2 * Copyright (C) STMicroelectronics 2009
3 * Copyright (C) ST-Ericsson SA 2010
5 * License Terms: GNU General Public License v2
6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
10 * U8500 PRCM Unit interface driver
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
28 #include <linux/of_irq.h>
29 #include <linux/platform_device.h>
30 #include <linux/uaccess.h>
31 #include <linux/mfd/core.h>
32 #include <linux/mfd/dbx500-prcmu.h>
33 #include <linux/mfd/abx500/ab8500.h>
34 #include <linux/regulator/db8500-prcmu.h>
35 #include <linux/regulator/machine.h>
36 #include <linux/platform_data/ux500_wdt.h>
37 #include <linux/platform_data/db8500_thermal.h>
38 #include "dbx500-prcmu-regs.h"
40 /* Index of different voltages to be used when accessing AVSData */
41 #define PRCM_AVS_BASE 0x2FC
42 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
43 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
44 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
45 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
46 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
47 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
48 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
49 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
50 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
51 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
52 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
53 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
54 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
56 #define PRCM_AVS_VOLTAGE 0
57 #define PRCM_AVS_VOLTAGE_MASK 0x3f
58 #define PRCM_AVS_ISSLOWSTARTUP 6
59 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
60 #define PRCM_AVS_ISMODEENABLE 7
61 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
63 #define PRCM_BOOT_STATUS 0xFFF
64 #define PRCM_ROMCODE_A2P 0xFFE
65 #define PRCM_ROMCODE_P2A 0xFFD
66 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
68 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
70 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
71 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
72 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
73 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
74 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
75 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
76 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
77 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
80 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
81 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
82 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
83 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
84 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
85 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
88 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
89 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
90 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
91 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
92 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
93 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
95 /* Mailbox 0 headers */
96 #define MB0H_POWER_STATE_TRANS 0
97 #define MB0H_CONFIG_WAKEUPS_EXE 1
98 #define MB0H_READ_WAKEUP_ACK 3
99 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
101 #define MB0H_WAKEUP_EXE 2
102 #define MB0H_WAKEUP_SLEEP 5
105 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
106 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
107 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
108 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
109 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
110 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
113 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
114 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
115 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
116 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
117 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
118 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
119 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
121 /* Mailbox 1 headers */
122 #define MB1H_ARM_APE_OPP 0x0
123 #define MB1H_RESET_MODEM 0x2
124 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
125 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
126 #define MB1H_RELEASE_USB_WAKEUP 0x5
127 #define MB1H_PLL_ON_OFF 0x6
129 /* Mailbox 1 Requests */
130 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
131 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
132 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
133 #define PLL_SOC0_OFF 0x1
134 #define PLL_SOC0_ON 0x2
135 #define PLL_SOC1_OFF 0x4
136 #define PLL_SOC1_ON 0x8
139 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
140 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
141 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
142 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
144 /* Mailbox 2 headers */
146 #define MB2H_AUTO_PWR 0x1
149 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
150 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
151 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
152 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
153 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
154 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
155 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
156 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
157 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
158 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
161 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
162 #define HWACC_PWR_ST_OK 0xFE
164 /* Mailbox 3 headers */
166 #define MB3H_SIDETONE 0x1
167 #define MB3H_SYSCLK 0xE
169 /* Mailbox 3 Requests */
170 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
171 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
172 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
173 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
174 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
175 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
176 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
178 /* Mailbox 4 headers */
179 #define MB4H_DDR_INIT 0x0
180 #define MB4H_MEM_ST 0x1
181 #define MB4H_HOTDOG 0x12
182 #define MB4H_HOTMON 0x13
183 #define MB4H_HOT_PERIOD 0x14
184 #define MB4H_A9WDOG_CONF 0x16
185 #define MB4H_A9WDOG_EN 0x17
186 #define MB4H_A9WDOG_DIS 0x18
187 #define MB4H_A9WDOG_LOAD 0x19
188 #define MB4H_A9WDOG_KICK 0x20
190 /* Mailbox 4 Requests */
191 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
192 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
193 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
194 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
195 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
198 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
199 #define HOTMON_CONFIG_LOW BIT(0)
200 #define HOTMON_CONFIG_HIGH BIT(1)
201 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
202 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
203 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
204 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
205 #define A9WDOG_AUTO_OFF_EN BIT(7)
206 #define A9WDOG_AUTO_OFF_DIS 0
207 #define A9WDOG_ID_MASK 0xf
209 /* Mailbox 5 Requests */
210 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
211 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
212 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
213 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
214 #define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
215 #define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
216 #define PRCMU_I2C_STOP_EN BIT(3)
219 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
220 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
221 #define I2C_WR_OK 0x1
222 #define I2C_RD_OK 0x2
226 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
232 #define WAKEUP_BIT_RTC BIT(0)
233 #define WAKEUP_BIT_RTT0 BIT(1)
234 #define WAKEUP_BIT_RTT1 BIT(2)
235 #define WAKEUP_BIT_HSI0 BIT(3)
236 #define WAKEUP_BIT_HSI1 BIT(4)
237 #define WAKEUP_BIT_CA_WAKE BIT(5)
238 #define WAKEUP_BIT_USB BIT(6)
239 #define WAKEUP_BIT_ABB BIT(7)
240 #define WAKEUP_BIT_ABB_FIFO BIT(8)
241 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
242 #define WAKEUP_BIT_CA_SLEEP BIT(10)
243 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
244 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
245 #define WAKEUP_BIT_ANC_OK BIT(13)
246 #define WAKEUP_BIT_SW_ERROR BIT(14)
247 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
248 #define WAKEUP_BIT_ARM BIT(17)
249 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
250 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
251 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
252 #define WAKEUP_BIT_GPIO0 BIT(23)
253 #define WAKEUP_BIT_GPIO1 BIT(24)
254 #define WAKEUP_BIT_GPIO2 BIT(25)
255 #define WAKEUP_BIT_GPIO3 BIT(26)
256 #define WAKEUP_BIT_GPIO4 BIT(27)
257 #define WAKEUP_BIT_GPIO5 BIT(28)
258 #define WAKEUP_BIT_GPIO6 BIT(29)
259 #define WAKEUP_BIT_GPIO7 BIT(30)
260 #define WAKEUP_BIT_GPIO8 BIT(31)
264 struct prcmu_fw_version version
;
267 static struct irq_domain
*db8500_irq_domain
;
270 * This vector maps irq numbers to the bits in the bit field used in
271 * communication with the PRCMU firmware.
273 * The reason for having this is to keep the irq numbers contiguous even though
274 * the bits in the bit field are not. (The bits also have a tendency to move
275 * around, to further complicate matters.)
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
280 #define IRQ_PRCMU_RTC 0
281 #define IRQ_PRCMU_RTT0 1
282 #define IRQ_PRCMU_RTT1 2
283 #define IRQ_PRCMU_HSI0 3
284 #define IRQ_PRCMU_HSI1 4
285 #define IRQ_PRCMU_CA_WAKE 5
286 #define IRQ_PRCMU_USB 6
287 #define IRQ_PRCMU_ABB 7
288 #define IRQ_PRCMU_ABB_FIFO 8
289 #define IRQ_PRCMU_ARM 9
290 #define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
291 #define IRQ_PRCMU_GPIO0 11
292 #define IRQ_PRCMU_GPIO1 12
293 #define IRQ_PRCMU_GPIO2 13
294 #define IRQ_PRCMU_GPIO3 14
295 #define IRQ_PRCMU_GPIO4 15
296 #define IRQ_PRCMU_GPIO5 16
297 #define IRQ_PRCMU_GPIO6 17
298 #define IRQ_PRCMU_GPIO7 18
299 #define IRQ_PRCMU_GPIO8 19
300 #define IRQ_PRCMU_CA_SLEEP 20
301 #define IRQ_PRCMU_HOTMON_LOW 21
302 #define IRQ_PRCMU_HOTMON_HIGH 22
303 #define NUM_PRCMU_WAKEUPS 23
305 static u32 prcmu_irq_bit
[NUM_PRCMU_WAKEUPS
] = {
317 IRQ_ENTRY(HOTMON_LOW
),
318 IRQ_ENTRY(HOTMON_HIGH
),
319 IRQ_ENTRY(MODEM_SW_RESET_REQ
),
331 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
332 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
333 static u32 prcmu_wakeup_bit
[NUM_PRCMU_WAKEUP_INDICES
] = {
341 WAKEUP_ENTRY(ABB_FIFO
),
346 * mb0_transfer - state needed for mailbox 0 communication.
347 * @lock: The transaction lock.
348 * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
350 * @mask_work: Work structure used for (un)masking wakeup interrupts.
351 * @req: Request data that need to persist between requests.
355 spinlock_t dbb_irqs_lock
;
356 struct work_struct mask_work
;
357 struct mutex ac_wake_lock
;
358 struct completion ac_wake_work
;
367 * mb1_transfer - state needed for mailbox 1 communication.
368 * @lock: The transaction lock.
369 * @work: The transaction completion structure.
370 * @ape_opp: The current APE OPP.
371 * @ack: Reply ("acknowledge") data.
375 struct completion work
;
381 u8 ape_voltage_status
;
386 * mb2_transfer - state needed for mailbox 2 communication.
387 * @lock: The transaction lock.
388 * @work: The transaction completion structure.
389 * @auto_pm_lock: The autonomous power management configuration lock.
390 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
391 * @req: Request data that need to persist between requests.
392 * @ack: Reply ("acknowledge") data.
396 struct completion work
;
397 spinlock_t auto_pm_lock
;
398 bool auto_pm_enabled
;
405 * mb3_transfer - state needed for mailbox 3 communication.
406 * @lock: The request lock.
407 * @sysclk_lock: A lock used to handle concurrent sysclk requests.
408 * @sysclk_work: Work structure used for sysclk requests.
412 struct mutex sysclk_lock
;
413 struct completion sysclk_work
;
417 * mb4_transfer - state needed for mailbox 4 communication.
418 * @lock: The transaction lock.
419 * @work: The transaction completion structure.
423 struct completion work
;
427 * mb5_transfer - state needed for mailbox 5 communication.
428 * @lock: The transaction lock.
429 * @work: The transaction completion structure.
430 * @ack: Reply ("acknowledge") data.
434 struct completion work
;
441 static atomic_t ac_wake_req_state
= ATOMIC_INIT(0);
444 static DEFINE_SPINLOCK(prcmu_lock
);
445 static DEFINE_SPINLOCK(clkout_lock
);
447 /* Global var to runtime determine TCDM base for v2 or v1 */
448 static __iomem
void *tcdm_base
;
449 static __iomem
void *prcmu_base
;
464 static DEFINE_SPINLOCK(clk_mgt_lock
);
466 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
467 { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
468 static struct clk_mgt clk_mgt
[PRCMU_NUM_REG_CLOCKS
] = {
469 CLK_MGT_ENTRY(SGACLK
, PLL_DIV
, false),
470 CLK_MGT_ENTRY(UARTCLK
, PLL_FIX
, true),
471 CLK_MGT_ENTRY(MSP02CLK
, PLL_FIX
, true),
472 CLK_MGT_ENTRY(MSP1CLK
, PLL_FIX
, true),
473 CLK_MGT_ENTRY(I2CCLK
, PLL_FIX
, true),
474 CLK_MGT_ENTRY(SDMMCCLK
, PLL_DIV
, true),
475 CLK_MGT_ENTRY(SLIMCLK
, PLL_FIX
, true),
476 CLK_MGT_ENTRY(PER1CLK
, PLL_DIV
, true),
477 CLK_MGT_ENTRY(PER2CLK
, PLL_DIV
, true),
478 CLK_MGT_ENTRY(PER3CLK
, PLL_DIV
, true),
479 CLK_MGT_ENTRY(PER5CLK
, PLL_DIV
, true),
480 CLK_MGT_ENTRY(PER6CLK
, PLL_DIV
, true),
481 CLK_MGT_ENTRY(PER7CLK
, PLL_DIV
, true),
482 CLK_MGT_ENTRY(LCDCLK
, PLL_FIX
, true),
483 CLK_MGT_ENTRY(BMLCLK
, PLL_DIV
, true),
484 CLK_MGT_ENTRY(HSITXCLK
, PLL_DIV
, true),
485 CLK_MGT_ENTRY(HSIRXCLK
, PLL_DIV
, true),
486 CLK_MGT_ENTRY(HDMICLK
, PLL_FIX
, false),
487 CLK_MGT_ENTRY(APEATCLK
, PLL_DIV
, true),
488 CLK_MGT_ENTRY(APETRACECLK
, PLL_DIV
, true),
489 CLK_MGT_ENTRY(MCDECLK
, PLL_DIV
, true),
490 CLK_MGT_ENTRY(IPI2CCLK
, PLL_FIX
, true),
491 CLK_MGT_ENTRY(DSIALTCLK
, PLL_FIX
, false),
492 CLK_MGT_ENTRY(DMACLK
, PLL_DIV
, true),
493 CLK_MGT_ENTRY(B2R2CLK
, PLL_DIV
, true),
494 CLK_MGT_ENTRY(TVCLK
, PLL_FIX
, true),
495 CLK_MGT_ENTRY(SSPCLK
, PLL_FIX
, true),
496 CLK_MGT_ENTRY(RNGCLK
, PLL_FIX
, true),
497 CLK_MGT_ENTRY(UICCCLK
, PLL_FIX
, false),
506 static struct dsiclk dsiclk
[2] = {
508 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK
,
509 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT
,
510 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
513 .divsel_mask
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK
,
514 .divsel_shift
= PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT
,
515 .divsel
= PRCM_DSI_PLLOUT_SEL_PHI
,
525 static struct dsiescclk dsiescclk
[3] = {
527 .en
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN
,
528 .div_mask
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK
,
529 .div_shift
= PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT
,
532 .en
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN
,
533 .div_mask
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK
,
534 .div_shift
= PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT
,
537 .en
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN
,
538 .div_mask
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK
,
539 .div_shift
= PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT
,
545 * Used by MCDE to setup all necessary PRCMU registers
547 #define PRCMU_RESET_DSIPLL 0x00004000
548 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
550 #define PRCMU_CLK_PLL_DIV_SHIFT 0
551 #define PRCMU_CLK_PLL_SW_SHIFT 5
552 #define PRCMU_CLK_38 (1 << 9)
553 #define PRCMU_CLK_38_SRC (1 << 10)
554 #define PRCMU_CLK_38_DIV (1 << 11)
556 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
557 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
559 /* DPI 50000000 Hz */
560 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
561 (16 << PRCMU_CLK_PLL_DIV_SHIFT))
562 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
564 /* D=101, N=1, R=4, SELDIV2=0 */
565 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
567 #define PRCMU_ENABLE_PLLDSI 0x00000001
568 #define PRCMU_DISABLE_PLLDSI 0x00000000
569 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
570 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
571 /* ESC clk, div0=1, div1=1, div2=3 */
572 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
573 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
574 #define PRCMU_DSI_RESET_SW 0x00000007
576 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
578 int db8500_prcmu_enable_dsipll(void)
582 /* Clear DSIPLL_RESETN */
583 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_CLR
);
584 /* Unclamp DSIPLL in/out */
585 writel(PRCMU_UNCLAMP_DSIPLL
, PRCM_MMIP_LS_CLAMP_CLR
);
587 /* Set DSI PLL FREQ */
588 writel(PRCMU_PLLDSI_FREQ_SETTING
, PRCM_PLLDSI_FREQ
);
589 writel(PRCMU_DSI_PLLOUT_SEL_SETTING
, PRCM_DSI_PLLOUT_SEL
);
590 /* Enable Escape clocks */
591 writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
594 writel(PRCMU_ENABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
596 writel(PRCMU_DSI_RESET_SW
, PRCM_DSI_SW_RESET
);
597 for (i
= 0; i
< 10; i
++) {
598 if ((readl(PRCM_PLLDSI_LOCKP
) & PRCMU_PLLDSI_LOCKP_LOCKED
)
599 == PRCMU_PLLDSI_LOCKP_LOCKED
)
603 /* Set DSIPLL_RESETN */
604 writel(PRCMU_RESET_DSIPLL
, PRCM_APE_RESETN_SET
);
608 int db8500_prcmu_disable_dsipll(void)
610 /* Disable dsi pll */
611 writel(PRCMU_DISABLE_PLLDSI
, PRCM_PLLDSI_ENABLE
);
612 /* Disable escapeclock */
613 writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV
, PRCM_DSITVCLK_DIV
);
617 int db8500_prcmu_set_display_clocks(void)
621 spin_lock_irqsave(&clk_mgt_lock
, flags
);
623 /* Grab the HW semaphore. */
624 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
627 writel(PRCMU_DSI_CLOCK_SETTING
, prcmu_base
+ PRCM_HDMICLK_MGT
);
628 writel(PRCMU_DSI_LP_CLOCK_SETTING
, prcmu_base
+ PRCM_TVCLK_MGT
);
629 writel(PRCMU_DPI_CLOCK_SETTING
, prcmu_base
+ PRCM_LCDCLK_MGT
);
631 /* Release the HW semaphore. */
634 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
639 u32
db8500_prcmu_read(unsigned int reg
)
641 return readl(prcmu_base
+ reg
);
644 void db8500_prcmu_write(unsigned int reg
, u32 value
)
648 spin_lock_irqsave(&prcmu_lock
, flags
);
649 writel(value
, (prcmu_base
+ reg
));
650 spin_unlock_irqrestore(&prcmu_lock
, flags
);
653 void db8500_prcmu_write_masked(unsigned int reg
, u32 mask
, u32 value
)
658 spin_lock_irqsave(&prcmu_lock
, flags
);
659 val
= readl(prcmu_base
+ reg
);
660 val
= ((val
& ~mask
) | (value
& mask
));
661 writel(val
, (prcmu_base
+ reg
));
662 spin_unlock_irqrestore(&prcmu_lock
, flags
);
665 struct prcmu_fw_version
*prcmu_get_fw_version(void)
667 return fw_info
.valid
? &fw_info
.version
: NULL
;
670 bool prcmu_has_arm_maxopp(void)
672 return (readb(tcdm_base
+ PRCM_AVS_VARM_MAX_OPP
) &
673 PRCM_AVS_ISMODEENABLE_MASK
) == PRCM_AVS_ISMODEENABLE_MASK
;
677 * prcmu_set_rc_a2p - This function is used to run few power state sequences
678 * @val: Value to be set, i.e. transition requested
679 * Returns: 0 on success, -EINVAL on invalid argument
681 * This function is used to run the following power state sequences -
682 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
684 int prcmu_set_rc_a2p(enum romcode_write val
)
686 if (val
< RDY_2_DS
|| val
> RDY_2_XP70_RST
)
688 writeb(val
, (tcdm_base
+ PRCM_ROMCODE_A2P
));
693 * prcmu_get_rc_p2a - This function is used to get power state sequences
694 * Returns: the power transition that has last happened
696 * This function can return the following transitions-
697 * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
699 enum romcode_read
prcmu_get_rc_p2a(void)
701 return readb(tcdm_base
+ PRCM_ROMCODE_P2A
);
705 * prcmu_get_current_mode - Return the current XP70 power mode
706 * Returns: Returns the current AP(ARM) power mode: init,
707 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
709 enum ap_pwrst
prcmu_get_xp70_current_state(void)
711 return readb(tcdm_base
+ PRCM_XP70_CUR_PWR_STATE
);
715 * prcmu_config_clkout - Configure one of the programmable clock outputs.
716 * @clkout: The CLKOUT number (0 or 1).
717 * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
718 * @div: The divider to be applied.
720 * Configures one of the programmable clock outputs (CLKOUTs).
721 * @div should be in the range [1,63] to request a configuration, or 0 to
722 * inform that the configuration is no longer requested.
724 int prcmu_config_clkout(u8 clkout
, u8 source
, u8 div
)
726 static int requests
[2];
736 BUG_ON((clkout
== 0) && (source
> PRCMU_CLKSRC_CLK009
));
738 if (!div
&& !requests
[clkout
])
742 div_mask
= PRCM_CLKOCR_CLKODIV0_MASK
;
743 mask
= (PRCM_CLKOCR_CLKODIV0_MASK
| PRCM_CLKOCR_CLKOSEL0_MASK
);
744 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL0_SHIFT
) |
745 (div
<< PRCM_CLKOCR_CLKODIV0_SHIFT
));
747 div_mask
= PRCM_CLKOCR_CLKODIV1_MASK
;
748 mask
= (PRCM_CLKOCR_CLKODIV1_MASK
| PRCM_CLKOCR_CLKOSEL1_MASK
|
749 PRCM_CLKOCR_CLK1TYPE
);
750 bits
= ((source
<< PRCM_CLKOCR_CLKOSEL1_SHIFT
) |
751 (div
<< PRCM_CLKOCR_CLKODIV1_SHIFT
));
755 spin_lock_irqsave(&clkout_lock
, flags
);
757 val
= readl(PRCM_CLKOCR
);
758 if (val
& div_mask
) {
760 if ((val
& mask
) != bits
) {
762 goto unlock_and_return
;
765 if ((val
& mask
& ~div_mask
) != bits
) {
767 goto unlock_and_return
;
771 writel((bits
| (val
& ~mask
)), PRCM_CLKOCR
);
772 requests
[clkout
] += (div
? 1 : -1);
775 spin_unlock_irqrestore(&clkout_lock
, flags
);
780 int db8500_prcmu_set_power_state(u8 state
, bool keep_ulp_clk
, bool keep_ap_pll
)
784 BUG_ON((state
< PRCMU_AP_SLEEP
) || (PRCMU_AP_DEEP_IDLE
< state
));
786 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
788 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
791 writeb(MB0H_POWER_STATE_TRANS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
792 writeb(state
, (tcdm_base
+ PRCM_REQ_MB0_AP_POWER_STATE
));
793 writeb((keep_ap_pll
? 1 : 0), (tcdm_base
+ PRCM_REQ_MB0_AP_PLL_STATE
));
794 writeb((keep_ulp_clk
? 1 : 0),
795 (tcdm_base
+ PRCM_REQ_MB0_ULP_CLOCK_STATE
));
796 writeb(0, (tcdm_base
+ PRCM_REQ_MB0_DO_NOT_WFI
));
797 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
799 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
804 u8
db8500_prcmu_get_power_state_result(void)
806 return readb(tcdm_base
+ PRCM_ACK_MB0_AP_PWRSTTR_STATUS
);
809 /* This function should only be called while mb0_transfer.lock is held. */
810 static void config_wakeups(void)
812 const u8 header
[2] = {
813 MB0H_CONFIG_WAKEUPS_EXE
,
814 MB0H_CONFIG_WAKEUPS_SLEEP
816 static u32 last_dbb_events
;
817 static u32 last_abb_events
;
822 dbb_events
= mb0_transfer
.req
.dbb_irqs
| mb0_transfer
.req
.dbb_wakeups
;
823 dbb_events
|= (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
);
825 abb_events
= mb0_transfer
.req
.abb_events
;
827 if ((dbb_events
== last_dbb_events
) && (abb_events
== last_abb_events
))
830 for (i
= 0; i
< 2; i
++) {
831 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
833 writel(dbb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_8500
));
834 writel(abb_events
, (tcdm_base
+ PRCM_REQ_MB0_WAKEUP_4500
));
835 writeb(header
[i
], (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
836 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
838 last_dbb_events
= dbb_events
;
839 last_abb_events
= abb_events
;
842 void db8500_prcmu_enable_wakeups(u32 wakeups
)
848 BUG_ON(wakeups
!= (wakeups
& VALID_WAKEUPS
));
850 for (i
= 0, bits
= 0; i
< NUM_PRCMU_WAKEUP_INDICES
; i
++) {
851 if (wakeups
& BIT(i
))
852 bits
|= prcmu_wakeup_bit
[i
];
855 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
857 mb0_transfer
.req
.dbb_wakeups
= bits
;
860 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
863 void db8500_prcmu_config_abb_event_readout(u32 abb_events
)
867 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
869 mb0_transfer
.req
.abb_events
= abb_events
;
872 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
875 void db8500_prcmu_get_abb_event_buffer(void __iomem
**buf
)
877 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
878 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_4500
);
880 *buf
= (tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_4500
);
884 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
885 * @opp: The new ARM operating point to which transition is to be made
886 * Returns: 0 on success, non-zero on failure
888 * This function sets the the operating point of the ARM.
890 int db8500_prcmu_set_arm_opp(u8 opp
)
894 if (opp
< ARM_NO_CHANGE
|| opp
> ARM_EXTCLK
)
899 mutex_lock(&mb1_transfer
.lock
);
901 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
904 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
905 writeb(opp
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
906 writeb(APE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
908 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
909 wait_for_completion(&mb1_transfer
.work
);
911 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
912 (mb1_transfer
.ack
.arm_opp
!= opp
))
915 mutex_unlock(&mb1_transfer
.lock
);
921 * db8500_prcmu_get_arm_opp - get the current ARM OPP
923 * Returns: the current ARM OPP
925 int db8500_prcmu_get_arm_opp(void)
927 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_ARM_OPP
);
931 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
933 * Returns: the current DDR OPP
935 int db8500_prcmu_get_ddr_opp(void)
937 return readb(PRCM_DDR_SUBSYS_APE_MINBW
);
940 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
941 static void request_even_slower_clocks(bool enable
)
950 spin_lock_irqsave(&clk_mgt_lock
, flags
);
952 /* Grab the HW semaphore. */
953 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
956 for (i
= 0; i
< ARRAY_SIZE(clock_reg
); i
++) {
960 val
= readl(prcmu_base
+ clock_reg
[i
]);
961 div
= (val
& PRCM_CLK_MGT_CLKPLLDIV_MASK
);
963 if ((div
<= 1) || (div
> 15)) {
964 pr_err("prcmu: Bad clock divider %d in %s\n",
966 goto unlock_and_return
;
971 goto unlock_and_return
;
974 val
= ((val
& ~PRCM_CLK_MGT_CLKPLLDIV_MASK
) |
975 (div
& PRCM_CLK_MGT_CLKPLLDIV_MASK
));
976 writel(val
, prcmu_base
+ clock_reg
[i
]);
980 /* Release the HW semaphore. */
983 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
987 * db8500_set_ape_opp - set the appropriate APE OPP
988 * @opp: The new APE operating point to which transition is to be made
989 * Returns: 0 on success, non-zero on failure
991 * This function sets the operating point of the APE.
993 int db8500_prcmu_set_ape_opp(u8 opp
)
997 if (opp
== mb1_transfer
.ape_opp
)
1000 mutex_lock(&mb1_transfer
.lock
);
1002 if (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)
1003 request_even_slower_clocks(false);
1005 if ((opp
!= APE_100_OPP
) && (mb1_transfer
.ape_opp
!= APE_100_OPP
))
1008 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1011 writeb(MB1H_ARM_APE_OPP
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1012 writeb(ARM_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB1_ARM_OPP
));
1013 writeb(((opp
== APE_50_PARTLY_25_OPP
) ? APE_50_OPP
: opp
),
1014 (tcdm_base
+ PRCM_REQ_MB1_APE_OPP
));
1016 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1017 wait_for_completion(&mb1_transfer
.work
);
1019 if ((mb1_transfer
.ack
.header
!= MB1H_ARM_APE_OPP
) ||
1020 (mb1_transfer
.ack
.ape_opp
!= opp
))
1024 if ((!r
&& (opp
== APE_50_PARTLY_25_OPP
)) ||
1025 (r
&& (mb1_transfer
.ape_opp
== APE_50_PARTLY_25_OPP
)))
1026 request_even_slower_clocks(true);
1028 mb1_transfer
.ape_opp
= opp
;
1030 mutex_unlock(&mb1_transfer
.lock
);
1036 * db8500_prcmu_get_ape_opp - get the current APE OPP
1038 * Returns: the current APE OPP
1040 int db8500_prcmu_get_ape_opp(void)
1042 return readb(tcdm_base
+ PRCM_ACK_MB1_CURRENT_APE_OPP
);
1046 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1047 * @enable: true to request the higher voltage, false to drop a request.
1049 * Calls to this function to enable and disable requests must be balanced.
1051 int db8500_prcmu_request_ape_opp_100_voltage(bool enable
)
1055 static unsigned int requests
;
1057 mutex_lock(&mb1_transfer
.lock
);
1060 if (0 != requests
++)
1061 goto unlock_and_return
;
1062 header
= MB1H_REQUEST_APE_OPP_100_VOLT
;
1064 if (requests
== 0) {
1066 goto unlock_and_return
;
1067 } else if (1 != requests
--) {
1068 goto unlock_and_return
;
1070 header
= MB1H_RELEASE_APE_OPP_100_VOLT
;
1073 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1076 writeb(header
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1078 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1079 wait_for_completion(&mb1_transfer
.work
);
1081 if ((mb1_transfer
.ack
.header
!= header
) ||
1082 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1086 mutex_unlock(&mb1_transfer
.lock
);
1092 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1094 * This function releases the power state requirements of a USB wakeup.
1096 int prcmu_release_usb_wakeup_state(void)
1100 mutex_lock(&mb1_transfer
.lock
);
1102 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1105 writeb(MB1H_RELEASE_USB_WAKEUP
,
1106 (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1108 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1109 wait_for_completion(&mb1_transfer
.work
);
1111 if ((mb1_transfer
.ack
.header
!= MB1H_RELEASE_USB_WAKEUP
) ||
1112 ((mb1_transfer
.ack
.ape_voltage_status
& BIT(0)) != 0))
1115 mutex_unlock(&mb1_transfer
.lock
);
1120 static int request_pll(u8 clock
, bool enable
)
1124 if (clock
== PRCMU_PLLSOC0
)
1125 clock
= (enable
? PLL_SOC0_ON
: PLL_SOC0_OFF
);
1126 else if (clock
== PRCMU_PLLSOC1
)
1127 clock
= (enable
? PLL_SOC1_ON
: PLL_SOC1_OFF
);
1131 mutex_lock(&mb1_transfer
.lock
);
1133 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
1136 writeb(MB1H_PLL_ON_OFF
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
1137 writeb(clock
, (tcdm_base
+ PRCM_REQ_MB1_PLL_ON_OFF
));
1139 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
1140 wait_for_completion(&mb1_transfer
.work
);
1142 if (mb1_transfer
.ack
.header
!= MB1H_PLL_ON_OFF
)
1145 mutex_unlock(&mb1_transfer
.lock
);
1151 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1152 * @epod_id: The EPOD to set
1153 * @epod_state: The new EPOD state
1155 * This function sets the state of a EPOD (power domain). It may not be called
1156 * from interrupt context.
1158 int db8500_prcmu_set_epod(u16 epod_id
, u8 epod_state
)
1161 bool ram_retention
= false;
1164 /* check argument */
1165 BUG_ON(epod_id
>= NUM_EPOD_ID
);
1167 /* set flag if retention is possible */
1169 case EPOD_ID_SVAMMDSP
:
1170 case EPOD_ID_SIAMMDSP
:
1171 case EPOD_ID_ESRAM12
:
1172 case EPOD_ID_ESRAM34
:
1173 ram_retention
= true;
1177 /* check argument */
1178 BUG_ON(epod_state
> EPOD_STATE_ON
);
1179 BUG_ON(epod_state
== EPOD_STATE_RAMRET
&& !ram_retention
);
1182 mutex_lock(&mb2_transfer
.lock
);
1184 /* wait for mailbox */
1185 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(2))
1188 /* fill in mailbox */
1189 for (i
= 0; i
< NUM_EPOD_ID
; i
++)
1190 writeb(EPOD_STATE_NO_CHANGE
, (tcdm_base
+ PRCM_REQ_MB2
+ i
));
1191 writeb(epod_state
, (tcdm_base
+ PRCM_REQ_MB2
+ epod_id
));
1193 writeb(MB2H_DPS
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB2
));
1195 writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET
);
1198 * The current firmware version does not handle errors correctly,
1199 * and we cannot recover if there is an error.
1200 * This is expected to change when the firmware is updated.
1202 if (!wait_for_completion_timeout(&mb2_transfer
.work
,
1203 msecs_to_jiffies(20000))) {
1204 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1207 goto unlock_and_return
;
1210 if (mb2_transfer
.ack
.status
!= HWACC_PWR_ST_OK
)
1214 mutex_unlock(&mb2_transfer
.lock
);
1219 * prcmu_configure_auto_pm - Configure autonomous power management.
1220 * @sleep: Configuration for ApSleep.
1221 * @idle: Configuration for ApIdle.
1223 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config
*sleep
,
1224 struct prcmu_auto_pm_config
*idle
)
1228 unsigned long flags
;
1230 BUG_ON((sleep
== NULL
) || (idle
== NULL
));
1232 sleep_cfg
= (sleep
->sva_auto_pm_enable
& 0xF);
1233 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_auto_pm_enable
& 0xF));
1234 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sva_power_on
& 0xFF));
1235 sleep_cfg
= ((sleep_cfg
<< 8) | (sleep
->sia_power_on
& 0xFF));
1236 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sva_policy
& 0xF));
1237 sleep_cfg
= ((sleep_cfg
<< 4) | (sleep
->sia_policy
& 0xF));
1239 idle_cfg
= (idle
->sva_auto_pm_enable
& 0xF);
1240 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_auto_pm_enable
& 0xF));
1241 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sva_power_on
& 0xFF));
1242 idle_cfg
= ((idle_cfg
<< 8) | (idle
->sia_power_on
& 0xFF));
1243 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sva_policy
& 0xF));
1244 idle_cfg
= ((idle_cfg
<< 4) | (idle
->sia_policy
& 0xF));
1246 spin_lock_irqsave(&mb2_transfer
.auto_pm_lock
, flags
);
1249 * The autonomous power management configuration is done through
1250 * fields in mailbox 2, but these fields are only used as shared
1251 * variables - i.e. there is no need to send a message.
1253 writel(sleep_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_SLEEP
));
1254 writel(idle_cfg
, (tcdm_base
+ PRCM_REQ_MB2_AUTO_PM_IDLE
));
1256 mb2_transfer
.auto_pm_enabled
=
1257 ((sleep
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1258 (sleep
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1259 (idle
->sva_auto_pm_enable
== PRCMU_AUTO_PM_ON
) ||
1260 (idle
->sia_auto_pm_enable
== PRCMU_AUTO_PM_ON
));
1262 spin_unlock_irqrestore(&mb2_transfer
.auto_pm_lock
, flags
);
1264 EXPORT_SYMBOL(prcmu_configure_auto_pm
);
1266 bool prcmu_is_auto_pm_enabled(void)
1268 return mb2_transfer
.auto_pm_enabled
;
1271 static int request_sysclk(bool enable
)
1274 unsigned long flags
;
1278 mutex_lock(&mb3_transfer
.sysclk_lock
);
1280 spin_lock_irqsave(&mb3_transfer
.lock
, flags
);
1282 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(3))
1285 writeb((enable
? ON
: OFF
), (tcdm_base
+ PRCM_REQ_MB3_SYSCLK_MGT
));
1287 writeb(MB3H_SYSCLK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB3
));
1288 writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET
);
1290 spin_unlock_irqrestore(&mb3_transfer
.lock
, flags
);
1293 * The firmware only sends an ACK if we want to enable the
1294 * SysClk, and it succeeds.
1296 if (enable
&& !wait_for_completion_timeout(&mb3_transfer
.sysclk_work
,
1297 msecs_to_jiffies(20000))) {
1298 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1303 mutex_unlock(&mb3_transfer
.sysclk_lock
);
1308 static int request_timclk(bool enable
)
1310 u32 val
= (PRCM_TCR_DOZE_MODE
| PRCM_TCR_TENSEL_MASK
);
1313 val
|= PRCM_TCR_STOP_TIMERS
;
1314 writel(val
, PRCM_TCR
);
1319 static int request_clock(u8 clock
, bool enable
)
1322 unsigned long flags
;
1324 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1326 /* Grab the HW semaphore. */
1327 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1330 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1332 val
|= (PRCM_CLK_MGT_CLKEN
| clk_mgt
[clock
].pllsw
);
1334 clk_mgt
[clock
].pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1335 val
&= ~(PRCM_CLK_MGT_CLKEN
| PRCM_CLK_MGT_CLKPLLSW_MASK
);
1337 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1339 /* Release the HW semaphore. */
1340 writel(0, PRCM_SEM
);
1342 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1347 static int request_sga_clock(u8 clock
, bool enable
)
1353 val
= readl(PRCM_CGATING_BYPASS
);
1354 writel(val
| PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1357 ret
= request_clock(clock
, enable
);
1359 if (!ret
&& !enable
) {
1360 val
= readl(PRCM_CGATING_BYPASS
);
1361 writel(val
& ~PRCM_CGATING_BYPASS_ICN2
, PRCM_CGATING_BYPASS
);
1367 static inline bool plldsi_locked(void)
1369 return (readl(PRCM_PLLDSI_LOCKP
) &
1370 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1371 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
)) ==
1372 (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10
|
1373 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3
);
1376 static int request_plldsi(bool enable
)
1381 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1382 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
), (enable
?
1383 PRCM_MMIP_LS_CLAMP_CLR
: PRCM_MMIP_LS_CLAMP_SET
));
1385 val
= readl(PRCM_PLLDSI_ENABLE
);
1387 val
|= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1389 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1390 writel(val
, PRCM_PLLDSI_ENABLE
);
1394 bool locked
= plldsi_locked();
1396 for (i
= 10; !locked
&& (i
> 0); --i
) {
1398 locked
= plldsi_locked();
1401 writel(PRCM_APE_RESETN_DSIPLL_RESETN
,
1402 PRCM_APE_RESETN_SET
);
1404 writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP
|
1405 PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI
),
1406 PRCM_MMIP_LS_CLAMP_SET
);
1407 val
&= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE
;
1408 writel(val
, PRCM_PLLDSI_ENABLE
);
1412 writel(PRCM_APE_RESETN_DSIPLL_RESETN
, PRCM_APE_RESETN_CLR
);
1417 static int request_dsiclk(u8 n
, bool enable
)
1421 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1422 val
&= ~dsiclk
[n
].divsel_mask
;
1423 val
|= ((enable
? dsiclk
[n
].divsel
: PRCM_DSI_PLLOUT_SEL_OFF
) <<
1424 dsiclk
[n
].divsel_shift
);
1425 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1429 static int request_dsiescclk(u8 n
, bool enable
)
1433 val
= readl(PRCM_DSITVCLK_DIV
);
1434 enable
? (val
|= dsiescclk
[n
].en
) : (val
&= ~dsiescclk
[n
].en
);
1435 writel(val
, PRCM_DSITVCLK_DIV
);
1440 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1441 * @clock: The clock for which the request is made.
1442 * @enable: Whether the clock should be enabled (true) or disabled (false).
1444 * This function should only be used by the clock implementation.
1445 * Do not use it from any other place!
1447 int db8500_prcmu_request_clock(u8 clock
, bool enable
)
1449 if (clock
== PRCMU_SGACLK
)
1450 return request_sga_clock(clock
, enable
);
1451 else if (clock
< PRCMU_NUM_REG_CLOCKS
)
1452 return request_clock(clock
, enable
);
1453 else if (clock
== PRCMU_TIMCLK
)
1454 return request_timclk(enable
);
1455 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1456 return request_dsiclk((clock
- PRCMU_DSI0CLK
), enable
);
1457 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1458 return request_dsiescclk((clock
- PRCMU_DSI0ESCCLK
), enable
);
1459 else if (clock
== PRCMU_PLLDSI
)
1460 return request_plldsi(enable
);
1461 else if (clock
== PRCMU_SYSCLK
)
1462 return request_sysclk(enable
);
1463 else if ((clock
== PRCMU_PLLSOC0
) || (clock
== PRCMU_PLLSOC1
))
1464 return request_pll(clock
, enable
);
1469 static unsigned long pll_rate(void __iomem
*reg
, unsigned long src_rate
,
1480 rate
*= ((val
& PRCM_PLL_FREQ_D_MASK
) >> PRCM_PLL_FREQ_D_SHIFT
);
1482 d
= ((val
& PRCM_PLL_FREQ_N_MASK
) >> PRCM_PLL_FREQ_N_SHIFT
);
1486 d
= ((val
& PRCM_PLL_FREQ_R_MASK
) >> PRCM_PLL_FREQ_R_SHIFT
);
1490 if (val
& PRCM_PLL_FREQ_SELDIV2
)
1493 if ((branch
== PLL_FIX
) || ((branch
== PLL_DIV
) &&
1494 (val
& PRCM_PLL_FREQ_DIV2EN
) &&
1495 ((reg
== PRCM_PLLSOC0_FREQ
) ||
1496 (reg
== PRCM_PLLARM_FREQ
) ||
1497 (reg
== PRCM_PLLDDR_FREQ
))))
1500 (void)do_div(rate
, div
);
1502 return (unsigned long)rate
;
1505 #define ROOT_CLOCK_RATE 38400000
1507 static unsigned long clock_rate(u8 clock
)
1511 unsigned long rate
= ROOT_CLOCK_RATE
;
1513 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1515 if (val
& PRCM_CLK_MGT_CLK38
) {
1516 if (clk_mgt
[clock
].clk38div
&& (val
& PRCM_CLK_MGT_CLK38DIV
))
1521 val
|= clk_mgt
[clock
].pllsw
;
1522 pllsw
= (val
& PRCM_CLK_MGT_CLKPLLSW_MASK
);
1524 if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1525 rate
= pll_rate(PRCM_PLLSOC0_FREQ
, rate
, clk_mgt
[clock
].branch
);
1526 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1527 rate
= pll_rate(PRCM_PLLSOC1_FREQ
, rate
, clk_mgt
[clock
].branch
);
1528 else if (pllsw
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1529 rate
= pll_rate(PRCM_PLLDDR_FREQ
, rate
, clk_mgt
[clock
].branch
);
1533 if ((clock
== PRCMU_SGACLK
) &&
1534 (val
& PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
)) {
1535 u64 r
= (rate
* 10);
1537 (void)do_div(r
, 25);
1538 return (unsigned long)r
;
1540 val
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1547 static unsigned long armss_rate(void)
1552 r
= readl(PRCM_ARM_CHGCLKREQ
);
1554 if (r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ
) {
1555 /* External ARMCLKFIX clock */
1557 rate
= pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_FIX
);
1559 /* Check PRCM_ARM_CHGCLKREQ divider */
1560 if (!(r
& PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL
))
1563 /* Check PRCM_ARMCLKFIX_MGT divider */
1564 r
= readl(PRCM_ARMCLKFIX_MGT
);
1565 r
&= PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1568 } else {/* ARM PLL */
1569 rate
= pll_rate(PRCM_PLLARM_FREQ
, ROOT_CLOCK_RATE
, PLL_DIV
);
1575 static unsigned long dsiclk_rate(u8 n
)
1580 divsel
= readl(PRCM_DSI_PLLOUT_SEL
);
1581 divsel
= ((divsel
& dsiclk
[n
].divsel_mask
) >> dsiclk
[n
].divsel_shift
);
1583 if (divsel
== PRCM_DSI_PLLOUT_SEL_OFF
)
1584 divsel
= dsiclk
[n
].divsel
;
1586 dsiclk
[n
].divsel
= divsel
;
1589 case PRCM_DSI_PLLOUT_SEL_PHI_4
:
1591 case PRCM_DSI_PLLOUT_SEL_PHI_2
:
1593 case PRCM_DSI_PLLOUT_SEL_PHI
:
1594 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1601 static unsigned long dsiescclk_rate(u8 n
)
1605 div
= readl(PRCM_DSITVCLK_DIV
);
1606 div
= ((div
& dsiescclk
[n
].div_mask
) >> (dsiescclk
[n
].div_shift
));
1607 return clock_rate(PRCMU_TVCLK
) / max((u32
)1, div
);
1610 unsigned long prcmu_clock_rate(u8 clock
)
1612 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1613 return clock_rate(clock
);
1614 else if (clock
== PRCMU_TIMCLK
)
1615 return ROOT_CLOCK_RATE
/ 16;
1616 else if (clock
== PRCMU_SYSCLK
)
1617 return ROOT_CLOCK_RATE
;
1618 else if (clock
== PRCMU_PLLSOC0
)
1619 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1620 else if (clock
== PRCMU_PLLSOC1
)
1621 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1622 else if (clock
== PRCMU_ARMSS
)
1623 return armss_rate();
1624 else if (clock
== PRCMU_PLLDDR
)
1625 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, PLL_RAW
);
1626 else if (clock
== PRCMU_PLLDSI
)
1627 return pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1629 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1630 return dsiclk_rate(clock
- PRCMU_DSI0CLK
);
1631 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1632 return dsiescclk_rate(clock
- PRCMU_DSI0ESCCLK
);
1637 static unsigned long clock_source_rate(u32 clk_mgt_val
, int branch
)
1639 if (clk_mgt_val
& PRCM_CLK_MGT_CLK38
)
1640 return ROOT_CLOCK_RATE
;
1641 clk_mgt_val
&= PRCM_CLK_MGT_CLKPLLSW_MASK
;
1642 if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC0
)
1643 return pll_rate(PRCM_PLLSOC0_FREQ
, ROOT_CLOCK_RATE
, branch
);
1644 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_SOC1
)
1645 return pll_rate(PRCM_PLLSOC1_FREQ
, ROOT_CLOCK_RATE
, branch
);
1646 else if (clk_mgt_val
== PRCM_CLK_MGT_CLKPLLSW_DDR
)
1647 return pll_rate(PRCM_PLLDDR_FREQ
, ROOT_CLOCK_RATE
, branch
);
1652 static u32
clock_divider(unsigned long src_rate
, unsigned long rate
)
1656 div
= (src_rate
/ rate
);
1659 if (rate
< (src_rate
/ div
))
1664 static long round_clock_rate(u8 clock
, unsigned long rate
)
1668 unsigned long src_rate
;
1671 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1672 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1673 clk_mgt
[clock
].branch
);
1674 div
= clock_divider(src_rate
, rate
);
1675 if (val
& PRCM_CLK_MGT_CLK38
) {
1676 if (clk_mgt
[clock
].clk38div
) {
1682 } else if ((clock
== PRCMU_SGACLK
) && (div
== 3)) {
1683 u64 r
= (src_rate
* 10);
1685 (void)do_div(r
, 25);
1687 return (unsigned long)r
;
1689 rounded_rate
= (src_rate
/ min(div
, (u32
)31));
1691 return rounded_rate
;
1694 static const unsigned long armss_freqs
[] = {
1701 static long round_armss_rate(unsigned long rate
)
1703 unsigned long freq
= 0;
1706 /* Find the corresponding arm opp from the cpufreq table. */
1707 for (i
= 0; i
< ARRAY_SIZE(armss_freqs
); i
++) {
1708 freq
= armss_freqs
[i
];
1713 /* Return the last valid value, even if a match was not found. */
1717 #define MIN_PLL_VCO_RATE 600000000ULL
1718 #define MAX_PLL_VCO_RATE 1680640000ULL
1720 static long round_plldsi_rate(unsigned long rate
)
1722 long rounded_rate
= 0;
1723 unsigned long src_rate
;
1727 src_rate
= clock_rate(PRCMU_HDMICLK
);
1730 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1734 (void)do_div(d
, src_rate
);
1740 if (((2 * d
) < (r
* MIN_PLL_VCO_RATE
)) ||
1741 ((r
* MAX_PLL_VCO_RATE
) < (2 * d
)))
1745 if (rounded_rate
== 0)
1746 rounded_rate
= (long)d
;
1749 if ((rate
- d
) < rem
) {
1751 rounded_rate
= (long)d
;
1754 return rounded_rate
;
1757 static long round_dsiclk_rate(unsigned long rate
)
1760 unsigned long src_rate
;
1763 src_rate
= pll_rate(PRCM_PLLDSI_FREQ
, clock_rate(PRCMU_HDMICLK
),
1765 div
= clock_divider(src_rate
, rate
);
1766 rounded_rate
= (src_rate
/ ((div
> 2) ? 4 : div
));
1768 return rounded_rate
;
1771 static long round_dsiescclk_rate(unsigned long rate
)
1774 unsigned long src_rate
;
1777 src_rate
= clock_rate(PRCMU_TVCLK
);
1778 div
= clock_divider(src_rate
, rate
);
1779 rounded_rate
= (src_rate
/ min(div
, (u32
)255));
1781 return rounded_rate
;
1784 long prcmu_round_clock_rate(u8 clock
, unsigned long rate
)
1786 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1787 return round_clock_rate(clock
, rate
);
1788 else if (clock
== PRCMU_ARMSS
)
1789 return round_armss_rate(rate
);
1790 else if (clock
== PRCMU_PLLDSI
)
1791 return round_plldsi_rate(rate
);
1792 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1793 return round_dsiclk_rate(rate
);
1794 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1795 return round_dsiescclk_rate(rate
);
1797 return (long)prcmu_clock_rate(clock
);
1800 static void set_clock_rate(u8 clock
, unsigned long rate
)
1804 unsigned long src_rate
;
1805 unsigned long flags
;
1807 spin_lock_irqsave(&clk_mgt_lock
, flags
);
1809 /* Grab the HW semaphore. */
1810 while ((readl(PRCM_SEM
) & PRCM_SEM_PRCM_SEM
) != 0)
1813 val
= readl(prcmu_base
+ clk_mgt
[clock
].offset
);
1814 src_rate
= clock_source_rate((val
| clk_mgt
[clock
].pllsw
),
1815 clk_mgt
[clock
].branch
);
1816 div
= clock_divider(src_rate
, rate
);
1817 if (val
& PRCM_CLK_MGT_CLK38
) {
1818 if (clk_mgt
[clock
].clk38div
) {
1820 val
|= PRCM_CLK_MGT_CLK38DIV
;
1822 val
&= ~PRCM_CLK_MGT_CLK38DIV
;
1824 } else if (clock
== PRCMU_SGACLK
) {
1825 val
&= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK
|
1826 PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
);
1828 u64 r
= (src_rate
* 10);
1830 (void)do_div(r
, 25);
1832 val
|= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN
;
1836 val
|= min(div
, (u32
)31);
1838 val
&= ~PRCM_CLK_MGT_CLKPLLDIV_MASK
;
1839 val
|= min(div
, (u32
)31);
1841 writel(val
, prcmu_base
+ clk_mgt
[clock
].offset
);
1843 /* Release the HW semaphore. */
1844 writel(0, PRCM_SEM
);
1846 spin_unlock_irqrestore(&clk_mgt_lock
, flags
);
1849 static int set_armss_rate(unsigned long rate
)
1852 u8 opps
[] = { ARM_EXTCLK
, ARM_50_OPP
, ARM_100_OPP
, ARM_MAX_OPP
};
1855 /* Find the corresponding arm opp from the cpufreq table. */
1856 for (i
= 0; i
< ARRAY_SIZE(armss_freqs
); i
++) {
1857 freq
= armss_freqs
[i
];
1865 /* Set the new arm opp. */
1866 pr_debug("SET ARM OPP 0x%02x\n", opps
[i
]);
1867 return db8500_prcmu_set_arm_opp(opps
[i
]);
1870 static int set_plldsi_rate(unsigned long rate
)
1872 unsigned long src_rate
;
1877 src_rate
= clock_rate(PRCMU_HDMICLK
);
1880 for (r
= 7; (rem
> 0) && (r
> 0); r
--) {
1885 (void)do_div(d
, src_rate
);
1890 hwrate
= (d
* src_rate
);
1891 if (((2 * hwrate
) < (r
* MIN_PLL_VCO_RATE
)) ||
1892 ((r
* MAX_PLL_VCO_RATE
) < (2 * hwrate
)))
1894 (void)do_div(hwrate
, r
);
1895 if (rate
< hwrate
) {
1897 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1898 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1901 if ((rate
- hwrate
) < rem
) {
1902 rem
= (rate
- hwrate
);
1903 pll_freq
= (((u32
)d
<< PRCM_PLL_FREQ_D_SHIFT
) |
1904 (r
<< PRCM_PLL_FREQ_R_SHIFT
));
1910 pll_freq
|= (1 << PRCM_PLL_FREQ_N_SHIFT
);
1911 writel(pll_freq
, PRCM_PLLDSI_FREQ
);
1916 static void set_dsiclk_rate(u8 n
, unsigned long rate
)
1921 div
= clock_divider(pll_rate(PRCM_PLLDSI_FREQ
,
1922 clock_rate(PRCMU_HDMICLK
), PLL_RAW
), rate
);
1924 dsiclk
[n
].divsel
= (div
== 1) ? PRCM_DSI_PLLOUT_SEL_PHI
:
1925 (div
== 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2
:
1926 /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4
;
1928 val
= readl(PRCM_DSI_PLLOUT_SEL
);
1929 val
&= ~dsiclk
[n
].divsel_mask
;
1930 val
|= (dsiclk
[n
].divsel
<< dsiclk
[n
].divsel_shift
);
1931 writel(val
, PRCM_DSI_PLLOUT_SEL
);
1934 static void set_dsiescclk_rate(u8 n
, unsigned long rate
)
1939 div
= clock_divider(clock_rate(PRCMU_TVCLK
), rate
);
1940 val
= readl(PRCM_DSITVCLK_DIV
);
1941 val
&= ~dsiescclk
[n
].div_mask
;
1942 val
|= (min(div
, (u32
)255) << dsiescclk
[n
].div_shift
);
1943 writel(val
, PRCM_DSITVCLK_DIV
);
1946 int prcmu_set_clock_rate(u8 clock
, unsigned long rate
)
1948 if (clock
< PRCMU_NUM_REG_CLOCKS
)
1949 set_clock_rate(clock
, rate
);
1950 else if (clock
== PRCMU_ARMSS
)
1951 return set_armss_rate(rate
);
1952 else if (clock
== PRCMU_PLLDSI
)
1953 return set_plldsi_rate(rate
);
1954 else if ((clock
== PRCMU_DSI0CLK
) || (clock
== PRCMU_DSI1CLK
))
1955 set_dsiclk_rate((clock
- PRCMU_DSI0CLK
), rate
);
1956 else if ((PRCMU_DSI0ESCCLK
<= clock
) && (clock
<= PRCMU_DSI2ESCCLK
))
1957 set_dsiescclk_rate((clock
- PRCMU_DSI0ESCCLK
), rate
);
1961 int db8500_prcmu_config_esram0_deep_sleep(u8 state
)
1963 if ((state
> ESRAM0_DEEP_SLEEP_STATE_RET
) ||
1964 (state
< ESRAM0_DEEP_SLEEP_STATE_OFF
))
1967 mutex_lock(&mb4_transfer
.lock
);
1969 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1972 writeb(MB4H_MEM_ST
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1973 writeb(((DDR_PWR_STATE_OFFHIGHLAT
<< 4) | DDR_PWR_STATE_ON
),
1974 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE
));
1975 writeb(DDR_PWR_STATE_ON
,
1976 (tcdm_base
+ PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE
));
1977 writeb(state
, (tcdm_base
+ PRCM_REQ_MB4_ESRAM0_ST
));
1979 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1980 wait_for_completion(&mb4_transfer
.work
);
1982 mutex_unlock(&mb4_transfer
.lock
);
1987 int db8500_prcmu_config_hotdog(u8 threshold
)
1989 mutex_lock(&mb4_transfer
.lock
);
1991 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
1994 writeb(threshold
, (tcdm_base
+ PRCM_REQ_MB4_HOTDOG_THRESHOLD
));
1995 writeb(MB4H_HOTDOG
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
1997 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
1998 wait_for_completion(&mb4_transfer
.work
);
2000 mutex_unlock(&mb4_transfer
.lock
);
2005 int db8500_prcmu_config_hotmon(u8 low
, u8 high
)
2007 mutex_lock(&mb4_transfer
.lock
);
2009 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2012 writeb(low
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_LOW
));
2013 writeb(high
, (tcdm_base
+ PRCM_REQ_MB4_HOTMON_HIGH
));
2014 writeb((HOTMON_CONFIG_LOW
| HOTMON_CONFIG_HIGH
),
2015 (tcdm_base
+ PRCM_REQ_MB4_HOTMON_CONFIG
));
2016 writeb(MB4H_HOTMON
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2018 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2019 wait_for_completion(&mb4_transfer
.work
);
2021 mutex_unlock(&mb4_transfer
.lock
);
2025 EXPORT_SYMBOL_GPL(db8500_prcmu_config_hotmon
);
2027 static int config_hot_period(u16 val
)
2029 mutex_lock(&mb4_transfer
.lock
);
2031 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2034 writew(val
, (tcdm_base
+ PRCM_REQ_MB4_HOT_PERIOD
));
2035 writeb(MB4H_HOT_PERIOD
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2037 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2038 wait_for_completion(&mb4_transfer
.work
);
2040 mutex_unlock(&mb4_transfer
.lock
);
2045 int db8500_prcmu_start_temp_sense(u16 cycles32k
)
2047 if (cycles32k
== 0xFFFF)
2050 return config_hot_period(cycles32k
);
2052 EXPORT_SYMBOL_GPL(db8500_prcmu_start_temp_sense
);
2054 int db8500_prcmu_stop_temp_sense(void)
2056 return config_hot_period(0xFFFF);
2058 EXPORT_SYMBOL_GPL(db8500_prcmu_stop_temp_sense
);
2060 static int prcmu_a9wdog(u8 cmd
, u8 d0
, u8 d1
, u8 d2
, u8 d3
)
2063 mutex_lock(&mb4_transfer
.lock
);
2065 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(4))
2068 writeb(d0
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_0
));
2069 writeb(d1
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_1
));
2070 writeb(d2
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_2
));
2071 writeb(d3
, (tcdm_base
+ PRCM_REQ_MB4_A9WDOG_3
));
2073 writeb(cmd
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
));
2075 writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET
);
2076 wait_for_completion(&mb4_transfer
.work
);
2078 mutex_unlock(&mb4_transfer
.lock
);
2084 int db8500_prcmu_config_a9wdog(u8 num
, bool sleep_auto_off
)
2086 BUG_ON(num
== 0 || num
> 0xf);
2087 return prcmu_a9wdog(MB4H_A9WDOG_CONF
, num
, 0, 0,
2088 sleep_auto_off
? A9WDOG_AUTO_OFF_EN
:
2089 A9WDOG_AUTO_OFF_DIS
);
2091 EXPORT_SYMBOL(db8500_prcmu_config_a9wdog
);
2093 int db8500_prcmu_enable_a9wdog(u8 id
)
2095 return prcmu_a9wdog(MB4H_A9WDOG_EN
, id
, 0, 0, 0);
2097 EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog
);
2099 int db8500_prcmu_disable_a9wdog(u8 id
)
2101 return prcmu_a9wdog(MB4H_A9WDOG_DIS
, id
, 0, 0, 0);
2103 EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog
);
2105 int db8500_prcmu_kick_a9wdog(u8 id
)
2107 return prcmu_a9wdog(MB4H_A9WDOG_KICK
, id
, 0, 0, 0);
2109 EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog
);
2112 * timeout is 28 bit, in ms.
2114 int db8500_prcmu_load_a9wdog(u8 id
, u32 timeout
)
2116 return prcmu_a9wdog(MB4H_A9WDOG_LOAD
,
2117 (id
& A9WDOG_ID_MASK
) |
2119 * Put the lowest 28 bits of timeout at
2120 * offset 4. Four first bits are used for id.
2122 (u8
)((timeout
<< 4) & 0xf0),
2123 (u8
)((timeout
>> 4) & 0xff),
2124 (u8
)((timeout
>> 12) & 0xff),
2125 (u8
)((timeout
>> 20) & 0xff));
2127 EXPORT_SYMBOL(db8500_prcmu_load_a9wdog
);
2130 * prcmu_abb_read() - Read register value(s) from the ABB.
2131 * @slave: The I2C slave address.
2132 * @reg: The (start) register address.
2133 * @value: The read out value(s).
2134 * @size: The number of registers to read.
2136 * Reads register value(s) from the ABB.
2137 * @size has to be 1 for the current firmware version.
2139 int prcmu_abb_read(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2146 mutex_lock(&mb5_transfer
.lock
);
2148 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2151 writeb(0, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2152 writeb(PRCMU_I2C_READ(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2153 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2154 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2155 writeb(0, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2157 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2159 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2160 msecs_to_jiffies(20000))) {
2161 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2165 r
= ((mb5_transfer
.ack
.status
== I2C_RD_OK
) ? 0 : -EIO
);
2169 *value
= mb5_transfer
.ack
.value
;
2171 mutex_unlock(&mb5_transfer
.lock
);
2177 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2178 * @slave: The I2C slave address.
2179 * @reg: The (start) register address.
2180 * @value: The value(s) to write.
2181 * @mask: The mask(s) to use.
2182 * @size: The number of registers to write.
2184 * Writes masked register value(s) to the ABB.
2185 * For each @value, only the bits set to 1 in the corresponding @mask
2186 * will be written. The other bits are not changed.
2187 * @size has to be 1 for the current firmware version.
2189 int prcmu_abb_write_masked(u8 slave
, u8 reg
, u8
*value
, u8
*mask
, u8 size
)
2196 mutex_lock(&mb5_transfer
.lock
);
2198 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(5))
2201 writeb(~*mask
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB5
));
2202 writeb(PRCMU_I2C_WRITE(slave
), (tcdm_base
+ PRCM_REQ_MB5_I2C_SLAVE_OP
));
2203 writeb(PRCMU_I2C_STOP_EN
, (tcdm_base
+ PRCM_REQ_MB5_I2C_HW_BITS
));
2204 writeb(reg
, (tcdm_base
+ PRCM_REQ_MB5_I2C_REG
));
2205 writeb(*value
, (tcdm_base
+ PRCM_REQ_MB5_I2C_VAL
));
2207 writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET
);
2209 if (!wait_for_completion_timeout(&mb5_transfer
.work
,
2210 msecs_to_jiffies(20000))) {
2211 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2215 r
= ((mb5_transfer
.ack
.status
== I2C_WR_OK
) ? 0 : -EIO
);
2218 mutex_unlock(&mb5_transfer
.lock
);
2224 * prcmu_abb_write() - Write register value(s) to the ABB.
2225 * @slave: The I2C slave address.
2226 * @reg: The (start) register address.
2227 * @value: The value(s) to write.
2228 * @size: The number of registers to write.
2230 * Writes register value(s) to the ABB.
2231 * @size has to be 1 for the current firmware version.
2233 int prcmu_abb_write(u8 slave
, u8 reg
, u8
*value
, u8 size
)
2237 return prcmu_abb_write_masked(slave
, reg
, value
, &mask
, size
);
2241 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2243 int prcmu_ac_wake_req(void)
2248 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2250 val
= readl(PRCM_HOSTACCESS_REQ
);
2251 if (val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
)
2252 goto unlock_and_return
;
2254 atomic_set(&ac_wake_req_state
, 1);
2257 * Force Modem Wake-up before hostaccess_req ping-pong.
2258 * It prevents Modem to enter in Sleep while acking the hostaccess
2259 * request. The 31us delay has been calculated by HWI.
2261 val
|= PRCM_HOSTACCESS_REQ_WAKE_REQ
;
2262 writel(val
, PRCM_HOSTACCESS_REQ
);
2266 val
|= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
;
2267 writel(val
, PRCM_HOSTACCESS_REQ
);
2269 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2270 msecs_to_jiffies(5000))) {
2271 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2277 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2282 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2284 void prcmu_ac_sleep_req(void)
2288 mutex_lock(&mb0_transfer
.ac_wake_lock
);
2290 val
= readl(PRCM_HOSTACCESS_REQ
);
2291 if (!(val
& PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
))
2292 goto unlock_and_return
;
2294 writel((val
& ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ
),
2295 PRCM_HOSTACCESS_REQ
);
2297 if (!wait_for_completion_timeout(&mb0_transfer
.ac_wake_work
,
2298 msecs_to_jiffies(5000))) {
2299 pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2303 atomic_set(&ac_wake_req_state
, 0);
2306 mutex_unlock(&mb0_transfer
.ac_wake_lock
);
2309 bool db8500_prcmu_is_ac_wake_requested(void)
2311 return (atomic_read(&ac_wake_req_state
) != 0);
2315 * db8500_prcmu_system_reset - System reset
2317 * Saves the reset reason code and then sets the APE_SOFTRST register which
2318 * fires interrupt to fw
2320 void db8500_prcmu_system_reset(u16 reset_code
)
2322 writew(reset_code
, (tcdm_base
+ PRCM_SW_RST_REASON
));
2323 writel(1, PRCM_APE_SOFTRST
);
2327 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2329 * Retrieves the reset reason code stored by prcmu_system_reset() before
2332 u16
db8500_prcmu_get_reset_code(void)
2334 return readw(tcdm_base
+ PRCM_SW_RST_REASON
);
2338 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2340 void db8500_prcmu_modem_reset(void)
2342 mutex_lock(&mb1_transfer
.lock
);
2344 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(1))
2347 writeb(MB1H_RESET_MODEM
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
));
2348 writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET
);
2349 wait_for_completion(&mb1_transfer
.work
);
2352 * No need to check return from PRCMU as modem should go in reset state
2353 * This state is already managed by upper layer
2356 mutex_unlock(&mb1_transfer
.lock
);
2359 static void ack_dbb_wakeup(void)
2361 unsigned long flags
;
2363 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2365 while (readl(PRCM_MBOX_CPU_VAL
) & MBOX_BIT(0))
2368 writeb(MB0H_READ_WAKEUP_ACK
, (tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB0
));
2369 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET
);
2371 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2374 static inline void print_unknown_header_warning(u8 n
, u8 header
)
2376 pr_warn("prcmu: Unknown message header (%d) in mailbox %d\n",
2380 static bool read_mailbox_0(void)
2387 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_ACK_MB0
);
2389 case MB0H_WAKEUP_EXE
:
2390 case MB0H_WAKEUP_SLEEP
:
2391 if (readb(tcdm_base
+ PRCM_ACK_MB0_READ_POINTER
) & 1)
2392 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_1_8500
);
2394 ev
= readl(tcdm_base
+ PRCM_ACK_MB0_WAKEUP_0_8500
);
2396 if (ev
& (WAKEUP_BIT_AC_WAKE_ACK
| WAKEUP_BIT_AC_SLEEP_ACK
))
2397 complete(&mb0_transfer
.ac_wake_work
);
2398 if (ev
& WAKEUP_BIT_SYSCLK_OK
)
2399 complete(&mb3_transfer
.sysclk_work
);
2401 ev
&= mb0_transfer
.req
.dbb_irqs
;
2403 for (n
= 0; n
< NUM_PRCMU_WAKEUPS
; n
++) {
2404 if (ev
& prcmu_irq_bit
[n
])
2405 generic_handle_irq(irq_find_mapping(db8500_irq_domain
, n
));
2410 print_unknown_header_warning(0, header
);
2414 writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR
);
2418 static bool read_mailbox_1(void)
2420 mb1_transfer
.ack
.header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB1
);
2421 mb1_transfer
.ack
.arm_opp
= readb(tcdm_base
+
2422 PRCM_ACK_MB1_CURRENT_ARM_OPP
);
2423 mb1_transfer
.ack
.ape_opp
= readb(tcdm_base
+
2424 PRCM_ACK_MB1_CURRENT_APE_OPP
);
2425 mb1_transfer
.ack
.ape_voltage_status
= readb(tcdm_base
+
2426 PRCM_ACK_MB1_APE_VOLTAGE_STATUS
);
2427 writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR
);
2428 complete(&mb1_transfer
.work
);
2432 static bool read_mailbox_2(void)
2434 mb2_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB2_DPS_STATUS
);
2435 writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR
);
2436 complete(&mb2_transfer
.work
);
2440 static bool read_mailbox_3(void)
2442 writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR
);
2446 static bool read_mailbox_4(void)
2449 bool do_complete
= true;
2451 header
= readb(tcdm_base
+ PRCM_MBOX_HEADER_REQ_MB4
);
2456 case MB4H_HOT_PERIOD
:
2457 case MB4H_A9WDOG_CONF
:
2458 case MB4H_A9WDOG_EN
:
2459 case MB4H_A9WDOG_DIS
:
2460 case MB4H_A9WDOG_LOAD
:
2461 case MB4H_A9WDOG_KICK
:
2464 print_unknown_header_warning(4, header
);
2465 do_complete
= false;
2469 writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR
);
2472 complete(&mb4_transfer
.work
);
2477 static bool read_mailbox_5(void)
2479 mb5_transfer
.ack
.status
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_STATUS
);
2480 mb5_transfer
.ack
.value
= readb(tcdm_base
+ PRCM_ACK_MB5_I2C_VAL
);
2481 writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR
);
2482 complete(&mb5_transfer
.work
);
2486 static bool read_mailbox_6(void)
2488 writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR
);
2492 static bool read_mailbox_7(void)
2494 writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR
);
2498 static bool (* const read_mailbox
[NUM_MB
])(void) = {
2509 static irqreturn_t
prcmu_irq_handler(int irq
, void *data
)
2515 bits
= (readl(PRCM_ARM_IT1_VAL
) & ALL_MBOX_BITS
);
2516 if (unlikely(!bits
))
2520 for (n
= 0; bits
; n
++) {
2521 if (bits
& MBOX_BIT(n
)) {
2522 bits
-= MBOX_BIT(n
);
2523 if (read_mailbox
[n
]())
2524 r
= IRQ_WAKE_THREAD
;
2530 static irqreturn_t
prcmu_irq_thread_fn(int irq
, void *data
)
2536 static void prcmu_mask_work(struct work_struct
*work
)
2538 unsigned long flags
;
2540 spin_lock_irqsave(&mb0_transfer
.lock
, flags
);
2544 spin_unlock_irqrestore(&mb0_transfer
.lock
, flags
);
2547 static void prcmu_irq_mask(struct irq_data
*d
)
2549 unsigned long flags
;
2551 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2553 mb0_transfer
.req
.dbb_irqs
&= ~prcmu_irq_bit
[d
->hwirq
];
2555 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2557 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2558 schedule_work(&mb0_transfer
.mask_work
);
2561 static void prcmu_irq_unmask(struct irq_data
*d
)
2563 unsigned long flags
;
2565 spin_lock_irqsave(&mb0_transfer
.dbb_irqs_lock
, flags
);
2567 mb0_transfer
.req
.dbb_irqs
|= prcmu_irq_bit
[d
->hwirq
];
2569 spin_unlock_irqrestore(&mb0_transfer
.dbb_irqs_lock
, flags
);
2571 if (d
->irq
!= IRQ_PRCMU_CA_SLEEP
)
2572 schedule_work(&mb0_transfer
.mask_work
);
2575 static void noop(struct irq_data
*d
)
2579 static struct irq_chip prcmu_irq_chip
= {
2581 .irq_disable
= prcmu_irq_mask
,
2583 .irq_mask
= prcmu_irq_mask
,
2584 .irq_unmask
= prcmu_irq_unmask
,
2587 static char *fw_project_name(u32 project
)
2590 case PRCMU_FW_PROJECT_U8500
:
2592 case PRCMU_FW_PROJECT_U8400
:
2594 case PRCMU_FW_PROJECT_U9500
:
2596 case PRCMU_FW_PROJECT_U8500_MBB
:
2598 case PRCMU_FW_PROJECT_U8500_C1
:
2600 case PRCMU_FW_PROJECT_U8500_C2
:
2602 case PRCMU_FW_PROJECT_U8500_C3
:
2604 case PRCMU_FW_PROJECT_U8500_C4
:
2606 case PRCMU_FW_PROJECT_U9500_MBL
:
2608 case PRCMU_FW_PROJECT_U8500_MBL
:
2610 case PRCMU_FW_PROJECT_U8500_MBL2
:
2611 return "U8500 MBL2";
2612 case PRCMU_FW_PROJECT_U8520
:
2614 case PRCMU_FW_PROJECT_U8420
:
2616 case PRCMU_FW_PROJECT_U9540
:
2618 case PRCMU_FW_PROJECT_A9420
:
2620 case PRCMU_FW_PROJECT_L8540
:
2622 case PRCMU_FW_PROJECT_L8580
:
2629 static int db8500_irq_map(struct irq_domain
*d
, unsigned int virq
,
2630 irq_hw_number_t hwirq
)
2632 irq_set_chip_and_handler(virq
, &prcmu_irq_chip
,
2638 static const struct irq_domain_ops db8500_irq_ops
= {
2639 .map
= db8500_irq_map
,
2640 .xlate
= irq_domain_xlate_twocell
,
2643 static int db8500_irq_init(struct device_node
*np
)
2647 db8500_irq_domain
= irq_domain_add_simple(
2648 np
, NUM_PRCMU_WAKEUPS
, 0,
2649 &db8500_irq_ops
, NULL
);
2651 if (!db8500_irq_domain
) {
2652 pr_err("Failed to create irqdomain\n");
2656 /* All wakeups will be used, so create mappings for all */
2657 for (i
= 0; i
< NUM_PRCMU_WAKEUPS
; i
++)
2658 irq_create_mapping(db8500_irq_domain
, i
);
2663 static void dbx500_fw_version_init(struct platform_device
*pdev
,
2666 struct resource
*res
;
2667 void __iomem
*tcpm_base
;
2670 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
2674 "Error: no prcmu tcpm memory region provided\n");
2677 tcpm_base
= ioremap(res
->start
, resource_size(res
));
2679 dev_err(&pdev
->dev
, "no prcmu tcpm mem region provided\n");
2683 version
= readl(tcpm_base
+ version_offset
);
2684 fw_info
.version
.project
= (version
& 0xFF);
2685 fw_info
.version
.api_version
= (version
>> 8) & 0xFF;
2686 fw_info
.version
.func_version
= (version
>> 16) & 0xFF;
2687 fw_info
.version
.errata
= (version
>> 24) & 0xFF;
2688 strncpy(fw_info
.version
.project_name
,
2689 fw_project_name(fw_info
.version
.project
),
2690 PRCMU_FW_PROJECT_NAME_LEN
);
2691 fw_info
.valid
= true;
2692 pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2693 fw_info
.version
.project_name
,
2694 fw_info
.version
.project
,
2695 fw_info
.version
.api_version
,
2696 fw_info
.version
.func_version
,
2697 fw_info
.version
.errata
);
2701 void __init
db8500_prcmu_early_init(u32 phy_base
, u32 size
)
2704 * This is a temporary remap to bring up the clocks. It is
2705 * subsequently replaces with a real remap. After the merge of
2706 * the mailbox subsystem all of this early code goes away, and the
2707 * clock driver can probe independently. An early initcall will
2708 * still be needed, but it can be diverted into drivers/clk/ux500.
2710 prcmu_base
= ioremap(phy_base
, size
);
2712 pr_err("%s: ioremap() of prcmu registers failed!\n", __func__
);
2714 spin_lock_init(&mb0_transfer
.lock
);
2715 spin_lock_init(&mb0_transfer
.dbb_irqs_lock
);
2716 mutex_init(&mb0_transfer
.ac_wake_lock
);
2717 init_completion(&mb0_transfer
.ac_wake_work
);
2718 mutex_init(&mb1_transfer
.lock
);
2719 init_completion(&mb1_transfer
.work
);
2720 mb1_transfer
.ape_opp
= APE_NO_CHANGE
;
2721 mutex_init(&mb2_transfer
.lock
);
2722 init_completion(&mb2_transfer
.work
);
2723 spin_lock_init(&mb2_transfer
.auto_pm_lock
);
2724 spin_lock_init(&mb3_transfer
.lock
);
2725 mutex_init(&mb3_transfer
.sysclk_lock
);
2726 init_completion(&mb3_transfer
.sysclk_work
);
2727 mutex_init(&mb4_transfer
.lock
);
2728 init_completion(&mb4_transfer
.work
);
2729 mutex_init(&mb5_transfer
.lock
);
2730 init_completion(&mb5_transfer
.work
);
2732 INIT_WORK(&mb0_transfer
.mask_work
, prcmu_mask_work
);
2735 static void init_prcm_registers(void)
2739 val
= readl(PRCM_A9PL_FORCE_CLKEN
);
2740 val
&= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN
|
2741 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN
);
2742 writel(val
, (PRCM_A9PL_FORCE_CLKEN
));
2746 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2748 static struct regulator_consumer_supply db8500_vape_consumers
[] = {
2749 REGULATOR_SUPPLY("v-ape", NULL
),
2750 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2751 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2752 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2753 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2754 REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2755 /* "v-mmc" changed to "vcore" in the mainline kernel */
2756 REGULATOR_SUPPLY("vcore", "sdi0"),
2757 REGULATOR_SUPPLY("vcore", "sdi1"),
2758 REGULATOR_SUPPLY("vcore", "sdi2"),
2759 REGULATOR_SUPPLY("vcore", "sdi3"),
2760 REGULATOR_SUPPLY("vcore", "sdi4"),
2761 REGULATOR_SUPPLY("v-dma", "dma40.0"),
2762 REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2763 /* "v-uart" changed to "vcore" in the mainline kernel */
2764 REGULATOR_SUPPLY("vcore", "uart0"),
2765 REGULATOR_SUPPLY("vcore", "uart1"),
2766 REGULATOR_SUPPLY("vcore", "uart2"),
2767 REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2768 REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2769 REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2772 static struct regulator_consumer_supply db8500_vsmps2_consumers
[] = {
2773 REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2774 /* AV8100 regulator */
2775 REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2778 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers
[] = {
2779 REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2780 REGULATOR_SUPPLY("vsupply", "mcde"),
2783 /* SVA MMDSP regulator switch */
2784 static struct regulator_consumer_supply db8500_svammdsp_consumers
[] = {
2785 REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2788 /* SVA pipe regulator switch */
2789 static struct regulator_consumer_supply db8500_svapipe_consumers
[] = {
2790 REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2793 /* SIA MMDSP regulator switch */
2794 static struct regulator_consumer_supply db8500_siammdsp_consumers
[] = {
2795 REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2798 /* SIA pipe regulator switch */
2799 static struct regulator_consumer_supply db8500_siapipe_consumers
[] = {
2800 REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2803 static struct regulator_consumer_supply db8500_sga_consumers
[] = {
2804 REGULATOR_SUPPLY("v-mali", NULL
),
2807 /* ESRAM1 and 2 regulator switch */
2808 static struct regulator_consumer_supply db8500_esram12_consumers
[] = {
2809 REGULATOR_SUPPLY("esram12", "cm_control"),
2812 /* ESRAM3 and 4 regulator switch */
2813 static struct regulator_consumer_supply db8500_esram34_consumers
[] = {
2814 REGULATOR_SUPPLY("v-esram34", "mcde"),
2815 REGULATOR_SUPPLY("esram34", "cm_control"),
2816 REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2819 static struct regulator_init_data db8500_regulators
[DB8500_NUM_REGULATORS
] = {
2820 [DB8500_REGULATOR_VAPE
] = {
2822 .name
= "db8500-vape",
2823 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2826 .consumer_supplies
= db8500_vape_consumers
,
2827 .num_consumer_supplies
= ARRAY_SIZE(db8500_vape_consumers
),
2829 [DB8500_REGULATOR_VARM
] = {
2831 .name
= "db8500-varm",
2832 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2835 [DB8500_REGULATOR_VMODEM
] = {
2837 .name
= "db8500-vmodem",
2838 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2841 [DB8500_REGULATOR_VPLL
] = {
2843 .name
= "db8500-vpll",
2844 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2847 [DB8500_REGULATOR_VSMPS1
] = {
2849 .name
= "db8500-vsmps1",
2850 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2853 [DB8500_REGULATOR_VSMPS2
] = {
2855 .name
= "db8500-vsmps2",
2856 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2858 .consumer_supplies
= db8500_vsmps2_consumers
,
2859 .num_consumer_supplies
= ARRAY_SIZE(db8500_vsmps2_consumers
),
2861 [DB8500_REGULATOR_VSMPS3
] = {
2863 .name
= "db8500-vsmps3",
2864 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2867 [DB8500_REGULATOR_VRF1
] = {
2869 .name
= "db8500-vrf1",
2870 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2873 [DB8500_REGULATOR_SWITCH_SVAMMDSP
] = {
2874 /* dependency to u8500-vape is handled outside regulator framework */
2876 .name
= "db8500-sva-mmdsp",
2877 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2879 .consumer_supplies
= db8500_svammdsp_consumers
,
2880 .num_consumer_supplies
= ARRAY_SIZE(db8500_svammdsp_consumers
),
2882 [DB8500_REGULATOR_SWITCH_SVAMMDSPRET
] = {
2884 /* "ret" means "retention" */
2885 .name
= "db8500-sva-mmdsp-ret",
2886 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2889 [DB8500_REGULATOR_SWITCH_SVAPIPE
] = {
2890 /* dependency to u8500-vape is handled outside regulator framework */
2892 .name
= "db8500-sva-pipe",
2893 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2895 .consumer_supplies
= db8500_svapipe_consumers
,
2896 .num_consumer_supplies
= ARRAY_SIZE(db8500_svapipe_consumers
),
2898 [DB8500_REGULATOR_SWITCH_SIAMMDSP
] = {
2899 /* dependency to u8500-vape is handled outside regulator framework */
2901 .name
= "db8500-sia-mmdsp",
2902 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2904 .consumer_supplies
= db8500_siammdsp_consumers
,
2905 .num_consumer_supplies
= ARRAY_SIZE(db8500_siammdsp_consumers
),
2907 [DB8500_REGULATOR_SWITCH_SIAMMDSPRET
] = {
2909 .name
= "db8500-sia-mmdsp-ret",
2910 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2913 [DB8500_REGULATOR_SWITCH_SIAPIPE
] = {
2914 /* dependency to u8500-vape is handled outside regulator framework */
2916 .name
= "db8500-sia-pipe",
2917 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2919 .consumer_supplies
= db8500_siapipe_consumers
,
2920 .num_consumer_supplies
= ARRAY_SIZE(db8500_siapipe_consumers
),
2922 [DB8500_REGULATOR_SWITCH_SGA
] = {
2923 .supply_regulator
= "db8500-vape",
2925 .name
= "db8500-sga",
2926 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2928 .consumer_supplies
= db8500_sga_consumers
,
2929 .num_consumer_supplies
= ARRAY_SIZE(db8500_sga_consumers
),
2932 [DB8500_REGULATOR_SWITCH_B2R2_MCDE
] = {
2933 .supply_regulator
= "db8500-vape",
2935 .name
= "db8500-b2r2-mcde",
2936 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2938 .consumer_supplies
= db8500_b2r2_mcde_consumers
,
2939 .num_consumer_supplies
= ARRAY_SIZE(db8500_b2r2_mcde_consumers
),
2941 [DB8500_REGULATOR_SWITCH_ESRAM12
] = {
2943 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2944 * no need to hold Vape
2947 .name
= "db8500-esram12",
2948 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2950 .consumer_supplies
= db8500_esram12_consumers
,
2951 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram12_consumers
),
2953 [DB8500_REGULATOR_SWITCH_ESRAM12RET
] = {
2955 .name
= "db8500-esram12-ret",
2956 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2959 [DB8500_REGULATOR_SWITCH_ESRAM34
] = {
2961 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2962 * no need to hold Vape
2965 .name
= "db8500-esram34",
2966 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2968 .consumer_supplies
= db8500_esram34_consumers
,
2969 .num_consumer_supplies
= ARRAY_SIZE(db8500_esram34_consumers
),
2971 [DB8500_REGULATOR_SWITCH_ESRAM34RET
] = {
2973 .name
= "db8500-esram34-ret",
2974 .valid_ops_mask
= REGULATOR_CHANGE_STATUS
,
2979 static struct ux500_wdt_data db8500_wdt_pdata
= {
2980 .timeout
= 600, /* 10 minutes */
2981 .has_28_bits_resolution
= true,
2987 static struct resource db8500_thsens_resources
[] = {
2989 .name
= "IRQ_HOTMON_LOW",
2990 .start
= IRQ_PRCMU_HOTMON_LOW
,
2991 .end
= IRQ_PRCMU_HOTMON_LOW
,
2992 .flags
= IORESOURCE_IRQ
,
2995 .name
= "IRQ_HOTMON_HIGH",
2996 .start
= IRQ_PRCMU_HOTMON_HIGH
,
2997 .end
= IRQ_PRCMU_HOTMON_HIGH
,
2998 .flags
= IORESOURCE_IRQ
,
3002 static struct db8500_thsens_platform_data db8500_thsens_data
= {
3005 .type
= THERMAL_TRIP_ACTIVE
,
3007 [0] = "thermal-cpufreq-0",
3012 .type
= THERMAL_TRIP_ACTIVE
,
3014 [0] = "thermal-cpufreq-0",
3019 .type
= THERMAL_TRIP_ACTIVE
,
3021 [0] = "thermal-cpufreq-0",
3026 .type
= THERMAL_TRIP_CRITICAL
,
3031 static const struct mfd_cell common_prcmu_devs
[] = {
3033 .name
= "ux500_wdt",
3034 .platform_data
= &db8500_wdt_pdata
,
3035 .pdata_size
= sizeof(db8500_wdt_pdata
),
3040 static const struct mfd_cell db8500_prcmu_devs
[] = {
3042 .name
= "db8500-prcmu-regulators",
3043 .of_compatible
= "stericsson,db8500-prcmu-regulator",
3044 .platform_data
= &db8500_regulators
,
3045 .pdata_size
= sizeof(db8500_regulators
),
3048 .name
= "cpuidle-dbx500",
3049 .of_compatible
= "stericsson,cpuidle-dbx500",
3052 .name
= "db8500-thermal",
3053 .num_resources
= ARRAY_SIZE(db8500_thsens_resources
),
3054 .resources
= db8500_thsens_resources
,
3055 .platform_data
= &db8500_thsens_data
,
3056 .pdata_size
= sizeof(db8500_thsens_data
),
3060 static int db8500_prcmu_register_ab8500(struct device
*parent
)
3062 struct device_node
*np
;
3063 struct resource ab8500_resource
;
3064 const struct mfd_cell ab8500_cell
= {
3065 .name
= "ab8500-core",
3066 .of_compatible
= "stericsson,ab8500",
3067 .id
= AB8500_VERSION_AB8500
,
3068 .resources
= &ab8500_resource
,
3072 if (!parent
->of_node
)
3075 /* Look up the device node, sneak the IRQ out of it */
3076 for_each_child_of_node(parent
->of_node
, np
) {
3077 if (of_device_is_compatible(np
, ab8500_cell
.of_compatible
))
3081 dev_info(parent
, "could not find AB8500 node in the device tree\n");
3084 of_irq_to_resource_table(np
, &ab8500_resource
, 1);
3086 return mfd_add_devices(parent
, 0, &ab8500_cell
, 1, NULL
, 0, NULL
);
3090 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3093 static int db8500_prcmu_probe(struct platform_device
*pdev
)
3095 struct device_node
*np
= pdev
->dev
.of_node
;
3096 int irq
= 0, err
= 0;
3097 struct resource
*res
;
3099 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu");
3101 dev_err(&pdev
->dev
, "no prcmu memory region provided\n");
3104 prcmu_base
= devm_ioremap(&pdev
->dev
, res
->start
, resource_size(res
));
3107 "failed to ioremap prcmu register memory\n");
3110 init_prcm_registers();
3111 dbx500_fw_version_init(pdev
, DB8500_PRCMU_FW_VERSION_OFFSET
);
3112 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "prcmu-tcdm");
3114 dev_err(&pdev
->dev
, "no prcmu tcdm region provided\n");
3117 tcdm_base
= devm_ioremap(&pdev
->dev
, res
->start
,
3118 resource_size(res
));
3121 "failed to ioremap prcmu-tcdm register memory\n");
3125 /* Clean up the mailbox interrupts after pre-kernel code. */
3126 writel(ALL_MBOX_BITS
, PRCM_ARM_IT1_CLR
);
3128 irq
= platform_get_irq(pdev
, 0);
3130 dev_err(&pdev
->dev
, "no prcmu irq provided\n");
3134 err
= request_threaded_irq(irq
, prcmu_irq_handler
,
3135 prcmu_irq_thread_fn
, IRQF_NO_SUSPEND
, "prcmu", NULL
);
3137 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3141 db8500_irq_init(np
);
3143 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET
);
3145 err
= mfd_add_devices(&pdev
->dev
, 0, common_prcmu_devs
,
3146 ARRAY_SIZE(common_prcmu_devs
), NULL
, 0, db8500_irq_domain
);
3148 pr_err("prcmu: Failed to add subdevices\n");
3152 /* TODO: Remove restriction when clk definitions are available. */
3153 if (!of_machine_is_compatible("st-ericsson,u8540")) {
3154 err
= mfd_add_devices(&pdev
->dev
, 0, db8500_prcmu_devs
,
3155 ARRAY_SIZE(db8500_prcmu_devs
), NULL
, 0,
3158 mfd_remove_devices(&pdev
->dev
);
3159 pr_err("prcmu: Failed to add subdevices\n");
3164 err
= db8500_prcmu_register_ab8500(&pdev
->dev
);
3166 mfd_remove_devices(&pdev
->dev
);
3167 pr_err("prcmu: Failed to add ab8500 subdevice\n");
3171 pr_info("DB8500 PRCMU initialized\n");
3174 static const struct of_device_id db8500_prcmu_match
[] = {
3175 { .compatible
= "stericsson,db8500-prcmu"},
3179 static struct platform_driver db8500_prcmu_driver
= {
3181 .name
= "db8500-prcmu",
3182 .of_match_table
= db8500_prcmu_match
,
3184 .probe
= db8500_prcmu_probe
,
3187 static int __init
db8500_prcmu_init(void)
3189 return platform_driver_register(&db8500_prcmu_driver
);
3192 core_initcall(db8500_prcmu_init
);
3194 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3195 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3196 MODULE_LICENSE("GPL v2");