);
5052 napi_reuse_skb(napi
, skb
);
5063 /* Upper GRO stack assumes network header starts at gro_offset=0
5064 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5065 * We copy ethernet header into skb->data to have a common layout.
5067 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5069 struct sk_buff
*skb
= napi
->skb
;
5070 const struct ethhdr
*eth
;
5071 unsigned int hlen
= sizeof(*eth
);
5075 skb_reset_mac_header(skb
);
5076 skb_gro_reset_offset(skb
);
5078 eth
= skb_gro_header_fast(skb
, 0);
5079 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5080 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5081 if (unlikely(!eth
)) {
5082 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5083 __func__
, napi
->dev
->name
);
5084 napi_reuse_skb(napi
, skb
);
5088 gro_pull_from_frag0(skb
, hlen
);
5089 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5090 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5092 __skb_pull(skb
, hlen
);
5095 * This works because the only protocols we care about don't require
5097 * We'll fix it up properly in napi_frags_finish()
5099 skb
->protocol
= eth
->h_proto
;
5104 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5106 struct sk_buff
*skb
= napi_frags_skb(napi
);
5111 trace_napi_gro_frags_entry(skb
);
5113 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5115 EXPORT_SYMBOL(napi_gro_frags
);
5117 /* Compute the checksum from gro_offset and return the folded value
5118 * after adding in any pseudo checksum.
5120 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5125 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5127 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5128 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5130 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5131 !skb
->csum_complete_sw
)
5132 netdev_rx_csum_fault(skb
->dev
);
5135 NAPI_GRO_CB(skb
)->csum
= wsum
;
5136 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5140 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5142 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5146 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5148 if (cpu_online(remsd
->cpu
))
5149 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5156 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5157 * Note: called with local irq disabled, but exits with local irq enabled.
5159 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5162 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5165 sd
->rps_ipi_list
= NULL
;
5169 /* Send pending IPI's to kick RPS processing on remote cpus. */
5170 net_rps_send_ipi(remsd
);
5176 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5179 return sd
->rps_ipi_list
!= NULL
;
5185 static int process_backlog(struct napi_struct
*napi
, int quota
)
5187 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5191 /* Check if we have pending ipi, its better to send them now,
5192 * not waiting net_rx_action() end.
5194 if (sd_has_rps_ipi_waiting(sd
)) {
5195 local_irq_disable();
5196 net_rps_action_and_irq_enable(sd
);
5199 napi
->weight
= dev_rx_weight
;
5201 struct sk_buff
*skb
;
5203 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5205 __netif_receive_skb(skb
);
5207 input_queue_head_incr(sd
);
5208 if (++work
>= quota
)
5213 local_irq_disable();
5215 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5217 * Inline a custom version of __napi_complete().
5218 * only current cpu owns and manipulates this napi,
5219 * and NAPI_STATE_SCHED is the only possible flag set
5221 * We can use a plain write instead of clear_bit(),
5222 * and we dont need an smp_mb() memory barrier.
5227 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5228 &sd
->process_queue
);
5238 * __napi_schedule - schedule for receive
5239 * @n: entry to schedule
5241 * The entry's receive function will be scheduled to run.
5242 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5244 void __napi_schedule(struct napi_struct
*n
)
5246 unsigned long flags
;
5248 local_irq_save(flags
);
5249 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5250 local_irq_restore(flags
);
5252 EXPORT_SYMBOL(__napi_schedule
);
5255 * napi_schedule_prep - check if napi can be scheduled
5258 * Test if NAPI routine is already running, and if not mark
5259 * it as running. This is used as a condition variable
5260 * insure only one NAPI poll instance runs. We also make
5261 * sure there is no pending NAPI disable.
5263 bool napi_schedule_prep(struct napi_struct
*n
)
5265 unsigned long val
, new;
5268 val
= READ_ONCE(n
->state
);
5269 if (unlikely(val
& NAPIF_STATE_DISABLE
))
5271 new = val
| NAPIF_STATE_SCHED
;
5273 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5274 * This was suggested by Alexander Duyck, as compiler
5275 * emits better code than :
5276 * if (val & NAPIF_STATE_SCHED)
5277 * new |= NAPIF_STATE_MISSED;
5279 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
5281 } while (cmpxchg(&n
->state
, val
, new) != val
);
5283 return !(val
& NAPIF_STATE_SCHED
);
5285 EXPORT_SYMBOL(napi_schedule_prep
);
5288 * __napi_schedule_irqoff - schedule for receive
5289 * @n: entry to schedule
5291 * Variant of __napi_schedule() assuming hard irqs are masked
5293 void __napi_schedule_irqoff(struct napi_struct
*n
)
5295 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5297 EXPORT_SYMBOL(__napi_schedule_irqoff
);
5299 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
5301 unsigned long flags
, val
, new;
5304 * 1) Don't let napi dequeue from the cpu poll list
5305 * just in case its running on a different cpu.
5306 * 2) If we are busy polling, do nothing here, we have
5307 * the guarantee we will be called later.
5309 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
5310 NAPIF_STATE_IN_BUSY_POLL
)))
5314 unsigned long timeout
= 0;
5317 timeout
= n
->dev
->gro_flush_timeout
;
5320 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
5321 HRTIMER_MODE_REL_PINNED
);
5323 napi_gro_flush(n
, false);
5325 if (unlikely(!list_empty(&n
->poll_list
))) {
5326 /* If n->poll_list is not empty, we need to mask irqs */
5327 local_irq_save(flags
);
5328 list_del_init(&n
->poll_list
);
5329 local_irq_restore(flags
);
5333 val
= READ_ONCE(n
->state
);
5335 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
5337 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
5339 /* If STATE_MISSED was set, leave STATE_SCHED set,
5340 * because we will call napi->poll() one more time.
5341 * This C code was suggested by Alexander Duyck to help gcc.
5343 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
5345 } while (cmpxchg(&n
->state
, val
, new) != val
);
5347 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
5354 EXPORT_SYMBOL(napi_complete_done
);
5356 /* must be called under rcu_read_lock(), as we dont take a reference */
5357 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
5359 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
5360 struct napi_struct
*napi
;
5362 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
5363 if (napi
->napi_id
== napi_id
)
5369 #if defined(CONFIG_NET_RX_BUSY_POLL)
5371 #define BUSY_POLL_BUDGET 8
5373 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
5377 /* Busy polling means there is a high chance device driver hard irq
5378 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379 * set in napi_schedule_prep().
5380 * Since we are about to call napi->poll() once more, we can safely
5381 * clear NAPI_STATE_MISSED.
5383 * Note: x86 could use a single "lock and ..." instruction
5384 * to perform these two clear_bit()
5386 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
5387 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
5391 /* All we really want here is to re-enable device interrupts.
5392 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5394 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
5395 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
5396 netpoll_poll_unlock(have_poll_lock
);
5397 if (rc
== BUSY_POLL_BUDGET
)
5398 __napi_schedule(napi
);
5402 void napi_busy_loop(unsigned int napi_id
,
5403 bool (*loop_end
)(void *, unsigned long),
5406 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
5407 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
5408 void *have_poll_lock
= NULL
;
5409 struct napi_struct
*napi
;
5416 napi
= napi_by_id(napi_id
);
5426 unsigned long val
= READ_ONCE(napi
->state
);
5428 /* If multiple threads are competing for this napi,
5429 * we avoid dirtying napi->state as much as we can.
5431 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
5432 NAPIF_STATE_IN_BUSY_POLL
))
5434 if (cmpxchg(&napi
->state
, val
,
5435 val
| NAPIF_STATE_IN_BUSY_POLL
|
5436 NAPIF_STATE_SCHED
) != val
)
5438 have_poll_lock
= netpoll_poll_lock(napi
);
5439 napi_poll
= napi
->poll
;
5441 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
5442 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
5445 __NET_ADD_STATS(dev_net(napi
->dev
),
5446 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
5449 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
5452 if (unlikely(need_resched())) {
5454 busy_poll_stop(napi
, have_poll_lock
);
5458 if (loop_end(loop_end_arg
, start_time
))
5465 busy_poll_stop(napi
, have_poll_lock
);
5470 EXPORT_SYMBOL(napi_busy_loop
);
5472 #endif /* CONFIG_NET_RX_BUSY_POLL */
5474 static void napi_hash_add(struct napi_struct
*napi
)
5476 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
5477 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
5480 spin_lock(&napi_hash_lock
);
5482 /* 0..NR_CPUS range is reserved for sender_cpu use */
5484 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
5485 napi_gen_id
= MIN_NAPI_ID
;
5486 } while (napi_by_id(napi_gen_id
));
5487 napi
->napi_id
= napi_gen_id
;
5489 hlist_add_head_rcu(&napi
->napi_hash_node
,
5490 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
5492 spin_unlock(&napi_hash_lock
);
5495 /* Warning : caller is responsible to make sure rcu grace period
5496 * is respected before freeing memory containing @napi
5498 bool napi_hash_del(struct napi_struct
*napi
)
5500 bool rcu_sync_needed
= false;
5502 spin_lock(&napi_hash_lock
);
5504 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
5505 rcu_sync_needed
= true;
5506 hlist_del_rcu(&napi
->napi_hash_node
);
5508 spin_unlock(&napi_hash_lock
);
5509 return rcu_sync_needed
;
5511 EXPORT_SYMBOL_GPL(napi_hash_del
);
5513 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
5515 struct napi_struct
*napi
;
5517 napi
= container_of(timer
, struct napi_struct
, timer
);
5519 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5522 if (napi
->gro_list
&& !napi_disable_pending(napi
) &&
5523 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
5524 __napi_schedule_irqoff(napi
);
5526 return HRTIMER_NORESTART
;
5529 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
5530 int (*poll
)(struct napi_struct
*, int), int weight
)
5532 INIT_LIST_HEAD(&napi
->poll_list
);
5533 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
5534 napi
->timer
.function
= napi_watchdog
;
5535 napi
->gro_count
= 0;
5536 napi
->gro_list
= NULL
;
5539 if (weight
> NAPI_POLL_WEIGHT
)
5540 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5542 napi
->weight
= weight
;
5543 list_add(&napi
->dev_list
, &dev
->napi_list
);
5545 #ifdef CONFIG_NETPOLL
5546 napi
->poll_owner
= -1;
5548 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
5549 napi_hash_add(napi
);
5551 EXPORT_SYMBOL(netif_napi_add
);
5553 void napi_disable(struct napi_struct
*n
)
5556 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
5558 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
5560 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
5563 hrtimer_cancel(&n
->timer
);
5565 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
5567 EXPORT_SYMBOL(napi_disable
);
5569 /* Must be called in process context */
5570 void netif_napi_del(struct napi_struct
*napi
)
5573 if (napi_hash_del(napi
))
5575 list_del_init(&napi
->dev_list
);
5576 napi_free_frags(napi
);
5578 kfree_skb_list(napi
->gro_list
);
5579 napi
->gro_list
= NULL
;
5580 napi
->gro_count
= 0;
5582 EXPORT_SYMBOL(netif_napi_del
);
5584 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
5589 list_del_init(&n
->poll_list
);
5591 have
= netpoll_poll_lock(n
);
5595 /* This NAPI_STATE_SCHED test is for avoiding a race
5596 * with netpoll's poll_napi(). Only the entity which
5597 * obtains the lock and sees NAPI_STATE_SCHED set will
5598 * actually make the ->poll() call. Therefore we avoid
5599 * accidentally calling ->poll() when NAPI is not scheduled.
5602 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
5603 work
= n
->poll(n
, weight
);
5604 trace_napi_poll(n
, work
, weight
);
5607 WARN_ON_ONCE(work
> weight
);
5609 if (likely(work
< weight
))
5612 /* Drivers must not modify the NAPI state if they
5613 * consume the entire weight. In such cases this code
5614 * still "owns" the NAPI instance and therefore can
5615 * move the instance around on the list at-will.
5617 if (unlikely(napi_disable_pending(n
))) {
5623 /* flush too old packets
5624 * If HZ < 1000, flush all packets.
5626 napi_gro_flush(n
, HZ
>= 1000);
5629 /* Some drivers may have called napi_schedule
5630 * prior to exhausting their budget.
5632 if (unlikely(!list_empty(&n
->poll_list
))) {
5633 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5634 n
->dev
? n
->dev
->name
: "backlog");
5638 list_add_tail(&n
->poll_list
, repoll
);
5641 netpoll_poll_unlock(have
);
5646 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
5648 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
5649 unsigned long time_limit
= jiffies
+
5650 usecs_to_jiffies(netdev_budget_usecs
);
5651 int budget
= netdev_budget
;
5655 local_irq_disable();
5656 list_splice_init(&sd
->poll_list
, &list
);
5660 struct napi_struct
*n
;
5662 if (list_empty(&list
)) {
5663 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
5668 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
5669 budget
-= napi_poll(n
, &repoll
);
5671 /* If softirq window is exhausted then punt.
5672 * Allow this to run for 2 jiffies since which will allow
5673 * an average latency of 1.5/HZ.
5675 if (unlikely(budget
<= 0 ||
5676 time_after_eq(jiffies
, time_limit
))) {
5682 local_irq_disable();
5684 list_splice_tail_init(&sd
->poll_list
, &list
);
5685 list_splice_tail(&repoll
, &list
);
5686 list_splice(&list
, &sd
->poll_list
);
5687 if (!list_empty(&sd
->poll_list
))
5688 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
5690 net_rps_action_and_irq_enable(sd
);
5692 __kfree_skb_flush();
5695 struct netdev_adjacent
{
5696 struct net_device
*dev
;
5698 /* upper master flag, there can only be one master device per list */
5701 /* counter for the number of times this device was added to us */
5704 /* private field for the users */
5707 struct list_head list
;
5708 struct rcu_head rcu
;
5711 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
5712 struct list_head
*adj_list
)
5714 struct netdev_adjacent
*adj
;
5716 list_for_each_entry(adj
, adj_list
, list
) {
5717 if (adj
->dev
== adj_dev
)
5723 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
5725 struct net_device
*dev
= data
;
5727 return upper_dev
== dev
;
5731 * netdev_has_upper_dev - Check if device is linked to an upper device
5733 * @upper_dev: upper device to check
5735 * Find out if a device is linked to specified upper device and return true
5736 * in case it is. Note that this checks only immediate upper device,
5737 * not through a complete stack of devices. The caller must hold the RTNL lock.
5739 bool netdev_has_upper_dev(struct net_device
*dev
,
5740 struct net_device
*upper_dev
)
5744 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5747 EXPORT_SYMBOL(netdev_has_upper_dev
);
5750 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5752 * @upper_dev: upper device to check
5754 * Find out if a device is linked to specified upper device and return true
5755 * in case it is. Note that this checks the entire upper device chain.
5756 * The caller must hold rcu lock.
5759 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
5760 struct net_device
*upper_dev
)
5762 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5765 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
5768 * netdev_has_any_upper_dev - Check if device is linked to some device
5771 * Find out if a device is linked to an upper device and return true in case
5772 * it is. The caller must hold the RTNL lock.
5774 bool netdev_has_any_upper_dev(struct net_device
*dev
)
5778 return !list_empty(&dev
->adj_list
.upper
);
5780 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
5783 * netdev_master_upper_dev_get - Get master upper device
5786 * Find a master upper device and return pointer to it or NULL in case
5787 * it's not there. The caller must hold the RTNL lock.
5789 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
5791 struct netdev_adjacent
*upper
;
5795 if (list_empty(&dev
->adj_list
.upper
))
5798 upper
= list_first_entry(&dev
->adj_list
.upper
,
5799 struct netdev_adjacent
, list
);
5800 if (likely(upper
->master
))
5804 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
5807 * netdev_has_any_lower_dev - Check if device is linked to some device
5810 * Find out if a device is linked to a lower device and return true in case
5811 * it is. The caller must hold the RTNL lock.
5813 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
5817 return !list_empty(&dev
->adj_list
.lower
);
5820 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
5822 struct netdev_adjacent
*adj
;
5824 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
5826 return adj
->private;
5828 EXPORT_SYMBOL(netdev_adjacent_get_private
);
5831 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5833 * @iter: list_head ** of the current position
5835 * Gets the next device from the dev's upper list, starting from iter
5836 * position. The caller must hold RCU read lock.
5838 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
5839 struct list_head
**iter
)
5841 struct netdev_adjacent
*upper
;
5843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5845 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5847 if (&upper
->list
== &dev
->adj_list
.upper
)
5850 *iter
= &upper
->list
;
5854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
5856 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
5857 struct list_head
**iter
)
5859 struct netdev_adjacent
*upper
;
5861 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5863 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5865 if (&upper
->list
== &dev
->adj_list
.upper
)
5868 *iter
= &upper
->list
;
5873 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
5874 int (*fn
)(struct net_device
*dev
,
5878 struct net_device
*udev
;
5879 struct list_head
*iter
;
5882 for (iter
= &dev
->adj_list
.upper
,
5883 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
5885 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
5886 /* first is the upper device itself */
5887 ret
= fn(udev
, data
);
5891 /* then look at all of its upper devices */
5892 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
5899 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
5902 * netdev_lower_get_next_private - Get the next ->private from the
5903 * lower neighbour list
5905 * @iter: list_head ** of the current position
5907 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5908 * list, starting from iter position. The caller must hold either hold the
5909 * RTNL lock or its own locking that guarantees that the neighbour lower
5910 * list will remain unchanged.
5912 void *netdev_lower_get_next_private(struct net_device
*dev
,
5913 struct list_head
**iter
)
5915 struct netdev_adjacent
*lower
;
5917 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
5919 if (&lower
->list
== &dev
->adj_list
.lower
)
5922 *iter
= lower
->list
.next
;
5924 return lower
->private;
5926 EXPORT_SYMBOL(netdev_lower_get_next_private
);
5929 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5930 * lower neighbour list, RCU
5933 * @iter: list_head ** of the current position
5935 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5936 * list, starting from iter position. The caller must hold RCU read lock.
5938 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
5939 struct list_head
**iter
)
5941 struct netdev_adjacent
*lower
;
5943 WARN_ON_ONCE(!rcu_read_lock_held());
5945 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5947 if (&lower
->list
== &dev
->adj_list
.lower
)
5950 *iter
= &lower
->list
;
5952 return lower
->private;
5954 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
5957 * netdev_lower_get_next - Get the next device from the lower neighbour
5960 * @iter: list_head ** of the current position
5962 * Gets the next netdev_adjacent from the dev's lower neighbour
5963 * list, starting from iter position. The caller must hold RTNL lock or
5964 * its own locking that guarantees that the neighbour lower
5965 * list will remain unchanged.
5967 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
5969 struct netdev_adjacent
*lower
;
5971 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
5973 if (&lower
->list
== &dev
->adj_list
.lower
)
5976 *iter
= lower
->list
.next
;
5980 EXPORT_SYMBOL(netdev_lower_get_next
);
5982 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
5983 struct list_head
**iter
)
5985 struct netdev_adjacent
*lower
;
5987 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
5989 if (&lower
->list
== &dev
->adj_list
.lower
)
5992 *iter
= &lower
->list
;
5997 int netdev_walk_all_lower_dev(struct net_device
*dev
,
5998 int (*fn
)(struct net_device
*dev
,
6002 struct net_device
*ldev
;
6003 struct list_head
*iter
;
6006 for (iter
= &dev
->adj_list
.lower
,
6007 ldev
= netdev_next_lower_dev(dev
, &iter
);
6009 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6010 /* first is the lower device itself */
6011 ret
= fn(ldev
, data
);
6015 /* then look at all of its lower devices */
6016 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6025 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6026 struct list_head
**iter
)
6028 struct netdev_adjacent
*lower
;
6030 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6031 if (&lower
->list
== &dev
->adj_list
.lower
)
6034 *iter
= &lower
->list
;
6039 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6040 int (*fn
)(struct net_device
*dev
,
6044 struct net_device
*ldev
;
6045 struct list_head
*iter
;
6048 for (iter
= &dev
->adj_list
.lower
,
6049 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
6051 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
6052 /* first is the lower device itself */
6053 ret
= fn(ldev
, data
);
6057 /* then look at all of its lower devices */
6058 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
6065 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6068 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6069 * lower neighbour list, RCU
6073 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6074 * list. The caller must hold RCU read lock.
6076 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6078 struct netdev_adjacent
*lower
;
6080 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6081 struct netdev_adjacent
, list
);
6083 return lower
->private;
6086 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6089 * netdev_master_upper_dev_get_rcu - Get master upper device
6092 * Find a master upper device and return pointer to it or NULL in case
6093 * it's not there. The caller must hold the RCU read lock.
6095 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6097 struct netdev_adjacent
*upper
;
6099 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6100 struct netdev_adjacent
, list
);
6101 if (upper
&& likely(upper
->master
))
6105 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6107 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6108 struct net_device
*adj_dev
,
6109 struct list_head
*dev_list
)
6111 char linkname
[IFNAMSIZ
+7];
6113 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6114 "upper_%s" : "lower_%s", adj_dev
->name
);
6115 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6118 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6120 struct list_head
*dev_list
)
6122 char linkname
[IFNAMSIZ
+7];
6124 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6125 "upper_%s" : "lower_%s", name
);
6126 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6129 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6130 struct net_device
*adj_dev
,
6131 struct list_head
*dev_list
)
6133 return (dev_list
== &dev
->adj_list
.upper
||
6134 dev_list
== &dev
->adj_list
.lower
) &&
6135 net_eq(dev_net(dev
), dev_net(adj_dev
));
6138 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6139 struct net_device
*adj_dev
,
6140 struct list_head
*dev_list
,
6141 void *private, bool master
)
6143 struct netdev_adjacent
*adj
;
6146 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6150 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6151 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6156 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6161 adj
->master
= master
;
6163 adj
->private = private;
6166 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6167 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
6169 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
6170 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
6175 /* Ensure that master link is always the first item in list. */
6177 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
6178 &(adj_dev
->dev
.kobj
), "master");
6180 goto remove_symlinks
;
6182 list_add_rcu(&adj
->list
, dev_list
);
6184 list_add_tail_rcu(&adj
->list
, dev_list
);
6190 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6191 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6199 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
6200 struct net_device
*adj_dev
,
6202 struct list_head
*dev_list
)
6204 struct netdev_adjacent
*adj
;
6206 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6207 dev
->name
, adj_dev
->name
, ref_nr
);
6209 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6212 pr_err("Adjacency does not exist for device %s from %s\n",
6213 dev
->name
, adj_dev
->name
);
6218 if (adj
->ref_nr
> ref_nr
) {
6219 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6220 dev
->name
, adj_dev
->name
, ref_nr
,
6221 adj
->ref_nr
- ref_nr
);
6222 adj
->ref_nr
-= ref_nr
;
6227 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
6229 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6230 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6232 list_del_rcu(&adj
->list
);
6233 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6234 adj_dev
->name
, dev
->name
, adj_dev
->name
);
6236 kfree_rcu(adj
, rcu
);
6239 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
6240 struct net_device
*upper_dev
,
6241 struct list_head
*up_list
,
6242 struct list_head
*down_list
,
6243 void *private, bool master
)
6247 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
6252 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
6255 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
6262 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
6263 struct net_device
*upper_dev
,
6265 struct list_head
*up_list
,
6266 struct list_head
*down_list
)
6268 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
6269 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
6272 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
6273 struct net_device
*upper_dev
,
6274 void *private, bool master
)
6276 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
6277 &dev
->adj_list
.upper
,
6278 &upper_dev
->adj_list
.lower
,
6282 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
6283 struct net_device
*upper_dev
)
6285 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
6286 &dev
->adj_list
.upper
,
6287 &upper_dev
->adj_list
.lower
);
6290 static int __netdev_upper_dev_link(struct net_device
*dev
,
6291 struct net_device
*upper_dev
, bool master
,
6292 void *upper_priv
, void *upper_info
,
6293 struct netlink_ext_ack
*extack
)
6295 struct netdev_notifier_changeupper_info changeupper_info
= {
6300 .upper_dev
= upper_dev
,
6303 .upper_info
= upper_info
,
6309 if (dev
== upper_dev
)
6312 /* To prevent loops, check if dev is not upper device to upper_dev. */
6313 if (netdev_has_upper_dev(upper_dev
, dev
))
6316 if (netdev_has_upper_dev(dev
, upper_dev
))
6319 if (master
&& netdev_master_upper_dev_get(dev
))
6322 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
6323 &changeupper_info
.info
);
6324 ret
= notifier_to_errno(ret
);
6328 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
6333 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
6334 &changeupper_info
.info
);
6335 ret
= notifier_to_errno(ret
);
6342 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6348 * netdev_upper_dev_link - Add a link to the upper device
6350 * @upper_dev: new upper device
6352 * Adds a link to device which is upper to this one. The caller must hold
6353 * the RTNL lock. On a failure a negative errno code is returned.
6354 * On success the reference counts are adjusted and the function
6357 int netdev_upper_dev_link(struct net_device
*dev
,
6358 struct net_device
*upper_dev
,
6359 struct netlink_ext_ack
*extack
)
6361 return __netdev_upper_dev_link(dev
, upper_dev
, false,
6362 NULL
, NULL
, extack
);
6364 EXPORT_SYMBOL(netdev_upper_dev_link
);
6367 * netdev_master_upper_dev_link - Add a master link to the upper device
6369 * @upper_dev: new upper device
6370 * @upper_priv: upper device private
6371 * @upper_info: upper info to be passed down via notifier
6373 * Adds a link to device which is upper to this one. In this case, only
6374 * one master upper device can be linked, although other non-master devices
6375 * might be linked as well. The caller must hold the RTNL lock.
6376 * On a failure a negative errno code is returned. On success the reference
6377 * counts are adjusted and the function returns zero.
6379 int netdev_master_upper_dev_link(struct net_device
*dev
,
6380 struct net_device
*upper_dev
,
6381 void *upper_priv
, void *upper_info
,
6382 struct netlink_ext_ack
*extack
)
6384 return __netdev_upper_dev_link(dev
, upper_dev
, true,
6385 upper_priv
, upper_info
, extack
);
6387 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
6390 * netdev_upper_dev_unlink - Removes a link to upper device
6392 * @upper_dev: new upper device
6394 * Removes a link to device which is upper to this one. The caller must hold
6397 void netdev_upper_dev_unlink(struct net_device
*dev
,
6398 struct net_device
*upper_dev
)
6400 struct netdev_notifier_changeupper_info changeupper_info
= {
6404 .upper_dev
= upper_dev
,
6410 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
6412 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
6413 &changeupper_info
.info
);
6415 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6417 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
6418 &changeupper_info
.info
);
6420 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
6423 * netdev_bonding_info_change - Dispatch event about slave change
6425 * @bonding_info: info to dispatch
6427 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6428 * The caller must hold the RTNL lock.
6430 void netdev_bonding_info_change(struct net_device
*dev
,
6431 struct netdev_bonding_info
*bonding_info
)
6433 struct netdev_notifier_bonding_info info
= {
6437 memcpy(&info
.bonding_info
, bonding_info
,
6438 sizeof(struct netdev_bonding_info
));
6439 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
6442 EXPORT_SYMBOL(netdev_bonding_info_change
);
6444 static void netdev_adjacent_add_links(struct net_device
*dev
)
6446 struct netdev_adjacent
*iter
;
6448 struct net
*net
= dev_net(dev
);
6450 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6451 if (!net_eq(net
, dev_net(iter
->dev
)))
6453 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6454 &iter
->dev
->adj_list
.lower
);
6455 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6456 &dev
->adj_list
.upper
);
6459 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6460 if (!net_eq(net
, dev_net(iter
->dev
)))
6462 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6463 &iter
->dev
->adj_list
.upper
);
6464 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6465 &dev
->adj_list
.lower
);
6469 static void netdev_adjacent_del_links(struct net_device
*dev
)
6471 struct netdev_adjacent
*iter
;
6473 struct net
*net
= dev_net(dev
);
6475 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6476 if (!net_eq(net
, dev_net(iter
->dev
)))
6478 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6479 &iter
->dev
->adj_list
.lower
);
6480 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6481 &dev
->adj_list
.upper
);
6484 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6485 if (!net_eq(net
, dev_net(iter
->dev
)))
6487 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6488 &iter
->dev
->adj_list
.upper
);
6489 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6490 &dev
->adj_list
.lower
);
6494 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
6496 struct netdev_adjacent
*iter
;
6498 struct net
*net
= dev_net(dev
);
6500 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6501 if (!net_eq(net
, dev_net(iter
->dev
)))
6503 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6504 &iter
->dev
->adj_list
.lower
);
6505 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6506 &iter
->dev
->adj_list
.lower
);
6509 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6510 if (!net_eq(net
, dev_net(iter
->dev
)))
6512 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6513 &iter
->dev
->adj_list
.upper
);
6514 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6515 &iter
->dev
->adj_list
.upper
);
6519 void *netdev_lower_dev_get_private(struct net_device
*dev
,
6520 struct net_device
*lower_dev
)
6522 struct netdev_adjacent
*lower
;
6526 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
6530 return lower
->private;
6532 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
6535 int dev_get_nest_level(struct net_device
*dev
)
6537 struct net_device
*lower
= NULL
;
6538 struct list_head
*iter
;
6544 netdev_for_each_lower_dev(dev
, lower
, iter
) {
6545 nest
= dev_get_nest_level(lower
);
6546 if (max_nest
< nest
)
6550 return max_nest
+ 1;
6552 EXPORT_SYMBOL(dev_get_nest_level
);
6555 * netdev_lower_change - Dispatch event about lower device state change
6556 * @lower_dev: device
6557 * @lower_state_info: state to dispatch
6559 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6560 * The caller must hold the RTNL lock.
6562 void netdev_lower_state_changed(struct net_device
*lower_dev
,
6563 void *lower_state_info
)
6565 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
6566 .info
.dev
= lower_dev
,
6570 changelowerstate_info
.lower_state_info
= lower_state_info
;
6571 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
6572 &changelowerstate_info
.info
);
6574 EXPORT_SYMBOL(netdev_lower_state_changed
);
6576 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
6578 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6580 if (ops
->ndo_change_rx_flags
)
6581 ops
->ndo_change_rx_flags(dev
, flags
);
6584 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
6586 unsigned int old_flags
= dev
->flags
;
6592 dev
->flags
|= IFF_PROMISC
;
6593 dev
->promiscuity
+= inc
;
6594 if (dev
->promiscuity
== 0) {
6597 * If inc causes overflow, untouch promisc and return error.
6600 dev
->flags
&= ~IFF_PROMISC
;
6602 dev
->promiscuity
-= inc
;
6603 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6608 if (dev
->flags
!= old_flags
) {
6609 pr_info("device %s %s promiscuous mode\n",
6611 dev
->flags
& IFF_PROMISC
? "entered" : "left");
6612 if (audit_enabled
) {
6613 current_uid_gid(&uid
, &gid
);
6614 audit_log(current
->audit_context
, GFP_ATOMIC
,
6615 AUDIT_ANOM_PROMISCUOUS
,
6616 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6617 dev
->name
, (dev
->flags
& IFF_PROMISC
),
6618 (old_flags
& IFF_PROMISC
),
6619 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
6620 from_kuid(&init_user_ns
, uid
),
6621 from_kgid(&init_user_ns
, gid
),
6622 audit_get_sessionid(current
));
6625 dev_change_rx_flags(dev
, IFF_PROMISC
);
6628 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
6633 * dev_set_promiscuity - update promiscuity count on a device
6637 * Add or remove promiscuity from a device. While the count in the device
6638 * remains above zero the interface remains promiscuous. Once it hits zero
6639 * the device reverts back to normal filtering operation. A negative inc
6640 * value is used to drop promiscuity on the device.
6641 * Return 0 if successful or a negative errno code on error.
6643 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
6645 unsigned int old_flags
= dev
->flags
;
6648 err
= __dev_set_promiscuity(dev
, inc
, true);
6651 if (dev
->flags
!= old_flags
)
6652 dev_set_rx_mode(dev
);
6655 EXPORT_SYMBOL(dev_set_promiscuity
);
6657 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
6659 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
6663 dev
->flags
|= IFF_ALLMULTI
;
6664 dev
->allmulti
+= inc
;
6665 if (dev
->allmulti
== 0) {
6668 * If inc causes overflow, untouch allmulti and return error.
6671 dev
->flags
&= ~IFF_ALLMULTI
;
6673 dev
->allmulti
-= inc
;
6674 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6679 if (dev
->flags
^ old_flags
) {
6680 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
6681 dev_set_rx_mode(dev
);
6683 __dev_notify_flags(dev
, old_flags
,
6684 dev
->gflags
^ old_gflags
);
6690 * dev_set_allmulti - update allmulti count on a device
6694 * Add or remove reception of all multicast frames to a device. While the
6695 * count in the device remains above zero the interface remains listening
6696 * to all interfaces. Once it hits zero the device reverts back to normal
6697 * filtering operation. A negative @inc value is used to drop the counter
6698 * when releasing a resource needing all multicasts.
6699 * Return 0 if successful or a negative errno code on error.
6702 int dev_set_allmulti(struct net_device
*dev
, int inc
)
6704 return __dev_set_allmulti(dev
, inc
, true);
6706 EXPORT_SYMBOL(dev_set_allmulti
);
6709 * Upload unicast and multicast address lists to device and
6710 * configure RX filtering. When the device doesn't support unicast
6711 * filtering it is put in promiscuous mode while unicast addresses
6714 void __dev_set_rx_mode(struct net_device
*dev
)
6716 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6718 /* dev_open will call this function so the list will stay sane. */
6719 if (!(dev
->flags
&IFF_UP
))
6722 if (!netif_device_present(dev
))
6725 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
6726 /* Unicast addresses changes may only happen under the rtnl,
6727 * therefore calling __dev_set_promiscuity here is safe.
6729 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
6730 __dev_set_promiscuity(dev
, 1, false);
6731 dev
->uc_promisc
= true;
6732 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
6733 __dev_set_promiscuity(dev
, -1, false);
6734 dev
->uc_promisc
= false;
6738 if (ops
->ndo_set_rx_mode
)
6739 ops
->ndo_set_rx_mode(dev
);
6742 void dev_set_rx_mode(struct net_device
*dev
)
6744 netif_addr_lock_bh(dev
);
6745 __dev_set_rx_mode(dev
);
6746 netif_addr_unlock_bh(dev
);
6750 * dev_get_flags - get flags reported to userspace
6753 * Get the combination of flag bits exported through APIs to userspace.
6755 unsigned int dev_get_flags(const struct net_device
*dev
)
6759 flags
= (dev
->flags
& ~(IFF_PROMISC
|
6764 (dev
->gflags
& (IFF_PROMISC
|
6767 if (netif_running(dev
)) {
6768 if (netif_oper_up(dev
))
6769 flags
|= IFF_RUNNING
;
6770 if (netif_carrier_ok(dev
))
6771 flags
|= IFF_LOWER_UP
;
6772 if (netif_dormant(dev
))
6773 flags
|= IFF_DORMANT
;
6778 EXPORT_SYMBOL(dev_get_flags
);
6780 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
6782 unsigned int old_flags
= dev
->flags
;
6788 * Set the flags on our device.
6791 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
6792 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
6794 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
6798 * Load in the correct multicast list now the flags have changed.
6801 if ((old_flags
^ flags
) & IFF_MULTICAST
)
6802 dev_change_rx_flags(dev
, IFF_MULTICAST
);
6804 dev_set_rx_mode(dev
);
6807 * Have we downed the interface. We handle IFF_UP ourselves
6808 * according to user attempts to set it, rather than blindly
6813 if ((old_flags
^ flags
) & IFF_UP
) {
6814 if (old_flags
& IFF_UP
)
6817 ret
= __dev_open(dev
);
6820 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
6821 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
6822 unsigned int old_flags
= dev
->flags
;
6824 dev
->gflags
^= IFF_PROMISC
;
6826 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
6827 if (dev
->flags
!= old_flags
)
6828 dev_set_rx_mode(dev
);
6831 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6832 * is important. Some (broken) drivers set IFF_PROMISC, when
6833 * IFF_ALLMULTI is requested not asking us and not reporting.
6835 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
6836 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
6838 dev
->gflags
^= IFF_ALLMULTI
;
6839 __dev_set_allmulti(dev
, inc
, false);
6845 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
6846 unsigned int gchanges
)
6848 unsigned int changes
= dev
->flags
^ old_flags
;
6851 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
6853 if (changes
& IFF_UP
) {
6854 if (dev
->flags
& IFF_UP
)
6855 call_netdevice_notifiers(NETDEV_UP
, dev
);
6857 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
6860 if (dev
->flags
& IFF_UP
&&
6861 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
6862 struct netdev_notifier_change_info change_info
= {
6866 .flags_changed
= changes
,
6869 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
6874 * dev_change_flags - change device settings
6876 * @flags: device state flags
6878 * Change settings on device based state flags. The flags are
6879 * in the userspace exported format.
6881 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
6884 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
6886 ret
= __dev_change_flags(dev
, flags
);
6890 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
6891 __dev_notify_flags(dev
, old_flags
, changes
);
6894 EXPORT_SYMBOL(dev_change_flags
);
6896 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
6898 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6900 if (ops
->ndo_change_mtu
)
6901 return ops
->ndo_change_mtu(dev
, new_mtu
);
6906 EXPORT_SYMBOL(__dev_set_mtu
);
6909 * dev_set_mtu - Change maximum transfer unit
6911 * @new_mtu: new transfer unit
6913 * Change the maximum transfer size of the network device.
6915 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
6919 if (new_mtu
== dev
->mtu
)
6922 /* MTU must be positive, and in range */
6923 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
6924 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6925 dev
->name
, new_mtu
, dev
->min_mtu
);
6929 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
6930 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6931 dev
->name
, new_mtu
, dev
->max_mtu
);
6935 if (!netif_device_present(dev
))
6938 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
6939 err
= notifier_to_errno(err
);
6943 orig_mtu
= dev
->mtu
;
6944 err
= __dev_set_mtu(dev
, new_mtu
);
6947 err
= call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
6948 err
= notifier_to_errno(err
);
6950 /* setting mtu back and notifying everyone again,
6951 * so that they have a chance to revert changes.
6953 __dev_set_mtu(dev
, orig_mtu
);
6954 call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
6959 EXPORT_SYMBOL(dev_set_mtu
);
6962 * dev_set_group - Change group this device belongs to
6964 * @new_group: group this device should belong to
6966 void dev_set_group(struct net_device
*dev
, int new_group
)
6968 dev
->group
= new_group
;
6970 EXPORT_SYMBOL(dev_set_group
);
6973 * dev_set_mac_address - Change Media Access Control Address
6977 * Change the hardware (MAC) address of the device
6979 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
6981 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6984 if (!ops
->ndo_set_mac_address
)
6986 if (sa
->sa_family
!= dev
->type
)
6988 if (!netif_device_present(dev
))
6990 err
= ops
->ndo_set_mac_address(dev
, sa
);
6993 dev
->addr_assign_type
= NET_ADDR_SET
;
6994 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
6995 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
6998 EXPORT_SYMBOL(dev_set_mac_address
);
7001 * dev_change_carrier - Change device carrier
7003 * @new_carrier: new value
7005 * Change device carrier
7007 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7009 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7011 if (!ops
->ndo_change_carrier
)
7013 if (!netif_device_present(dev
))
7015 return ops
->ndo_change_carrier(dev
, new_carrier
);
7017 EXPORT_SYMBOL(dev_change_carrier
);
7020 * dev_get_phys_port_id - Get device physical port ID
7024 * Get device physical port ID
7026 int dev_get_phys_port_id(struct net_device
*dev
,
7027 struct netdev_phys_item_id
*ppid
)
7029 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7031 if (!ops
->ndo_get_phys_port_id
)
7033 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7035 EXPORT_SYMBOL(dev_get_phys_port_id
);
7038 * dev_get_phys_port_name - Get device physical port name
7041 * @len: limit of bytes to copy to name
7043 * Get device physical port name
7045 int dev_get_phys_port_name(struct net_device
*dev
,
7046 char *name
, size_t len
)
7048 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7050 if (!ops
->ndo_get_phys_port_name
)
7052 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
7054 EXPORT_SYMBOL(dev_get_phys_port_name
);
7057 * dev_change_proto_down - update protocol port state information
7059 * @proto_down: new value
7061 * This info can be used by switch drivers to set the phys state of the
7064 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7066 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7068 if (!ops
->ndo_change_proto_down
)
7070 if (!netif_device_present(dev
))
7072 return ops
->ndo_change_proto_down(dev
, proto_down
);
7074 EXPORT_SYMBOL(dev_change_proto_down
);
7076 u8
__dev_xdp_attached(struct net_device
*dev
, bpf_op_t bpf_op
, u32
*prog_id
)
7078 struct netdev_bpf xdp
;
7080 memset(&xdp
, 0, sizeof(xdp
));
7081 xdp
.command
= XDP_QUERY_PROG
;
7083 /* Query must always succeed. */
7084 WARN_ON(bpf_op(dev
, &xdp
) < 0);
7086 *prog_id
= xdp
.prog_id
;
7088 return xdp
.prog_attached
;
7091 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
7092 struct netlink_ext_ack
*extack
, u32 flags
,
7093 struct bpf_prog
*prog
)
7095 struct netdev_bpf xdp
;
7097 memset(&xdp
, 0, sizeof(xdp
));
7098 if (flags
& XDP_FLAGS_HW_MODE
)
7099 xdp
.command
= XDP_SETUP_PROG_HW
;
7101 xdp
.command
= XDP_SETUP_PROG
;
7102 xdp
.extack
= extack
;
7106 return bpf_op(dev
, &xdp
);
7110 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7112 * @extack: netlink extended ack
7113 * @fd: new program fd or negative value to clear
7114 * @flags: xdp-related flags
7116 * Set or clear a bpf program for a device
7118 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
7121 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7122 struct bpf_prog
*prog
= NULL
;
7123 bpf_op_t bpf_op
, bpf_chk
;
7128 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
7129 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
)))
7131 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
7132 bpf_op
= generic_xdp_install
;
7133 if (bpf_op
== bpf_chk
)
7134 bpf_chk
= generic_xdp_install
;
7137 if (bpf_chk
&& __dev_xdp_attached(dev
, bpf_chk
, NULL
))
7139 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
7140 __dev_xdp_attached(dev
, bpf_op
, NULL
))
7143 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
7144 bpf_op
== ops
->ndo_bpf
);
7146 return PTR_ERR(prog
);
7148 if (!(flags
& XDP_FLAGS_HW_MODE
) &&
7149 bpf_prog_is_dev_bound(prog
->aux
)) {
7150 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
7156 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
7157 if (err
< 0 && prog
)
7164 * dev_new_index - allocate an ifindex
7165 * @net: the applicable net namespace
7167 * Returns a suitable unique value for a new device interface
7168 * number. The caller must hold the rtnl semaphore or the
7169 * dev_base_lock to be sure it remains unique.
7171 static int dev_new_index(struct net
*net
)
7173 int ifindex
= net
->ifindex
;
7178 if (!__dev_get_by_index(net
, ifindex
))
7179 return net
->ifindex
= ifindex
;
7183 /* Delayed registration/unregisteration */
7184 static LIST_HEAD(net_todo_list
);
7185 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
7187 static void net_set_todo(struct net_device
*dev
)
7189 list_add_tail(&dev
->todo_list
, &net_todo_list
);
7190 dev_net(dev
)->dev_unreg_count
++;
7193 static void rollback_registered_many(struct list_head
*head
)
7195 struct net_device
*dev
, *tmp
;
7196 LIST_HEAD(close_head
);
7198 BUG_ON(dev_boot_phase
);
7201 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
7202 /* Some devices call without registering
7203 * for initialization unwind. Remove those
7204 * devices and proceed with the remaining.
7206 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
7207 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7211 list_del(&dev
->unreg_list
);
7214 dev
->dismantle
= true;
7215 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
7218 /* If device is running, close it first. */
7219 list_for_each_entry(dev
, head
, unreg_list
)
7220 list_add_tail(&dev
->close_list
, &close_head
);
7221 dev_close_many(&close_head
, true);
7223 list_for_each_entry(dev
, head
, unreg_list
) {
7224 /* And unlink it from device chain. */
7225 unlist_netdevice(dev
);
7227 dev
->reg_state
= NETREG_UNREGISTERING
;
7229 flush_all_backlogs();
7233 list_for_each_entry(dev
, head
, unreg_list
) {
7234 struct sk_buff
*skb
= NULL
;
7236 /* Shutdown queueing discipline. */
7240 /* Notify protocols, that we are about to destroy
7241 * this device. They should clean all the things.
7243 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7245 if (!dev
->rtnl_link_ops
||
7246 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7247 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
7251 * Flush the unicast and multicast chains
7256 if (dev
->netdev_ops
->ndo_uninit
)
7257 dev
->netdev_ops
->ndo_uninit(dev
);
7260 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
7262 /* Notifier chain MUST detach us all upper devices. */
7263 WARN_ON(netdev_has_any_upper_dev(dev
));
7264 WARN_ON(netdev_has_any_lower_dev(dev
));
7266 /* Remove entries from kobject tree */
7267 netdev_unregister_kobject(dev
);
7269 /* Remove XPS queueing entries */
7270 netif_reset_xps_queues_gt(dev
, 0);
7276 list_for_each_entry(dev
, head
, unreg_list
)
7280 static void rollback_registered(struct net_device
*dev
)
7284 list_add(&dev
->unreg_list
, &single
);
7285 rollback_registered_many(&single
);
7289 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
7290 struct net_device
*upper
, netdev_features_t features
)
7292 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
7293 netdev_features_t feature
;
7296 for_each_netdev_feature(&upper_disables
, feature_bit
) {
7297 feature
= __NETIF_F_BIT(feature_bit
);
7298 if (!(upper
->wanted_features
& feature
)
7299 && (features
& feature
)) {
7300 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
7301 &feature
, upper
->name
);
7302 features
&= ~feature
;
7309 static void netdev_sync_lower_features(struct net_device
*upper
,
7310 struct net_device
*lower
, netdev_features_t features
)
7312 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
7313 netdev_features_t feature
;
7316 for_each_netdev_feature(&upper_disables
, feature_bit
) {
7317 feature
= __NETIF_F_BIT(feature_bit
);
7318 if (!(features
& feature
) && (lower
->features
& feature
)) {
7319 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
7320 &feature
, lower
->name
);
7321 lower
->wanted_features
&= ~feature
;
7322 netdev_update_features(lower
);
7324 if (unlikely(lower
->features
& feature
))
7325 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
7326 &feature
, lower
->name
);
7331 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
7332 netdev_features_t features
)
7334 /* Fix illegal checksum combinations */
7335 if ((features
& NETIF_F_HW_CSUM
) &&
7336 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
7337 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
7338 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
7341 /* TSO requires that SG is present as well. */
7342 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
7343 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
7344 features
&= ~NETIF_F_ALL_TSO
;
7347 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
7348 !(features
& NETIF_F_IP_CSUM
)) {
7349 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
7350 features
&= ~NETIF_F_TSO
;
7351 features
&= ~NETIF_F_TSO_ECN
;
7354 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
7355 !(features
& NETIF_F_IPV6_CSUM
)) {
7356 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
7357 features
&= ~NETIF_F_TSO6
;
7360 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7361 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
7362 features
&= ~NETIF_F_TSO_MANGLEID
;
7364 /* TSO ECN requires that TSO is present as well. */
7365 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
7366 features
&= ~NETIF_F_TSO_ECN
;
7368 /* Software GSO depends on SG. */
7369 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
7370 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
7371 features
&= ~NETIF_F_GSO
;
7374 /* GSO partial features require GSO partial be set */
7375 if ((features
& dev
->gso_partial_features
) &&
7376 !(features
& NETIF_F_GSO_PARTIAL
)) {
7378 "Dropping partially supported GSO features since no GSO partial.\n");
7379 features
&= ~dev
->gso_partial_features
;
7385 int __netdev_update_features(struct net_device
*dev
)
7387 struct net_device
*upper
, *lower
;
7388 netdev_features_t features
;
7389 struct list_head
*iter
;
7394 features
= netdev_get_wanted_features(dev
);
7396 if (dev
->netdev_ops
->ndo_fix_features
)
7397 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
7399 /* driver might be less strict about feature dependencies */
7400 features
= netdev_fix_features(dev
, features
);
7402 /* some features can't be enabled if they're off an an upper device */
7403 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
7404 features
= netdev_sync_upper_features(dev
, upper
, features
);
7406 if (dev
->features
== features
)
7409 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
7410 &dev
->features
, &features
);
7412 if (dev
->netdev_ops
->ndo_set_features
)
7413 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
7417 if (unlikely(err
< 0)) {
7419 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7420 err
, &features
, &dev
->features
);
7421 /* return non-0 since some features might have changed and
7422 * it's better to fire a spurious notification than miss it
7428 /* some features must be disabled on lower devices when disabled
7429 * on an upper device (think: bonding master or bridge)
7431 netdev_for_each_lower_dev(dev
, lower
, iter
)
7432 netdev_sync_lower_features(dev
, lower
, features
);
7435 netdev_features_t diff
= features
^ dev
->features
;
7437 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
7438 /* udp_tunnel_{get,drop}_rx_info both need
7439 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7440 * device, or they won't do anything.
7441 * Thus we need to update dev->features
7442 * *before* calling udp_tunnel_get_rx_info,
7443 * but *after* calling udp_tunnel_drop_rx_info.
7445 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
7446 dev
->features
= features
;
7447 udp_tunnel_get_rx_info(dev
);
7449 udp_tunnel_drop_rx_info(dev
);
7453 dev
->features
= features
;
7456 return err
< 0 ? 0 : 1;
7460 * netdev_update_features - recalculate device features
7461 * @dev: the device to check
7463 * Recalculate dev->features set and send notifications if it
7464 * has changed. Should be called after driver or hardware dependent
7465 * conditions might have changed that influence the features.
7467 void netdev_update_features(struct net_device
*dev
)
7469 if (__netdev_update_features(dev
))
7470 netdev_features_change(dev
);
7472 EXPORT_SYMBOL(netdev_update_features
);
7475 * netdev_change_features - recalculate device features
7476 * @dev: the device to check
7478 * Recalculate dev->features set and send notifications even
7479 * if they have not changed. Should be called instead of
7480 * netdev_update_features() if also dev->vlan_features might
7481 * have changed to allow the changes to be propagated to stacked
7484 void netdev_change_features(struct net_device
*dev
)
7486 __netdev_update_features(dev
);
7487 netdev_features_change(dev
);
7489 EXPORT_SYMBOL(netdev_change_features
);
7492 * netif_stacked_transfer_operstate - transfer operstate
7493 * @rootdev: the root or lower level device to transfer state from
7494 * @dev: the device to transfer operstate to
7496 * Transfer operational state from root to device. This is normally
7497 * called when a stacking relationship exists between the root
7498 * device and the device(a leaf device).
7500 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
7501 struct net_device
*dev
)
7503 if (rootdev
->operstate
== IF_OPER_DORMANT
)
7504 netif_dormant_on(dev
);
7506 netif_dormant_off(dev
);
7508 if (netif_carrier_ok(rootdev
))
7509 netif_carrier_on(dev
);
7511 netif_carrier_off(dev
);
7513 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
7516 static int netif_alloc_rx_queues(struct net_device
*dev
)
7518 unsigned int i
, count
= dev
->num_rx_queues
;
7519 struct netdev_rx_queue
*rx
;
7520 size_t sz
= count
* sizeof(*rx
);
7524 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
7530 for (i
= 0; i
< count
; i
++)
7536 static void netdev_init_one_queue(struct net_device
*dev
,
7537 struct netdev_queue
*queue
, void *_unused
)
7539 /* Initialize queue lock */
7540 spin_lock_init(&queue
->_xmit_lock
);
7541 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
7542 queue
->xmit_lock_owner
= -1;
7543 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
7546 dql_init(&queue
->dql
, HZ
);
7550 static void netif_free_tx_queues(struct net_device
*dev
)
7555 static int netif_alloc_netdev_queues(struct net_device
*dev
)
7557 unsigned int count
= dev
->num_tx_queues
;
7558 struct netdev_queue
*tx
;
7559 size_t sz
= count
* sizeof(*tx
);
7561 if (count
< 1 || count
> 0xffff)
7564 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
7570 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
7571 spin_lock_init(&dev
->tx_global_lock
);
7576 void netif_tx_stop_all_queues(struct net_device
*dev
)
7580 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
7581 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
7583 netif_tx_stop_queue(txq
);
7586 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
7589 * register_netdevice - register a network device
7590 * @dev: device to register
7592 * Take a completed network device structure and add it to the kernel
7593 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7594 * chain. 0 is returned on success. A negative errno code is returned
7595 * on a failure to set up the device, or if the name is a duplicate.
7597 * Callers must hold the rtnl semaphore. You may want
7598 * register_netdev() instead of this.
7601 * The locking appears insufficient to guarantee two parallel registers
7602 * will not get the same name.
7605 int register_netdevice(struct net_device
*dev
)
7608 struct net
*net
= dev_net(dev
);
7610 BUG_ON(dev_boot_phase
);
7615 /* When net_device's are persistent, this will be fatal. */
7616 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
7619 spin_lock_init(&dev
->addr_list_lock
);
7620 netdev_set_addr_lockdep_class(dev
);
7622 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
7626 /* Init, if this function is available */
7627 if (dev
->netdev_ops
->ndo_init
) {
7628 ret
= dev
->netdev_ops
->ndo_init(dev
);
7636 if (((dev
->hw_features
| dev
->features
) &
7637 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
7638 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
7639 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
7640 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
7647 dev
->ifindex
= dev_new_index(net
);
7648 else if (__dev_get_by_index(net
, dev
->ifindex
))
7651 /* Transfer changeable features to wanted_features and enable
7652 * software offloads (GSO and GRO).
7654 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
7655 dev
->features
|= NETIF_F_SOFT_FEATURES
;
7657 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
7658 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
7659 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
7662 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
7664 if (!(dev
->flags
& IFF_LOOPBACK
))
7665 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
7667 /* If IPv4 TCP segmentation offload is supported we should also
7668 * allow the device to enable segmenting the frame with the option
7669 * of ignoring a static IP ID value. This doesn't enable the
7670 * feature itself but allows the user to enable it later.
7672 if (dev
->hw_features
& NETIF_F_TSO
)
7673 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
7674 if (dev
->vlan_features
& NETIF_F_TSO
)
7675 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
7676 if (dev
->mpls_features
& NETIF_F_TSO
)
7677 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
7678 if (dev
->hw_enc_features
& NETIF_F_TSO
)
7679 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
7681 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7683 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
7685 /* Make NETIF_F_SG inheritable to tunnel devices.
7687 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
7689 /* Make NETIF_F_SG inheritable to MPLS.
7691 dev
->mpls_features
|= NETIF_F_SG
;
7693 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
7694 ret
= notifier_to_errno(ret
);
7698 ret
= netdev_register_kobject(dev
);
7701 dev
->reg_state
= NETREG_REGISTERED
;
7703 __netdev_update_features(dev
);
7706 * Default initial state at registry is that the
7707 * device is present.
7710 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
7712 linkwatch_init_dev(dev
);
7714 dev_init_scheduler(dev
);
7716 list_netdevice(dev
);
7717 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7719 /* If the device has permanent device address, driver should
7720 * set dev_addr and also addr_assign_type should be set to
7721 * NET_ADDR_PERM (default value).
7723 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
7724 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
7726 /* Notify protocols, that a new device appeared. */
7727 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
7728 ret
= notifier_to_errno(ret
);
7730 rollback_registered(dev
);
7731 dev
->reg_state
= NETREG_UNREGISTERED
;
7734 * Prevent userspace races by waiting until the network
7735 * device is fully setup before sending notifications.
7737 if (!dev
->rtnl_link_ops
||
7738 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7739 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
7745 if (dev
->netdev_ops
->ndo_uninit
)
7746 dev
->netdev_ops
->ndo_uninit(dev
);
7747 if (dev
->priv_destructor
)
7748 dev
->priv_destructor(dev
);
7751 EXPORT_SYMBOL(register_netdevice
);
7754 * init_dummy_netdev - init a dummy network device for NAPI
7755 * @dev: device to init
7757 * This takes a network device structure and initialize the minimum
7758 * amount of fields so it can be used to schedule NAPI polls without
7759 * registering a full blown interface. This is to be used by drivers
7760 * that need to tie several hardware interfaces to a single NAPI
7761 * poll scheduler due to HW limitations.
7763 int init_dummy_netdev(struct net_device
*dev
)
7765 /* Clear everything. Note we don't initialize spinlocks
7766 * are they aren't supposed to be taken by any of the
7767 * NAPI code and this dummy netdev is supposed to be
7768 * only ever used for NAPI polls
7770 memset(dev
, 0, sizeof(struct net_device
));
7772 /* make sure we BUG if trying to hit standard
7773 * register/unregister code path
7775 dev
->reg_state
= NETREG_DUMMY
;
7777 /* NAPI wants this */
7778 INIT_LIST_HEAD(&dev
->napi_list
);
7780 /* a dummy interface is started by default */
7781 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
7782 set_bit(__LINK_STATE_START
, &dev
->state
);
7784 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7785 * because users of this 'device' dont need to change
7791 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
7795 * register_netdev - register a network device
7796 * @dev: device to register
7798 * Take a completed network device structure and add it to the kernel
7799 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7800 * chain. 0 is returned on success. A negative errno code is returned
7801 * on a failure to set up the device, or if the name is a duplicate.
7803 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7804 * and expands the device name if you passed a format string to
7807 int register_netdev(struct net_device
*dev
)
7812 err
= register_netdevice(dev
);
7816 EXPORT_SYMBOL(register_netdev
);
7818 int netdev_refcnt_read(const struct net_device
*dev
)
7822 for_each_possible_cpu(i
)
7823 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
7826 EXPORT_SYMBOL(netdev_refcnt_read
);
7829 * netdev_wait_allrefs - wait until all references are gone.
7830 * @dev: target net_device
7832 * This is called when unregistering network devices.
7834 * Any protocol or device that holds a reference should register
7835 * for netdevice notification, and cleanup and put back the
7836 * reference if they receive an UNREGISTER event.
7837 * We can get stuck here if buggy protocols don't correctly
7840 static void netdev_wait_allrefs(struct net_device
*dev
)
7842 unsigned long rebroadcast_time
, warning_time
;
7845 linkwatch_forget_dev(dev
);
7847 rebroadcast_time
= warning_time
= jiffies
;
7848 refcnt
= netdev_refcnt_read(dev
);
7850 while (refcnt
!= 0) {
7851 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
7854 /* Rebroadcast unregister notification */
7855 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7861 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
7862 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
7864 /* We must not have linkwatch events
7865 * pending on unregister. If this
7866 * happens, we simply run the queue
7867 * unscheduled, resulting in a noop
7870 linkwatch_run_queue();
7875 rebroadcast_time
= jiffies
;
7880 refcnt
= netdev_refcnt_read(dev
);
7882 if (time_after(jiffies
, warning_time
+ 10 * HZ
)) {
7883 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7885 warning_time
= jiffies
;
7894 * register_netdevice(x1);
7895 * register_netdevice(x2);
7897 * unregister_netdevice(y1);
7898 * unregister_netdevice(y2);
7904 * We are invoked by rtnl_unlock().
7905 * This allows us to deal with problems:
7906 * 1) We can delete sysfs objects which invoke hotplug
7907 * without deadlocking with linkwatch via keventd.
7908 * 2) Since we run with the RTNL semaphore not held, we can sleep
7909 * safely in order to wait for the netdev refcnt to drop to zero.
7911 * We must not return until all unregister events added during
7912 * the interval the lock was held have been completed.
7914 void netdev_run_todo(void)
7916 struct list_head list
;
7918 /* Snapshot list, allow later requests */
7919 list_replace_init(&net_todo_list
, &list
);
7924 /* Wait for rcu callbacks to finish before next phase */
7925 if (!list_empty(&list
))
7928 while (!list_empty(&list
)) {
7929 struct net_device
*dev
7930 = list_first_entry(&list
, struct net_device
, todo_list
);
7931 list_del(&dev
->todo_list
);
7934 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
7937 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
7938 pr_err("network todo '%s' but state %d\n",
7939 dev
->name
, dev
->reg_state
);
7944 dev
->reg_state
= NETREG_UNREGISTERED
;
7946 netdev_wait_allrefs(dev
);
7949 BUG_ON(netdev_refcnt_read(dev
));
7950 BUG_ON(!list_empty(&dev
->ptype_all
));
7951 BUG_ON(!list_empty(&dev
->ptype_specific
));
7952 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
7953 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
7954 WARN_ON(dev
->dn_ptr
);
7956 if (dev
->priv_destructor
)
7957 dev
->priv_destructor(dev
);
7958 if (dev
->needs_free_netdev
)
7961 /* Report a network device has been unregistered */
7963 dev_net(dev
)->dev_unreg_count
--;
7965 wake_up(&netdev_unregistering_wq
);
7967 /* Free network device */
7968 kobject_put(&dev
->dev
.kobj
);
7972 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7973 * all the same fields in the same order as net_device_stats, with only
7974 * the type differing, but rtnl_link_stats64 may have additional fields
7975 * at the end for newer counters.
7977 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
7978 const struct net_device_stats
*netdev_stats
)
7980 #if BITS_PER_LONG == 64
7981 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
7982 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
7983 /* zero out counters that only exist in rtnl_link_stats64 */
7984 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
7985 sizeof(*stats64
) - sizeof(*netdev_stats
));
7987 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
7988 const unsigned long *src
= (const unsigned long *)netdev_stats
;
7989 u64
*dst
= (u64
*)stats64
;
7991 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
7992 for (i
= 0; i
< n
; i
++)
7994 /* zero out counters that only exist in rtnl_link_stats64 */
7995 memset((char *)stats64
+ n
* sizeof(u64
), 0,
7996 sizeof(*stats64
) - n
* sizeof(u64
));
7999 EXPORT_SYMBOL(netdev_stats_to_stats64
);
8002 * dev_get_stats - get network device statistics
8003 * @dev: device to get statistics from
8004 * @storage: place to store stats
8006 * Get network statistics from device. Return @storage.
8007 * The device driver may provide its own method by setting
8008 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8009 * otherwise the internal statistics structure is used.
8011 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
8012 struct rtnl_link_stats64
*storage
)
8014 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8016 if (ops
->ndo_get_stats64
) {
8017 memset(storage
, 0, sizeof(*storage
));
8018 ops
->ndo_get_stats64(dev
, storage
);
8019 } else if (ops
->ndo_get_stats
) {
8020 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
8022 netdev_stats_to_stats64(storage
, &dev
->stats
);
8024 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
8025 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
8026 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
8029 EXPORT_SYMBOL(dev_get_stats
);
8031 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
8033 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
8035 #ifdef CONFIG_NET_CLS_ACT
8038 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
8041 netdev_init_one_queue(dev
, queue
, NULL
);
8042 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
8043 queue
->qdisc_sleeping
= &noop_qdisc
;
8044 rcu_assign_pointer(dev
->ingress_queue
, queue
);
8049 static const struct ethtool_ops default_ethtool_ops
;
8051 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
8052 const struct ethtool_ops
*ops
)
8054 if (dev
->ethtool_ops
== &default_ethtool_ops
)
8055 dev
->ethtool_ops
= ops
;
8057 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
8059 void netdev_freemem(struct net_device
*dev
)
8061 char *addr
= (char *)dev
- dev
->padded
;
8067 * alloc_netdev_mqs - allocate network device
8068 * @sizeof_priv: size of private data to allocate space for
8069 * @name: device name format string
8070 * @name_assign_type: origin of device name
8071 * @setup: callback to initialize device
8072 * @txqs: the number of TX subqueues to allocate
8073 * @rxqs: the number of RX subqueues to allocate
8075 * Allocates a struct net_device with private data area for driver use
8076 * and performs basic initialization. Also allocates subqueue structs
8077 * for each queue on the device.
8079 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
8080 unsigned char name_assign_type
,
8081 void (*setup
)(struct net_device
*),
8082 unsigned int txqs
, unsigned int rxqs
)
8084 struct net_device
*dev
;
8085 unsigned int alloc_size
;
8086 struct net_device
*p
;
8088 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
8091 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8097 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8102 alloc_size
= sizeof(struct net_device
);
8104 /* ensure 32-byte alignment of private area */
8105 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
8106 alloc_size
+= sizeof_priv
;
8108 /* ensure 32-byte alignment of whole construct */
8109 alloc_size
+= NETDEV_ALIGN
- 1;
8111 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8115 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
8116 dev
->padded
= (char *)dev
- (char *)p
;
8118 dev
->pcpu_refcnt
= alloc_percpu(int);
8119 if (!dev
->pcpu_refcnt
)
8122 if (dev_addr_init(dev
))
8128 dev_net_set(dev
, &init_net
);
8130 dev
->gso_max_size
= GSO_MAX_SIZE
;
8131 dev
->gso_max_segs
= GSO_MAX_SEGS
;
8133 INIT_LIST_HEAD(&dev
->napi_list
);
8134 INIT_LIST_HEAD(&dev
->unreg_list
);
8135 INIT_LIST_HEAD(&dev
->close_list
);
8136 INIT_LIST_HEAD(&dev
->link_watch_list
);
8137 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
8138 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
8139 INIT_LIST_HEAD(&dev
->ptype_all
);
8140 INIT_LIST_HEAD(&dev
->ptype_specific
);
8141 #ifdef CONFIG_NET_SCHED
8142 hash_init(dev
->qdisc_hash
);
8144 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
8147 if (!dev
->tx_queue_len
) {
8148 dev
->priv_flags
|= IFF_NO_QUEUE
;
8149 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
8152 dev
->num_tx_queues
= txqs
;
8153 dev
->real_num_tx_queues
= txqs
;
8154 if (netif_alloc_netdev_queues(dev
))
8158 dev
->num_rx_queues
= rxqs
;
8159 dev
->real_num_rx_queues
= rxqs
;
8160 if (netif_alloc_rx_queues(dev
))
8164 strcpy(dev
->name
, name
);
8165 dev
->name_assign_type
= name_assign_type
;
8166 dev
->group
= INIT_NETDEV_GROUP
;
8167 if (!dev
->ethtool_ops
)
8168 dev
->ethtool_ops
= &default_ethtool_ops
;
8170 nf_hook_ingress_init(dev
);
8179 free_percpu(dev
->pcpu_refcnt
);
8181 netdev_freemem(dev
);
8184 EXPORT_SYMBOL(alloc_netdev_mqs
);
8187 * free_netdev - free network device
8190 * This function does the last stage of destroying an allocated device
8191 * interface. The reference to the device object is released. If this
8192 * is the last reference then it will be freed.Must be called in process
8195 void free_netdev(struct net_device
*dev
)
8197 struct napi_struct
*p
, *n
;
8198 struct bpf_prog
*prog
;
8201 netif_free_tx_queues(dev
);
8206 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
8208 /* Flush device addresses */
8209 dev_addr_flush(dev
);
8211 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
8214 free_percpu(dev
->pcpu_refcnt
);
8215 dev
->pcpu_refcnt
= NULL
;
8217 prog
= rcu_dereference_protected(dev
->xdp_prog
, 1);
8220 static_key_slow_dec(&generic_xdp_needed
);
8223 /* Compatibility with error handling in drivers */
8224 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8225 netdev_freemem(dev
);
8229 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
8230 dev
->reg_state
= NETREG_RELEASED
;
8232 /* will free via device release */
8233 put_device(&dev
->dev
);
8235 EXPORT_SYMBOL(free_netdev
);
8238 * synchronize_net - Synchronize with packet receive processing
8240 * Wait for packets currently being received to be done.
8241 * Does not block later packets from starting.
8243 void synchronize_net(void)
8246 if (rtnl_is_locked())
8247 synchronize_rcu_expedited();
8251 EXPORT_SYMBOL(synchronize_net
);
8254 * unregister_netdevice_queue - remove device from the kernel
8258 * This function shuts down a device interface and removes it
8259 * from the kernel tables.
8260 * If head not NULL, device is queued to be unregistered later.
8262 * Callers must hold the rtnl semaphore. You may want
8263 * unregister_netdev() instead of this.
8266 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
8271 list_move_tail(&dev
->unreg_list
, head
);
8273 rollback_registered(dev
);
8274 /* Finish processing unregister after unlock */
8278 EXPORT_SYMBOL(unregister_netdevice_queue
);
8281 * unregister_netdevice_many - unregister many devices
8282 * @head: list of devices
8284 * Note: As most callers use a stack allocated list_head,
8285 * we force a list_del() to make sure stack wont be corrupted later.
8287 void unregister_netdevice_many(struct list_head
*head
)
8289 struct net_device
*dev
;
8291 if (!list_empty(head
)) {
8292 rollback_registered_many(head
);
8293 list_for_each_entry(dev
, head
, unreg_list
)
8298 EXPORT_SYMBOL(unregister_netdevice_many
);
8301 * unregister_netdev - remove device from the kernel
8304 * This function shuts down a device interface and removes it
8305 * from the kernel tables.
8307 * This is just a wrapper for unregister_netdevice that takes
8308 * the rtnl semaphore. In general you want to use this and not
8309 * unregister_netdevice.
8311 void unregister_netdev(struct net_device
*dev
)
8314 unregister_netdevice(dev
);
8317 EXPORT_SYMBOL(unregister_netdev
);
8320 * dev_change_net_namespace - move device to different nethost namespace
8322 * @net: network namespace
8323 * @pat: If not NULL name pattern to try if the current device name
8324 * is already taken in the destination network namespace.
8326 * This function shuts down a device interface and moves it
8327 * to a new network namespace. On success 0 is returned, on
8328 * a failure a netagive errno code is returned.
8330 * Callers must hold the rtnl semaphore.
8333 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
8339 /* Don't allow namespace local devices to be moved. */
8341 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
8344 /* Ensure the device has been registrered */
8345 if (dev
->reg_state
!= NETREG_REGISTERED
)
8348 /* Get out if there is nothing todo */
8350 if (net_eq(dev_net(dev
), net
))
8353 /* Pick the destination device name, and ensure
8354 * we can use it in the destination network namespace.
8357 if (__dev_get_by_name(net
, dev
->name
)) {
8358 /* We get here if we can't use the current device name */
8361 if (dev_get_valid_name(net
, dev
, pat
) < 0)
8366 * And now a mini version of register_netdevice unregister_netdevice.
8369 /* If device is running close it first. */
8372 /* And unlink it from device chain */
8374 unlist_netdevice(dev
);
8378 /* Shutdown queueing discipline. */
8381 /* Notify protocols, that we are about to destroy
8382 * this device. They should clean all the things.
8384 * Note that dev->reg_state stays at NETREG_REGISTERED.
8385 * This is wanted because this way 8021q and macvlan know
8386 * the device is just moving and can keep their slaves up.
8388 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8390 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL
, dev
);
8391 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->get_link_net
)
8392 new_nsid
= peernet2id_alloc(dev_net(dev
), net
);
8394 new_nsid
= peernet2id(dev_net(dev
), net
);
8395 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
);
8398 * Flush the unicast and multicast chains
8403 /* Send a netdev-removed uevent to the old namespace */
8404 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
8405 netdev_adjacent_del_links(dev
);
8407 /* Actually switch the network namespace */
8408 dev_net_set(dev
, net
);
8410 /* If there is an ifindex conflict assign a new one */
8411 if (__dev_get_by_index(net
, dev
->ifindex
))
8412 dev
->ifindex
= dev_new_index(net
);
8414 /* Send a netdev-add uevent to the new namespace */
8415 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
8416 netdev_adjacent_add_links(dev
);
8418 /* Fixup kobjects */
8419 err
= device_rename(&dev
->dev
, dev
->name
);
8422 /* Add the device back in the hashes */
8423 list_netdevice(dev
);
8425 /* Notify protocols, that a new device appeared. */
8426 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8429 * Prevent userspace races by waiting until the network
8430 * device is fully setup before sending notifications.
8432 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8439 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
8441 static int dev_cpu_dead(unsigned int oldcpu
)
8443 struct sk_buff
**list_skb
;
8444 struct sk_buff
*skb
;
8446 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
8448 local_irq_disable();
8449 cpu
= smp_processor_id();
8450 sd
= &per_cpu(softnet_data
, cpu
);
8451 oldsd
= &per_cpu(softnet_data
, oldcpu
);
8453 /* Find end of our completion_queue. */
8454 list_skb
= &sd
->completion_queue
;
8456 list_skb
= &(*list_skb
)->next
;
8457 /* Append completion queue from offline CPU. */
8458 *list_skb
= oldsd
->completion_queue
;
8459 oldsd
->completion_queue
= NULL
;
8461 /* Append output queue from offline CPU. */
8462 if (oldsd
->output_queue
) {
8463 *sd
->output_queue_tailp
= oldsd
->output_queue
;
8464 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
8465 oldsd
->output_queue
= NULL
;
8466 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
8468 /* Append NAPI poll list from offline CPU, with one exception :
8469 * process_backlog() must be called by cpu owning percpu backlog.
8470 * We properly handle process_queue & input_pkt_queue later.
8472 while (!list_empty(&oldsd
->poll_list
)) {
8473 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
8477 list_del_init(&napi
->poll_list
);
8478 if (napi
->poll
== process_backlog
)
8481 ____napi_schedule(sd
, napi
);
8484 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
8488 remsd
= oldsd
->rps_ipi_list
;
8489 oldsd
->rps_ipi_list
= NULL
;
8491 /* send out pending IPI's on offline CPU */
8492 net_rps_send_ipi(remsd
);
8494 /* Process offline CPU's input_pkt_queue */
8495 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
8497 input_queue_head_incr(oldsd
);
8499 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
8501 input_queue_head_incr(oldsd
);
8508 * netdev_increment_features - increment feature set by one
8509 * @all: current feature set
8510 * @one: new feature set
8511 * @mask: mask feature set
8513 * Computes a new feature set after adding a device with feature set
8514 * @one to the master device with current feature set @all. Will not
8515 * enable anything that is off in @mask. Returns the new feature set.
8517 netdev_features_t
netdev_increment_features(netdev_features_t all
,
8518 netdev_features_t one
, netdev_features_t mask
)
8520 if (mask
& NETIF_F_HW_CSUM
)
8521 mask
|= NETIF_F_CSUM_MASK
;
8522 mask
|= NETIF_F_VLAN_CHALLENGED
;
8524 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
8525 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
8527 /* If one device supports hw checksumming, set for all. */
8528 if (all
& NETIF_F_HW_CSUM
)
8529 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
8533 EXPORT_SYMBOL(netdev_increment_features
);
8535 static struct hlist_head
* __net_init
netdev_create_hash(void)
8538 struct hlist_head
*hash
;
8540 hash
= kmalloc(sizeof(*hash
) * NETDEV_HASHENTRIES
, GFP_KERNEL
);
8542 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
8543 INIT_HLIST_HEAD(&hash
[i
]);
8548 /* Initialize per network namespace state */
8549 static int __net_init
netdev_init(struct net
*net
)
8551 if (net
!= &init_net
)
8552 INIT_LIST_HEAD(&net
->dev_base_head
);
8554 net
->dev_name_head
= netdev_create_hash();
8555 if (net
->dev_name_head
== NULL
)
8558 net
->dev_index_head
= netdev_create_hash();
8559 if (net
->dev_index_head
== NULL
)
8565 kfree(net
->dev_name_head
);
8571 * netdev_drivername - network driver for the device
8572 * @dev: network device
8574 * Determine network driver for device.
8576 const char *netdev_drivername(const struct net_device
*dev
)
8578 const struct device_driver
*driver
;
8579 const struct device
*parent
;
8580 const char *empty
= "";
8582 parent
= dev
->dev
.parent
;
8586 driver
= parent
->driver
;
8587 if (driver
&& driver
->name
)
8588 return driver
->name
;
8592 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
8593 struct va_format
*vaf
)
8595 if (dev
&& dev
->dev
.parent
) {
8596 dev_printk_emit(level
[1] - '0',
8599 dev_driver_string(dev
->dev
.parent
),
8600 dev_name(dev
->dev
.parent
),
8601 netdev_name(dev
), netdev_reg_state(dev
),
8604 printk("%s%s%s: %pV",
8605 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
8607 printk("%s(NULL net_device): %pV", level
, vaf
);
8611 void netdev_printk(const char *level
, const struct net_device
*dev
,
8612 const char *format
, ...)
8614 struct va_format vaf
;
8617 va_start(args
, format
);
8622 __netdev_printk(level
, dev
, &vaf
);
8626 EXPORT_SYMBOL(netdev_printk
);
8628 #define define_netdev_printk_level(func, level) \
8629 void func(const struct net_device *dev, const char *fmt, ...) \
8631 struct va_format vaf; \
8634 va_start(args, fmt); \
8639 __netdev_printk(level, dev, &vaf); \
8643 EXPORT_SYMBOL(func);
8645 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
8646 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
8647 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
8648 define_netdev_printk_level(netdev_err
, KERN_ERR
);
8649 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
8650 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
8651 define_netdev_printk_level(netdev_info
, KERN_INFO
);
8653 static void __net_exit
netdev_exit(struct net
*net
)
8655 kfree(net
->dev_name_head
);
8656 kfree(net
->dev_index_head
);
8657 if (net
!= &init_net
)
8658 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
8661 static struct pernet_operations __net_initdata netdev_net_ops
= {
8662 .init
= netdev_init
,
8663 .exit
= netdev_exit
,
8666 static void __net_exit
default_device_exit(struct net
*net
)
8668 struct net_device
*dev
, *aux
;
8670 * Push all migratable network devices back to the
8671 * initial network namespace
8674 for_each_netdev_safe(net
, dev
, aux
) {
8676 char fb_name
[IFNAMSIZ
];
8678 /* Ignore unmoveable devices (i.e. loopback) */
8679 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
8682 /* Leave virtual devices for the generic cleanup */
8683 if (dev
->rtnl_link_ops
)
8686 /* Push remaining network devices to init_net */
8687 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
8688 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
8690 pr_emerg("%s: failed to move %s to init_net: %d\n",
8691 __func__
, dev
->name
, err
);
8698 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
8700 /* Return with the rtnl_lock held when there are no network
8701 * devices unregistering in any network namespace in net_list.
8705 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
8707 add_wait_queue(&netdev_unregistering_wq
, &wait
);
8709 unregistering
= false;
8711 list_for_each_entry(net
, net_list
, exit_list
) {
8712 if (net
->dev_unreg_count
> 0) {
8713 unregistering
= true;
8721 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
8723 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
8726 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
8728 /* At exit all network devices most be removed from a network
8729 * namespace. Do this in the reverse order of registration.
8730 * Do this across as many network namespaces as possible to
8731 * improve batching efficiency.
8733 struct net_device
*dev
;
8735 LIST_HEAD(dev_kill_list
);
8737 /* To prevent network device cleanup code from dereferencing
8738 * loopback devices or network devices that have been freed
8739 * wait here for all pending unregistrations to complete,
8740 * before unregistring the loopback device and allowing the
8741 * network namespace be freed.
8743 * The netdev todo list containing all network devices
8744 * unregistrations that happen in default_device_exit_batch
8745 * will run in the rtnl_unlock() at the end of
8746 * default_device_exit_batch.
8748 rtnl_lock_unregistering(net_list
);
8749 list_for_each_entry(net
, net_list
, exit_list
) {
8750 for_each_netdev_reverse(net
, dev
) {
8751 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
8752 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
8754 unregister_netdevice_queue(dev
, &dev_kill_list
);
8757 unregister_netdevice_many(&dev_kill_list
);
8761 static struct pernet_operations __net_initdata default_device_ops
= {
8762 .exit
= default_device_exit
,
8763 .exit_batch
= default_device_exit_batch
,
8767 * Initialize the DEV module. At boot time this walks the device list and
8768 * unhooks any devices that fail to initialise (normally hardware not
8769 * present) and leaves us with a valid list of present and active devices.
8774 * This is called single threaded during boot, so no need
8775 * to take the rtnl semaphore.
8777 static int __init
net_dev_init(void)
8779 int i
, rc
= -ENOMEM
;
8781 BUG_ON(!dev_boot_phase
);
8783 if (dev_proc_init())
8786 if (netdev_kobject_init())
8789 INIT_LIST_HEAD(&ptype_all
);
8790 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
8791 INIT_LIST_HEAD(&ptype_base
[i
]);
8793 INIT_LIST_HEAD(&offload_base
);
8795 if (register_pernet_subsys(&netdev_net_ops
))
8799 * Initialise the packet receive queues.
8802 for_each_possible_cpu(i
) {
8803 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
8804 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
8806 INIT_WORK(flush
, flush_backlog
);
8808 skb_queue_head_init(&sd
->input_pkt_queue
);
8809 skb_queue_head_init(&sd
->process_queue
);
8810 INIT_LIST_HEAD(&sd
->poll_list
);
8811 sd
->output_queue_tailp
= &sd
->output_queue
;
8813 sd
->csd
.func
= rps_trigger_softirq
;
8818 sd
->backlog
.poll
= process_backlog
;
8819 sd
->backlog
.weight
= weight_p
;
8824 /* The loopback device is special if any other network devices
8825 * is present in a network namespace the loopback device must
8826 * be present. Since we now dynamically allocate and free the
8827 * loopback device ensure this invariant is maintained by
8828 * keeping the loopback device as the first device on the
8829 * list of network devices. Ensuring the loopback devices
8830 * is the first device that appears and the last network device
8833 if (register_pernet_device(&loopback_net_ops
))
8836 if (register_pernet_device(&default_device_ops
))
8839 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
8840 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
8842 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
8843 NULL
, dev_cpu_dead
);
8850 subsys_initcall(net_dev_init
);