Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / net / core / dev.c
blob07ed21d64f92b39da9b683aa432efde6a14afdf0
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
191 static DEFINE_MUTEX(ifalias_mutex);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 static seqcount_t devnet_rename_seq;
201 static inline void dev_base_seq_inc(struct net *net)
203 while (++net->dev_base_seq == 0)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 static inline void rps_lock(struct softnet_data *sd)
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
226 static inline void rps_unlock(struct softnet_data *sd)
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
236 struct net *net = dev_net(dev);
238 ASSERT_RTNL();
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
247 dev_base_seq_inc(net);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device *dev)
255 ASSERT_RTNL();
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
264 dev_base_seq_inc(dev_net(dev));
268 * Our notifier list
271 static RAW_NOTIFIER_HEAD(netdev_chain);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
325 int i;
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
337 int i;
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 int i;
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 #endif
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type *pt)
410 struct list_head *head = ptype_head(pt);
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
416 EXPORT_SYMBOL(dev_add_pack);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type *pt)
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
436 spin_lock(&ptype_lock);
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
449 EXPORT_SYMBOL(__dev_remove_pack);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
463 void dev_remove_pack(struct packet_type *pt)
465 __dev_remove_pack(pt);
467 synchronize_net();
469 EXPORT_SYMBOL(dev_remove_pack);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload *po)
486 struct packet_offload *elem;
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
496 EXPORT_SYMBOL(dev_add_offload);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload *po)
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
516 spin_lock(&offload_lock);
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
542 void dev_remove_offload(struct packet_offload *po)
544 __dev_remove_offload(po);
546 synchronize_net();
548 EXPORT_SYMBOL(dev_remove_offload);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
570 struct netdev_boot_setup *s;
571 int i;
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device *dev)
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
610 return 0;
612 EXPORT_SYMBOL(netdev_boot_setup_check);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix, int unit)
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
631 sprintf(name, "%s%d", prefix, unit);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
647 * Saves at boot time configured settings for any netdevice.
649 int __init netdev_boot_setup(char *str)
651 int ints[5];
652 struct ifmap map;
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
673 __setup("netdev=", netdev_boot_setup);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device *dev)
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
694 return dev->ifindex;
696 EXPORT_SYMBOL(dev_get_iflink);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
709 struct ip_tunnel_info *info;
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
745 return NULL;
747 EXPORT_SYMBOL(__dev_get_by_name);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
770 return NULL;
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
788 struct net_device *dev;
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
797 EXPORT_SYMBOL(dev_get_by_name);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
820 return NULL;
822 EXPORT_SYMBOL(__dev_get_by_index);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
844 return NULL;
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
862 struct net_device *dev;
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
871 EXPORT_SYMBOL(dev_get_by_index);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
885 struct napi_struct *napi;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
892 napi = napi_by_id(napi_id);
894 return napi ? napi->dev : NULL;
896 EXPORT_SYMBOL(dev_get_by_napi_id);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
908 int netdev_get_name(struct net *net, char *name, int ifindex)
910 struct net_device *dev;
911 unsigned int seq;
913 retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
929 return 0;
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
949 struct net_device *dev;
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
956 return NULL;
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
962 struct net_device *dev;
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
969 return NULL;
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
975 struct net_device *dev, *ret = NULL;
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
984 rcu_read_unlock();
985 return ret;
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1003 struct net_device *dev, *ret;
1005 ASSERT_RTNL();
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1014 return ret;
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1026 bool dev_valid_name(const char *name)
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1040 return true;
1042 EXPORT_SYMBOL(dev_valid_name);
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1070 p = strchr(name, '%');
1071 if (p) {
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1109 return p ? -ENFILE : -EEXIST;
1112 static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1116 char buf[IFNAMSIZ];
1117 int ret;
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1144 EXPORT_SYMBOL(dev_alloc_name);
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1149 return dev_alloc_name_ns(net, dev, name);
1151 EXPORT_SYMBOL(dev_get_valid_name);
1154 * dev_change_name - change name of a device
1155 * @dev: device
1156 * @newname: name (or format string) must be at least IFNAMSIZ
1158 * Change name of a device, can pass format strings "eth%d".
1159 * for wildcarding.
1161 int dev_change_name(struct net_device *dev, const char *newname)
1163 unsigned char old_assign_type;
1164 char oldname[IFNAMSIZ];
1165 int err = 0;
1166 int ret;
1167 struct net *net;
1169 ASSERT_RTNL();
1170 BUG_ON(!dev_net(dev));
1172 net = dev_net(dev);
1173 if (dev->flags & IFF_UP)
1174 return -EBUSY;
1176 write_seqcount_begin(&devnet_rename_seq);
1178 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1179 write_seqcount_end(&devnet_rename_seq);
1180 return 0;
1183 memcpy(oldname, dev->name, IFNAMSIZ);
1185 err = dev_get_valid_name(net, dev, newname);
1186 if (err < 0) {
1187 write_seqcount_end(&devnet_rename_seq);
1188 return err;
1191 if (oldname[0] && !strchr(oldname, '%'))
1192 netdev_info(dev, "renamed from %s\n", oldname);
1194 old_assign_type = dev->name_assign_type;
1195 dev->name_assign_type = NET_NAME_RENAMED;
1197 rollback:
1198 ret = device_rename(&dev->dev, dev->name);
1199 if (ret) {
1200 memcpy(dev->name, oldname, IFNAMSIZ);
1201 dev->name_assign_type = old_assign_type;
1202 write_seqcount_end(&devnet_rename_seq);
1203 return ret;
1206 write_seqcount_end(&devnet_rename_seq);
1208 netdev_adjacent_rename_links(dev, oldname);
1210 write_lock_bh(&dev_base_lock);
1211 hlist_del_rcu(&dev->name_hlist);
1212 write_unlock_bh(&dev_base_lock);
1214 synchronize_rcu();
1216 write_lock_bh(&dev_base_lock);
1217 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1218 write_unlock_bh(&dev_base_lock);
1220 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1221 ret = notifier_to_errno(ret);
1223 if (ret) {
1224 /* err >= 0 after dev_alloc_name() or stores the first errno */
1225 if (err >= 0) {
1226 err = ret;
1227 write_seqcount_begin(&devnet_rename_seq);
1228 memcpy(dev->name, oldname, IFNAMSIZ);
1229 memcpy(oldname, newname, IFNAMSIZ);
1230 dev->name_assign_type = old_assign_type;
1231 old_assign_type = NET_NAME_RENAMED;
1232 goto rollback;
1233 } else {
1234 pr_err("%s: name change rollback failed: %d\n",
1235 dev->name, ret);
1239 return err;
1243 * dev_set_alias - change ifalias of a device
1244 * @dev: device
1245 * @alias: name up to IFALIASZ
1246 * @len: limit of bytes to copy from info
1248 * Set ifalias for a device,
1250 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1252 struct dev_ifalias *new_alias = NULL;
1254 if (len >= IFALIASZ)
1255 return -EINVAL;
1257 if (len) {
1258 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1259 if (!new_alias)
1260 return -ENOMEM;
1262 memcpy(new_alias->ifalias, alias, len);
1263 new_alias->ifalias[len] = 0;
1266 mutex_lock(&ifalias_mutex);
1267 rcu_swap_protected(dev->ifalias, new_alias,
1268 mutex_is_locked(&ifalias_mutex));
1269 mutex_unlock(&ifalias_mutex);
1271 if (new_alias)
1272 kfree_rcu(new_alias, rcuhead);
1274 return len;
1278 * dev_get_alias - get ifalias of a device
1279 * @dev: device
1280 * @name: buffer to store name of ifalias
1281 * @len: size of buffer
1283 * get ifalias for a device. Caller must make sure dev cannot go
1284 * away, e.g. rcu read lock or own a reference count to device.
1286 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1288 const struct dev_ifalias *alias;
1289 int ret = 0;
1291 rcu_read_lock();
1292 alias = rcu_dereference(dev->ifalias);
1293 if (alias)
1294 ret = snprintf(name, len, "%s", alias->ifalias);
1295 rcu_read_unlock();
1297 return ret;
1301 * netdev_features_change - device changes features
1302 * @dev: device to cause notification
1304 * Called to indicate a device has changed features.
1306 void netdev_features_change(struct net_device *dev)
1308 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1310 EXPORT_SYMBOL(netdev_features_change);
1313 * netdev_state_change - device changes state
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed state. This function calls
1317 * the notifier chains for netdev_chain and sends a NEWLINK message
1318 * to the routing socket.
1320 void netdev_state_change(struct net_device *dev)
1322 if (dev->flags & IFF_UP) {
1323 struct netdev_notifier_change_info change_info = {
1324 .info.dev = dev,
1327 call_netdevice_notifiers_info(NETDEV_CHANGE,
1328 &change_info.info);
1329 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1332 EXPORT_SYMBOL(netdev_state_change);
1335 * netdev_notify_peers - notify network peers about existence of @dev
1336 * @dev: network device
1338 * Generate traffic such that interested network peers are aware of
1339 * @dev, such as by generating a gratuitous ARP. This may be used when
1340 * a device wants to inform the rest of the network about some sort of
1341 * reconfiguration such as a failover event or virtual machine
1342 * migration.
1344 void netdev_notify_peers(struct net_device *dev)
1346 rtnl_lock();
1347 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1348 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1349 rtnl_unlock();
1351 EXPORT_SYMBOL(netdev_notify_peers);
1353 static int __dev_open(struct net_device *dev)
1355 const struct net_device_ops *ops = dev->netdev_ops;
1356 int ret;
1358 ASSERT_RTNL();
1360 if (!netif_device_present(dev))
1361 return -ENODEV;
1363 /* Block netpoll from trying to do any rx path servicing.
1364 * If we don't do this there is a chance ndo_poll_controller
1365 * or ndo_poll may be running while we open the device
1367 netpoll_poll_disable(dev);
1369 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1370 ret = notifier_to_errno(ret);
1371 if (ret)
1372 return ret;
1374 set_bit(__LINK_STATE_START, &dev->state);
1376 if (ops->ndo_validate_addr)
1377 ret = ops->ndo_validate_addr(dev);
1379 if (!ret && ops->ndo_open)
1380 ret = ops->ndo_open(dev);
1382 netpoll_poll_enable(dev);
1384 if (ret)
1385 clear_bit(__LINK_STATE_START, &dev->state);
1386 else {
1387 dev->flags |= IFF_UP;
1388 dev_set_rx_mode(dev);
1389 dev_activate(dev);
1390 add_device_randomness(dev->dev_addr, dev->addr_len);
1393 return ret;
1397 * dev_open - prepare an interface for use.
1398 * @dev: device to open
1400 * Takes a device from down to up state. The device's private open
1401 * function is invoked and then the multicast lists are loaded. Finally
1402 * the device is moved into the up state and a %NETDEV_UP message is
1403 * sent to the netdev notifier chain.
1405 * Calling this function on an active interface is a nop. On a failure
1406 * a negative errno code is returned.
1408 int dev_open(struct net_device *dev)
1410 int ret;
1412 if (dev->flags & IFF_UP)
1413 return 0;
1415 ret = __dev_open(dev);
1416 if (ret < 0)
1417 return ret;
1419 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1420 call_netdevice_notifiers(NETDEV_UP, dev);
1422 return ret;
1424 EXPORT_SYMBOL(dev_open);
1426 static void __dev_close_many(struct list_head *head)
1428 struct net_device *dev;
1430 ASSERT_RTNL();
1431 might_sleep();
1433 list_for_each_entry(dev, head, close_list) {
1434 /* Temporarily disable netpoll until the interface is down */
1435 netpoll_poll_disable(dev);
1437 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1439 clear_bit(__LINK_STATE_START, &dev->state);
1441 /* Synchronize to scheduled poll. We cannot touch poll list, it
1442 * can be even on different cpu. So just clear netif_running().
1444 * dev->stop() will invoke napi_disable() on all of it's
1445 * napi_struct instances on this device.
1447 smp_mb__after_atomic(); /* Commit netif_running(). */
1450 dev_deactivate_many(head);
1452 list_for_each_entry(dev, head, close_list) {
1453 const struct net_device_ops *ops = dev->netdev_ops;
1456 * Call the device specific close. This cannot fail.
1457 * Only if device is UP
1459 * We allow it to be called even after a DETACH hot-plug
1460 * event.
1462 if (ops->ndo_stop)
1463 ops->ndo_stop(dev);
1465 dev->flags &= ~IFF_UP;
1466 netpoll_poll_enable(dev);
1470 static void __dev_close(struct net_device *dev)
1472 LIST_HEAD(single);
1474 list_add(&dev->close_list, &single);
1475 __dev_close_many(&single);
1476 list_del(&single);
1479 void dev_close_many(struct list_head *head, bool unlink)
1481 struct net_device *dev, *tmp;
1483 /* Remove the devices that don't need to be closed */
1484 list_for_each_entry_safe(dev, tmp, head, close_list)
1485 if (!(dev->flags & IFF_UP))
1486 list_del_init(&dev->close_list);
1488 __dev_close_many(head);
1490 list_for_each_entry_safe(dev, tmp, head, close_list) {
1491 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1492 call_netdevice_notifiers(NETDEV_DOWN, dev);
1493 if (unlink)
1494 list_del_init(&dev->close_list);
1497 EXPORT_SYMBOL(dev_close_many);
1500 * dev_close - shutdown an interface.
1501 * @dev: device to shutdown
1503 * This function moves an active device into down state. A
1504 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1505 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1506 * chain.
1508 void dev_close(struct net_device *dev)
1510 if (dev->flags & IFF_UP) {
1511 LIST_HEAD(single);
1513 list_add(&dev->close_list, &single);
1514 dev_close_many(&single, true);
1515 list_del(&single);
1518 EXPORT_SYMBOL(dev_close);
1522 * dev_disable_lro - disable Large Receive Offload on a device
1523 * @dev: device
1525 * Disable Large Receive Offload (LRO) on a net device. Must be
1526 * called under RTNL. This is needed if received packets may be
1527 * forwarded to another interface.
1529 void dev_disable_lro(struct net_device *dev)
1531 struct net_device *lower_dev;
1532 struct list_head *iter;
1534 dev->wanted_features &= ~NETIF_F_LRO;
1535 netdev_update_features(dev);
1537 if (unlikely(dev->features & NETIF_F_LRO))
1538 netdev_WARN(dev, "failed to disable LRO!\n");
1540 netdev_for_each_lower_dev(dev, lower_dev, iter)
1541 dev_disable_lro(lower_dev);
1543 EXPORT_SYMBOL(dev_disable_lro);
1545 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1546 struct net_device *dev)
1548 struct netdev_notifier_info info = {
1549 .dev = dev,
1552 return nb->notifier_call(nb, val, &info);
1555 static int dev_boot_phase = 1;
1558 * register_netdevice_notifier - register a network notifier block
1559 * @nb: notifier
1561 * Register a notifier to be called when network device events occur.
1562 * The notifier passed is linked into the kernel structures and must
1563 * not be reused until it has been unregistered. A negative errno code
1564 * is returned on a failure.
1566 * When registered all registration and up events are replayed
1567 * to the new notifier to allow device to have a race free
1568 * view of the network device list.
1571 int register_netdevice_notifier(struct notifier_block *nb)
1573 struct net_device *dev;
1574 struct net_device *last;
1575 struct net *net;
1576 int err;
1578 rtnl_lock();
1579 err = raw_notifier_chain_register(&netdev_chain, nb);
1580 if (err)
1581 goto unlock;
1582 if (dev_boot_phase)
1583 goto unlock;
1584 for_each_net(net) {
1585 for_each_netdev(net, dev) {
1586 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1587 err = notifier_to_errno(err);
1588 if (err)
1589 goto rollback;
1591 if (!(dev->flags & IFF_UP))
1592 continue;
1594 call_netdevice_notifier(nb, NETDEV_UP, dev);
1598 unlock:
1599 rtnl_unlock();
1600 return err;
1602 rollback:
1603 last = dev;
1604 for_each_net(net) {
1605 for_each_netdev(net, dev) {
1606 if (dev == last)
1607 goto outroll;
1609 if (dev->flags & IFF_UP) {
1610 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1611 dev);
1612 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1614 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1618 outroll:
1619 raw_notifier_chain_unregister(&netdev_chain, nb);
1620 goto unlock;
1622 EXPORT_SYMBOL(register_netdevice_notifier);
1625 * unregister_netdevice_notifier - unregister a network notifier block
1626 * @nb: notifier
1628 * Unregister a notifier previously registered by
1629 * register_netdevice_notifier(). The notifier is unlinked into the
1630 * kernel structures and may then be reused. A negative errno code
1631 * is returned on a failure.
1633 * After unregistering unregister and down device events are synthesized
1634 * for all devices on the device list to the removed notifier to remove
1635 * the need for special case cleanup code.
1638 int unregister_netdevice_notifier(struct notifier_block *nb)
1640 struct net_device *dev;
1641 struct net *net;
1642 int err;
1644 rtnl_lock();
1645 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1646 if (err)
1647 goto unlock;
1649 for_each_net(net) {
1650 for_each_netdev(net, dev) {
1651 if (dev->flags & IFF_UP) {
1652 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1653 dev);
1654 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1656 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1659 unlock:
1660 rtnl_unlock();
1661 return err;
1663 EXPORT_SYMBOL(unregister_netdevice_notifier);
1666 * call_netdevice_notifiers_info - call all network notifier blocks
1667 * @val: value passed unmodified to notifier function
1668 * @dev: net_device pointer passed unmodified to notifier function
1669 * @info: notifier information data
1671 * Call all network notifier blocks. Parameters and return value
1672 * are as for raw_notifier_call_chain().
1675 static int call_netdevice_notifiers_info(unsigned long val,
1676 struct netdev_notifier_info *info)
1678 ASSERT_RTNL();
1679 return raw_notifier_call_chain(&netdev_chain, val, info);
1683 * call_netdevice_notifiers - call all network notifier blocks
1684 * @val: value passed unmodified to notifier function
1685 * @dev: net_device pointer passed unmodified to notifier function
1687 * Call all network notifier blocks. Parameters and return value
1688 * are as for raw_notifier_call_chain().
1691 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1693 struct netdev_notifier_info info = {
1694 .dev = dev,
1697 return call_netdevice_notifiers_info(val, &info);
1699 EXPORT_SYMBOL(call_netdevice_notifiers);
1701 #ifdef CONFIG_NET_INGRESS
1702 static struct static_key ingress_needed __read_mostly;
1704 void net_inc_ingress_queue(void)
1706 static_key_slow_inc(&ingress_needed);
1708 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1710 void net_dec_ingress_queue(void)
1712 static_key_slow_dec(&ingress_needed);
1714 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1715 #endif
1717 #ifdef CONFIG_NET_EGRESS
1718 static struct static_key egress_needed __read_mostly;
1720 void net_inc_egress_queue(void)
1722 static_key_slow_inc(&egress_needed);
1724 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1726 void net_dec_egress_queue(void)
1728 static_key_slow_dec(&egress_needed);
1730 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1731 #endif
1733 static struct static_key netstamp_needed __read_mostly;
1734 #ifdef HAVE_JUMP_LABEL
1735 static atomic_t netstamp_needed_deferred;
1736 static atomic_t netstamp_wanted;
1737 static void netstamp_clear(struct work_struct *work)
1739 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1740 int wanted;
1742 wanted = atomic_add_return(deferred, &netstamp_wanted);
1743 if (wanted > 0)
1744 static_key_enable(&netstamp_needed);
1745 else
1746 static_key_disable(&netstamp_needed);
1748 static DECLARE_WORK(netstamp_work, netstamp_clear);
1749 #endif
1751 void net_enable_timestamp(void)
1753 #ifdef HAVE_JUMP_LABEL
1754 int wanted;
1756 while (1) {
1757 wanted = atomic_read(&netstamp_wanted);
1758 if (wanted <= 0)
1759 break;
1760 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1761 return;
1763 atomic_inc(&netstamp_needed_deferred);
1764 schedule_work(&netstamp_work);
1765 #else
1766 static_key_slow_inc(&netstamp_needed);
1767 #endif
1769 EXPORT_SYMBOL(net_enable_timestamp);
1771 void net_disable_timestamp(void)
1773 #ifdef HAVE_JUMP_LABEL
1774 int wanted;
1776 while (1) {
1777 wanted = atomic_read(&netstamp_wanted);
1778 if (wanted <= 1)
1779 break;
1780 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1781 return;
1783 atomic_dec(&netstamp_needed_deferred);
1784 schedule_work(&netstamp_work);
1785 #else
1786 static_key_slow_dec(&netstamp_needed);
1787 #endif
1789 EXPORT_SYMBOL(net_disable_timestamp);
1791 static inline void net_timestamp_set(struct sk_buff *skb)
1793 skb->tstamp = 0;
1794 if (static_key_false(&netstamp_needed))
1795 __net_timestamp(skb);
1798 #define net_timestamp_check(COND, SKB) \
1799 if (static_key_false(&netstamp_needed)) { \
1800 if ((COND) && !(SKB)->tstamp) \
1801 __net_timestamp(SKB); \
1804 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1806 unsigned int len;
1808 if (!(dev->flags & IFF_UP))
1809 return false;
1811 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1812 if (skb->len <= len)
1813 return true;
1815 /* if TSO is enabled, we don't care about the length as the packet
1816 * could be forwarded without being segmented before
1818 if (skb_is_gso(skb))
1819 return true;
1821 return false;
1823 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1825 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1827 int ret = ____dev_forward_skb(dev, skb);
1829 if (likely(!ret)) {
1830 skb->protocol = eth_type_trans(skb, dev);
1831 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1834 return ret;
1836 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1839 * dev_forward_skb - loopback an skb to another netif
1841 * @dev: destination network device
1842 * @skb: buffer to forward
1844 * return values:
1845 * NET_RX_SUCCESS (no congestion)
1846 * NET_RX_DROP (packet was dropped, but freed)
1848 * dev_forward_skb can be used for injecting an skb from the
1849 * start_xmit function of one device into the receive queue
1850 * of another device.
1852 * The receiving device may be in another namespace, so
1853 * we have to clear all information in the skb that could
1854 * impact namespace isolation.
1856 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1858 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1860 EXPORT_SYMBOL_GPL(dev_forward_skb);
1862 static inline int deliver_skb(struct sk_buff *skb,
1863 struct packet_type *pt_prev,
1864 struct net_device *orig_dev)
1866 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1867 return -ENOMEM;
1868 refcount_inc(&skb->users);
1869 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1872 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1873 struct packet_type **pt,
1874 struct net_device *orig_dev,
1875 __be16 type,
1876 struct list_head *ptype_list)
1878 struct packet_type *ptype, *pt_prev = *pt;
1880 list_for_each_entry_rcu(ptype, ptype_list, list) {
1881 if (ptype->type != type)
1882 continue;
1883 if (pt_prev)
1884 deliver_skb(skb, pt_prev, orig_dev);
1885 pt_prev = ptype;
1887 *pt = pt_prev;
1890 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1892 if (!ptype->af_packet_priv || !skb->sk)
1893 return false;
1895 if (ptype->id_match)
1896 return ptype->id_match(ptype, skb->sk);
1897 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1898 return true;
1900 return false;
1904 * Support routine. Sends outgoing frames to any network
1905 * taps currently in use.
1908 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1910 struct packet_type *ptype;
1911 struct sk_buff *skb2 = NULL;
1912 struct packet_type *pt_prev = NULL;
1913 struct list_head *ptype_list = &ptype_all;
1915 rcu_read_lock();
1916 again:
1917 list_for_each_entry_rcu(ptype, ptype_list, list) {
1918 /* Never send packets back to the socket
1919 * they originated from - MvS (miquels@drinkel.ow.org)
1921 if (skb_loop_sk(ptype, skb))
1922 continue;
1924 if (pt_prev) {
1925 deliver_skb(skb2, pt_prev, skb->dev);
1926 pt_prev = ptype;
1927 continue;
1930 /* need to clone skb, done only once */
1931 skb2 = skb_clone(skb, GFP_ATOMIC);
1932 if (!skb2)
1933 goto out_unlock;
1935 net_timestamp_set(skb2);
1937 /* skb->nh should be correctly
1938 * set by sender, so that the second statement is
1939 * just protection against buggy protocols.
1941 skb_reset_mac_header(skb2);
1943 if (skb_network_header(skb2) < skb2->data ||
1944 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1945 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1946 ntohs(skb2->protocol),
1947 dev->name);
1948 skb_reset_network_header(skb2);
1951 skb2->transport_header = skb2->network_header;
1952 skb2->pkt_type = PACKET_OUTGOING;
1953 pt_prev = ptype;
1956 if (ptype_list == &ptype_all) {
1957 ptype_list = &dev->ptype_all;
1958 goto again;
1960 out_unlock:
1961 if (pt_prev) {
1962 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1963 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1964 else
1965 kfree_skb(skb2);
1967 rcu_read_unlock();
1969 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1972 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1973 * @dev: Network device
1974 * @txq: number of queues available
1976 * If real_num_tx_queues is changed the tc mappings may no longer be
1977 * valid. To resolve this verify the tc mapping remains valid and if
1978 * not NULL the mapping. With no priorities mapping to this
1979 * offset/count pair it will no longer be used. In the worst case TC0
1980 * is invalid nothing can be done so disable priority mappings. If is
1981 * expected that drivers will fix this mapping if they can before
1982 * calling netif_set_real_num_tx_queues.
1984 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1986 int i;
1987 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1989 /* If TC0 is invalidated disable TC mapping */
1990 if (tc->offset + tc->count > txq) {
1991 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1992 dev->num_tc = 0;
1993 return;
1996 /* Invalidated prio to tc mappings set to TC0 */
1997 for (i = 1; i < TC_BITMASK + 1; i++) {
1998 int q = netdev_get_prio_tc_map(dev, i);
2000 tc = &dev->tc_to_txq[q];
2001 if (tc->offset + tc->count > txq) {
2002 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2003 i, q);
2004 netdev_set_prio_tc_map(dev, i, 0);
2009 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2011 if (dev->num_tc) {
2012 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2013 int i;
2015 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2016 if ((txq - tc->offset) < tc->count)
2017 return i;
2020 return -1;
2023 return 0;
2025 EXPORT_SYMBOL(netdev_txq_to_tc);
2027 #ifdef CONFIG_XPS
2028 static DEFINE_MUTEX(xps_map_mutex);
2029 #define xmap_dereference(P) \
2030 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2032 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2033 int tci, u16 index)
2035 struct xps_map *map = NULL;
2036 int pos;
2038 if (dev_maps)
2039 map = xmap_dereference(dev_maps->cpu_map[tci]);
2040 if (!map)
2041 return false;
2043 for (pos = map->len; pos--;) {
2044 if (map->queues[pos] != index)
2045 continue;
2047 if (map->len > 1) {
2048 map->queues[pos] = map->queues[--map->len];
2049 break;
2052 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2053 kfree_rcu(map, rcu);
2054 return false;
2057 return true;
2060 static bool remove_xps_queue_cpu(struct net_device *dev,
2061 struct xps_dev_maps *dev_maps,
2062 int cpu, u16 offset, u16 count)
2064 int num_tc = dev->num_tc ? : 1;
2065 bool active = false;
2066 int tci;
2068 for (tci = cpu * num_tc; num_tc--; tci++) {
2069 int i, j;
2071 for (i = count, j = offset; i--; j++) {
2072 if (!remove_xps_queue(dev_maps, cpu, j))
2073 break;
2076 active |= i < 0;
2079 return active;
2082 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2083 u16 count)
2085 struct xps_dev_maps *dev_maps;
2086 int cpu, i;
2087 bool active = false;
2089 mutex_lock(&xps_map_mutex);
2090 dev_maps = xmap_dereference(dev->xps_maps);
2092 if (!dev_maps)
2093 goto out_no_maps;
2095 for_each_possible_cpu(cpu)
2096 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2097 offset, count);
2099 if (!active) {
2100 RCU_INIT_POINTER(dev->xps_maps, NULL);
2101 kfree_rcu(dev_maps, rcu);
2104 for (i = offset + (count - 1); count--; i--)
2105 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2106 NUMA_NO_NODE);
2108 out_no_maps:
2109 mutex_unlock(&xps_map_mutex);
2112 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2114 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2117 static struct xps_map *expand_xps_map(struct xps_map *map,
2118 int cpu, u16 index)
2120 struct xps_map *new_map;
2121 int alloc_len = XPS_MIN_MAP_ALLOC;
2122 int i, pos;
2124 for (pos = 0; map && pos < map->len; pos++) {
2125 if (map->queues[pos] != index)
2126 continue;
2127 return map;
2130 /* Need to add queue to this CPU's existing map */
2131 if (map) {
2132 if (pos < map->alloc_len)
2133 return map;
2135 alloc_len = map->alloc_len * 2;
2138 /* Need to allocate new map to store queue on this CPU's map */
2139 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2140 cpu_to_node(cpu));
2141 if (!new_map)
2142 return NULL;
2144 for (i = 0; i < pos; i++)
2145 new_map->queues[i] = map->queues[i];
2146 new_map->alloc_len = alloc_len;
2147 new_map->len = pos;
2149 return new_map;
2152 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2153 u16 index)
2155 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2156 int i, cpu, tci, numa_node_id = -2;
2157 int maps_sz, num_tc = 1, tc = 0;
2158 struct xps_map *map, *new_map;
2159 bool active = false;
2161 if (dev->num_tc) {
2162 num_tc = dev->num_tc;
2163 tc = netdev_txq_to_tc(dev, index);
2164 if (tc < 0)
2165 return -EINVAL;
2168 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2169 if (maps_sz < L1_CACHE_BYTES)
2170 maps_sz = L1_CACHE_BYTES;
2172 mutex_lock(&xps_map_mutex);
2174 dev_maps = xmap_dereference(dev->xps_maps);
2176 /* allocate memory for queue storage */
2177 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2178 if (!new_dev_maps)
2179 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2180 if (!new_dev_maps) {
2181 mutex_unlock(&xps_map_mutex);
2182 return -ENOMEM;
2185 tci = cpu * num_tc + tc;
2186 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2187 NULL;
2189 map = expand_xps_map(map, cpu, index);
2190 if (!map)
2191 goto error;
2193 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2196 if (!new_dev_maps)
2197 goto out_no_new_maps;
2199 for_each_possible_cpu(cpu) {
2200 /* copy maps belonging to foreign traffic classes */
2201 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2202 /* fill in the new device map from the old device map */
2203 map = xmap_dereference(dev_maps->cpu_map[tci]);
2204 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2207 /* We need to explicitly update tci as prevous loop
2208 * could break out early if dev_maps is NULL.
2210 tci = cpu * num_tc + tc;
2212 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2213 /* add queue to CPU maps */
2214 int pos = 0;
2216 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2217 while ((pos < map->len) && (map->queues[pos] != index))
2218 pos++;
2220 if (pos == map->len)
2221 map->queues[map->len++] = index;
2222 #ifdef CONFIG_NUMA
2223 if (numa_node_id == -2)
2224 numa_node_id = cpu_to_node(cpu);
2225 else if (numa_node_id != cpu_to_node(cpu))
2226 numa_node_id = -1;
2227 #endif
2228 } else if (dev_maps) {
2229 /* fill in the new device map from the old device map */
2230 map = xmap_dereference(dev_maps->cpu_map[tci]);
2231 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2234 /* copy maps belonging to foreign traffic classes */
2235 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2236 /* fill in the new device map from the old device map */
2237 map = xmap_dereference(dev_maps->cpu_map[tci]);
2238 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2242 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2244 /* Cleanup old maps */
2245 if (!dev_maps)
2246 goto out_no_old_maps;
2248 for_each_possible_cpu(cpu) {
2249 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2250 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2251 map = xmap_dereference(dev_maps->cpu_map[tci]);
2252 if (map && map != new_map)
2253 kfree_rcu(map, rcu);
2257 kfree_rcu(dev_maps, rcu);
2259 out_no_old_maps:
2260 dev_maps = new_dev_maps;
2261 active = true;
2263 out_no_new_maps:
2264 /* update Tx queue numa node */
2265 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2266 (numa_node_id >= 0) ? numa_node_id :
2267 NUMA_NO_NODE);
2269 if (!dev_maps)
2270 goto out_no_maps;
2272 /* removes queue from unused CPUs */
2273 for_each_possible_cpu(cpu) {
2274 for (i = tc, tci = cpu * num_tc; i--; tci++)
2275 active |= remove_xps_queue(dev_maps, tci, index);
2276 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2277 active |= remove_xps_queue(dev_maps, tci, index);
2278 for (i = num_tc - tc, tci++; --i; tci++)
2279 active |= remove_xps_queue(dev_maps, tci, index);
2282 /* free map if not active */
2283 if (!active) {
2284 RCU_INIT_POINTER(dev->xps_maps, NULL);
2285 kfree_rcu(dev_maps, rcu);
2288 out_no_maps:
2289 mutex_unlock(&xps_map_mutex);
2291 return 0;
2292 error:
2293 /* remove any maps that we added */
2294 for_each_possible_cpu(cpu) {
2295 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2296 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2297 map = dev_maps ?
2298 xmap_dereference(dev_maps->cpu_map[tci]) :
2299 NULL;
2300 if (new_map && new_map != map)
2301 kfree(new_map);
2305 mutex_unlock(&xps_map_mutex);
2307 kfree(new_dev_maps);
2308 return -ENOMEM;
2310 EXPORT_SYMBOL(netif_set_xps_queue);
2312 #endif
2313 void netdev_reset_tc(struct net_device *dev)
2315 #ifdef CONFIG_XPS
2316 netif_reset_xps_queues_gt(dev, 0);
2317 #endif
2318 dev->num_tc = 0;
2319 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2320 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2322 EXPORT_SYMBOL(netdev_reset_tc);
2324 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2326 if (tc >= dev->num_tc)
2327 return -EINVAL;
2329 #ifdef CONFIG_XPS
2330 netif_reset_xps_queues(dev, offset, count);
2331 #endif
2332 dev->tc_to_txq[tc].count = count;
2333 dev->tc_to_txq[tc].offset = offset;
2334 return 0;
2336 EXPORT_SYMBOL(netdev_set_tc_queue);
2338 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2340 if (num_tc > TC_MAX_QUEUE)
2341 return -EINVAL;
2343 #ifdef CONFIG_XPS
2344 netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346 dev->num_tc = num_tc;
2347 return 0;
2349 EXPORT_SYMBOL(netdev_set_num_tc);
2352 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2353 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2355 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2357 int rc;
2359 if (txq < 1 || txq > dev->num_tx_queues)
2360 return -EINVAL;
2362 if (dev->reg_state == NETREG_REGISTERED ||
2363 dev->reg_state == NETREG_UNREGISTERING) {
2364 ASSERT_RTNL();
2366 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2367 txq);
2368 if (rc)
2369 return rc;
2371 if (dev->num_tc)
2372 netif_setup_tc(dev, txq);
2374 if (txq < dev->real_num_tx_queues) {
2375 qdisc_reset_all_tx_gt(dev, txq);
2376 #ifdef CONFIG_XPS
2377 netif_reset_xps_queues_gt(dev, txq);
2378 #endif
2382 dev->real_num_tx_queues = txq;
2383 return 0;
2385 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2387 #ifdef CONFIG_SYSFS
2389 * netif_set_real_num_rx_queues - set actual number of RX queues used
2390 * @dev: Network device
2391 * @rxq: Actual number of RX queues
2393 * This must be called either with the rtnl_lock held or before
2394 * registration of the net device. Returns 0 on success, or a
2395 * negative error code. If called before registration, it always
2396 * succeeds.
2398 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2400 int rc;
2402 if (rxq < 1 || rxq > dev->num_rx_queues)
2403 return -EINVAL;
2405 if (dev->reg_state == NETREG_REGISTERED) {
2406 ASSERT_RTNL();
2408 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2409 rxq);
2410 if (rc)
2411 return rc;
2414 dev->real_num_rx_queues = rxq;
2415 return 0;
2417 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2418 #endif
2421 * netif_get_num_default_rss_queues - default number of RSS queues
2423 * This routine should set an upper limit on the number of RSS queues
2424 * used by default by multiqueue devices.
2426 int netif_get_num_default_rss_queues(void)
2428 return is_kdump_kernel() ?
2429 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2431 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2433 static void __netif_reschedule(struct Qdisc *q)
2435 struct softnet_data *sd;
2436 unsigned long flags;
2438 local_irq_save(flags);
2439 sd = this_cpu_ptr(&softnet_data);
2440 q->next_sched = NULL;
2441 *sd->output_queue_tailp = q;
2442 sd->output_queue_tailp = &q->next_sched;
2443 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2444 local_irq_restore(flags);
2447 void __netif_schedule(struct Qdisc *q)
2449 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2450 __netif_reschedule(q);
2452 EXPORT_SYMBOL(__netif_schedule);
2454 struct dev_kfree_skb_cb {
2455 enum skb_free_reason reason;
2458 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2460 return (struct dev_kfree_skb_cb *)skb->cb;
2463 void netif_schedule_queue(struct netdev_queue *txq)
2465 rcu_read_lock();
2466 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2467 struct Qdisc *q = rcu_dereference(txq->qdisc);
2469 __netif_schedule(q);
2471 rcu_read_unlock();
2473 EXPORT_SYMBOL(netif_schedule_queue);
2475 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2477 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2478 struct Qdisc *q;
2480 rcu_read_lock();
2481 q = rcu_dereference(dev_queue->qdisc);
2482 __netif_schedule(q);
2483 rcu_read_unlock();
2486 EXPORT_SYMBOL(netif_tx_wake_queue);
2488 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2490 unsigned long flags;
2492 if (unlikely(!skb))
2493 return;
2495 if (likely(refcount_read(&skb->users) == 1)) {
2496 smp_rmb();
2497 refcount_set(&skb->users, 0);
2498 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2499 return;
2501 get_kfree_skb_cb(skb)->reason = reason;
2502 local_irq_save(flags);
2503 skb->next = __this_cpu_read(softnet_data.completion_queue);
2504 __this_cpu_write(softnet_data.completion_queue, skb);
2505 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2506 local_irq_restore(flags);
2508 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2510 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2512 if (in_irq() || irqs_disabled())
2513 __dev_kfree_skb_irq(skb, reason);
2514 else
2515 dev_kfree_skb(skb);
2517 EXPORT_SYMBOL(__dev_kfree_skb_any);
2521 * netif_device_detach - mark device as removed
2522 * @dev: network device
2524 * Mark device as removed from system and therefore no longer available.
2526 void netif_device_detach(struct net_device *dev)
2528 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 netif_running(dev)) {
2530 netif_tx_stop_all_queues(dev);
2533 EXPORT_SYMBOL(netif_device_detach);
2536 * netif_device_attach - mark device as attached
2537 * @dev: network device
2539 * Mark device as attached from system and restart if needed.
2541 void netif_device_attach(struct net_device *dev)
2543 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2544 netif_running(dev)) {
2545 netif_tx_wake_all_queues(dev);
2546 __netdev_watchdog_up(dev);
2549 EXPORT_SYMBOL(netif_device_attach);
2552 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2553 * to be used as a distribution range.
2555 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2556 unsigned int num_tx_queues)
2558 u32 hash;
2559 u16 qoffset = 0;
2560 u16 qcount = num_tx_queues;
2562 if (skb_rx_queue_recorded(skb)) {
2563 hash = skb_get_rx_queue(skb);
2564 while (unlikely(hash >= num_tx_queues))
2565 hash -= num_tx_queues;
2566 return hash;
2569 if (dev->num_tc) {
2570 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2572 qoffset = dev->tc_to_txq[tc].offset;
2573 qcount = dev->tc_to_txq[tc].count;
2576 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2578 EXPORT_SYMBOL(__skb_tx_hash);
2580 static void skb_warn_bad_offload(const struct sk_buff *skb)
2582 static const netdev_features_t null_features;
2583 struct net_device *dev = skb->dev;
2584 const char *name = "";
2586 if (!net_ratelimit())
2587 return;
2589 if (dev) {
2590 if (dev->dev.parent)
2591 name = dev_driver_string(dev->dev.parent);
2592 else
2593 name = netdev_name(dev);
2595 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2596 "gso_type=%d ip_summed=%d\n",
2597 name, dev ? &dev->features : &null_features,
2598 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2599 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2600 skb_shinfo(skb)->gso_type, skb->ip_summed);
2604 * Invalidate hardware checksum when packet is to be mangled, and
2605 * complete checksum manually on outgoing path.
2607 int skb_checksum_help(struct sk_buff *skb)
2609 __wsum csum;
2610 int ret = 0, offset;
2612 if (skb->ip_summed == CHECKSUM_COMPLETE)
2613 goto out_set_summed;
2615 if (unlikely(skb_shinfo(skb)->gso_size)) {
2616 skb_warn_bad_offload(skb);
2617 return -EINVAL;
2620 /* Before computing a checksum, we should make sure no frag could
2621 * be modified by an external entity : checksum could be wrong.
2623 if (skb_has_shared_frag(skb)) {
2624 ret = __skb_linearize(skb);
2625 if (ret)
2626 goto out;
2629 offset = skb_checksum_start_offset(skb);
2630 BUG_ON(offset >= skb_headlen(skb));
2631 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2633 offset += skb->csum_offset;
2634 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2636 if (skb_cloned(skb) &&
2637 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2638 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2639 if (ret)
2640 goto out;
2643 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2644 out_set_summed:
2645 skb->ip_summed = CHECKSUM_NONE;
2646 out:
2647 return ret;
2649 EXPORT_SYMBOL(skb_checksum_help);
2651 int skb_crc32c_csum_help(struct sk_buff *skb)
2653 __le32 crc32c_csum;
2654 int ret = 0, offset, start;
2656 if (skb->ip_summed != CHECKSUM_PARTIAL)
2657 goto out;
2659 if (unlikely(skb_is_gso(skb)))
2660 goto out;
2662 /* Before computing a checksum, we should make sure no frag could
2663 * be modified by an external entity : checksum could be wrong.
2665 if (unlikely(skb_has_shared_frag(skb))) {
2666 ret = __skb_linearize(skb);
2667 if (ret)
2668 goto out;
2670 start = skb_checksum_start_offset(skb);
2671 offset = start + offsetof(struct sctphdr, checksum);
2672 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2673 ret = -EINVAL;
2674 goto out;
2676 if (skb_cloned(skb) &&
2677 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2678 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2679 if (ret)
2680 goto out;
2682 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2683 skb->len - start, ~(__u32)0,
2684 crc32c_csum_stub));
2685 *(__le32 *)(skb->data + offset) = crc32c_csum;
2686 skb->ip_summed = CHECKSUM_NONE;
2687 skb->csum_not_inet = 0;
2688 out:
2689 return ret;
2692 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2694 __be16 type = skb->protocol;
2696 /* Tunnel gso handlers can set protocol to ethernet. */
2697 if (type == htons(ETH_P_TEB)) {
2698 struct ethhdr *eth;
2700 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2701 return 0;
2703 eth = (struct ethhdr *)skb_mac_header(skb);
2704 type = eth->h_proto;
2707 return __vlan_get_protocol(skb, type, depth);
2711 * skb_mac_gso_segment - mac layer segmentation handler.
2712 * @skb: buffer to segment
2713 * @features: features for the output path (see dev->features)
2715 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2716 netdev_features_t features)
2718 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2719 struct packet_offload *ptype;
2720 int vlan_depth = skb->mac_len;
2721 __be16 type = skb_network_protocol(skb, &vlan_depth);
2723 if (unlikely(!type))
2724 return ERR_PTR(-EINVAL);
2726 __skb_pull(skb, vlan_depth);
2728 rcu_read_lock();
2729 list_for_each_entry_rcu(ptype, &offload_base, list) {
2730 if (ptype->type == type && ptype->callbacks.gso_segment) {
2731 segs = ptype->callbacks.gso_segment(skb, features);
2732 break;
2735 rcu_read_unlock();
2737 __skb_push(skb, skb->data - skb_mac_header(skb));
2739 return segs;
2741 EXPORT_SYMBOL(skb_mac_gso_segment);
2744 /* openvswitch calls this on rx path, so we need a different check.
2746 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2748 if (tx_path)
2749 return skb->ip_summed != CHECKSUM_PARTIAL &&
2750 skb->ip_summed != CHECKSUM_UNNECESSARY;
2752 return skb->ip_summed == CHECKSUM_NONE;
2756 * __skb_gso_segment - Perform segmentation on skb.
2757 * @skb: buffer to segment
2758 * @features: features for the output path (see dev->features)
2759 * @tx_path: whether it is called in TX path
2761 * This function segments the given skb and returns a list of segments.
2763 * It may return NULL if the skb requires no segmentation. This is
2764 * only possible when GSO is used for verifying header integrity.
2766 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2768 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2769 netdev_features_t features, bool tx_path)
2771 struct sk_buff *segs;
2773 if (unlikely(skb_needs_check(skb, tx_path))) {
2774 int err;
2776 /* We're going to init ->check field in TCP or UDP header */
2777 err = skb_cow_head(skb, 0);
2778 if (err < 0)
2779 return ERR_PTR(err);
2782 /* Only report GSO partial support if it will enable us to
2783 * support segmentation on this frame without needing additional
2784 * work.
2786 if (features & NETIF_F_GSO_PARTIAL) {
2787 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2788 struct net_device *dev = skb->dev;
2790 partial_features |= dev->features & dev->gso_partial_features;
2791 if (!skb_gso_ok(skb, features | partial_features))
2792 features &= ~NETIF_F_GSO_PARTIAL;
2795 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2796 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2798 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2799 SKB_GSO_CB(skb)->encap_level = 0;
2801 skb_reset_mac_header(skb);
2802 skb_reset_mac_len(skb);
2804 segs = skb_mac_gso_segment(skb, features);
2806 if (unlikely(skb_needs_check(skb, tx_path)))
2807 skb_warn_bad_offload(skb);
2809 return segs;
2811 EXPORT_SYMBOL(__skb_gso_segment);
2813 /* Take action when hardware reception checksum errors are detected. */
2814 #ifdef CONFIG_BUG
2815 void netdev_rx_csum_fault(struct net_device *dev)
2817 if (net_ratelimit()) {
2818 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2819 dump_stack();
2822 EXPORT_SYMBOL(netdev_rx_csum_fault);
2823 #endif
2825 /* Actually, we should eliminate this check as soon as we know, that:
2826 * 1. IOMMU is present and allows to map all the memory.
2827 * 2. No high memory really exists on this machine.
2830 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2832 #ifdef CONFIG_HIGHMEM
2833 int i;
2835 if (!(dev->features & NETIF_F_HIGHDMA)) {
2836 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2837 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2839 if (PageHighMem(skb_frag_page(frag)))
2840 return 1;
2844 if (PCI_DMA_BUS_IS_PHYS) {
2845 struct device *pdev = dev->dev.parent;
2847 if (!pdev)
2848 return 0;
2849 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2850 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2851 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2853 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2854 return 1;
2857 #endif
2858 return 0;
2861 /* If MPLS offload request, verify we are testing hardware MPLS features
2862 * instead of standard features for the netdev.
2864 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2865 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2866 netdev_features_t features,
2867 __be16 type)
2869 if (eth_p_mpls(type))
2870 features &= skb->dev->mpls_features;
2872 return features;
2874 #else
2875 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2876 netdev_features_t features,
2877 __be16 type)
2879 return features;
2881 #endif
2883 static netdev_features_t harmonize_features(struct sk_buff *skb,
2884 netdev_features_t features)
2886 int tmp;
2887 __be16 type;
2889 type = skb_network_protocol(skb, &tmp);
2890 features = net_mpls_features(skb, features, type);
2892 if (skb->ip_summed != CHECKSUM_NONE &&
2893 !can_checksum_protocol(features, type)) {
2894 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2896 if (illegal_highdma(skb->dev, skb))
2897 features &= ~NETIF_F_SG;
2899 return features;
2902 netdev_features_t passthru_features_check(struct sk_buff *skb,
2903 struct net_device *dev,
2904 netdev_features_t features)
2906 return features;
2908 EXPORT_SYMBOL(passthru_features_check);
2910 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2911 struct net_device *dev,
2912 netdev_features_t features)
2914 return vlan_features_check(skb, features);
2917 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2918 struct net_device *dev,
2919 netdev_features_t features)
2921 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2923 if (gso_segs > dev->gso_max_segs)
2924 return features & ~NETIF_F_GSO_MASK;
2926 /* Support for GSO partial features requires software
2927 * intervention before we can actually process the packets
2928 * so we need to strip support for any partial features now
2929 * and we can pull them back in after we have partially
2930 * segmented the frame.
2932 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2933 features &= ~dev->gso_partial_features;
2935 /* Make sure to clear the IPv4 ID mangling feature if the
2936 * IPv4 header has the potential to be fragmented.
2938 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2939 struct iphdr *iph = skb->encapsulation ?
2940 inner_ip_hdr(skb) : ip_hdr(skb);
2942 if (!(iph->frag_off & htons(IP_DF)))
2943 features &= ~NETIF_F_TSO_MANGLEID;
2946 return features;
2949 netdev_features_t netif_skb_features(struct sk_buff *skb)
2951 struct net_device *dev = skb->dev;
2952 netdev_features_t features = dev->features;
2954 if (skb_is_gso(skb))
2955 features = gso_features_check(skb, dev, features);
2957 /* If encapsulation offload request, verify we are testing
2958 * hardware encapsulation features instead of standard
2959 * features for the netdev
2961 if (skb->encapsulation)
2962 features &= dev->hw_enc_features;
2964 if (skb_vlan_tagged(skb))
2965 features = netdev_intersect_features(features,
2966 dev->vlan_features |
2967 NETIF_F_HW_VLAN_CTAG_TX |
2968 NETIF_F_HW_VLAN_STAG_TX);
2970 if (dev->netdev_ops->ndo_features_check)
2971 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2972 features);
2973 else
2974 features &= dflt_features_check(skb, dev, features);
2976 return harmonize_features(skb, features);
2978 EXPORT_SYMBOL(netif_skb_features);
2980 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2981 struct netdev_queue *txq, bool more)
2983 unsigned int len;
2984 int rc;
2986 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2987 dev_queue_xmit_nit(skb, dev);
2989 len = skb->len;
2990 trace_net_dev_start_xmit(skb, dev);
2991 rc = netdev_start_xmit(skb, dev, txq, more);
2992 trace_net_dev_xmit(skb, rc, dev, len);
2994 return rc;
2997 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2998 struct netdev_queue *txq, int *ret)
3000 struct sk_buff *skb = first;
3001 int rc = NETDEV_TX_OK;
3003 while (skb) {
3004 struct sk_buff *next = skb->next;
3006 skb->next = NULL;
3007 rc = xmit_one(skb, dev, txq, next != NULL);
3008 if (unlikely(!dev_xmit_complete(rc))) {
3009 skb->next = next;
3010 goto out;
3013 skb = next;
3014 if (netif_xmit_stopped(txq) && skb) {
3015 rc = NETDEV_TX_BUSY;
3016 break;
3020 out:
3021 *ret = rc;
3022 return skb;
3025 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3026 netdev_features_t features)
3028 if (skb_vlan_tag_present(skb) &&
3029 !vlan_hw_offload_capable(features, skb->vlan_proto))
3030 skb = __vlan_hwaccel_push_inside(skb);
3031 return skb;
3034 int skb_csum_hwoffload_help(struct sk_buff *skb,
3035 const netdev_features_t features)
3037 if (unlikely(skb->csum_not_inet))
3038 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3039 skb_crc32c_csum_help(skb);
3041 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3043 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3045 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3047 netdev_features_t features;
3049 features = netif_skb_features(skb);
3050 skb = validate_xmit_vlan(skb, features);
3051 if (unlikely(!skb))
3052 goto out_null;
3054 if (netif_needs_gso(skb, features)) {
3055 struct sk_buff *segs;
3057 segs = skb_gso_segment(skb, features);
3058 if (IS_ERR(segs)) {
3059 goto out_kfree_skb;
3060 } else if (segs) {
3061 consume_skb(skb);
3062 skb = segs;
3064 } else {
3065 if (skb_needs_linearize(skb, features) &&
3066 __skb_linearize(skb))
3067 goto out_kfree_skb;
3069 if (validate_xmit_xfrm(skb, features))
3070 goto out_kfree_skb;
3072 /* If packet is not checksummed and device does not
3073 * support checksumming for this protocol, complete
3074 * checksumming here.
3076 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3077 if (skb->encapsulation)
3078 skb_set_inner_transport_header(skb,
3079 skb_checksum_start_offset(skb));
3080 else
3081 skb_set_transport_header(skb,
3082 skb_checksum_start_offset(skb));
3083 if (skb_csum_hwoffload_help(skb, features))
3084 goto out_kfree_skb;
3088 return skb;
3090 out_kfree_skb:
3091 kfree_skb(skb);
3092 out_null:
3093 atomic_long_inc(&dev->tx_dropped);
3094 return NULL;
3097 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3099 struct sk_buff *next, *head = NULL, *tail;
3101 for (; skb != NULL; skb = next) {
3102 next = skb->next;
3103 skb->next = NULL;
3105 /* in case skb wont be segmented, point to itself */
3106 skb->prev = skb;
3108 skb = validate_xmit_skb(skb, dev);
3109 if (!skb)
3110 continue;
3112 if (!head)
3113 head = skb;
3114 else
3115 tail->next = skb;
3116 /* If skb was segmented, skb->prev points to
3117 * the last segment. If not, it still contains skb.
3119 tail = skb->prev;
3121 return head;
3123 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3125 static void qdisc_pkt_len_init(struct sk_buff *skb)
3127 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3129 qdisc_skb_cb(skb)->pkt_len = skb->len;
3131 /* To get more precise estimation of bytes sent on wire,
3132 * we add to pkt_len the headers size of all segments
3134 if (shinfo->gso_size) {
3135 unsigned int hdr_len;
3136 u16 gso_segs = shinfo->gso_segs;
3138 /* mac layer + network layer */
3139 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3141 /* + transport layer */
3142 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3143 hdr_len += tcp_hdrlen(skb);
3144 else
3145 hdr_len += sizeof(struct udphdr);
3147 if (shinfo->gso_type & SKB_GSO_DODGY)
3148 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3149 shinfo->gso_size);
3151 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3155 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3156 struct net_device *dev,
3157 struct netdev_queue *txq)
3159 spinlock_t *root_lock = qdisc_lock(q);
3160 struct sk_buff *to_free = NULL;
3161 bool contended;
3162 int rc;
3164 qdisc_calculate_pkt_len(skb, q);
3166 * Heuristic to force contended enqueues to serialize on a
3167 * separate lock before trying to get qdisc main lock.
3168 * This permits qdisc->running owner to get the lock more
3169 * often and dequeue packets faster.
3171 contended = qdisc_is_running(q);
3172 if (unlikely(contended))
3173 spin_lock(&q->busylock);
3175 spin_lock(root_lock);
3176 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3177 __qdisc_drop(skb, &to_free);
3178 rc = NET_XMIT_DROP;
3179 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3180 qdisc_run_begin(q)) {
3182 * This is a work-conserving queue; there are no old skbs
3183 * waiting to be sent out; and the qdisc is not running -
3184 * xmit the skb directly.
3187 qdisc_bstats_update(q, skb);
3189 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3190 if (unlikely(contended)) {
3191 spin_unlock(&q->busylock);
3192 contended = false;
3194 __qdisc_run(q);
3195 } else
3196 qdisc_run_end(q);
3198 rc = NET_XMIT_SUCCESS;
3199 } else {
3200 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3201 if (qdisc_run_begin(q)) {
3202 if (unlikely(contended)) {
3203 spin_unlock(&q->busylock);
3204 contended = false;
3206 __qdisc_run(q);
3209 spin_unlock(root_lock);
3210 if (unlikely(to_free))
3211 kfree_skb_list(to_free);
3212 if (unlikely(contended))
3213 spin_unlock(&q->busylock);
3214 return rc;
3217 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3218 static void skb_update_prio(struct sk_buff *skb)
3220 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3222 if (!skb->priority && skb->sk && map) {
3223 unsigned int prioidx =
3224 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3226 if (prioidx < map->priomap_len)
3227 skb->priority = map->priomap[prioidx];
3230 #else
3231 #define skb_update_prio(skb)
3232 #endif
3234 DEFINE_PER_CPU(int, xmit_recursion);
3235 EXPORT_SYMBOL(xmit_recursion);
3238 * dev_loopback_xmit - loop back @skb
3239 * @net: network namespace this loopback is happening in
3240 * @sk: sk needed to be a netfilter okfn
3241 * @skb: buffer to transmit
3243 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3245 skb_reset_mac_header(skb);
3246 __skb_pull(skb, skb_network_offset(skb));
3247 skb->pkt_type = PACKET_LOOPBACK;
3248 skb->ip_summed = CHECKSUM_UNNECESSARY;
3249 WARN_ON(!skb_dst(skb));
3250 skb_dst_force(skb);
3251 netif_rx_ni(skb);
3252 return 0;
3254 EXPORT_SYMBOL(dev_loopback_xmit);
3256 #ifdef CONFIG_NET_EGRESS
3257 static struct sk_buff *
3258 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3260 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3261 struct tcf_result cl_res;
3263 if (!miniq)
3264 return skb;
3266 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3267 mini_qdisc_bstats_cpu_update(miniq, skb);
3269 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3270 case TC_ACT_OK:
3271 case TC_ACT_RECLASSIFY:
3272 skb->tc_index = TC_H_MIN(cl_res.classid);
3273 break;
3274 case TC_ACT_SHOT:
3275 mini_qdisc_qstats_cpu_drop(miniq);
3276 *ret = NET_XMIT_DROP;
3277 kfree_skb(skb);
3278 return NULL;
3279 case TC_ACT_STOLEN:
3280 case TC_ACT_QUEUED:
3281 case TC_ACT_TRAP:
3282 *ret = NET_XMIT_SUCCESS;
3283 consume_skb(skb);
3284 return NULL;
3285 case TC_ACT_REDIRECT:
3286 /* No need to push/pop skb's mac_header here on egress! */
3287 skb_do_redirect(skb);
3288 *ret = NET_XMIT_SUCCESS;
3289 return NULL;
3290 default:
3291 break;
3294 return skb;
3296 #endif /* CONFIG_NET_EGRESS */
3298 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3300 #ifdef CONFIG_XPS
3301 struct xps_dev_maps *dev_maps;
3302 struct xps_map *map;
3303 int queue_index = -1;
3305 rcu_read_lock();
3306 dev_maps = rcu_dereference(dev->xps_maps);
3307 if (dev_maps) {
3308 unsigned int tci = skb->sender_cpu - 1;
3310 if (dev->num_tc) {
3311 tci *= dev->num_tc;
3312 tci += netdev_get_prio_tc_map(dev, skb->priority);
3315 map = rcu_dereference(dev_maps->cpu_map[tci]);
3316 if (map) {
3317 if (map->len == 1)
3318 queue_index = map->queues[0];
3319 else
3320 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3321 map->len)];
3322 if (unlikely(queue_index >= dev->real_num_tx_queues))
3323 queue_index = -1;
3326 rcu_read_unlock();
3328 return queue_index;
3329 #else
3330 return -1;
3331 #endif
3334 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3336 struct sock *sk = skb->sk;
3337 int queue_index = sk_tx_queue_get(sk);
3339 if (queue_index < 0 || skb->ooo_okay ||
3340 queue_index >= dev->real_num_tx_queues) {
3341 int new_index = get_xps_queue(dev, skb);
3343 if (new_index < 0)
3344 new_index = skb_tx_hash(dev, skb);
3346 if (queue_index != new_index && sk &&
3347 sk_fullsock(sk) &&
3348 rcu_access_pointer(sk->sk_dst_cache))
3349 sk_tx_queue_set(sk, new_index);
3351 queue_index = new_index;
3354 return queue_index;
3357 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3358 struct sk_buff *skb,
3359 void *accel_priv)
3361 int queue_index = 0;
3363 #ifdef CONFIG_XPS
3364 u32 sender_cpu = skb->sender_cpu - 1;
3366 if (sender_cpu >= (u32)NR_CPUS)
3367 skb->sender_cpu = raw_smp_processor_id() + 1;
3368 #endif
3370 if (dev->real_num_tx_queues != 1) {
3371 const struct net_device_ops *ops = dev->netdev_ops;
3373 if (ops->ndo_select_queue)
3374 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3375 __netdev_pick_tx);
3376 else
3377 queue_index = __netdev_pick_tx(dev, skb);
3379 if (!accel_priv)
3380 queue_index = netdev_cap_txqueue(dev, queue_index);
3383 skb_set_queue_mapping(skb, queue_index);
3384 return netdev_get_tx_queue(dev, queue_index);
3388 * __dev_queue_xmit - transmit a buffer
3389 * @skb: buffer to transmit
3390 * @accel_priv: private data used for L2 forwarding offload
3392 * Queue a buffer for transmission to a network device. The caller must
3393 * have set the device and priority and built the buffer before calling
3394 * this function. The function can be called from an interrupt.
3396 * A negative errno code is returned on a failure. A success does not
3397 * guarantee the frame will be transmitted as it may be dropped due
3398 * to congestion or traffic shaping.
3400 * -----------------------------------------------------------------------------------
3401 * I notice this method can also return errors from the queue disciplines,
3402 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3403 * be positive.
3405 * Regardless of the return value, the skb is consumed, so it is currently
3406 * difficult to retry a send to this method. (You can bump the ref count
3407 * before sending to hold a reference for retry if you are careful.)
3409 * When calling this method, interrupts MUST be enabled. This is because
3410 * the BH enable code must have IRQs enabled so that it will not deadlock.
3411 * --BLG
3413 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3415 struct net_device *dev = skb->dev;
3416 struct netdev_queue *txq;
3417 struct Qdisc *q;
3418 int rc = -ENOMEM;
3420 skb_reset_mac_header(skb);
3422 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3423 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3425 /* Disable soft irqs for various locks below. Also
3426 * stops preemption for RCU.
3428 rcu_read_lock_bh();
3430 skb_update_prio(skb);
3432 qdisc_pkt_len_init(skb);
3433 #ifdef CONFIG_NET_CLS_ACT
3434 skb->tc_at_ingress = 0;
3435 # ifdef CONFIG_NET_EGRESS
3436 if (static_key_false(&egress_needed)) {
3437 skb = sch_handle_egress(skb, &rc, dev);
3438 if (!skb)
3439 goto out;
3441 # endif
3442 #endif
3443 /* If device/qdisc don't need skb->dst, release it right now while
3444 * its hot in this cpu cache.
3446 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3447 skb_dst_drop(skb);
3448 else
3449 skb_dst_force(skb);
3451 txq = netdev_pick_tx(dev, skb, accel_priv);
3452 q = rcu_dereference_bh(txq->qdisc);
3454 trace_net_dev_queue(skb);
3455 if (q->enqueue) {
3456 rc = __dev_xmit_skb(skb, q, dev, txq);
3457 goto out;
3460 /* The device has no queue. Common case for software devices:
3461 * loopback, all the sorts of tunnels...
3463 * Really, it is unlikely that netif_tx_lock protection is necessary
3464 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3465 * counters.)
3466 * However, it is possible, that they rely on protection
3467 * made by us here.
3469 * Check this and shot the lock. It is not prone from deadlocks.
3470 *Either shot noqueue qdisc, it is even simpler 8)
3472 if (dev->flags & IFF_UP) {
3473 int cpu = smp_processor_id(); /* ok because BHs are off */
3475 if (txq->xmit_lock_owner != cpu) {
3476 if (unlikely(__this_cpu_read(xmit_recursion) >
3477 XMIT_RECURSION_LIMIT))
3478 goto recursion_alert;
3480 skb = validate_xmit_skb(skb, dev);
3481 if (!skb)
3482 goto out;
3484 HARD_TX_LOCK(dev, txq, cpu);
3486 if (!netif_xmit_stopped(txq)) {
3487 __this_cpu_inc(xmit_recursion);
3488 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3489 __this_cpu_dec(xmit_recursion);
3490 if (dev_xmit_complete(rc)) {
3491 HARD_TX_UNLOCK(dev, txq);
3492 goto out;
3495 HARD_TX_UNLOCK(dev, txq);
3496 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3497 dev->name);
3498 } else {
3499 /* Recursion is detected! It is possible,
3500 * unfortunately
3502 recursion_alert:
3503 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3504 dev->name);
3508 rc = -ENETDOWN;
3509 rcu_read_unlock_bh();
3511 atomic_long_inc(&dev->tx_dropped);
3512 kfree_skb_list(skb);
3513 return rc;
3514 out:
3515 rcu_read_unlock_bh();
3516 return rc;
3519 int dev_queue_xmit(struct sk_buff *skb)
3521 return __dev_queue_xmit(skb, NULL);
3523 EXPORT_SYMBOL(dev_queue_xmit);
3525 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3527 return __dev_queue_xmit(skb, accel_priv);
3529 EXPORT_SYMBOL(dev_queue_xmit_accel);
3532 /*************************************************************************
3533 * Receiver routines
3534 *************************************************************************/
3536 int netdev_max_backlog __read_mostly = 1000;
3537 EXPORT_SYMBOL(netdev_max_backlog);
3539 int netdev_tstamp_prequeue __read_mostly = 1;
3540 int netdev_budget __read_mostly = 300;
3541 unsigned int __read_mostly netdev_budget_usecs = 2000;
3542 int weight_p __read_mostly = 64; /* old backlog weight */
3543 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3544 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3545 int dev_rx_weight __read_mostly = 64;
3546 int dev_tx_weight __read_mostly = 64;
3548 /* Called with irq disabled */
3549 static inline void ____napi_schedule(struct softnet_data *sd,
3550 struct napi_struct *napi)
3552 list_add_tail(&napi->poll_list, &sd->poll_list);
3553 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3556 #ifdef CONFIG_RPS
3558 /* One global table that all flow-based protocols share. */
3559 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3560 EXPORT_SYMBOL(rps_sock_flow_table);
3561 u32 rps_cpu_mask __read_mostly;
3562 EXPORT_SYMBOL(rps_cpu_mask);
3564 struct static_key rps_needed __read_mostly;
3565 EXPORT_SYMBOL(rps_needed);
3566 struct static_key rfs_needed __read_mostly;
3567 EXPORT_SYMBOL(rfs_needed);
3569 static struct rps_dev_flow *
3570 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3571 struct rps_dev_flow *rflow, u16 next_cpu)
3573 if (next_cpu < nr_cpu_ids) {
3574 #ifdef CONFIG_RFS_ACCEL
3575 struct netdev_rx_queue *rxqueue;
3576 struct rps_dev_flow_table *flow_table;
3577 struct rps_dev_flow *old_rflow;
3578 u32 flow_id;
3579 u16 rxq_index;
3580 int rc;
3582 /* Should we steer this flow to a different hardware queue? */
3583 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3584 !(dev->features & NETIF_F_NTUPLE))
3585 goto out;
3586 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3587 if (rxq_index == skb_get_rx_queue(skb))
3588 goto out;
3590 rxqueue = dev->_rx + rxq_index;
3591 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3592 if (!flow_table)
3593 goto out;
3594 flow_id = skb_get_hash(skb) & flow_table->mask;
3595 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3596 rxq_index, flow_id);
3597 if (rc < 0)
3598 goto out;
3599 old_rflow = rflow;
3600 rflow = &flow_table->flows[flow_id];
3601 rflow->filter = rc;
3602 if (old_rflow->filter == rflow->filter)
3603 old_rflow->filter = RPS_NO_FILTER;
3604 out:
3605 #endif
3606 rflow->last_qtail =
3607 per_cpu(softnet_data, next_cpu).input_queue_head;
3610 rflow->cpu = next_cpu;
3611 return rflow;
3615 * get_rps_cpu is called from netif_receive_skb and returns the target
3616 * CPU from the RPS map of the receiving queue for a given skb.
3617 * rcu_read_lock must be held on entry.
3619 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3620 struct rps_dev_flow **rflowp)
3622 const struct rps_sock_flow_table *sock_flow_table;
3623 struct netdev_rx_queue *rxqueue = dev->_rx;
3624 struct rps_dev_flow_table *flow_table;
3625 struct rps_map *map;
3626 int cpu = -1;
3627 u32 tcpu;
3628 u32 hash;
3630 if (skb_rx_queue_recorded(skb)) {
3631 u16 index = skb_get_rx_queue(skb);
3633 if (unlikely(index >= dev->real_num_rx_queues)) {
3634 WARN_ONCE(dev->real_num_rx_queues > 1,
3635 "%s received packet on queue %u, but number "
3636 "of RX queues is %u\n",
3637 dev->name, index, dev->real_num_rx_queues);
3638 goto done;
3640 rxqueue += index;
3643 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3645 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3646 map = rcu_dereference(rxqueue->rps_map);
3647 if (!flow_table && !map)
3648 goto done;
3650 skb_reset_network_header(skb);
3651 hash = skb_get_hash(skb);
3652 if (!hash)
3653 goto done;
3655 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3656 if (flow_table && sock_flow_table) {
3657 struct rps_dev_flow *rflow;
3658 u32 next_cpu;
3659 u32 ident;
3661 /* First check into global flow table if there is a match */
3662 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3663 if ((ident ^ hash) & ~rps_cpu_mask)
3664 goto try_rps;
3666 next_cpu = ident & rps_cpu_mask;
3668 /* OK, now we know there is a match,
3669 * we can look at the local (per receive queue) flow table
3671 rflow = &flow_table->flows[hash & flow_table->mask];
3672 tcpu = rflow->cpu;
3675 * If the desired CPU (where last recvmsg was done) is
3676 * different from current CPU (one in the rx-queue flow
3677 * table entry), switch if one of the following holds:
3678 * - Current CPU is unset (>= nr_cpu_ids).
3679 * - Current CPU is offline.
3680 * - The current CPU's queue tail has advanced beyond the
3681 * last packet that was enqueued using this table entry.
3682 * This guarantees that all previous packets for the flow
3683 * have been dequeued, thus preserving in order delivery.
3685 if (unlikely(tcpu != next_cpu) &&
3686 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3687 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3688 rflow->last_qtail)) >= 0)) {
3689 tcpu = next_cpu;
3690 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3693 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3694 *rflowp = rflow;
3695 cpu = tcpu;
3696 goto done;
3700 try_rps:
3702 if (map) {
3703 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3704 if (cpu_online(tcpu)) {
3705 cpu = tcpu;
3706 goto done;
3710 done:
3711 return cpu;
3714 #ifdef CONFIG_RFS_ACCEL
3717 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3718 * @dev: Device on which the filter was set
3719 * @rxq_index: RX queue index
3720 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3721 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3723 * Drivers that implement ndo_rx_flow_steer() should periodically call
3724 * this function for each installed filter and remove the filters for
3725 * which it returns %true.
3727 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3728 u32 flow_id, u16 filter_id)
3730 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3731 struct rps_dev_flow_table *flow_table;
3732 struct rps_dev_flow *rflow;
3733 bool expire = true;
3734 unsigned int cpu;
3736 rcu_read_lock();
3737 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3738 if (flow_table && flow_id <= flow_table->mask) {
3739 rflow = &flow_table->flows[flow_id];
3740 cpu = READ_ONCE(rflow->cpu);
3741 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3742 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3743 rflow->last_qtail) <
3744 (int)(10 * flow_table->mask)))
3745 expire = false;
3747 rcu_read_unlock();
3748 return expire;
3750 EXPORT_SYMBOL(rps_may_expire_flow);
3752 #endif /* CONFIG_RFS_ACCEL */
3754 /* Called from hardirq (IPI) context */
3755 static void rps_trigger_softirq(void *data)
3757 struct softnet_data *sd = data;
3759 ____napi_schedule(sd, &sd->backlog);
3760 sd->received_rps++;
3763 #endif /* CONFIG_RPS */
3766 * Check if this softnet_data structure is another cpu one
3767 * If yes, queue it to our IPI list and return 1
3768 * If no, return 0
3770 static int rps_ipi_queued(struct softnet_data *sd)
3772 #ifdef CONFIG_RPS
3773 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3775 if (sd != mysd) {
3776 sd->rps_ipi_next = mysd->rps_ipi_list;
3777 mysd->rps_ipi_list = sd;
3779 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3780 return 1;
3782 #endif /* CONFIG_RPS */
3783 return 0;
3786 #ifdef CONFIG_NET_FLOW_LIMIT
3787 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3788 #endif
3790 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3792 #ifdef CONFIG_NET_FLOW_LIMIT
3793 struct sd_flow_limit *fl;
3794 struct softnet_data *sd;
3795 unsigned int old_flow, new_flow;
3797 if (qlen < (netdev_max_backlog >> 1))
3798 return false;
3800 sd = this_cpu_ptr(&softnet_data);
3802 rcu_read_lock();
3803 fl = rcu_dereference(sd->flow_limit);
3804 if (fl) {
3805 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3806 old_flow = fl->history[fl->history_head];
3807 fl->history[fl->history_head] = new_flow;
3809 fl->history_head++;
3810 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3812 if (likely(fl->buckets[old_flow]))
3813 fl->buckets[old_flow]--;
3815 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3816 fl->count++;
3817 rcu_read_unlock();
3818 return true;
3821 rcu_read_unlock();
3822 #endif
3823 return false;
3827 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3828 * queue (may be a remote CPU queue).
3830 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3831 unsigned int *qtail)
3833 struct softnet_data *sd;
3834 unsigned long flags;
3835 unsigned int qlen;
3837 sd = &per_cpu(softnet_data, cpu);
3839 local_irq_save(flags);
3841 rps_lock(sd);
3842 if (!netif_running(skb->dev))
3843 goto drop;
3844 qlen = skb_queue_len(&sd->input_pkt_queue);
3845 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3846 if (qlen) {
3847 enqueue:
3848 __skb_queue_tail(&sd->input_pkt_queue, skb);
3849 input_queue_tail_incr_save(sd, qtail);
3850 rps_unlock(sd);
3851 local_irq_restore(flags);
3852 return NET_RX_SUCCESS;
3855 /* Schedule NAPI for backlog device
3856 * We can use non atomic operation since we own the queue lock
3858 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3859 if (!rps_ipi_queued(sd))
3860 ____napi_schedule(sd, &sd->backlog);
3862 goto enqueue;
3865 drop:
3866 sd->dropped++;
3867 rps_unlock(sd);
3869 local_irq_restore(flags);
3871 atomic_long_inc(&skb->dev->rx_dropped);
3872 kfree_skb(skb);
3873 return NET_RX_DROP;
3876 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3877 struct bpf_prog *xdp_prog)
3879 u32 metalen, act = XDP_DROP;
3880 struct xdp_buff xdp;
3881 void *orig_data;
3882 int hlen, off;
3883 u32 mac_len;
3885 /* Reinjected packets coming from act_mirred or similar should
3886 * not get XDP generic processing.
3888 if (skb_cloned(skb))
3889 return XDP_PASS;
3891 /* XDP packets must be linear and must have sufficient headroom
3892 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3893 * native XDP provides, thus we need to do it here as well.
3895 if (skb_is_nonlinear(skb) ||
3896 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3897 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3898 int troom = skb->tail + skb->data_len - skb->end;
3900 /* In case we have to go down the path and also linearize,
3901 * then lets do the pskb_expand_head() work just once here.
3903 if (pskb_expand_head(skb,
3904 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3905 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3906 goto do_drop;
3907 if (troom > 0 && __skb_linearize(skb))
3908 goto do_drop;
3911 /* The XDP program wants to see the packet starting at the MAC
3912 * header.
3914 mac_len = skb->data - skb_mac_header(skb);
3915 hlen = skb_headlen(skb) + mac_len;
3916 xdp.data = skb->data - mac_len;
3917 xdp.data_meta = xdp.data;
3918 xdp.data_end = xdp.data + hlen;
3919 xdp.data_hard_start = skb->data - skb_headroom(skb);
3920 orig_data = xdp.data;
3922 act = bpf_prog_run_xdp(xdp_prog, &xdp);
3924 off = xdp.data - orig_data;
3925 if (off > 0)
3926 __skb_pull(skb, off);
3927 else if (off < 0)
3928 __skb_push(skb, -off);
3929 skb->mac_header += off;
3931 switch (act) {
3932 case XDP_REDIRECT:
3933 case XDP_TX:
3934 __skb_push(skb, mac_len);
3935 break;
3936 case XDP_PASS:
3937 metalen = xdp.data - xdp.data_meta;
3938 if (metalen)
3939 skb_metadata_set(skb, metalen);
3940 break;
3941 default:
3942 bpf_warn_invalid_xdp_action(act);
3943 /* fall through */
3944 case XDP_ABORTED:
3945 trace_xdp_exception(skb->dev, xdp_prog, act);
3946 /* fall through */
3947 case XDP_DROP:
3948 do_drop:
3949 kfree_skb(skb);
3950 break;
3953 return act;
3956 /* When doing generic XDP we have to bypass the qdisc layer and the
3957 * network taps in order to match in-driver-XDP behavior.
3959 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3961 struct net_device *dev = skb->dev;
3962 struct netdev_queue *txq;
3963 bool free_skb = true;
3964 int cpu, rc;
3966 txq = netdev_pick_tx(dev, skb, NULL);
3967 cpu = smp_processor_id();
3968 HARD_TX_LOCK(dev, txq, cpu);
3969 if (!netif_xmit_stopped(txq)) {
3970 rc = netdev_start_xmit(skb, dev, txq, 0);
3971 if (dev_xmit_complete(rc))
3972 free_skb = false;
3974 HARD_TX_UNLOCK(dev, txq);
3975 if (free_skb) {
3976 trace_xdp_exception(dev, xdp_prog, XDP_TX);
3977 kfree_skb(skb);
3980 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3982 static struct static_key generic_xdp_needed __read_mostly;
3984 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3986 if (xdp_prog) {
3987 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3988 int err;
3990 if (act != XDP_PASS) {
3991 switch (act) {
3992 case XDP_REDIRECT:
3993 err = xdp_do_generic_redirect(skb->dev, skb,
3994 xdp_prog);
3995 if (err)
3996 goto out_redir;
3997 /* fallthru to submit skb */
3998 case XDP_TX:
3999 generic_xdp_tx(skb, xdp_prog);
4000 break;
4002 return XDP_DROP;
4005 return XDP_PASS;
4006 out_redir:
4007 kfree_skb(skb);
4008 return XDP_DROP;
4010 EXPORT_SYMBOL_GPL(do_xdp_generic);
4012 static int netif_rx_internal(struct sk_buff *skb)
4014 int ret;
4016 net_timestamp_check(netdev_tstamp_prequeue, skb);
4018 trace_netif_rx(skb);
4020 if (static_key_false(&generic_xdp_needed)) {
4021 int ret;
4023 preempt_disable();
4024 rcu_read_lock();
4025 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4026 rcu_read_unlock();
4027 preempt_enable();
4029 /* Consider XDP consuming the packet a success from
4030 * the netdev point of view we do not want to count
4031 * this as an error.
4033 if (ret != XDP_PASS)
4034 return NET_RX_SUCCESS;
4037 #ifdef CONFIG_RPS
4038 if (static_key_false(&rps_needed)) {
4039 struct rps_dev_flow voidflow, *rflow = &voidflow;
4040 int cpu;
4042 preempt_disable();
4043 rcu_read_lock();
4045 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4046 if (cpu < 0)
4047 cpu = smp_processor_id();
4049 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4051 rcu_read_unlock();
4052 preempt_enable();
4053 } else
4054 #endif
4056 unsigned int qtail;
4058 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4059 put_cpu();
4061 return ret;
4065 * netif_rx - post buffer to the network code
4066 * @skb: buffer to post
4068 * This function receives a packet from a device driver and queues it for
4069 * the upper (protocol) levels to process. It always succeeds. The buffer
4070 * may be dropped during processing for congestion control or by the
4071 * protocol layers.
4073 * return values:
4074 * NET_RX_SUCCESS (no congestion)
4075 * NET_RX_DROP (packet was dropped)
4079 int netif_rx(struct sk_buff *skb)
4081 trace_netif_rx_entry(skb);
4083 return netif_rx_internal(skb);
4085 EXPORT_SYMBOL(netif_rx);
4087 int netif_rx_ni(struct sk_buff *skb)
4089 int err;
4091 trace_netif_rx_ni_entry(skb);
4093 preempt_disable();
4094 err = netif_rx_internal(skb);
4095 if (local_softirq_pending())
4096 do_softirq();
4097 preempt_enable();
4099 return err;
4101 EXPORT_SYMBOL(netif_rx_ni);
4103 static __latent_entropy void net_tx_action(struct softirq_action *h)
4105 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4107 if (sd->completion_queue) {
4108 struct sk_buff *clist;
4110 local_irq_disable();
4111 clist = sd->completion_queue;
4112 sd->completion_queue = NULL;
4113 local_irq_enable();
4115 while (clist) {
4116 struct sk_buff *skb = clist;
4118 clist = clist->next;
4120 WARN_ON(refcount_read(&skb->users));
4121 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4122 trace_consume_skb(skb);
4123 else
4124 trace_kfree_skb(skb, net_tx_action);
4126 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4127 __kfree_skb(skb);
4128 else
4129 __kfree_skb_defer(skb);
4132 __kfree_skb_flush();
4135 if (sd->output_queue) {
4136 struct Qdisc *head;
4138 local_irq_disable();
4139 head = sd->output_queue;
4140 sd->output_queue = NULL;
4141 sd->output_queue_tailp = &sd->output_queue;
4142 local_irq_enable();
4144 while (head) {
4145 struct Qdisc *q = head;
4146 spinlock_t *root_lock;
4148 head = head->next_sched;
4150 root_lock = qdisc_lock(q);
4151 spin_lock(root_lock);
4152 /* We need to make sure head->next_sched is read
4153 * before clearing __QDISC_STATE_SCHED
4155 smp_mb__before_atomic();
4156 clear_bit(__QDISC_STATE_SCHED, &q->state);
4157 qdisc_run(q);
4158 spin_unlock(root_lock);
4163 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4164 /* This hook is defined here for ATM LANE */
4165 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4166 unsigned char *addr) __read_mostly;
4167 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4168 #endif
4170 static inline struct sk_buff *
4171 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4172 struct net_device *orig_dev)
4174 #ifdef CONFIG_NET_CLS_ACT
4175 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4176 struct tcf_result cl_res;
4178 /* If there's at least one ingress present somewhere (so
4179 * we get here via enabled static key), remaining devices
4180 * that are not configured with an ingress qdisc will bail
4181 * out here.
4183 if (!miniq)
4184 return skb;
4186 if (*pt_prev) {
4187 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4188 *pt_prev = NULL;
4191 qdisc_skb_cb(skb)->pkt_len = skb->len;
4192 skb->tc_at_ingress = 1;
4193 mini_qdisc_bstats_cpu_update(miniq, skb);
4195 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4196 case TC_ACT_OK:
4197 case TC_ACT_RECLASSIFY:
4198 skb->tc_index = TC_H_MIN(cl_res.classid);
4199 break;
4200 case TC_ACT_SHOT:
4201 mini_qdisc_qstats_cpu_drop(miniq);
4202 kfree_skb(skb);
4203 return NULL;
4204 case TC_ACT_STOLEN:
4205 case TC_ACT_QUEUED:
4206 case TC_ACT_TRAP:
4207 consume_skb(skb);
4208 return NULL;
4209 case TC_ACT_REDIRECT:
4210 /* skb_mac_header check was done by cls/act_bpf, so
4211 * we can safely push the L2 header back before
4212 * redirecting to another netdev
4214 __skb_push(skb, skb->mac_len);
4215 skb_do_redirect(skb);
4216 return NULL;
4217 default:
4218 break;
4220 #endif /* CONFIG_NET_CLS_ACT */
4221 return skb;
4225 * netdev_is_rx_handler_busy - check if receive handler is registered
4226 * @dev: device to check
4228 * Check if a receive handler is already registered for a given device.
4229 * Return true if there one.
4231 * The caller must hold the rtnl_mutex.
4233 bool netdev_is_rx_handler_busy(struct net_device *dev)
4235 ASSERT_RTNL();
4236 return dev && rtnl_dereference(dev->rx_handler);
4238 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4241 * netdev_rx_handler_register - register receive handler
4242 * @dev: device to register a handler for
4243 * @rx_handler: receive handler to register
4244 * @rx_handler_data: data pointer that is used by rx handler
4246 * Register a receive handler for a device. This handler will then be
4247 * called from __netif_receive_skb. A negative errno code is returned
4248 * on a failure.
4250 * The caller must hold the rtnl_mutex.
4252 * For a general description of rx_handler, see enum rx_handler_result.
4254 int netdev_rx_handler_register(struct net_device *dev,
4255 rx_handler_func_t *rx_handler,
4256 void *rx_handler_data)
4258 if (netdev_is_rx_handler_busy(dev))
4259 return -EBUSY;
4261 /* Note: rx_handler_data must be set before rx_handler */
4262 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4263 rcu_assign_pointer(dev->rx_handler, rx_handler);
4265 return 0;
4267 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4270 * netdev_rx_handler_unregister - unregister receive handler
4271 * @dev: device to unregister a handler from
4273 * Unregister a receive handler from a device.
4275 * The caller must hold the rtnl_mutex.
4277 void netdev_rx_handler_unregister(struct net_device *dev)
4280 ASSERT_RTNL();
4281 RCU_INIT_POINTER(dev->rx_handler, NULL);
4282 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4283 * section has a guarantee to see a non NULL rx_handler_data
4284 * as well.
4286 synchronize_net();
4287 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4289 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4292 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4293 * the special handling of PFMEMALLOC skbs.
4295 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4297 switch (skb->protocol) {
4298 case htons(ETH_P_ARP):
4299 case htons(ETH_P_IP):
4300 case htons(ETH_P_IPV6):
4301 case htons(ETH_P_8021Q):
4302 case htons(ETH_P_8021AD):
4303 return true;
4304 default:
4305 return false;
4309 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4310 int *ret, struct net_device *orig_dev)
4312 #ifdef CONFIG_NETFILTER_INGRESS
4313 if (nf_hook_ingress_active(skb)) {
4314 int ingress_retval;
4316 if (*pt_prev) {
4317 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4318 *pt_prev = NULL;
4321 rcu_read_lock();
4322 ingress_retval = nf_hook_ingress(skb);
4323 rcu_read_unlock();
4324 return ingress_retval;
4326 #endif /* CONFIG_NETFILTER_INGRESS */
4327 return 0;
4330 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4332 struct packet_type *ptype, *pt_prev;
4333 rx_handler_func_t *rx_handler;
4334 struct net_device *orig_dev;
4335 bool deliver_exact = false;
4336 int ret = NET_RX_DROP;
4337 __be16 type;
4339 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4341 trace_netif_receive_skb(skb);
4343 orig_dev = skb->dev;
4345 skb_reset_network_header(skb);
4346 if (!skb_transport_header_was_set(skb))
4347 skb_reset_transport_header(skb);
4348 skb_reset_mac_len(skb);
4350 pt_prev = NULL;
4352 another_round:
4353 skb->skb_iif = skb->dev->ifindex;
4355 __this_cpu_inc(softnet_data.processed);
4357 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4358 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4359 skb = skb_vlan_untag(skb);
4360 if (unlikely(!skb))
4361 goto out;
4364 if (skb_skip_tc_classify(skb))
4365 goto skip_classify;
4367 if (pfmemalloc)
4368 goto skip_taps;
4370 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4371 if (pt_prev)
4372 ret = deliver_skb(skb, pt_prev, orig_dev);
4373 pt_prev = ptype;
4376 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4377 if (pt_prev)
4378 ret = deliver_skb(skb, pt_prev, orig_dev);
4379 pt_prev = ptype;
4382 skip_taps:
4383 #ifdef CONFIG_NET_INGRESS
4384 if (static_key_false(&ingress_needed)) {
4385 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4386 if (!skb)
4387 goto out;
4389 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4390 goto out;
4392 #endif
4393 skb_reset_tc(skb);
4394 skip_classify:
4395 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4396 goto drop;
4398 if (skb_vlan_tag_present(skb)) {
4399 if (pt_prev) {
4400 ret = deliver_skb(skb, pt_prev, orig_dev);
4401 pt_prev = NULL;
4403 if (vlan_do_receive(&skb))
4404 goto another_round;
4405 else if (unlikely(!skb))
4406 goto out;
4409 rx_handler = rcu_dereference(skb->dev->rx_handler);
4410 if (rx_handler) {
4411 if (pt_prev) {
4412 ret = deliver_skb(skb, pt_prev, orig_dev);
4413 pt_prev = NULL;
4415 switch (rx_handler(&skb)) {
4416 case RX_HANDLER_CONSUMED:
4417 ret = NET_RX_SUCCESS;
4418 goto out;
4419 case RX_HANDLER_ANOTHER:
4420 goto another_round;
4421 case RX_HANDLER_EXACT:
4422 deliver_exact = true;
4423 case RX_HANDLER_PASS:
4424 break;
4425 default:
4426 BUG();
4430 if (unlikely(skb_vlan_tag_present(skb))) {
4431 if (skb_vlan_tag_get_id(skb))
4432 skb->pkt_type = PACKET_OTHERHOST;
4433 /* Note: we might in the future use prio bits
4434 * and set skb->priority like in vlan_do_receive()
4435 * For the time being, just ignore Priority Code Point
4437 skb->vlan_tci = 0;
4440 type = skb->protocol;
4442 /* deliver only exact match when indicated */
4443 if (likely(!deliver_exact)) {
4444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4445 &ptype_base[ntohs(type) &
4446 PTYPE_HASH_MASK]);
4449 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4450 &orig_dev->ptype_specific);
4452 if (unlikely(skb->dev != orig_dev)) {
4453 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4454 &skb->dev->ptype_specific);
4457 if (pt_prev) {
4458 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4459 goto drop;
4460 else
4461 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4462 } else {
4463 drop:
4464 if (!deliver_exact)
4465 atomic_long_inc(&skb->dev->rx_dropped);
4466 else
4467 atomic_long_inc(&skb->dev->rx_nohandler);
4468 kfree_skb(skb);
4469 /* Jamal, now you will not able to escape explaining
4470 * me how you were going to use this. :-)
4472 ret = NET_RX_DROP;
4475 out:
4476 return ret;
4480 * netif_receive_skb_core - special purpose version of netif_receive_skb
4481 * @skb: buffer to process
4483 * More direct receive version of netif_receive_skb(). It should
4484 * only be used by callers that have a need to skip RPS and Generic XDP.
4485 * Caller must also take care of handling if (page_is_)pfmemalloc.
4487 * This function may only be called from softirq context and interrupts
4488 * should be enabled.
4490 * Return values (usually ignored):
4491 * NET_RX_SUCCESS: no congestion
4492 * NET_RX_DROP: packet was dropped
4494 int netif_receive_skb_core(struct sk_buff *skb)
4496 int ret;
4498 rcu_read_lock();
4499 ret = __netif_receive_skb_core(skb, false);
4500 rcu_read_unlock();
4502 return ret;
4504 EXPORT_SYMBOL(netif_receive_skb_core);
4506 static int __netif_receive_skb(struct sk_buff *skb)
4508 int ret;
4510 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4511 unsigned int noreclaim_flag;
4514 * PFMEMALLOC skbs are special, they should
4515 * - be delivered to SOCK_MEMALLOC sockets only
4516 * - stay away from userspace
4517 * - have bounded memory usage
4519 * Use PF_MEMALLOC as this saves us from propagating the allocation
4520 * context down to all allocation sites.
4522 noreclaim_flag = memalloc_noreclaim_save();
4523 ret = __netif_receive_skb_core(skb, true);
4524 memalloc_noreclaim_restore(noreclaim_flag);
4525 } else
4526 ret = __netif_receive_skb_core(skb, false);
4528 return ret;
4531 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4533 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4534 struct bpf_prog *new = xdp->prog;
4535 int ret = 0;
4537 switch (xdp->command) {
4538 case XDP_SETUP_PROG:
4539 rcu_assign_pointer(dev->xdp_prog, new);
4540 if (old)
4541 bpf_prog_put(old);
4543 if (old && !new) {
4544 static_key_slow_dec(&generic_xdp_needed);
4545 } else if (new && !old) {
4546 static_key_slow_inc(&generic_xdp_needed);
4547 dev_disable_lro(dev);
4549 break;
4551 case XDP_QUERY_PROG:
4552 xdp->prog_attached = !!old;
4553 xdp->prog_id = old ? old->aux->id : 0;
4554 break;
4556 default:
4557 ret = -EINVAL;
4558 break;
4561 return ret;
4564 static int netif_receive_skb_internal(struct sk_buff *skb)
4566 int ret;
4568 net_timestamp_check(netdev_tstamp_prequeue, skb);
4570 if (skb_defer_rx_timestamp(skb))
4571 return NET_RX_SUCCESS;
4573 if (static_key_false(&generic_xdp_needed)) {
4574 int ret;
4576 preempt_disable();
4577 rcu_read_lock();
4578 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4579 rcu_read_unlock();
4580 preempt_enable();
4582 if (ret != XDP_PASS)
4583 return NET_RX_DROP;
4586 rcu_read_lock();
4587 #ifdef CONFIG_RPS
4588 if (static_key_false(&rps_needed)) {
4589 struct rps_dev_flow voidflow, *rflow = &voidflow;
4590 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4592 if (cpu >= 0) {
4593 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4594 rcu_read_unlock();
4595 return ret;
4598 #endif
4599 ret = __netif_receive_skb(skb);
4600 rcu_read_unlock();
4601 return ret;
4605 * netif_receive_skb - process receive buffer from network
4606 * @skb: buffer to process
4608 * netif_receive_skb() is the main receive data processing function.
4609 * It always succeeds. The buffer may be dropped during processing
4610 * for congestion control or by the protocol layers.
4612 * This function may only be called from softirq context and interrupts
4613 * should be enabled.
4615 * Return values (usually ignored):
4616 * NET_RX_SUCCESS: no congestion
4617 * NET_RX_DROP: packet was dropped
4619 int netif_receive_skb(struct sk_buff *skb)
4621 trace_netif_receive_skb_entry(skb);
4623 return netif_receive_skb_internal(skb);
4625 EXPORT_SYMBOL(netif_receive_skb);
4627 DEFINE_PER_CPU(struct work_struct, flush_works);
4629 /* Network device is going away, flush any packets still pending */
4630 static void flush_backlog(struct work_struct *work)
4632 struct sk_buff *skb, *tmp;
4633 struct softnet_data *sd;
4635 local_bh_disable();
4636 sd = this_cpu_ptr(&softnet_data);
4638 local_irq_disable();
4639 rps_lock(sd);
4640 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4641 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4642 __skb_unlink(skb, &sd->input_pkt_queue);
4643 kfree_skb(skb);
4644 input_queue_head_incr(sd);
4647 rps_unlock(sd);
4648 local_irq_enable();
4650 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4651 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4652 __skb_unlink(skb, &sd->process_queue);
4653 kfree_skb(skb);
4654 input_queue_head_incr(sd);
4657 local_bh_enable();
4660 static void flush_all_backlogs(void)
4662 unsigned int cpu;
4664 get_online_cpus();
4666 for_each_online_cpu(cpu)
4667 queue_work_on(cpu, system_highpri_wq,
4668 per_cpu_ptr(&flush_works, cpu));
4670 for_each_online_cpu(cpu)
4671 flush_work(per_cpu_ptr(&flush_works, cpu));
4673 put_online_cpus();
4676 static int napi_gro_complete(struct sk_buff *skb)
4678 struct packet_offload *ptype;
4679 __be16 type = skb->protocol;
4680 struct list_head *head = &offload_base;
4681 int err = -ENOENT;
4683 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4685 if (NAPI_GRO_CB(skb)->count == 1) {
4686 skb_shinfo(skb)->gso_size = 0;
4687 goto out;
4690 rcu_read_lock();
4691 list_for_each_entry_rcu(ptype, head, list) {
4692 if (ptype->type != type || !ptype->callbacks.gro_complete)
4693 continue;
4695 err = ptype->callbacks.gro_complete(skb, 0);
4696 break;
4698 rcu_read_unlock();
4700 if (err) {
4701 WARN_ON(&ptype->list == head);
4702 kfree_skb(skb);
4703 return NET_RX_SUCCESS;
4706 out:
4707 return netif_receive_skb_internal(skb);
4710 /* napi->gro_list contains packets ordered by age.
4711 * youngest packets at the head of it.
4712 * Complete skbs in reverse order to reduce latencies.
4714 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4716 struct sk_buff *skb, *prev = NULL;
4718 /* scan list and build reverse chain */
4719 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4720 skb->prev = prev;
4721 prev = skb;
4724 for (skb = prev; skb; skb = prev) {
4725 skb->next = NULL;
4727 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4728 return;
4730 prev = skb->prev;
4731 napi_gro_complete(skb);
4732 napi->gro_count--;
4735 napi->gro_list = NULL;
4737 EXPORT_SYMBOL(napi_gro_flush);
4739 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4741 struct sk_buff *p;
4742 unsigned int maclen = skb->dev->hard_header_len;
4743 u32 hash = skb_get_hash_raw(skb);
4745 for (p = napi->gro_list; p; p = p->next) {
4746 unsigned long diffs;
4748 NAPI_GRO_CB(p)->flush = 0;
4750 if (hash != skb_get_hash_raw(p)) {
4751 NAPI_GRO_CB(p)->same_flow = 0;
4752 continue;
4755 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4756 diffs |= p->vlan_tci ^ skb->vlan_tci;
4757 diffs |= skb_metadata_dst_cmp(p, skb);
4758 diffs |= skb_metadata_differs(p, skb);
4759 if (maclen == ETH_HLEN)
4760 diffs |= compare_ether_header(skb_mac_header(p),
4761 skb_mac_header(skb));
4762 else if (!diffs)
4763 diffs = memcmp(skb_mac_header(p),
4764 skb_mac_header(skb),
4765 maclen);
4766 NAPI_GRO_CB(p)->same_flow = !diffs;
4770 static void skb_gro_reset_offset(struct sk_buff *skb)
4772 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4773 const skb_frag_t *frag0 = &pinfo->frags[0];
4775 NAPI_GRO_CB(skb)->data_offset = 0;
4776 NAPI_GRO_CB(skb)->frag0 = NULL;
4777 NAPI_GRO_CB(skb)->frag0_len = 0;
4779 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4780 pinfo->nr_frags &&
4781 !PageHighMem(skb_frag_page(frag0))) {
4782 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4783 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4784 skb_frag_size(frag0),
4785 skb->end - skb->tail);
4789 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4791 struct skb_shared_info *pinfo = skb_shinfo(skb);
4793 BUG_ON(skb->end - skb->tail < grow);
4795 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4797 skb->data_len -= grow;
4798 skb->tail += grow;
4800 pinfo->frags[0].page_offset += grow;
4801 skb_frag_size_sub(&pinfo->frags[0], grow);
4803 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4804 skb_frag_unref(skb, 0);
4805 memmove(pinfo->frags, pinfo->frags + 1,
4806 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4810 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4812 struct sk_buff **pp = NULL;
4813 struct packet_offload *ptype;
4814 __be16 type = skb->protocol;
4815 struct list_head *head = &offload_base;
4816 int same_flow;
4817 enum gro_result ret;
4818 int grow;
4820 if (netif_elide_gro(skb->dev))
4821 goto normal;
4823 gro_list_prepare(napi, skb);
4825 rcu_read_lock();
4826 list_for_each_entry_rcu(ptype, head, list) {
4827 if (ptype->type != type || !ptype->callbacks.gro_receive)
4828 continue;
4830 skb_set_network_header(skb, skb_gro_offset(skb));
4831 skb_reset_mac_len(skb);
4832 NAPI_GRO_CB(skb)->same_flow = 0;
4833 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4834 NAPI_GRO_CB(skb)->free = 0;
4835 NAPI_GRO_CB(skb)->encap_mark = 0;
4836 NAPI_GRO_CB(skb)->recursion_counter = 0;
4837 NAPI_GRO_CB(skb)->is_fou = 0;
4838 NAPI_GRO_CB(skb)->is_atomic = 1;
4839 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4841 /* Setup for GRO checksum validation */
4842 switch (skb->ip_summed) {
4843 case CHECKSUM_COMPLETE:
4844 NAPI_GRO_CB(skb)->csum = skb->csum;
4845 NAPI_GRO_CB(skb)->csum_valid = 1;
4846 NAPI_GRO_CB(skb)->csum_cnt = 0;
4847 break;
4848 case CHECKSUM_UNNECESSARY:
4849 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4850 NAPI_GRO_CB(skb)->csum_valid = 0;
4851 break;
4852 default:
4853 NAPI_GRO_CB(skb)->csum_cnt = 0;
4854 NAPI_GRO_CB(skb)->csum_valid = 0;
4857 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4858 break;
4860 rcu_read_unlock();
4862 if (&ptype->list == head)
4863 goto normal;
4865 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4866 ret = GRO_CONSUMED;
4867 goto ok;
4870 same_flow = NAPI_GRO_CB(skb)->same_flow;
4871 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4873 if (pp) {
4874 struct sk_buff *nskb = *pp;
4876 *pp = nskb->next;
4877 nskb->next = NULL;
4878 napi_gro_complete(nskb);
4879 napi->gro_count--;
4882 if (same_flow)
4883 goto ok;
4885 if (NAPI_GRO_CB(skb)->flush)
4886 goto normal;
4888 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4889 struct sk_buff *nskb = napi->gro_list;
4891 /* locate the end of the list to select the 'oldest' flow */
4892 while (nskb->next) {
4893 pp = &nskb->next;
4894 nskb = *pp;
4896 *pp = NULL;
4897 nskb->next = NULL;
4898 napi_gro_complete(nskb);
4899 } else {
4900 napi->gro_count++;
4902 NAPI_GRO_CB(skb)->count = 1;
4903 NAPI_GRO_CB(skb)->age = jiffies;
4904 NAPI_GRO_CB(skb)->last = skb;
4905 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4906 skb->next = napi->gro_list;
4907 napi->gro_list = skb;
4908 ret = GRO_HELD;
4910 pull:
4911 grow = skb_gro_offset(skb) - skb_headlen(skb);
4912 if (grow > 0)
4913 gro_pull_from_frag0(skb, grow);
4915 return ret;
4917 normal:
4918 ret = GRO_NORMAL;
4919 goto pull;
4922 struct packet_offload *gro_find_receive_by_type(__be16 type)
4924 struct list_head *offload_head = &offload_base;
4925 struct packet_offload *ptype;
4927 list_for_each_entry_rcu(ptype, offload_head, list) {
4928 if (ptype->type != type || !ptype->callbacks.gro_receive)
4929 continue;
4930 return ptype;
4932 return NULL;
4934 EXPORT_SYMBOL(gro_find_receive_by_type);
4936 struct packet_offload *gro_find_complete_by_type(__be16 type)
4938 struct list_head *offload_head = &offload_base;
4939 struct packet_offload *ptype;
4941 list_for_each_entry_rcu(ptype, offload_head, list) {
4942 if (ptype->type != type || !ptype->callbacks.gro_complete)
4943 continue;
4944 return ptype;
4946 return NULL;
4948 EXPORT_SYMBOL(gro_find_complete_by_type);
4950 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4952 skb_dst_drop(skb);
4953 secpath_reset(skb);
4954 kmem_cache_free(skbuff_head_cache, skb);
4957 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4959 switch (ret) {
4960 case GRO_NORMAL:
4961 if (netif_receive_skb_internal(skb))
4962 ret = GRO_DROP;
4963 break;
4965 case GRO_DROP:
4966 kfree_skb(skb);
4967 break;
4969 case GRO_MERGED_FREE:
4970 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4971 napi_skb_free_stolen_head(skb);
4972 else
4973 __kfree_skb(skb);
4974 break;
4976 case GRO_HELD:
4977 case GRO_MERGED:
4978 case GRO_CONSUMED:
4979 break;
4982 return ret;
4985 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4987 skb_mark_napi_id(skb, napi);
4988 trace_napi_gro_receive_entry(skb);
4990 skb_gro_reset_offset(skb);
4992 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4994 EXPORT_SYMBOL(napi_gro_receive);
4996 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4998 if (unlikely(skb->pfmemalloc)) {
4999 consume_skb(skb);
5000 return;
5002 __skb_pull(skb, skb_headlen(skb));
5003 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5004 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5005 skb->vlan_tci = 0;
5006 skb->dev = napi->dev;
5007 skb->skb_iif = 0;
5008 skb->encapsulation = 0;
5009 skb_shinfo(skb)->gso_type = 0;
5010 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5011 secpath_reset(skb);
5013 napi->skb = skb;
5016 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5018 struct sk_buff *skb = napi->skb;
5020 if (!skb) {
5021 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5022 if (skb) {
5023 napi->skb = skb;
5024 skb_mark_napi_id(skb, napi);
5027 return skb;
5029 EXPORT_SYMBOL(napi_get_frags);
5031 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5032 struct sk_buff *skb,
5033 gro_result_t ret)
5035 switch (ret) {
5036 case GRO_NORMAL:
5037 case GRO_HELD:
5038 __skb_push(skb, ETH_HLEN);
5039 skb->protocol = eth_type_trans(skb, skb->dev);
5040 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5041 ret = GRO_DROP;
5042 break;
5044 case GRO_DROP:
5045 napi_reuse_skb(napi, skb);
5046 break;
5048 case GRO_MERGED_FREE:
5049 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5050 napi_skb_free_stolen_head(skb);
5051 else
5052 napi_reuse_skb(napi, skb);
5053 break;
5055 case GRO_MERGED:
5056 case GRO_CONSUMED:
5057 break;
5060 return ret;
5063 /* Upper GRO stack assumes network header starts at gro_offset=0
5064 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5065 * We copy ethernet header into skb->data to have a common layout.
5067 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5069 struct sk_buff *skb = napi->skb;
5070 const struct ethhdr *eth;
5071 unsigned int hlen = sizeof(*eth);
5073 napi->skb = NULL;
5075 skb_reset_mac_header(skb);
5076 skb_gro_reset_offset(skb);
5078 eth = skb_gro_header_fast(skb, 0);
5079 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5080 eth = skb_gro_header_slow(skb, hlen, 0);
5081 if (unlikely(!eth)) {
5082 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5083 __func__, napi->dev->name);
5084 napi_reuse_skb(napi, skb);
5085 return NULL;
5087 } else {
5088 gro_pull_from_frag0(skb, hlen);
5089 NAPI_GRO_CB(skb)->frag0 += hlen;
5090 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5092 __skb_pull(skb, hlen);
5095 * This works because the only protocols we care about don't require
5096 * special handling.
5097 * We'll fix it up properly in napi_frags_finish()
5099 skb->protocol = eth->h_proto;
5101 return skb;
5104 gro_result_t napi_gro_frags(struct napi_struct *napi)
5106 struct sk_buff *skb = napi_frags_skb(napi);
5108 if (!skb)
5109 return GRO_DROP;
5111 trace_napi_gro_frags_entry(skb);
5113 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5115 EXPORT_SYMBOL(napi_gro_frags);
5117 /* Compute the checksum from gro_offset and return the folded value
5118 * after adding in any pseudo checksum.
5120 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5122 __wsum wsum;
5123 __sum16 sum;
5125 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5127 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5128 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5129 if (likely(!sum)) {
5130 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5131 !skb->csum_complete_sw)
5132 netdev_rx_csum_fault(skb->dev);
5135 NAPI_GRO_CB(skb)->csum = wsum;
5136 NAPI_GRO_CB(skb)->csum_valid = 1;
5138 return sum;
5140 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5142 static void net_rps_send_ipi(struct softnet_data *remsd)
5144 #ifdef CONFIG_RPS
5145 while (remsd) {
5146 struct softnet_data *next = remsd->rps_ipi_next;
5148 if (cpu_online(remsd->cpu))
5149 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5150 remsd = next;
5152 #endif
5156 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5157 * Note: called with local irq disabled, but exits with local irq enabled.
5159 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5161 #ifdef CONFIG_RPS
5162 struct softnet_data *remsd = sd->rps_ipi_list;
5164 if (remsd) {
5165 sd->rps_ipi_list = NULL;
5167 local_irq_enable();
5169 /* Send pending IPI's to kick RPS processing on remote cpus. */
5170 net_rps_send_ipi(remsd);
5171 } else
5172 #endif
5173 local_irq_enable();
5176 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5178 #ifdef CONFIG_RPS
5179 return sd->rps_ipi_list != NULL;
5180 #else
5181 return false;
5182 #endif
5185 static int process_backlog(struct napi_struct *napi, int quota)
5187 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5188 bool again = true;
5189 int work = 0;
5191 /* Check if we have pending ipi, its better to send them now,
5192 * not waiting net_rx_action() end.
5194 if (sd_has_rps_ipi_waiting(sd)) {
5195 local_irq_disable();
5196 net_rps_action_and_irq_enable(sd);
5199 napi->weight = dev_rx_weight;
5200 while (again) {
5201 struct sk_buff *skb;
5203 while ((skb = __skb_dequeue(&sd->process_queue))) {
5204 rcu_read_lock();
5205 __netif_receive_skb(skb);
5206 rcu_read_unlock();
5207 input_queue_head_incr(sd);
5208 if (++work >= quota)
5209 return work;
5213 local_irq_disable();
5214 rps_lock(sd);
5215 if (skb_queue_empty(&sd->input_pkt_queue)) {
5217 * Inline a custom version of __napi_complete().
5218 * only current cpu owns and manipulates this napi,
5219 * and NAPI_STATE_SCHED is the only possible flag set
5220 * on backlog.
5221 * We can use a plain write instead of clear_bit(),
5222 * and we dont need an smp_mb() memory barrier.
5224 napi->state = 0;
5225 again = false;
5226 } else {
5227 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5228 &sd->process_queue);
5230 rps_unlock(sd);
5231 local_irq_enable();
5234 return work;
5238 * __napi_schedule - schedule for receive
5239 * @n: entry to schedule
5241 * The entry's receive function will be scheduled to run.
5242 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5244 void __napi_schedule(struct napi_struct *n)
5246 unsigned long flags;
5248 local_irq_save(flags);
5249 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5250 local_irq_restore(flags);
5252 EXPORT_SYMBOL(__napi_schedule);
5255 * napi_schedule_prep - check if napi can be scheduled
5256 * @n: napi context
5258 * Test if NAPI routine is already running, and if not mark
5259 * it as running. This is used as a condition variable
5260 * insure only one NAPI poll instance runs. We also make
5261 * sure there is no pending NAPI disable.
5263 bool napi_schedule_prep(struct napi_struct *n)
5265 unsigned long val, new;
5267 do {
5268 val = READ_ONCE(n->state);
5269 if (unlikely(val & NAPIF_STATE_DISABLE))
5270 return false;
5271 new = val | NAPIF_STATE_SCHED;
5273 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5274 * This was suggested by Alexander Duyck, as compiler
5275 * emits better code than :
5276 * if (val & NAPIF_STATE_SCHED)
5277 * new |= NAPIF_STATE_MISSED;
5279 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5280 NAPIF_STATE_MISSED;
5281 } while (cmpxchg(&n->state, val, new) != val);
5283 return !(val & NAPIF_STATE_SCHED);
5285 EXPORT_SYMBOL(napi_schedule_prep);
5288 * __napi_schedule_irqoff - schedule for receive
5289 * @n: entry to schedule
5291 * Variant of __napi_schedule() assuming hard irqs are masked
5293 void __napi_schedule_irqoff(struct napi_struct *n)
5295 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5297 EXPORT_SYMBOL(__napi_schedule_irqoff);
5299 bool napi_complete_done(struct napi_struct *n, int work_done)
5301 unsigned long flags, val, new;
5304 * 1) Don't let napi dequeue from the cpu poll list
5305 * just in case its running on a different cpu.
5306 * 2) If we are busy polling, do nothing here, we have
5307 * the guarantee we will be called later.
5309 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5310 NAPIF_STATE_IN_BUSY_POLL)))
5311 return false;
5313 if (n->gro_list) {
5314 unsigned long timeout = 0;
5316 if (work_done)
5317 timeout = n->dev->gro_flush_timeout;
5319 if (timeout)
5320 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5321 HRTIMER_MODE_REL_PINNED);
5322 else
5323 napi_gro_flush(n, false);
5325 if (unlikely(!list_empty(&n->poll_list))) {
5326 /* If n->poll_list is not empty, we need to mask irqs */
5327 local_irq_save(flags);
5328 list_del_init(&n->poll_list);
5329 local_irq_restore(flags);
5332 do {
5333 val = READ_ONCE(n->state);
5335 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5337 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5339 /* If STATE_MISSED was set, leave STATE_SCHED set,
5340 * because we will call napi->poll() one more time.
5341 * This C code was suggested by Alexander Duyck to help gcc.
5343 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5344 NAPIF_STATE_SCHED;
5345 } while (cmpxchg(&n->state, val, new) != val);
5347 if (unlikely(val & NAPIF_STATE_MISSED)) {
5348 __napi_schedule(n);
5349 return false;
5352 return true;
5354 EXPORT_SYMBOL(napi_complete_done);
5356 /* must be called under rcu_read_lock(), as we dont take a reference */
5357 static struct napi_struct *napi_by_id(unsigned int napi_id)
5359 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5360 struct napi_struct *napi;
5362 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5363 if (napi->napi_id == napi_id)
5364 return napi;
5366 return NULL;
5369 #if defined(CONFIG_NET_RX_BUSY_POLL)
5371 #define BUSY_POLL_BUDGET 8
5373 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5375 int rc;
5377 /* Busy polling means there is a high chance device driver hard irq
5378 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5379 * set in napi_schedule_prep().
5380 * Since we are about to call napi->poll() once more, we can safely
5381 * clear NAPI_STATE_MISSED.
5383 * Note: x86 could use a single "lock and ..." instruction
5384 * to perform these two clear_bit()
5386 clear_bit(NAPI_STATE_MISSED, &napi->state);
5387 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5389 local_bh_disable();
5391 /* All we really want here is to re-enable device interrupts.
5392 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5394 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5395 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5396 netpoll_poll_unlock(have_poll_lock);
5397 if (rc == BUSY_POLL_BUDGET)
5398 __napi_schedule(napi);
5399 local_bh_enable();
5402 void napi_busy_loop(unsigned int napi_id,
5403 bool (*loop_end)(void *, unsigned long),
5404 void *loop_end_arg)
5406 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5407 int (*napi_poll)(struct napi_struct *napi, int budget);
5408 void *have_poll_lock = NULL;
5409 struct napi_struct *napi;
5411 restart:
5412 napi_poll = NULL;
5414 rcu_read_lock();
5416 napi = napi_by_id(napi_id);
5417 if (!napi)
5418 goto out;
5420 preempt_disable();
5421 for (;;) {
5422 int work = 0;
5424 local_bh_disable();
5425 if (!napi_poll) {
5426 unsigned long val = READ_ONCE(napi->state);
5428 /* If multiple threads are competing for this napi,
5429 * we avoid dirtying napi->state as much as we can.
5431 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5432 NAPIF_STATE_IN_BUSY_POLL))
5433 goto count;
5434 if (cmpxchg(&napi->state, val,
5435 val | NAPIF_STATE_IN_BUSY_POLL |
5436 NAPIF_STATE_SCHED) != val)
5437 goto count;
5438 have_poll_lock = netpoll_poll_lock(napi);
5439 napi_poll = napi->poll;
5441 work = napi_poll(napi, BUSY_POLL_BUDGET);
5442 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5443 count:
5444 if (work > 0)
5445 __NET_ADD_STATS(dev_net(napi->dev),
5446 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5447 local_bh_enable();
5449 if (!loop_end || loop_end(loop_end_arg, start_time))
5450 break;
5452 if (unlikely(need_resched())) {
5453 if (napi_poll)
5454 busy_poll_stop(napi, have_poll_lock);
5455 preempt_enable();
5456 rcu_read_unlock();
5457 cond_resched();
5458 if (loop_end(loop_end_arg, start_time))
5459 return;
5460 goto restart;
5462 cpu_relax();
5464 if (napi_poll)
5465 busy_poll_stop(napi, have_poll_lock);
5466 preempt_enable();
5467 out:
5468 rcu_read_unlock();
5470 EXPORT_SYMBOL(napi_busy_loop);
5472 #endif /* CONFIG_NET_RX_BUSY_POLL */
5474 static void napi_hash_add(struct napi_struct *napi)
5476 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5477 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5478 return;
5480 spin_lock(&napi_hash_lock);
5482 /* 0..NR_CPUS range is reserved for sender_cpu use */
5483 do {
5484 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5485 napi_gen_id = MIN_NAPI_ID;
5486 } while (napi_by_id(napi_gen_id));
5487 napi->napi_id = napi_gen_id;
5489 hlist_add_head_rcu(&napi->napi_hash_node,
5490 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5492 spin_unlock(&napi_hash_lock);
5495 /* Warning : caller is responsible to make sure rcu grace period
5496 * is respected before freeing memory containing @napi
5498 bool napi_hash_del(struct napi_struct *napi)
5500 bool rcu_sync_needed = false;
5502 spin_lock(&napi_hash_lock);
5504 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5505 rcu_sync_needed = true;
5506 hlist_del_rcu(&napi->napi_hash_node);
5508 spin_unlock(&napi_hash_lock);
5509 return rcu_sync_needed;
5511 EXPORT_SYMBOL_GPL(napi_hash_del);
5513 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5515 struct napi_struct *napi;
5517 napi = container_of(timer, struct napi_struct, timer);
5519 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5520 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5522 if (napi->gro_list && !napi_disable_pending(napi) &&
5523 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5524 __napi_schedule_irqoff(napi);
5526 return HRTIMER_NORESTART;
5529 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5530 int (*poll)(struct napi_struct *, int), int weight)
5532 INIT_LIST_HEAD(&napi->poll_list);
5533 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5534 napi->timer.function = napi_watchdog;
5535 napi->gro_count = 0;
5536 napi->gro_list = NULL;
5537 napi->skb = NULL;
5538 napi->poll = poll;
5539 if (weight > NAPI_POLL_WEIGHT)
5540 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5541 weight, dev->name);
5542 napi->weight = weight;
5543 list_add(&napi->dev_list, &dev->napi_list);
5544 napi->dev = dev;
5545 #ifdef CONFIG_NETPOLL
5546 napi->poll_owner = -1;
5547 #endif
5548 set_bit(NAPI_STATE_SCHED, &napi->state);
5549 napi_hash_add(napi);
5551 EXPORT_SYMBOL(netif_napi_add);
5553 void napi_disable(struct napi_struct *n)
5555 might_sleep();
5556 set_bit(NAPI_STATE_DISABLE, &n->state);
5558 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5559 msleep(1);
5560 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5561 msleep(1);
5563 hrtimer_cancel(&n->timer);
5565 clear_bit(NAPI_STATE_DISABLE, &n->state);
5567 EXPORT_SYMBOL(napi_disable);
5569 /* Must be called in process context */
5570 void netif_napi_del(struct napi_struct *napi)
5572 might_sleep();
5573 if (napi_hash_del(napi))
5574 synchronize_net();
5575 list_del_init(&napi->dev_list);
5576 napi_free_frags(napi);
5578 kfree_skb_list(napi->gro_list);
5579 napi->gro_list = NULL;
5580 napi->gro_count = 0;
5582 EXPORT_SYMBOL(netif_napi_del);
5584 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5586 void *have;
5587 int work, weight;
5589 list_del_init(&n->poll_list);
5591 have = netpoll_poll_lock(n);
5593 weight = n->weight;
5595 /* This NAPI_STATE_SCHED test is for avoiding a race
5596 * with netpoll's poll_napi(). Only the entity which
5597 * obtains the lock and sees NAPI_STATE_SCHED set will
5598 * actually make the ->poll() call. Therefore we avoid
5599 * accidentally calling ->poll() when NAPI is not scheduled.
5601 work = 0;
5602 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5603 work = n->poll(n, weight);
5604 trace_napi_poll(n, work, weight);
5607 WARN_ON_ONCE(work > weight);
5609 if (likely(work < weight))
5610 goto out_unlock;
5612 /* Drivers must not modify the NAPI state if they
5613 * consume the entire weight. In such cases this code
5614 * still "owns" the NAPI instance and therefore can
5615 * move the instance around on the list at-will.
5617 if (unlikely(napi_disable_pending(n))) {
5618 napi_complete(n);
5619 goto out_unlock;
5622 if (n->gro_list) {
5623 /* flush too old packets
5624 * If HZ < 1000, flush all packets.
5626 napi_gro_flush(n, HZ >= 1000);
5629 /* Some drivers may have called napi_schedule
5630 * prior to exhausting their budget.
5632 if (unlikely(!list_empty(&n->poll_list))) {
5633 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5634 n->dev ? n->dev->name : "backlog");
5635 goto out_unlock;
5638 list_add_tail(&n->poll_list, repoll);
5640 out_unlock:
5641 netpoll_poll_unlock(have);
5643 return work;
5646 static __latent_entropy void net_rx_action(struct softirq_action *h)
5648 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5649 unsigned long time_limit = jiffies +
5650 usecs_to_jiffies(netdev_budget_usecs);
5651 int budget = netdev_budget;
5652 LIST_HEAD(list);
5653 LIST_HEAD(repoll);
5655 local_irq_disable();
5656 list_splice_init(&sd->poll_list, &list);
5657 local_irq_enable();
5659 for (;;) {
5660 struct napi_struct *n;
5662 if (list_empty(&list)) {
5663 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5664 goto out;
5665 break;
5668 n = list_first_entry(&list, struct napi_struct, poll_list);
5669 budget -= napi_poll(n, &repoll);
5671 /* If softirq window is exhausted then punt.
5672 * Allow this to run for 2 jiffies since which will allow
5673 * an average latency of 1.5/HZ.
5675 if (unlikely(budget <= 0 ||
5676 time_after_eq(jiffies, time_limit))) {
5677 sd->time_squeeze++;
5678 break;
5682 local_irq_disable();
5684 list_splice_tail_init(&sd->poll_list, &list);
5685 list_splice_tail(&repoll, &list);
5686 list_splice(&list, &sd->poll_list);
5687 if (!list_empty(&sd->poll_list))
5688 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5690 net_rps_action_and_irq_enable(sd);
5691 out:
5692 __kfree_skb_flush();
5695 struct netdev_adjacent {
5696 struct net_device *dev;
5698 /* upper master flag, there can only be one master device per list */
5699 bool master;
5701 /* counter for the number of times this device was added to us */
5702 u16 ref_nr;
5704 /* private field for the users */
5705 void *private;
5707 struct list_head list;
5708 struct rcu_head rcu;
5711 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5712 struct list_head *adj_list)
5714 struct netdev_adjacent *adj;
5716 list_for_each_entry(adj, adj_list, list) {
5717 if (adj->dev == adj_dev)
5718 return adj;
5720 return NULL;
5723 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5725 struct net_device *dev = data;
5727 return upper_dev == dev;
5731 * netdev_has_upper_dev - Check if device is linked to an upper device
5732 * @dev: device
5733 * @upper_dev: upper device to check
5735 * Find out if a device is linked to specified upper device and return true
5736 * in case it is. Note that this checks only immediate upper device,
5737 * not through a complete stack of devices. The caller must hold the RTNL lock.
5739 bool netdev_has_upper_dev(struct net_device *dev,
5740 struct net_device *upper_dev)
5742 ASSERT_RTNL();
5744 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5745 upper_dev);
5747 EXPORT_SYMBOL(netdev_has_upper_dev);
5750 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5751 * @dev: device
5752 * @upper_dev: upper device to check
5754 * Find out if a device is linked to specified upper device and return true
5755 * in case it is. Note that this checks the entire upper device chain.
5756 * The caller must hold rcu lock.
5759 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5760 struct net_device *upper_dev)
5762 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5763 upper_dev);
5765 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5768 * netdev_has_any_upper_dev - Check if device is linked to some device
5769 * @dev: device
5771 * Find out if a device is linked to an upper device and return true in case
5772 * it is. The caller must hold the RTNL lock.
5774 bool netdev_has_any_upper_dev(struct net_device *dev)
5776 ASSERT_RTNL();
5778 return !list_empty(&dev->adj_list.upper);
5780 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5783 * netdev_master_upper_dev_get - Get master upper device
5784 * @dev: device
5786 * Find a master upper device and return pointer to it or NULL in case
5787 * it's not there. The caller must hold the RTNL lock.
5789 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5791 struct netdev_adjacent *upper;
5793 ASSERT_RTNL();
5795 if (list_empty(&dev->adj_list.upper))
5796 return NULL;
5798 upper = list_first_entry(&dev->adj_list.upper,
5799 struct netdev_adjacent, list);
5800 if (likely(upper->master))
5801 return upper->dev;
5802 return NULL;
5804 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5807 * netdev_has_any_lower_dev - Check if device is linked to some device
5808 * @dev: device
5810 * Find out if a device is linked to a lower device and return true in case
5811 * it is. The caller must hold the RTNL lock.
5813 static bool netdev_has_any_lower_dev(struct net_device *dev)
5815 ASSERT_RTNL();
5817 return !list_empty(&dev->adj_list.lower);
5820 void *netdev_adjacent_get_private(struct list_head *adj_list)
5822 struct netdev_adjacent *adj;
5824 adj = list_entry(adj_list, struct netdev_adjacent, list);
5826 return adj->private;
5828 EXPORT_SYMBOL(netdev_adjacent_get_private);
5831 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5832 * @dev: device
5833 * @iter: list_head ** of the current position
5835 * Gets the next device from the dev's upper list, starting from iter
5836 * position. The caller must hold RCU read lock.
5838 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5839 struct list_head **iter)
5841 struct netdev_adjacent *upper;
5843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5847 if (&upper->list == &dev->adj_list.upper)
5848 return NULL;
5850 *iter = &upper->list;
5852 return upper->dev;
5854 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5856 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5857 struct list_head **iter)
5859 struct netdev_adjacent *upper;
5861 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5863 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5865 if (&upper->list == &dev->adj_list.upper)
5866 return NULL;
5868 *iter = &upper->list;
5870 return upper->dev;
5873 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5874 int (*fn)(struct net_device *dev,
5875 void *data),
5876 void *data)
5878 struct net_device *udev;
5879 struct list_head *iter;
5880 int ret;
5882 for (iter = &dev->adj_list.upper,
5883 udev = netdev_next_upper_dev_rcu(dev, &iter);
5884 udev;
5885 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5886 /* first is the upper device itself */
5887 ret = fn(udev, data);
5888 if (ret)
5889 return ret;
5891 /* then look at all of its upper devices */
5892 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5893 if (ret)
5894 return ret;
5897 return 0;
5899 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5902 * netdev_lower_get_next_private - Get the next ->private from the
5903 * lower neighbour list
5904 * @dev: device
5905 * @iter: list_head ** of the current position
5907 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5908 * list, starting from iter position. The caller must hold either hold the
5909 * RTNL lock or its own locking that guarantees that the neighbour lower
5910 * list will remain unchanged.
5912 void *netdev_lower_get_next_private(struct net_device *dev,
5913 struct list_head **iter)
5915 struct netdev_adjacent *lower;
5917 lower = list_entry(*iter, struct netdev_adjacent, list);
5919 if (&lower->list == &dev->adj_list.lower)
5920 return NULL;
5922 *iter = lower->list.next;
5924 return lower->private;
5926 EXPORT_SYMBOL(netdev_lower_get_next_private);
5929 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5930 * lower neighbour list, RCU
5931 * variant
5932 * @dev: device
5933 * @iter: list_head ** of the current position
5935 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5936 * list, starting from iter position. The caller must hold RCU read lock.
5938 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5939 struct list_head **iter)
5941 struct netdev_adjacent *lower;
5943 WARN_ON_ONCE(!rcu_read_lock_held());
5945 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5947 if (&lower->list == &dev->adj_list.lower)
5948 return NULL;
5950 *iter = &lower->list;
5952 return lower->private;
5954 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5957 * netdev_lower_get_next - Get the next device from the lower neighbour
5958 * list
5959 * @dev: device
5960 * @iter: list_head ** of the current position
5962 * Gets the next netdev_adjacent from the dev's lower neighbour
5963 * list, starting from iter position. The caller must hold RTNL lock or
5964 * its own locking that guarantees that the neighbour lower
5965 * list will remain unchanged.
5967 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5969 struct netdev_adjacent *lower;
5971 lower = list_entry(*iter, struct netdev_adjacent, list);
5973 if (&lower->list == &dev->adj_list.lower)
5974 return NULL;
5976 *iter = lower->list.next;
5978 return lower->dev;
5980 EXPORT_SYMBOL(netdev_lower_get_next);
5982 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5983 struct list_head **iter)
5985 struct netdev_adjacent *lower;
5987 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5989 if (&lower->list == &dev->adj_list.lower)
5990 return NULL;
5992 *iter = &lower->list;
5994 return lower->dev;
5997 int netdev_walk_all_lower_dev(struct net_device *dev,
5998 int (*fn)(struct net_device *dev,
5999 void *data),
6000 void *data)
6002 struct net_device *ldev;
6003 struct list_head *iter;
6004 int ret;
6006 for (iter = &dev->adj_list.lower,
6007 ldev = netdev_next_lower_dev(dev, &iter);
6008 ldev;
6009 ldev = netdev_next_lower_dev(dev, &iter)) {
6010 /* first is the lower device itself */
6011 ret = fn(ldev, data);
6012 if (ret)
6013 return ret;
6015 /* then look at all of its lower devices */
6016 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6017 if (ret)
6018 return ret;
6021 return 0;
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6025 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6026 struct list_head **iter)
6028 struct netdev_adjacent *lower;
6030 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6031 if (&lower->list == &dev->adj_list.lower)
6032 return NULL;
6034 *iter = &lower->list;
6036 return lower->dev;
6039 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6040 int (*fn)(struct net_device *dev,
6041 void *data),
6042 void *data)
6044 struct net_device *ldev;
6045 struct list_head *iter;
6046 int ret;
6048 for (iter = &dev->adj_list.lower,
6049 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6050 ldev;
6051 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6052 /* first is the lower device itself */
6053 ret = fn(ldev, data);
6054 if (ret)
6055 return ret;
6057 /* then look at all of its lower devices */
6058 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6059 if (ret)
6060 return ret;
6063 return 0;
6065 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6068 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6069 * lower neighbour list, RCU
6070 * variant
6071 * @dev: device
6073 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6074 * list. The caller must hold RCU read lock.
6076 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6078 struct netdev_adjacent *lower;
6080 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6081 struct netdev_adjacent, list);
6082 if (lower)
6083 return lower->private;
6084 return NULL;
6086 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6089 * netdev_master_upper_dev_get_rcu - Get master upper device
6090 * @dev: device
6092 * Find a master upper device and return pointer to it or NULL in case
6093 * it's not there. The caller must hold the RCU read lock.
6095 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6097 struct netdev_adjacent *upper;
6099 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6100 struct netdev_adjacent, list);
6101 if (upper && likely(upper->master))
6102 return upper->dev;
6103 return NULL;
6105 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6107 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6108 struct net_device *adj_dev,
6109 struct list_head *dev_list)
6111 char linkname[IFNAMSIZ+7];
6113 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6114 "upper_%s" : "lower_%s", adj_dev->name);
6115 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6116 linkname);
6118 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6119 char *name,
6120 struct list_head *dev_list)
6122 char linkname[IFNAMSIZ+7];
6124 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6125 "upper_%s" : "lower_%s", name);
6126 sysfs_remove_link(&(dev->dev.kobj), linkname);
6129 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6130 struct net_device *adj_dev,
6131 struct list_head *dev_list)
6133 return (dev_list == &dev->adj_list.upper ||
6134 dev_list == &dev->adj_list.lower) &&
6135 net_eq(dev_net(dev), dev_net(adj_dev));
6138 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6139 struct net_device *adj_dev,
6140 struct list_head *dev_list,
6141 void *private, bool master)
6143 struct netdev_adjacent *adj;
6144 int ret;
6146 adj = __netdev_find_adj(adj_dev, dev_list);
6148 if (adj) {
6149 adj->ref_nr += 1;
6150 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6151 dev->name, adj_dev->name, adj->ref_nr);
6153 return 0;
6156 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6157 if (!adj)
6158 return -ENOMEM;
6160 adj->dev = adj_dev;
6161 adj->master = master;
6162 adj->ref_nr = 1;
6163 adj->private = private;
6164 dev_hold(adj_dev);
6166 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6167 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6169 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6170 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6171 if (ret)
6172 goto free_adj;
6175 /* Ensure that master link is always the first item in list. */
6176 if (master) {
6177 ret = sysfs_create_link(&(dev->dev.kobj),
6178 &(adj_dev->dev.kobj), "master");
6179 if (ret)
6180 goto remove_symlinks;
6182 list_add_rcu(&adj->list, dev_list);
6183 } else {
6184 list_add_tail_rcu(&adj->list, dev_list);
6187 return 0;
6189 remove_symlinks:
6190 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6191 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6192 free_adj:
6193 kfree(adj);
6194 dev_put(adj_dev);
6196 return ret;
6199 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6200 struct net_device *adj_dev,
6201 u16 ref_nr,
6202 struct list_head *dev_list)
6204 struct netdev_adjacent *adj;
6206 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6207 dev->name, adj_dev->name, ref_nr);
6209 adj = __netdev_find_adj(adj_dev, dev_list);
6211 if (!adj) {
6212 pr_err("Adjacency does not exist for device %s from %s\n",
6213 dev->name, adj_dev->name);
6214 WARN_ON(1);
6215 return;
6218 if (adj->ref_nr > ref_nr) {
6219 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6220 dev->name, adj_dev->name, ref_nr,
6221 adj->ref_nr - ref_nr);
6222 adj->ref_nr -= ref_nr;
6223 return;
6226 if (adj->master)
6227 sysfs_remove_link(&(dev->dev.kobj), "master");
6229 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6230 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6232 list_del_rcu(&adj->list);
6233 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6234 adj_dev->name, dev->name, adj_dev->name);
6235 dev_put(adj_dev);
6236 kfree_rcu(adj, rcu);
6239 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6240 struct net_device *upper_dev,
6241 struct list_head *up_list,
6242 struct list_head *down_list,
6243 void *private, bool master)
6245 int ret;
6247 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6248 private, master);
6249 if (ret)
6250 return ret;
6252 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6253 private, false);
6254 if (ret) {
6255 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6256 return ret;
6259 return 0;
6262 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6263 struct net_device *upper_dev,
6264 u16 ref_nr,
6265 struct list_head *up_list,
6266 struct list_head *down_list)
6268 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6269 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6272 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6273 struct net_device *upper_dev,
6274 void *private, bool master)
6276 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6277 &dev->adj_list.upper,
6278 &upper_dev->adj_list.lower,
6279 private, master);
6282 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6283 struct net_device *upper_dev)
6285 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6286 &dev->adj_list.upper,
6287 &upper_dev->adj_list.lower);
6290 static int __netdev_upper_dev_link(struct net_device *dev,
6291 struct net_device *upper_dev, bool master,
6292 void *upper_priv, void *upper_info,
6293 struct netlink_ext_ack *extack)
6295 struct netdev_notifier_changeupper_info changeupper_info = {
6296 .info = {
6297 .dev = dev,
6298 .extack = extack,
6300 .upper_dev = upper_dev,
6301 .master = master,
6302 .linking = true,
6303 .upper_info = upper_info,
6305 int ret = 0;
6307 ASSERT_RTNL();
6309 if (dev == upper_dev)
6310 return -EBUSY;
6312 /* To prevent loops, check if dev is not upper device to upper_dev. */
6313 if (netdev_has_upper_dev(upper_dev, dev))
6314 return -EBUSY;
6316 if (netdev_has_upper_dev(dev, upper_dev))
6317 return -EEXIST;
6319 if (master && netdev_master_upper_dev_get(dev))
6320 return -EBUSY;
6322 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6323 &changeupper_info.info);
6324 ret = notifier_to_errno(ret);
6325 if (ret)
6326 return ret;
6328 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6329 master);
6330 if (ret)
6331 return ret;
6333 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6334 &changeupper_info.info);
6335 ret = notifier_to_errno(ret);
6336 if (ret)
6337 goto rollback;
6339 return 0;
6341 rollback:
6342 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6344 return ret;
6348 * netdev_upper_dev_link - Add a link to the upper device
6349 * @dev: device
6350 * @upper_dev: new upper device
6352 * Adds a link to device which is upper to this one. The caller must hold
6353 * the RTNL lock. On a failure a negative errno code is returned.
6354 * On success the reference counts are adjusted and the function
6355 * returns zero.
6357 int netdev_upper_dev_link(struct net_device *dev,
6358 struct net_device *upper_dev,
6359 struct netlink_ext_ack *extack)
6361 return __netdev_upper_dev_link(dev, upper_dev, false,
6362 NULL, NULL, extack);
6364 EXPORT_SYMBOL(netdev_upper_dev_link);
6367 * netdev_master_upper_dev_link - Add a master link to the upper device
6368 * @dev: device
6369 * @upper_dev: new upper device
6370 * @upper_priv: upper device private
6371 * @upper_info: upper info to be passed down via notifier
6373 * Adds a link to device which is upper to this one. In this case, only
6374 * one master upper device can be linked, although other non-master devices
6375 * might be linked as well. The caller must hold the RTNL lock.
6376 * On a failure a negative errno code is returned. On success the reference
6377 * counts are adjusted and the function returns zero.
6379 int netdev_master_upper_dev_link(struct net_device *dev,
6380 struct net_device *upper_dev,
6381 void *upper_priv, void *upper_info,
6382 struct netlink_ext_ack *extack)
6384 return __netdev_upper_dev_link(dev, upper_dev, true,
6385 upper_priv, upper_info, extack);
6387 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6390 * netdev_upper_dev_unlink - Removes a link to upper device
6391 * @dev: device
6392 * @upper_dev: new upper device
6394 * Removes a link to device which is upper to this one. The caller must hold
6395 * the RTNL lock.
6397 void netdev_upper_dev_unlink(struct net_device *dev,
6398 struct net_device *upper_dev)
6400 struct netdev_notifier_changeupper_info changeupper_info = {
6401 .info = {
6402 .dev = dev,
6404 .upper_dev = upper_dev,
6405 .linking = false,
6408 ASSERT_RTNL();
6410 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6412 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6413 &changeupper_info.info);
6415 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6417 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6418 &changeupper_info.info);
6420 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6423 * netdev_bonding_info_change - Dispatch event about slave change
6424 * @dev: device
6425 * @bonding_info: info to dispatch
6427 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6428 * The caller must hold the RTNL lock.
6430 void netdev_bonding_info_change(struct net_device *dev,
6431 struct netdev_bonding_info *bonding_info)
6433 struct netdev_notifier_bonding_info info = {
6434 .info.dev = dev,
6437 memcpy(&info.bonding_info, bonding_info,
6438 sizeof(struct netdev_bonding_info));
6439 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6440 &info.info);
6442 EXPORT_SYMBOL(netdev_bonding_info_change);
6444 static void netdev_adjacent_add_links(struct net_device *dev)
6446 struct netdev_adjacent *iter;
6448 struct net *net = dev_net(dev);
6450 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6451 if (!net_eq(net, dev_net(iter->dev)))
6452 continue;
6453 netdev_adjacent_sysfs_add(iter->dev, dev,
6454 &iter->dev->adj_list.lower);
6455 netdev_adjacent_sysfs_add(dev, iter->dev,
6456 &dev->adj_list.upper);
6459 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6460 if (!net_eq(net, dev_net(iter->dev)))
6461 continue;
6462 netdev_adjacent_sysfs_add(iter->dev, dev,
6463 &iter->dev->adj_list.upper);
6464 netdev_adjacent_sysfs_add(dev, iter->dev,
6465 &dev->adj_list.lower);
6469 static void netdev_adjacent_del_links(struct net_device *dev)
6471 struct netdev_adjacent *iter;
6473 struct net *net = dev_net(dev);
6475 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6476 if (!net_eq(net, dev_net(iter->dev)))
6477 continue;
6478 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6479 &iter->dev->adj_list.lower);
6480 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6481 &dev->adj_list.upper);
6484 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6485 if (!net_eq(net, dev_net(iter->dev)))
6486 continue;
6487 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6488 &iter->dev->adj_list.upper);
6489 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6490 &dev->adj_list.lower);
6494 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6496 struct netdev_adjacent *iter;
6498 struct net *net = dev_net(dev);
6500 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6501 if (!net_eq(net, dev_net(iter->dev)))
6502 continue;
6503 netdev_adjacent_sysfs_del(iter->dev, oldname,
6504 &iter->dev->adj_list.lower);
6505 netdev_adjacent_sysfs_add(iter->dev, dev,
6506 &iter->dev->adj_list.lower);
6509 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6510 if (!net_eq(net, dev_net(iter->dev)))
6511 continue;
6512 netdev_adjacent_sysfs_del(iter->dev, oldname,
6513 &iter->dev->adj_list.upper);
6514 netdev_adjacent_sysfs_add(iter->dev, dev,
6515 &iter->dev->adj_list.upper);
6519 void *netdev_lower_dev_get_private(struct net_device *dev,
6520 struct net_device *lower_dev)
6522 struct netdev_adjacent *lower;
6524 if (!lower_dev)
6525 return NULL;
6526 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6527 if (!lower)
6528 return NULL;
6530 return lower->private;
6532 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6535 int dev_get_nest_level(struct net_device *dev)
6537 struct net_device *lower = NULL;
6538 struct list_head *iter;
6539 int max_nest = -1;
6540 int nest;
6542 ASSERT_RTNL();
6544 netdev_for_each_lower_dev(dev, lower, iter) {
6545 nest = dev_get_nest_level(lower);
6546 if (max_nest < nest)
6547 max_nest = nest;
6550 return max_nest + 1;
6552 EXPORT_SYMBOL(dev_get_nest_level);
6555 * netdev_lower_change - Dispatch event about lower device state change
6556 * @lower_dev: device
6557 * @lower_state_info: state to dispatch
6559 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6560 * The caller must hold the RTNL lock.
6562 void netdev_lower_state_changed(struct net_device *lower_dev,
6563 void *lower_state_info)
6565 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6566 .info.dev = lower_dev,
6569 ASSERT_RTNL();
6570 changelowerstate_info.lower_state_info = lower_state_info;
6571 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6572 &changelowerstate_info.info);
6574 EXPORT_SYMBOL(netdev_lower_state_changed);
6576 static void dev_change_rx_flags(struct net_device *dev, int flags)
6578 const struct net_device_ops *ops = dev->netdev_ops;
6580 if (ops->ndo_change_rx_flags)
6581 ops->ndo_change_rx_flags(dev, flags);
6584 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6586 unsigned int old_flags = dev->flags;
6587 kuid_t uid;
6588 kgid_t gid;
6590 ASSERT_RTNL();
6592 dev->flags |= IFF_PROMISC;
6593 dev->promiscuity += inc;
6594 if (dev->promiscuity == 0) {
6596 * Avoid overflow.
6597 * If inc causes overflow, untouch promisc and return error.
6599 if (inc < 0)
6600 dev->flags &= ~IFF_PROMISC;
6601 else {
6602 dev->promiscuity -= inc;
6603 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6604 dev->name);
6605 return -EOVERFLOW;
6608 if (dev->flags != old_flags) {
6609 pr_info("device %s %s promiscuous mode\n",
6610 dev->name,
6611 dev->flags & IFF_PROMISC ? "entered" : "left");
6612 if (audit_enabled) {
6613 current_uid_gid(&uid, &gid);
6614 audit_log(current->audit_context, GFP_ATOMIC,
6615 AUDIT_ANOM_PROMISCUOUS,
6616 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6617 dev->name, (dev->flags & IFF_PROMISC),
6618 (old_flags & IFF_PROMISC),
6619 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6620 from_kuid(&init_user_ns, uid),
6621 from_kgid(&init_user_ns, gid),
6622 audit_get_sessionid(current));
6625 dev_change_rx_flags(dev, IFF_PROMISC);
6627 if (notify)
6628 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6629 return 0;
6633 * dev_set_promiscuity - update promiscuity count on a device
6634 * @dev: device
6635 * @inc: modifier
6637 * Add or remove promiscuity from a device. While the count in the device
6638 * remains above zero the interface remains promiscuous. Once it hits zero
6639 * the device reverts back to normal filtering operation. A negative inc
6640 * value is used to drop promiscuity on the device.
6641 * Return 0 if successful or a negative errno code on error.
6643 int dev_set_promiscuity(struct net_device *dev, int inc)
6645 unsigned int old_flags = dev->flags;
6646 int err;
6648 err = __dev_set_promiscuity(dev, inc, true);
6649 if (err < 0)
6650 return err;
6651 if (dev->flags != old_flags)
6652 dev_set_rx_mode(dev);
6653 return err;
6655 EXPORT_SYMBOL(dev_set_promiscuity);
6657 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6659 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6661 ASSERT_RTNL();
6663 dev->flags |= IFF_ALLMULTI;
6664 dev->allmulti += inc;
6665 if (dev->allmulti == 0) {
6667 * Avoid overflow.
6668 * If inc causes overflow, untouch allmulti and return error.
6670 if (inc < 0)
6671 dev->flags &= ~IFF_ALLMULTI;
6672 else {
6673 dev->allmulti -= inc;
6674 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6675 dev->name);
6676 return -EOVERFLOW;
6679 if (dev->flags ^ old_flags) {
6680 dev_change_rx_flags(dev, IFF_ALLMULTI);
6681 dev_set_rx_mode(dev);
6682 if (notify)
6683 __dev_notify_flags(dev, old_flags,
6684 dev->gflags ^ old_gflags);
6686 return 0;
6690 * dev_set_allmulti - update allmulti count on a device
6691 * @dev: device
6692 * @inc: modifier
6694 * Add or remove reception of all multicast frames to a device. While the
6695 * count in the device remains above zero the interface remains listening
6696 * to all interfaces. Once it hits zero the device reverts back to normal
6697 * filtering operation. A negative @inc value is used to drop the counter
6698 * when releasing a resource needing all multicasts.
6699 * Return 0 if successful or a negative errno code on error.
6702 int dev_set_allmulti(struct net_device *dev, int inc)
6704 return __dev_set_allmulti(dev, inc, true);
6706 EXPORT_SYMBOL(dev_set_allmulti);
6709 * Upload unicast and multicast address lists to device and
6710 * configure RX filtering. When the device doesn't support unicast
6711 * filtering it is put in promiscuous mode while unicast addresses
6712 * are present.
6714 void __dev_set_rx_mode(struct net_device *dev)
6716 const struct net_device_ops *ops = dev->netdev_ops;
6718 /* dev_open will call this function so the list will stay sane. */
6719 if (!(dev->flags&IFF_UP))
6720 return;
6722 if (!netif_device_present(dev))
6723 return;
6725 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6726 /* Unicast addresses changes may only happen under the rtnl,
6727 * therefore calling __dev_set_promiscuity here is safe.
6729 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6730 __dev_set_promiscuity(dev, 1, false);
6731 dev->uc_promisc = true;
6732 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6733 __dev_set_promiscuity(dev, -1, false);
6734 dev->uc_promisc = false;
6738 if (ops->ndo_set_rx_mode)
6739 ops->ndo_set_rx_mode(dev);
6742 void dev_set_rx_mode(struct net_device *dev)
6744 netif_addr_lock_bh(dev);
6745 __dev_set_rx_mode(dev);
6746 netif_addr_unlock_bh(dev);
6750 * dev_get_flags - get flags reported to userspace
6751 * @dev: device
6753 * Get the combination of flag bits exported through APIs to userspace.
6755 unsigned int dev_get_flags(const struct net_device *dev)
6757 unsigned int flags;
6759 flags = (dev->flags & ~(IFF_PROMISC |
6760 IFF_ALLMULTI |
6761 IFF_RUNNING |
6762 IFF_LOWER_UP |
6763 IFF_DORMANT)) |
6764 (dev->gflags & (IFF_PROMISC |
6765 IFF_ALLMULTI));
6767 if (netif_running(dev)) {
6768 if (netif_oper_up(dev))
6769 flags |= IFF_RUNNING;
6770 if (netif_carrier_ok(dev))
6771 flags |= IFF_LOWER_UP;
6772 if (netif_dormant(dev))
6773 flags |= IFF_DORMANT;
6776 return flags;
6778 EXPORT_SYMBOL(dev_get_flags);
6780 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6782 unsigned int old_flags = dev->flags;
6783 int ret;
6785 ASSERT_RTNL();
6788 * Set the flags on our device.
6791 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6792 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6793 IFF_AUTOMEDIA)) |
6794 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6795 IFF_ALLMULTI));
6798 * Load in the correct multicast list now the flags have changed.
6801 if ((old_flags ^ flags) & IFF_MULTICAST)
6802 dev_change_rx_flags(dev, IFF_MULTICAST);
6804 dev_set_rx_mode(dev);
6807 * Have we downed the interface. We handle IFF_UP ourselves
6808 * according to user attempts to set it, rather than blindly
6809 * setting it.
6812 ret = 0;
6813 if ((old_flags ^ flags) & IFF_UP) {
6814 if (old_flags & IFF_UP)
6815 __dev_close(dev);
6816 else
6817 ret = __dev_open(dev);
6820 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6821 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6822 unsigned int old_flags = dev->flags;
6824 dev->gflags ^= IFF_PROMISC;
6826 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6827 if (dev->flags != old_flags)
6828 dev_set_rx_mode(dev);
6831 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6832 * is important. Some (broken) drivers set IFF_PROMISC, when
6833 * IFF_ALLMULTI is requested not asking us and not reporting.
6835 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6836 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6838 dev->gflags ^= IFF_ALLMULTI;
6839 __dev_set_allmulti(dev, inc, false);
6842 return ret;
6845 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6846 unsigned int gchanges)
6848 unsigned int changes = dev->flags ^ old_flags;
6850 if (gchanges)
6851 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6853 if (changes & IFF_UP) {
6854 if (dev->flags & IFF_UP)
6855 call_netdevice_notifiers(NETDEV_UP, dev);
6856 else
6857 call_netdevice_notifiers(NETDEV_DOWN, dev);
6860 if (dev->flags & IFF_UP &&
6861 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6862 struct netdev_notifier_change_info change_info = {
6863 .info = {
6864 .dev = dev,
6866 .flags_changed = changes,
6869 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6874 * dev_change_flags - change device settings
6875 * @dev: device
6876 * @flags: device state flags
6878 * Change settings on device based state flags. The flags are
6879 * in the userspace exported format.
6881 int dev_change_flags(struct net_device *dev, unsigned int flags)
6883 int ret;
6884 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6886 ret = __dev_change_flags(dev, flags);
6887 if (ret < 0)
6888 return ret;
6890 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6891 __dev_notify_flags(dev, old_flags, changes);
6892 return ret;
6894 EXPORT_SYMBOL(dev_change_flags);
6896 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6898 const struct net_device_ops *ops = dev->netdev_ops;
6900 if (ops->ndo_change_mtu)
6901 return ops->ndo_change_mtu(dev, new_mtu);
6903 dev->mtu = new_mtu;
6904 return 0;
6906 EXPORT_SYMBOL(__dev_set_mtu);
6909 * dev_set_mtu - Change maximum transfer unit
6910 * @dev: device
6911 * @new_mtu: new transfer unit
6913 * Change the maximum transfer size of the network device.
6915 int dev_set_mtu(struct net_device *dev, int new_mtu)
6917 int err, orig_mtu;
6919 if (new_mtu == dev->mtu)
6920 return 0;
6922 /* MTU must be positive, and in range */
6923 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6924 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6925 dev->name, new_mtu, dev->min_mtu);
6926 return -EINVAL;
6929 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6930 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6931 dev->name, new_mtu, dev->max_mtu);
6932 return -EINVAL;
6935 if (!netif_device_present(dev))
6936 return -ENODEV;
6938 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6939 err = notifier_to_errno(err);
6940 if (err)
6941 return err;
6943 orig_mtu = dev->mtu;
6944 err = __dev_set_mtu(dev, new_mtu);
6946 if (!err) {
6947 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6948 err = notifier_to_errno(err);
6949 if (err) {
6950 /* setting mtu back and notifying everyone again,
6951 * so that they have a chance to revert changes.
6953 __dev_set_mtu(dev, orig_mtu);
6954 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6957 return err;
6959 EXPORT_SYMBOL(dev_set_mtu);
6962 * dev_set_group - Change group this device belongs to
6963 * @dev: device
6964 * @new_group: group this device should belong to
6966 void dev_set_group(struct net_device *dev, int new_group)
6968 dev->group = new_group;
6970 EXPORT_SYMBOL(dev_set_group);
6973 * dev_set_mac_address - Change Media Access Control Address
6974 * @dev: device
6975 * @sa: new address
6977 * Change the hardware (MAC) address of the device
6979 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6981 const struct net_device_ops *ops = dev->netdev_ops;
6982 int err;
6984 if (!ops->ndo_set_mac_address)
6985 return -EOPNOTSUPP;
6986 if (sa->sa_family != dev->type)
6987 return -EINVAL;
6988 if (!netif_device_present(dev))
6989 return -ENODEV;
6990 err = ops->ndo_set_mac_address(dev, sa);
6991 if (err)
6992 return err;
6993 dev->addr_assign_type = NET_ADDR_SET;
6994 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6995 add_device_randomness(dev->dev_addr, dev->addr_len);
6996 return 0;
6998 EXPORT_SYMBOL(dev_set_mac_address);
7001 * dev_change_carrier - Change device carrier
7002 * @dev: device
7003 * @new_carrier: new value
7005 * Change device carrier
7007 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7009 const struct net_device_ops *ops = dev->netdev_ops;
7011 if (!ops->ndo_change_carrier)
7012 return -EOPNOTSUPP;
7013 if (!netif_device_present(dev))
7014 return -ENODEV;
7015 return ops->ndo_change_carrier(dev, new_carrier);
7017 EXPORT_SYMBOL(dev_change_carrier);
7020 * dev_get_phys_port_id - Get device physical port ID
7021 * @dev: device
7022 * @ppid: port ID
7024 * Get device physical port ID
7026 int dev_get_phys_port_id(struct net_device *dev,
7027 struct netdev_phys_item_id *ppid)
7029 const struct net_device_ops *ops = dev->netdev_ops;
7031 if (!ops->ndo_get_phys_port_id)
7032 return -EOPNOTSUPP;
7033 return ops->ndo_get_phys_port_id(dev, ppid);
7035 EXPORT_SYMBOL(dev_get_phys_port_id);
7038 * dev_get_phys_port_name - Get device physical port name
7039 * @dev: device
7040 * @name: port name
7041 * @len: limit of bytes to copy to name
7043 * Get device physical port name
7045 int dev_get_phys_port_name(struct net_device *dev,
7046 char *name, size_t len)
7048 const struct net_device_ops *ops = dev->netdev_ops;
7050 if (!ops->ndo_get_phys_port_name)
7051 return -EOPNOTSUPP;
7052 return ops->ndo_get_phys_port_name(dev, name, len);
7054 EXPORT_SYMBOL(dev_get_phys_port_name);
7057 * dev_change_proto_down - update protocol port state information
7058 * @dev: device
7059 * @proto_down: new value
7061 * This info can be used by switch drivers to set the phys state of the
7062 * port.
7064 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7066 const struct net_device_ops *ops = dev->netdev_ops;
7068 if (!ops->ndo_change_proto_down)
7069 return -EOPNOTSUPP;
7070 if (!netif_device_present(dev))
7071 return -ENODEV;
7072 return ops->ndo_change_proto_down(dev, proto_down);
7074 EXPORT_SYMBOL(dev_change_proto_down);
7076 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7078 struct netdev_bpf xdp;
7080 memset(&xdp, 0, sizeof(xdp));
7081 xdp.command = XDP_QUERY_PROG;
7083 /* Query must always succeed. */
7084 WARN_ON(bpf_op(dev, &xdp) < 0);
7085 if (prog_id)
7086 *prog_id = xdp.prog_id;
7088 return xdp.prog_attached;
7091 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7092 struct netlink_ext_ack *extack, u32 flags,
7093 struct bpf_prog *prog)
7095 struct netdev_bpf xdp;
7097 memset(&xdp, 0, sizeof(xdp));
7098 if (flags & XDP_FLAGS_HW_MODE)
7099 xdp.command = XDP_SETUP_PROG_HW;
7100 else
7101 xdp.command = XDP_SETUP_PROG;
7102 xdp.extack = extack;
7103 xdp.flags = flags;
7104 xdp.prog = prog;
7106 return bpf_op(dev, &xdp);
7110 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7111 * @dev: device
7112 * @extack: netlink extended ack
7113 * @fd: new program fd or negative value to clear
7114 * @flags: xdp-related flags
7116 * Set or clear a bpf program for a device
7118 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7119 int fd, u32 flags)
7121 const struct net_device_ops *ops = dev->netdev_ops;
7122 struct bpf_prog *prog = NULL;
7123 bpf_op_t bpf_op, bpf_chk;
7124 int err;
7126 ASSERT_RTNL();
7128 bpf_op = bpf_chk = ops->ndo_bpf;
7129 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7130 return -EOPNOTSUPP;
7131 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7132 bpf_op = generic_xdp_install;
7133 if (bpf_op == bpf_chk)
7134 bpf_chk = generic_xdp_install;
7136 if (fd >= 0) {
7137 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7138 return -EEXIST;
7139 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7140 __dev_xdp_attached(dev, bpf_op, NULL))
7141 return -EBUSY;
7143 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7144 bpf_op == ops->ndo_bpf);
7145 if (IS_ERR(prog))
7146 return PTR_ERR(prog);
7148 if (!(flags & XDP_FLAGS_HW_MODE) &&
7149 bpf_prog_is_dev_bound(prog->aux)) {
7150 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7151 bpf_prog_put(prog);
7152 return -EINVAL;
7156 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7157 if (err < 0 && prog)
7158 bpf_prog_put(prog);
7160 return err;
7164 * dev_new_index - allocate an ifindex
7165 * @net: the applicable net namespace
7167 * Returns a suitable unique value for a new device interface
7168 * number. The caller must hold the rtnl semaphore or the
7169 * dev_base_lock to be sure it remains unique.
7171 static int dev_new_index(struct net *net)
7173 int ifindex = net->ifindex;
7175 for (;;) {
7176 if (++ifindex <= 0)
7177 ifindex = 1;
7178 if (!__dev_get_by_index(net, ifindex))
7179 return net->ifindex = ifindex;
7183 /* Delayed registration/unregisteration */
7184 static LIST_HEAD(net_todo_list);
7185 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7187 static void net_set_todo(struct net_device *dev)
7189 list_add_tail(&dev->todo_list, &net_todo_list);
7190 dev_net(dev)->dev_unreg_count++;
7193 static void rollback_registered_many(struct list_head *head)
7195 struct net_device *dev, *tmp;
7196 LIST_HEAD(close_head);
7198 BUG_ON(dev_boot_phase);
7199 ASSERT_RTNL();
7201 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7202 /* Some devices call without registering
7203 * for initialization unwind. Remove those
7204 * devices and proceed with the remaining.
7206 if (dev->reg_state == NETREG_UNINITIALIZED) {
7207 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7208 dev->name, dev);
7210 WARN_ON(1);
7211 list_del(&dev->unreg_list);
7212 continue;
7214 dev->dismantle = true;
7215 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7218 /* If device is running, close it first. */
7219 list_for_each_entry(dev, head, unreg_list)
7220 list_add_tail(&dev->close_list, &close_head);
7221 dev_close_many(&close_head, true);
7223 list_for_each_entry(dev, head, unreg_list) {
7224 /* And unlink it from device chain. */
7225 unlist_netdevice(dev);
7227 dev->reg_state = NETREG_UNREGISTERING;
7229 flush_all_backlogs();
7231 synchronize_net();
7233 list_for_each_entry(dev, head, unreg_list) {
7234 struct sk_buff *skb = NULL;
7236 /* Shutdown queueing discipline. */
7237 dev_shutdown(dev);
7240 /* Notify protocols, that we are about to destroy
7241 * this device. They should clean all the things.
7243 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7245 if (!dev->rtnl_link_ops ||
7246 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7247 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7248 GFP_KERNEL, NULL);
7251 * Flush the unicast and multicast chains
7253 dev_uc_flush(dev);
7254 dev_mc_flush(dev);
7256 if (dev->netdev_ops->ndo_uninit)
7257 dev->netdev_ops->ndo_uninit(dev);
7259 if (skb)
7260 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7262 /* Notifier chain MUST detach us all upper devices. */
7263 WARN_ON(netdev_has_any_upper_dev(dev));
7264 WARN_ON(netdev_has_any_lower_dev(dev));
7266 /* Remove entries from kobject tree */
7267 netdev_unregister_kobject(dev);
7268 #ifdef CONFIG_XPS
7269 /* Remove XPS queueing entries */
7270 netif_reset_xps_queues_gt(dev, 0);
7271 #endif
7274 synchronize_net();
7276 list_for_each_entry(dev, head, unreg_list)
7277 dev_put(dev);
7280 static void rollback_registered(struct net_device *dev)
7282 LIST_HEAD(single);
7284 list_add(&dev->unreg_list, &single);
7285 rollback_registered_many(&single);
7286 list_del(&single);
7289 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7290 struct net_device *upper, netdev_features_t features)
7292 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7293 netdev_features_t feature;
7294 int feature_bit;
7296 for_each_netdev_feature(&upper_disables, feature_bit) {
7297 feature = __NETIF_F_BIT(feature_bit);
7298 if (!(upper->wanted_features & feature)
7299 && (features & feature)) {
7300 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7301 &feature, upper->name);
7302 features &= ~feature;
7306 return features;
7309 static void netdev_sync_lower_features(struct net_device *upper,
7310 struct net_device *lower, netdev_features_t features)
7312 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7313 netdev_features_t feature;
7314 int feature_bit;
7316 for_each_netdev_feature(&upper_disables, feature_bit) {
7317 feature = __NETIF_F_BIT(feature_bit);
7318 if (!(features & feature) && (lower->features & feature)) {
7319 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7320 &feature, lower->name);
7321 lower->wanted_features &= ~feature;
7322 netdev_update_features(lower);
7324 if (unlikely(lower->features & feature))
7325 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7326 &feature, lower->name);
7331 static netdev_features_t netdev_fix_features(struct net_device *dev,
7332 netdev_features_t features)
7334 /* Fix illegal checksum combinations */
7335 if ((features & NETIF_F_HW_CSUM) &&
7336 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7337 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7338 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7341 /* TSO requires that SG is present as well. */
7342 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7343 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7344 features &= ~NETIF_F_ALL_TSO;
7347 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7348 !(features & NETIF_F_IP_CSUM)) {
7349 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7350 features &= ~NETIF_F_TSO;
7351 features &= ~NETIF_F_TSO_ECN;
7354 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7355 !(features & NETIF_F_IPV6_CSUM)) {
7356 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7357 features &= ~NETIF_F_TSO6;
7360 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7361 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7362 features &= ~NETIF_F_TSO_MANGLEID;
7364 /* TSO ECN requires that TSO is present as well. */
7365 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7366 features &= ~NETIF_F_TSO_ECN;
7368 /* Software GSO depends on SG. */
7369 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7370 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7371 features &= ~NETIF_F_GSO;
7374 /* GSO partial features require GSO partial be set */
7375 if ((features & dev->gso_partial_features) &&
7376 !(features & NETIF_F_GSO_PARTIAL)) {
7377 netdev_dbg(dev,
7378 "Dropping partially supported GSO features since no GSO partial.\n");
7379 features &= ~dev->gso_partial_features;
7382 return features;
7385 int __netdev_update_features(struct net_device *dev)
7387 struct net_device *upper, *lower;
7388 netdev_features_t features;
7389 struct list_head *iter;
7390 int err = -1;
7392 ASSERT_RTNL();
7394 features = netdev_get_wanted_features(dev);
7396 if (dev->netdev_ops->ndo_fix_features)
7397 features = dev->netdev_ops->ndo_fix_features(dev, features);
7399 /* driver might be less strict about feature dependencies */
7400 features = netdev_fix_features(dev, features);
7402 /* some features can't be enabled if they're off an an upper device */
7403 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7404 features = netdev_sync_upper_features(dev, upper, features);
7406 if (dev->features == features)
7407 goto sync_lower;
7409 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7410 &dev->features, &features);
7412 if (dev->netdev_ops->ndo_set_features)
7413 err = dev->netdev_ops->ndo_set_features(dev, features);
7414 else
7415 err = 0;
7417 if (unlikely(err < 0)) {
7418 netdev_err(dev,
7419 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7420 err, &features, &dev->features);
7421 /* return non-0 since some features might have changed and
7422 * it's better to fire a spurious notification than miss it
7424 return -1;
7427 sync_lower:
7428 /* some features must be disabled on lower devices when disabled
7429 * on an upper device (think: bonding master or bridge)
7431 netdev_for_each_lower_dev(dev, lower, iter)
7432 netdev_sync_lower_features(dev, lower, features);
7434 if (!err) {
7435 netdev_features_t diff = features ^ dev->features;
7437 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7438 /* udp_tunnel_{get,drop}_rx_info both need
7439 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7440 * device, or they won't do anything.
7441 * Thus we need to update dev->features
7442 * *before* calling udp_tunnel_get_rx_info,
7443 * but *after* calling udp_tunnel_drop_rx_info.
7445 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7446 dev->features = features;
7447 udp_tunnel_get_rx_info(dev);
7448 } else {
7449 udp_tunnel_drop_rx_info(dev);
7453 dev->features = features;
7456 return err < 0 ? 0 : 1;
7460 * netdev_update_features - recalculate device features
7461 * @dev: the device to check
7463 * Recalculate dev->features set and send notifications if it
7464 * has changed. Should be called after driver or hardware dependent
7465 * conditions might have changed that influence the features.
7467 void netdev_update_features(struct net_device *dev)
7469 if (__netdev_update_features(dev))
7470 netdev_features_change(dev);
7472 EXPORT_SYMBOL(netdev_update_features);
7475 * netdev_change_features - recalculate device features
7476 * @dev: the device to check
7478 * Recalculate dev->features set and send notifications even
7479 * if they have not changed. Should be called instead of
7480 * netdev_update_features() if also dev->vlan_features might
7481 * have changed to allow the changes to be propagated to stacked
7482 * VLAN devices.
7484 void netdev_change_features(struct net_device *dev)
7486 __netdev_update_features(dev);
7487 netdev_features_change(dev);
7489 EXPORT_SYMBOL(netdev_change_features);
7492 * netif_stacked_transfer_operstate - transfer operstate
7493 * @rootdev: the root or lower level device to transfer state from
7494 * @dev: the device to transfer operstate to
7496 * Transfer operational state from root to device. This is normally
7497 * called when a stacking relationship exists between the root
7498 * device and the device(a leaf device).
7500 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7501 struct net_device *dev)
7503 if (rootdev->operstate == IF_OPER_DORMANT)
7504 netif_dormant_on(dev);
7505 else
7506 netif_dormant_off(dev);
7508 if (netif_carrier_ok(rootdev))
7509 netif_carrier_on(dev);
7510 else
7511 netif_carrier_off(dev);
7513 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7515 #ifdef CONFIG_SYSFS
7516 static int netif_alloc_rx_queues(struct net_device *dev)
7518 unsigned int i, count = dev->num_rx_queues;
7519 struct netdev_rx_queue *rx;
7520 size_t sz = count * sizeof(*rx);
7522 BUG_ON(count < 1);
7524 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7525 if (!rx)
7526 return -ENOMEM;
7528 dev->_rx = rx;
7530 for (i = 0; i < count; i++)
7531 rx[i].dev = dev;
7532 return 0;
7534 #endif
7536 static void netdev_init_one_queue(struct net_device *dev,
7537 struct netdev_queue *queue, void *_unused)
7539 /* Initialize queue lock */
7540 spin_lock_init(&queue->_xmit_lock);
7541 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7542 queue->xmit_lock_owner = -1;
7543 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7544 queue->dev = dev;
7545 #ifdef CONFIG_BQL
7546 dql_init(&queue->dql, HZ);
7547 #endif
7550 static void netif_free_tx_queues(struct net_device *dev)
7552 kvfree(dev->_tx);
7555 static int netif_alloc_netdev_queues(struct net_device *dev)
7557 unsigned int count = dev->num_tx_queues;
7558 struct netdev_queue *tx;
7559 size_t sz = count * sizeof(*tx);
7561 if (count < 1 || count > 0xffff)
7562 return -EINVAL;
7564 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7565 if (!tx)
7566 return -ENOMEM;
7568 dev->_tx = tx;
7570 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7571 spin_lock_init(&dev->tx_global_lock);
7573 return 0;
7576 void netif_tx_stop_all_queues(struct net_device *dev)
7578 unsigned int i;
7580 for (i = 0; i < dev->num_tx_queues; i++) {
7581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7583 netif_tx_stop_queue(txq);
7586 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7589 * register_netdevice - register a network device
7590 * @dev: device to register
7592 * Take a completed network device structure and add it to the kernel
7593 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7594 * chain. 0 is returned on success. A negative errno code is returned
7595 * on a failure to set up the device, or if the name is a duplicate.
7597 * Callers must hold the rtnl semaphore. You may want
7598 * register_netdev() instead of this.
7600 * BUGS:
7601 * The locking appears insufficient to guarantee two parallel registers
7602 * will not get the same name.
7605 int register_netdevice(struct net_device *dev)
7607 int ret;
7608 struct net *net = dev_net(dev);
7610 BUG_ON(dev_boot_phase);
7611 ASSERT_RTNL();
7613 might_sleep();
7615 /* When net_device's are persistent, this will be fatal. */
7616 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7617 BUG_ON(!net);
7619 spin_lock_init(&dev->addr_list_lock);
7620 netdev_set_addr_lockdep_class(dev);
7622 ret = dev_get_valid_name(net, dev, dev->name);
7623 if (ret < 0)
7624 goto out;
7626 /* Init, if this function is available */
7627 if (dev->netdev_ops->ndo_init) {
7628 ret = dev->netdev_ops->ndo_init(dev);
7629 if (ret) {
7630 if (ret > 0)
7631 ret = -EIO;
7632 goto out;
7636 if (((dev->hw_features | dev->features) &
7637 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7638 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7639 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7640 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7641 ret = -EINVAL;
7642 goto err_uninit;
7645 ret = -EBUSY;
7646 if (!dev->ifindex)
7647 dev->ifindex = dev_new_index(net);
7648 else if (__dev_get_by_index(net, dev->ifindex))
7649 goto err_uninit;
7651 /* Transfer changeable features to wanted_features and enable
7652 * software offloads (GSO and GRO).
7654 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7655 dev->features |= NETIF_F_SOFT_FEATURES;
7657 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7658 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7659 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7662 dev->wanted_features = dev->features & dev->hw_features;
7664 if (!(dev->flags & IFF_LOOPBACK))
7665 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7667 /* If IPv4 TCP segmentation offload is supported we should also
7668 * allow the device to enable segmenting the frame with the option
7669 * of ignoring a static IP ID value. This doesn't enable the
7670 * feature itself but allows the user to enable it later.
7672 if (dev->hw_features & NETIF_F_TSO)
7673 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7674 if (dev->vlan_features & NETIF_F_TSO)
7675 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7676 if (dev->mpls_features & NETIF_F_TSO)
7677 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7678 if (dev->hw_enc_features & NETIF_F_TSO)
7679 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7681 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7683 dev->vlan_features |= NETIF_F_HIGHDMA;
7685 /* Make NETIF_F_SG inheritable to tunnel devices.
7687 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7689 /* Make NETIF_F_SG inheritable to MPLS.
7691 dev->mpls_features |= NETIF_F_SG;
7693 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7694 ret = notifier_to_errno(ret);
7695 if (ret)
7696 goto err_uninit;
7698 ret = netdev_register_kobject(dev);
7699 if (ret)
7700 goto err_uninit;
7701 dev->reg_state = NETREG_REGISTERED;
7703 __netdev_update_features(dev);
7706 * Default initial state at registry is that the
7707 * device is present.
7710 set_bit(__LINK_STATE_PRESENT, &dev->state);
7712 linkwatch_init_dev(dev);
7714 dev_init_scheduler(dev);
7715 dev_hold(dev);
7716 list_netdevice(dev);
7717 add_device_randomness(dev->dev_addr, dev->addr_len);
7719 /* If the device has permanent device address, driver should
7720 * set dev_addr and also addr_assign_type should be set to
7721 * NET_ADDR_PERM (default value).
7723 if (dev->addr_assign_type == NET_ADDR_PERM)
7724 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7726 /* Notify protocols, that a new device appeared. */
7727 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7728 ret = notifier_to_errno(ret);
7729 if (ret) {
7730 rollback_registered(dev);
7731 dev->reg_state = NETREG_UNREGISTERED;
7734 * Prevent userspace races by waiting until the network
7735 * device is fully setup before sending notifications.
7737 if (!dev->rtnl_link_ops ||
7738 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7739 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7741 out:
7742 return ret;
7744 err_uninit:
7745 if (dev->netdev_ops->ndo_uninit)
7746 dev->netdev_ops->ndo_uninit(dev);
7747 if (dev->priv_destructor)
7748 dev->priv_destructor(dev);
7749 goto out;
7751 EXPORT_SYMBOL(register_netdevice);
7754 * init_dummy_netdev - init a dummy network device for NAPI
7755 * @dev: device to init
7757 * This takes a network device structure and initialize the minimum
7758 * amount of fields so it can be used to schedule NAPI polls without
7759 * registering a full blown interface. This is to be used by drivers
7760 * that need to tie several hardware interfaces to a single NAPI
7761 * poll scheduler due to HW limitations.
7763 int init_dummy_netdev(struct net_device *dev)
7765 /* Clear everything. Note we don't initialize spinlocks
7766 * are they aren't supposed to be taken by any of the
7767 * NAPI code and this dummy netdev is supposed to be
7768 * only ever used for NAPI polls
7770 memset(dev, 0, sizeof(struct net_device));
7772 /* make sure we BUG if trying to hit standard
7773 * register/unregister code path
7775 dev->reg_state = NETREG_DUMMY;
7777 /* NAPI wants this */
7778 INIT_LIST_HEAD(&dev->napi_list);
7780 /* a dummy interface is started by default */
7781 set_bit(__LINK_STATE_PRESENT, &dev->state);
7782 set_bit(__LINK_STATE_START, &dev->state);
7784 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7785 * because users of this 'device' dont need to change
7786 * its refcount.
7789 return 0;
7791 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7795 * register_netdev - register a network device
7796 * @dev: device to register
7798 * Take a completed network device structure and add it to the kernel
7799 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7800 * chain. 0 is returned on success. A negative errno code is returned
7801 * on a failure to set up the device, or if the name is a duplicate.
7803 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7804 * and expands the device name if you passed a format string to
7805 * alloc_netdev.
7807 int register_netdev(struct net_device *dev)
7809 int err;
7811 rtnl_lock();
7812 err = register_netdevice(dev);
7813 rtnl_unlock();
7814 return err;
7816 EXPORT_SYMBOL(register_netdev);
7818 int netdev_refcnt_read(const struct net_device *dev)
7820 int i, refcnt = 0;
7822 for_each_possible_cpu(i)
7823 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7824 return refcnt;
7826 EXPORT_SYMBOL(netdev_refcnt_read);
7829 * netdev_wait_allrefs - wait until all references are gone.
7830 * @dev: target net_device
7832 * This is called when unregistering network devices.
7834 * Any protocol or device that holds a reference should register
7835 * for netdevice notification, and cleanup and put back the
7836 * reference if they receive an UNREGISTER event.
7837 * We can get stuck here if buggy protocols don't correctly
7838 * call dev_put.
7840 static void netdev_wait_allrefs(struct net_device *dev)
7842 unsigned long rebroadcast_time, warning_time;
7843 int refcnt;
7845 linkwatch_forget_dev(dev);
7847 rebroadcast_time = warning_time = jiffies;
7848 refcnt = netdev_refcnt_read(dev);
7850 while (refcnt != 0) {
7851 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7852 rtnl_lock();
7854 /* Rebroadcast unregister notification */
7855 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7857 __rtnl_unlock();
7858 rcu_barrier();
7859 rtnl_lock();
7861 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7862 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7863 &dev->state)) {
7864 /* We must not have linkwatch events
7865 * pending on unregister. If this
7866 * happens, we simply run the queue
7867 * unscheduled, resulting in a noop
7868 * for this device.
7870 linkwatch_run_queue();
7873 __rtnl_unlock();
7875 rebroadcast_time = jiffies;
7878 msleep(250);
7880 refcnt = netdev_refcnt_read(dev);
7882 if (time_after(jiffies, warning_time + 10 * HZ)) {
7883 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7884 dev->name, refcnt);
7885 warning_time = jiffies;
7890 /* The sequence is:
7892 * rtnl_lock();
7893 * ...
7894 * register_netdevice(x1);
7895 * register_netdevice(x2);
7896 * ...
7897 * unregister_netdevice(y1);
7898 * unregister_netdevice(y2);
7899 * ...
7900 * rtnl_unlock();
7901 * free_netdev(y1);
7902 * free_netdev(y2);
7904 * We are invoked by rtnl_unlock().
7905 * This allows us to deal with problems:
7906 * 1) We can delete sysfs objects which invoke hotplug
7907 * without deadlocking with linkwatch via keventd.
7908 * 2) Since we run with the RTNL semaphore not held, we can sleep
7909 * safely in order to wait for the netdev refcnt to drop to zero.
7911 * We must not return until all unregister events added during
7912 * the interval the lock was held have been completed.
7914 void netdev_run_todo(void)
7916 struct list_head list;
7918 /* Snapshot list, allow later requests */
7919 list_replace_init(&net_todo_list, &list);
7921 __rtnl_unlock();
7924 /* Wait for rcu callbacks to finish before next phase */
7925 if (!list_empty(&list))
7926 rcu_barrier();
7928 while (!list_empty(&list)) {
7929 struct net_device *dev
7930 = list_first_entry(&list, struct net_device, todo_list);
7931 list_del(&dev->todo_list);
7933 rtnl_lock();
7934 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7935 __rtnl_unlock();
7937 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7938 pr_err("network todo '%s' but state %d\n",
7939 dev->name, dev->reg_state);
7940 dump_stack();
7941 continue;
7944 dev->reg_state = NETREG_UNREGISTERED;
7946 netdev_wait_allrefs(dev);
7948 /* paranoia */
7949 BUG_ON(netdev_refcnt_read(dev));
7950 BUG_ON(!list_empty(&dev->ptype_all));
7951 BUG_ON(!list_empty(&dev->ptype_specific));
7952 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7953 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7954 WARN_ON(dev->dn_ptr);
7956 if (dev->priv_destructor)
7957 dev->priv_destructor(dev);
7958 if (dev->needs_free_netdev)
7959 free_netdev(dev);
7961 /* Report a network device has been unregistered */
7962 rtnl_lock();
7963 dev_net(dev)->dev_unreg_count--;
7964 __rtnl_unlock();
7965 wake_up(&netdev_unregistering_wq);
7967 /* Free network device */
7968 kobject_put(&dev->dev.kobj);
7972 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7973 * all the same fields in the same order as net_device_stats, with only
7974 * the type differing, but rtnl_link_stats64 may have additional fields
7975 * at the end for newer counters.
7977 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7978 const struct net_device_stats *netdev_stats)
7980 #if BITS_PER_LONG == 64
7981 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7982 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7983 /* zero out counters that only exist in rtnl_link_stats64 */
7984 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7985 sizeof(*stats64) - sizeof(*netdev_stats));
7986 #else
7987 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7988 const unsigned long *src = (const unsigned long *)netdev_stats;
7989 u64 *dst = (u64 *)stats64;
7991 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7992 for (i = 0; i < n; i++)
7993 dst[i] = src[i];
7994 /* zero out counters that only exist in rtnl_link_stats64 */
7995 memset((char *)stats64 + n * sizeof(u64), 0,
7996 sizeof(*stats64) - n * sizeof(u64));
7997 #endif
7999 EXPORT_SYMBOL(netdev_stats_to_stats64);
8002 * dev_get_stats - get network device statistics
8003 * @dev: device to get statistics from
8004 * @storage: place to store stats
8006 * Get network statistics from device. Return @storage.
8007 * The device driver may provide its own method by setting
8008 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8009 * otherwise the internal statistics structure is used.
8011 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8012 struct rtnl_link_stats64 *storage)
8014 const struct net_device_ops *ops = dev->netdev_ops;
8016 if (ops->ndo_get_stats64) {
8017 memset(storage, 0, sizeof(*storage));
8018 ops->ndo_get_stats64(dev, storage);
8019 } else if (ops->ndo_get_stats) {
8020 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8021 } else {
8022 netdev_stats_to_stats64(storage, &dev->stats);
8024 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8025 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8026 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8027 return storage;
8029 EXPORT_SYMBOL(dev_get_stats);
8031 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8033 struct netdev_queue *queue = dev_ingress_queue(dev);
8035 #ifdef CONFIG_NET_CLS_ACT
8036 if (queue)
8037 return queue;
8038 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8039 if (!queue)
8040 return NULL;
8041 netdev_init_one_queue(dev, queue, NULL);
8042 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8043 queue->qdisc_sleeping = &noop_qdisc;
8044 rcu_assign_pointer(dev->ingress_queue, queue);
8045 #endif
8046 return queue;
8049 static const struct ethtool_ops default_ethtool_ops;
8051 void netdev_set_default_ethtool_ops(struct net_device *dev,
8052 const struct ethtool_ops *ops)
8054 if (dev->ethtool_ops == &default_ethtool_ops)
8055 dev->ethtool_ops = ops;
8057 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8059 void netdev_freemem(struct net_device *dev)
8061 char *addr = (char *)dev - dev->padded;
8063 kvfree(addr);
8067 * alloc_netdev_mqs - allocate network device
8068 * @sizeof_priv: size of private data to allocate space for
8069 * @name: device name format string
8070 * @name_assign_type: origin of device name
8071 * @setup: callback to initialize device
8072 * @txqs: the number of TX subqueues to allocate
8073 * @rxqs: the number of RX subqueues to allocate
8075 * Allocates a struct net_device with private data area for driver use
8076 * and performs basic initialization. Also allocates subqueue structs
8077 * for each queue on the device.
8079 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8080 unsigned char name_assign_type,
8081 void (*setup)(struct net_device *),
8082 unsigned int txqs, unsigned int rxqs)
8084 struct net_device *dev;
8085 unsigned int alloc_size;
8086 struct net_device *p;
8088 BUG_ON(strlen(name) >= sizeof(dev->name));
8090 if (txqs < 1) {
8091 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8092 return NULL;
8095 #ifdef CONFIG_SYSFS
8096 if (rxqs < 1) {
8097 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8098 return NULL;
8100 #endif
8102 alloc_size = sizeof(struct net_device);
8103 if (sizeof_priv) {
8104 /* ensure 32-byte alignment of private area */
8105 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8106 alloc_size += sizeof_priv;
8108 /* ensure 32-byte alignment of whole construct */
8109 alloc_size += NETDEV_ALIGN - 1;
8111 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8112 if (!p)
8113 return NULL;
8115 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8116 dev->padded = (char *)dev - (char *)p;
8118 dev->pcpu_refcnt = alloc_percpu(int);
8119 if (!dev->pcpu_refcnt)
8120 goto free_dev;
8122 if (dev_addr_init(dev))
8123 goto free_pcpu;
8125 dev_mc_init(dev);
8126 dev_uc_init(dev);
8128 dev_net_set(dev, &init_net);
8130 dev->gso_max_size = GSO_MAX_SIZE;
8131 dev->gso_max_segs = GSO_MAX_SEGS;
8133 INIT_LIST_HEAD(&dev->napi_list);
8134 INIT_LIST_HEAD(&dev->unreg_list);
8135 INIT_LIST_HEAD(&dev->close_list);
8136 INIT_LIST_HEAD(&dev->link_watch_list);
8137 INIT_LIST_HEAD(&dev->adj_list.upper);
8138 INIT_LIST_HEAD(&dev->adj_list.lower);
8139 INIT_LIST_HEAD(&dev->ptype_all);
8140 INIT_LIST_HEAD(&dev->ptype_specific);
8141 #ifdef CONFIG_NET_SCHED
8142 hash_init(dev->qdisc_hash);
8143 #endif
8144 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8145 setup(dev);
8147 if (!dev->tx_queue_len) {
8148 dev->priv_flags |= IFF_NO_QUEUE;
8149 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8152 dev->num_tx_queues = txqs;
8153 dev->real_num_tx_queues = txqs;
8154 if (netif_alloc_netdev_queues(dev))
8155 goto free_all;
8157 #ifdef CONFIG_SYSFS
8158 dev->num_rx_queues = rxqs;
8159 dev->real_num_rx_queues = rxqs;
8160 if (netif_alloc_rx_queues(dev))
8161 goto free_all;
8162 #endif
8164 strcpy(dev->name, name);
8165 dev->name_assign_type = name_assign_type;
8166 dev->group = INIT_NETDEV_GROUP;
8167 if (!dev->ethtool_ops)
8168 dev->ethtool_ops = &default_ethtool_ops;
8170 nf_hook_ingress_init(dev);
8172 return dev;
8174 free_all:
8175 free_netdev(dev);
8176 return NULL;
8178 free_pcpu:
8179 free_percpu(dev->pcpu_refcnt);
8180 free_dev:
8181 netdev_freemem(dev);
8182 return NULL;
8184 EXPORT_SYMBOL(alloc_netdev_mqs);
8187 * free_netdev - free network device
8188 * @dev: device
8190 * This function does the last stage of destroying an allocated device
8191 * interface. The reference to the device object is released. If this
8192 * is the last reference then it will be freed.Must be called in process
8193 * context.
8195 void free_netdev(struct net_device *dev)
8197 struct napi_struct *p, *n;
8198 struct bpf_prog *prog;
8200 might_sleep();
8201 netif_free_tx_queues(dev);
8202 #ifdef CONFIG_SYSFS
8203 kvfree(dev->_rx);
8204 #endif
8206 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8208 /* Flush device addresses */
8209 dev_addr_flush(dev);
8211 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8212 netif_napi_del(p);
8214 free_percpu(dev->pcpu_refcnt);
8215 dev->pcpu_refcnt = NULL;
8217 prog = rcu_dereference_protected(dev->xdp_prog, 1);
8218 if (prog) {
8219 bpf_prog_put(prog);
8220 static_key_slow_dec(&generic_xdp_needed);
8223 /* Compatibility with error handling in drivers */
8224 if (dev->reg_state == NETREG_UNINITIALIZED) {
8225 netdev_freemem(dev);
8226 return;
8229 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8230 dev->reg_state = NETREG_RELEASED;
8232 /* will free via device release */
8233 put_device(&dev->dev);
8235 EXPORT_SYMBOL(free_netdev);
8238 * synchronize_net - Synchronize with packet receive processing
8240 * Wait for packets currently being received to be done.
8241 * Does not block later packets from starting.
8243 void synchronize_net(void)
8245 might_sleep();
8246 if (rtnl_is_locked())
8247 synchronize_rcu_expedited();
8248 else
8249 synchronize_rcu();
8251 EXPORT_SYMBOL(synchronize_net);
8254 * unregister_netdevice_queue - remove device from the kernel
8255 * @dev: device
8256 * @head: list
8258 * This function shuts down a device interface and removes it
8259 * from the kernel tables.
8260 * If head not NULL, device is queued to be unregistered later.
8262 * Callers must hold the rtnl semaphore. You may want
8263 * unregister_netdev() instead of this.
8266 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8268 ASSERT_RTNL();
8270 if (head) {
8271 list_move_tail(&dev->unreg_list, head);
8272 } else {
8273 rollback_registered(dev);
8274 /* Finish processing unregister after unlock */
8275 net_set_todo(dev);
8278 EXPORT_SYMBOL(unregister_netdevice_queue);
8281 * unregister_netdevice_many - unregister many devices
8282 * @head: list of devices
8284 * Note: As most callers use a stack allocated list_head,
8285 * we force a list_del() to make sure stack wont be corrupted later.
8287 void unregister_netdevice_many(struct list_head *head)
8289 struct net_device *dev;
8291 if (!list_empty(head)) {
8292 rollback_registered_many(head);
8293 list_for_each_entry(dev, head, unreg_list)
8294 net_set_todo(dev);
8295 list_del(head);
8298 EXPORT_SYMBOL(unregister_netdevice_many);
8301 * unregister_netdev - remove device from the kernel
8302 * @dev: device
8304 * This function shuts down a device interface and removes it
8305 * from the kernel tables.
8307 * This is just a wrapper for unregister_netdevice that takes
8308 * the rtnl semaphore. In general you want to use this and not
8309 * unregister_netdevice.
8311 void unregister_netdev(struct net_device *dev)
8313 rtnl_lock();
8314 unregister_netdevice(dev);
8315 rtnl_unlock();
8317 EXPORT_SYMBOL(unregister_netdev);
8320 * dev_change_net_namespace - move device to different nethost namespace
8321 * @dev: device
8322 * @net: network namespace
8323 * @pat: If not NULL name pattern to try if the current device name
8324 * is already taken in the destination network namespace.
8326 * This function shuts down a device interface and moves it
8327 * to a new network namespace. On success 0 is returned, on
8328 * a failure a netagive errno code is returned.
8330 * Callers must hold the rtnl semaphore.
8333 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8335 int err, new_nsid;
8337 ASSERT_RTNL();
8339 /* Don't allow namespace local devices to be moved. */
8340 err = -EINVAL;
8341 if (dev->features & NETIF_F_NETNS_LOCAL)
8342 goto out;
8344 /* Ensure the device has been registrered */
8345 if (dev->reg_state != NETREG_REGISTERED)
8346 goto out;
8348 /* Get out if there is nothing todo */
8349 err = 0;
8350 if (net_eq(dev_net(dev), net))
8351 goto out;
8353 /* Pick the destination device name, and ensure
8354 * we can use it in the destination network namespace.
8356 err = -EEXIST;
8357 if (__dev_get_by_name(net, dev->name)) {
8358 /* We get here if we can't use the current device name */
8359 if (!pat)
8360 goto out;
8361 if (dev_get_valid_name(net, dev, pat) < 0)
8362 goto out;
8366 * And now a mini version of register_netdevice unregister_netdevice.
8369 /* If device is running close it first. */
8370 dev_close(dev);
8372 /* And unlink it from device chain */
8373 err = -ENODEV;
8374 unlist_netdevice(dev);
8376 synchronize_net();
8378 /* Shutdown queueing discipline. */
8379 dev_shutdown(dev);
8381 /* Notify protocols, that we are about to destroy
8382 * this device. They should clean all the things.
8384 * Note that dev->reg_state stays at NETREG_REGISTERED.
8385 * This is wanted because this way 8021q and macvlan know
8386 * the device is just moving and can keep their slaves up.
8388 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8389 rcu_barrier();
8390 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8391 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8392 new_nsid = peernet2id_alloc(dev_net(dev), net);
8393 else
8394 new_nsid = peernet2id(dev_net(dev), net);
8395 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8398 * Flush the unicast and multicast chains
8400 dev_uc_flush(dev);
8401 dev_mc_flush(dev);
8403 /* Send a netdev-removed uevent to the old namespace */
8404 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8405 netdev_adjacent_del_links(dev);
8407 /* Actually switch the network namespace */
8408 dev_net_set(dev, net);
8410 /* If there is an ifindex conflict assign a new one */
8411 if (__dev_get_by_index(net, dev->ifindex))
8412 dev->ifindex = dev_new_index(net);
8414 /* Send a netdev-add uevent to the new namespace */
8415 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8416 netdev_adjacent_add_links(dev);
8418 /* Fixup kobjects */
8419 err = device_rename(&dev->dev, dev->name);
8420 WARN_ON(err);
8422 /* Add the device back in the hashes */
8423 list_netdevice(dev);
8425 /* Notify protocols, that a new device appeared. */
8426 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8429 * Prevent userspace races by waiting until the network
8430 * device is fully setup before sending notifications.
8432 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8434 synchronize_net();
8435 err = 0;
8436 out:
8437 return err;
8439 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8441 static int dev_cpu_dead(unsigned int oldcpu)
8443 struct sk_buff **list_skb;
8444 struct sk_buff *skb;
8445 unsigned int cpu;
8446 struct softnet_data *sd, *oldsd, *remsd = NULL;
8448 local_irq_disable();
8449 cpu = smp_processor_id();
8450 sd = &per_cpu(softnet_data, cpu);
8451 oldsd = &per_cpu(softnet_data, oldcpu);
8453 /* Find end of our completion_queue. */
8454 list_skb = &sd->completion_queue;
8455 while (*list_skb)
8456 list_skb = &(*list_skb)->next;
8457 /* Append completion queue from offline CPU. */
8458 *list_skb = oldsd->completion_queue;
8459 oldsd->completion_queue = NULL;
8461 /* Append output queue from offline CPU. */
8462 if (oldsd->output_queue) {
8463 *sd->output_queue_tailp = oldsd->output_queue;
8464 sd->output_queue_tailp = oldsd->output_queue_tailp;
8465 oldsd->output_queue = NULL;
8466 oldsd->output_queue_tailp = &oldsd->output_queue;
8468 /* Append NAPI poll list from offline CPU, with one exception :
8469 * process_backlog() must be called by cpu owning percpu backlog.
8470 * We properly handle process_queue & input_pkt_queue later.
8472 while (!list_empty(&oldsd->poll_list)) {
8473 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8474 struct napi_struct,
8475 poll_list);
8477 list_del_init(&napi->poll_list);
8478 if (napi->poll == process_backlog)
8479 napi->state = 0;
8480 else
8481 ____napi_schedule(sd, napi);
8484 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8485 local_irq_enable();
8487 #ifdef CONFIG_RPS
8488 remsd = oldsd->rps_ipi_list;
8489 oldsd->rps_ipi_list = NULL;
8490 #endif
8491 /* send out pending IPI's on offline CPU */
8492 net_rps_send_ipi(remsd);
8494 /* Process offline CPU's input_pkt_queue */
8495 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8496 netif_rx_ni(skb);
8497 input_queue_head_incr(oldsd);
8499 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8500 netif_rx_ni(skb);
8501 input_queue_head_incr(oldsd);
8504 return 0;
8508 * netdev_increment_features - increment feature set by one
8509 * @all: current feature set
8510 * @one: new feature set
8511 * @mask: mask feature set
8513 * Computes a new feature set after adding a device with feature set
8514 * @one to the master device with current feature set @all. Will not
8515 * enable anything that is off in @mask. Returns the new feature set.
8517 netdev_features_t netdev_increment_features(netdev_features_t all,
8518 netdev_features_t one, netdev_features_t mask)
8520 if (mask & NETIF_F_HW_CSUM)
8521 mask |= NETIF_F_CSUM_MASK;
8522 mask |= NETIF_F_VLAN_CHALLENGED;
8524 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8525 all &= one | ~NETIF_F_ALL_FOR_ALL;
8527 /* If one device supports hw checksumming, set for all. */
8528 if (all & NETIF_F_HW_CSUM)
8529 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8531 return all;
8533 EXPORT_SYMBOL(netdev_increment_features);
8535 static struct hlist_head * __net_init netdev_create_hash(void)
8537 int i;
8538 struct hlist_head *hash;
8540 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8541 if (hash != NULL)
8542 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8543 INIT_HLIST_HEAD(&hash[i]);
8545 return hash;
8548 /* Initialize per network namespace state */
8549 static int __net_init netdev_init(struct net *net)
8551 if (net != &init_net)
8552 INIT_LIST_HEAD(&net->dev_base_head);
8554 net->dev_name_head = netdev_create_hash();
8555 if (net->dev_name_head == NULL)
8556 goto err_name;
8558 net->dev_index_head = netdev_create_hash();
8559 if (net->dev_index_head == NULL)
8560 goto err_idx;
8562 return 0;
8564 err_idx:
8565 kfree(net->dev_name_head);
8566 err_name:
8567 return -ENOMEM;
8571 * netdev_drivername - network driver for the device
8572 * @dev: network device
8574 * Determine network driver for device.
8576 const char *netdev_drivername(const struct net_device *dev)
8578 const struct device_driver *driver;
8579 const struct device *parent;
8580 const char *empty = "";
8582 parent = dev->dev.parent;
8583 if (!parent)
8584 return empty;
8586 driver = parent->driver;
8587 if (driver && driver->name)
8588 return driver->name;
8589 return empty;
8592 static void __netdev_printk(const char *level, const struct net_device *dev,
8593 struct va_format *vaf)
8595 if (dev && dev->dev.parent) {
8596 dev_printk_emit(level[1] - '0',
8597 dev->dev.parent,
8598 "%s %s %s%s: %pV",
8599 dev_driver_string(dev->dev.parent),
8600 dev_name(dev->dev.parent),
8601 netdev_name(dev), netdev_reg_state(dev),
8602 vaf);
8603 } else if (dev) {
8604 printk("%s%s%s: %pV",
8605 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8606 } else {
8607 printk("%s(NULL net_device): %pV", level, vaf);
8611 void netdev_printk(const char *level, const struct net_device *dev,
8612 const char *format, ...)
8614 struct va_format vaf;
8615 va_list args;
8617 va_start(args, format);
8619 vaf.fmt = format;
8620 vaf.va = &args;
8622 __netdev_printk(level, dev, &vaf);
8624 va_end(args);
8626 EXPORT_SYMBOL(netdev_printk);
8628 #define define_netdev_printk_level(func, level) \
8629 void func(const struct net_device *dev, const char *fmt, ...) \
8631 struct va_format vaf; \
8632 va_list args; \
8634 va_start(args, fmt); \
8636 vaf.fmt = fmt; \
8637 vaf.va = &args; \
8639 __netdev_printk(level, dev, &vaf); \
8641 va_end(args); \
8643 EXPORT_SYMBOL(func);
8645 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8646 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8647 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8648 define_netdev_printk_level(netdev_err, KERN_ERR);
8649 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8650 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8651 define_netdev_printk_level(netdev_info, KERN_INFO);
8653 static void __net_exit netdev_exit(struct net *net)
8655 kfree(net->dev_name_head);
8656 kfree(net->dev_index_head);
8657 if (net != &init_net)
8658 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8661 static struct pernet_operations __net_initdata netdev_net_ops = {
8662 .init = netdev_init,
8663 .exit = netdev_exit,
8666 static void __net_exit default_device_exit(struct net *net)
8668 struct net_device *dev, *aux;
8670 * Push all migratable network devices back to the
8671 * initial network namespace
8673 rtnl_lock();
8674 for_each_netdev_safe(net, dev, aux) {
8675 int err;
8676 char fb_name[IFNAMSIZ];
8678 /* Ignore unmoveable devices (i.e. loopback) */
8679 if (dev->features & NETIF_F_NETNS_LOCAL)
8680 continue;
8682 /* Leave virtual devices for the generic cleanup */
8683 if (dev->rtnl_link_ops)
8684 continue;
8686 /* Push remaining network devices to init_net */
8687 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8688 err = dev_change_net_namespace(dev, &init_net, fb_name);
8689 if (err) {
8690 pr_emerg("%s: failed to move %s to init_net: %d\n",
8691 __func__, dev->name, err);
8692 BUG();
8695 rtnl_unlock();
8698 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8700 /* Return with the rtnl_lock held when there are no network
8701 * devices unregistering in any network namespace in net_list.
8703 struct net *net;
8704 bool unregistering;
8705 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8707 add_wait_queue(&netdev_unregistering_wq, &wait);
8708 for (;;) {
8709 unregistering = false;
8710 rtnl_lock();
8711 list_for_each_entry(net, net_list, exit_list) {
8712 if (net->dev_unreg_count > 0) {
8713 unregistering = true;
8714 break;
8717 if (!unregistering)
8718 break;
8719 __rtnl_unlock();
8721 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8723 remove_wait_queue(&netdev_unregistering_wq, &wait);
8726 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8728 /* At exit all network devices most be removed from a network
8729 * namespace. Do this in the reverse order of registration.
8730 * Do this across as many network namespaces as possible to
8731 * improve batching efficiency.
8733 struct net_device *dev;
8734 struct net *net;
8735 LIST_HEAD(dev_kill_list);
8737 /* To prevent network device cleanup code from dereferencing
8738 * loopback devices or network devices that have been freed
8739 * wait here for all pending unregistrations to complete,
8740 * before unregistring the loopback device and allowing the
8741 * network namespace be freed.
8743 * The netdev todo list containing all network devices
8744 * unregistrations that happen in default_device_exit_batch
8745 * will run in the rtnl_unlock() at the end of
8746 * default_device_exit_batch.
8748 rtnl_lock_unregistering(net_list);
8749 list_for_each_entry(net, net_list, exit_list) {
8750 for_each_netdev_reverse(net, dev) {
8751 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8752 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8753 else
8754 unregister_netdevice_queue(dev, &dev_kill_list);
8757 unregister_netdevice_many(&dev_kill_list);
8758 rtnl_unlock();
8761 static struct pernet_operations __net_initdata default_device_ops = {
8762 .exit = default_device_exit,
8763 .exit_batch = default_device_exit_batch,
8767 * Initialize the DEV module. At boot time this walks the device list and
8768 * unhooks any devices that fail to initialise (normally hardware not
8769 * present) and leaves us with a valid list of present and active devices.
8774 * This is called single threaded during boot, so no need
8775 * to take the rtnl semaphore.
8777 static int __init net_dev_init(void)
8779 int i, rc = -ENOMEM;
8781 BUG_ON(!dev_boot_phase);
8783 if (dev_proc_init())
8784 goto out;
8786 if (netdev_kobject_init())
8787 goto out;
8789 INIT_LIST_HEAD(&ptype_all);
8790 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8791 INIT_LIST_HEAD(&ptype_base[i]);
8793 INIT_LIST_HEAD(&offload_base);
8795 if (register_pernet_subsys(&netdev_net_ops))
8796 goto out;
8799 * Initialise the packet receive queues.
8802 for_each_possible_cpu(i) {
8803 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8804 struct softnet_data *sd = &per_cpu(softnet_data, i);
8806 INIT_WORK(flush, flush_backlog);
8808 skb_queue_head_init(&sd->input_pkt_queue);
8809 skb_queue_head_init(&sd->process_queue);
8810 INIT_LIST_HEAD(&sd->poll_list);
8811 sd->output_queue_tailp = &sd->output_queue;
8812 #ifdef CONFIG_RPS
8813 sd->csd.func = rps_trigger_softirq;
8814 sd->csd.info = sd;
8815 sd->cpu = i;
8816 #endif
8818 sd->backlog.poll = process_backlog;
8819 sd->backlog.weight = weight_p;
8822 dev_boot_phase = 0;
8824 /* The loopback device is special if any other network devices
8825 * is present in a network namespace the loopback device must
8826 * be present. Since we now dynamically allocate and free the
8827 * loopback device ensure this invariant is maintained by
8828 * keeping the loopback device as the first device on the
8829 * list of network devices. Ensuring the loopback devices
8830 * is the first device that appears and the last network device
8831 * that disappears.
8833 if (register_pernet_device(&loopback_net_ops))
8834 goto out;
8836 if (register_pernet_device(&default_device_ops))
8837 goto out;
8839 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8840 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8842 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8843 NULL, dev_cpu_dead);
8844 WARN_ON(rc < 0);
8845 rc = 0;
8846 out:
8847 return rc;
8850 subsys_initcall(net_dev_init);