KVM: MMU: Adjust pte accessors to explicitly indicate guest or shadow pte
[linux/fpc-iii.git] / drivers / crypto / amcc / crypto4xx_core.c
blob4c0dfb2b872eab55c0da27f9ab386b04274e2b40
1 /**
2 * AMCC SoC PPC4xx Crypto Driver
4 * Copyright (c) 2008 Applied Micro Circuits Corporation.
5 * All rights reserved. James Hsiao <jhsiao@amcc.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * This file implements AMCC crypto offload Linux device driver for use with
18 * Linux CryptoAPI.
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/of_platform.h>
31 #include <asm/dcr.h>
32 #include <asm/dcr-regs.h>
33 #include <asm/cacheflush.h>
34 #include <crypto/internal/hash.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/sha.h>
38 #include "crypto4xx_reg_def.h"
39 #include "crypto4xx_core.h"
40 #include "crypto4xx_sa.h"
42 #define PPC4XX_SEC_VERSION_STR "0.5"
44 /**
45 * PPC4xx Crypto Engine Initialization Routine
47 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
49 union ce_ring_size ring_size;
50 union ce_ring_contol ring_ctrl;
51 union ce_part_ring_size part_ring_size;
52 union ce_io_threshold io_threshold;
53 u32 rand_num;
54 union ce_pe_dma_cfg pe_dma_cfg;
56 writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
57 /* setup pe dma, include reset sg, pdr and pe, then release reset */
58 pe_dma_cfg.w = 0;
59 pe_dma_cfg.bf.bo_sgpd_en = 1;
60 pe_dma_cfg.bf.bo_data_en = 0;
61 pe_dma_cfg.bf.bo_sa_en = 1;
62 pe_dma_cfg.bf.bo_pd_en = 1;
63 pe_dma_cfg.bf.dynamic_sa_en = 1;
64 pe_dma_cfg.bf.reset_sg = 1;
65 pe_dma_cfg.bf.reset_pdr = 1;
66 pe_dma_cfg.bf.reset_pe = 1;
67 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
68 /* un reset pe,sg and pdr */
69 pe_dma_cfg.bf.pe_mode = 0;
70 pe_dma_cfg.bf.reset_sg = 0;
71 pe_dma_cfg.bf.reset_pdr = 0;
72 pe_dma_cfg.bf.reset_pe = 0;
73 pe_dma_cfg.bf.bo_td_en = 0;
74 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
75 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
76 writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
77 writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
78 get_random_bytes(&rand_num, sizeof(rand_num));
79 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
80 get_random_bytes(&rand_num, sizeof(rand_num));
81 writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
82 ring_size.w = 0;
83 ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
84 ring_size.bf.ring_size = PPC4XX_NUM_PD;
85 writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
86 ring_ctrl.w = 0;
87 writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
88 writel(PPC4XX_DC_3DES_EN, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
89 writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
90 writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
91 part_ring_size.w = 0;
92 part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
93 part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
94 writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
95 writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
96 io_threshold.w = 0;
97 io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
98 io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD;
99 writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
100 writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
101 writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
102 writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
103 writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
104 writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
105 writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
106 writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
107 /* un reset pe,sg and pdr */
108 pe_dma_cfg.bf.pe_mode = 1;
109 pe_dma_cfg.bf.reset_sg = 0;
110 pe_dma_cfg.bf.reset_pdr = 0;
111 pe_dma_cfg.bf.reset_pe = 0;
112 pe_dma_cfg.bf.bo_td_en = 0;
113 writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
114 /*clear all pending interrupt*/
115 writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
116 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
117 writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
118 writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
119 writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
122 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
124 ctx->sa_in = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
125 &ctx->sa_in_dma_addr, GFP_ATOMIC);
126 if (ctx->sa_in == NULL)
127 return -ENOMEM;
129 ctx->sa_out = dma_alloc_coherent(ctx->dev->core_dev->device, size * 4,
130 &ctx->sa_out_dma_addr, GFP_ATOMIC);
131 if (ctx->sa_out == NULL) {
132 dma_free_coherent(ctx->dev->core_dev->device,
133 ctx->sa_len * 4,
134 ctx->sa_in, ctx->sa_in_dma_addr);
135 return -ENOMEM;
138 memset(ctx->sa_in, 0, size * 4);
139 memset(ctx->sa_out, 0, size * 4);
140 ctx->sa_len = size;
142 return 0;
145 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
147 if (ctx->sa_in != NULL)
148 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
149 ctx->sa_in, ctx->sa_in_dma_addr);
150 if (ctx->sa_out != NULL)
151 dma_free_coherent(ctx->dev->core_dev->device, ctx->sa_len * 4,
152 ctx->sa_out, ctx->sa_out_dma_addr);
154 ctx->sa_in_dma_addr = 0;
155 ctx->sa_out_dma_addr = 0;
156 ctx->sa_len = 0;
159 u32 crypto4xx_alloc_state_record(struct crypto4xx_ctx *ctx)
161 ctx->state_record = dma_alloc_coherent(ctx->dev->core_dev->device,
162 sizeof(struct sa_state_record),
163 &ctx->state_record_dma_addr, GFP_ATOMIC);
164 if (!ctx->state_record_dma_addr)
165 return -ENOMEM;
166 memset(ctx->state_record, 0, sizeof(struct sa_state_record));
168 return 0;
171 void crypto4xx_free_state_record(struct crypto4xx_ctx *ctx)
173 if (ctx->state_record != NULL)
174 dma_free_coherent(ctx->dev->core_dev->device,
175 sizeof(struct sa_state_record),
176 ctx->state_record,
177 ctx->state_record_dma_addr);
178 ctx->state_record_dma_addr = 0;
182 * alloc memory for the gather ring
183 * no need to alloc buf for the ring
184 * gdr_tail, gdr_head and gdr_count are initialized by this function
186 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
188 int i;
189 struct pd_uinfo *pd_uinfo;
190 dev->pdr = dma_alloc_coherent(dev->core_dev->device,
191 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
192 &dev->pdr_pa, GFP_ATOMIC);
193 if (!dev->pdr)
194 return -ENOMEM;
196 dev->pdr_uinfo = kzalloc(sizeof(struct pd_uinfo) * PPC4XX_NUM_PD,
197 GFP_KERNEL);
198 if (!dev->pdr_uinfo) {
199 dma_free_coherent(dev->core_dev->device,
200 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
201 dev->pdr,
202 dev->pdr_pa);
203 return -ENOMEM;
205 memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
206 dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
207 256 * PPC4XX_NUM_PD,
208 &dev->shadow_sa_pool_pa,
209 GFP_ATOMIC);
210 if (!dev->shadow_sa_pool)
211 return -ENOMEM;
213 dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
214 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
215 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
216 if (!dev->shadow_sr_pool)
217 return -ENOMEM;
218 for (i = 0; i < PPC4XX_NUM_PD; i++) {
219 pd_uinfo = (struct pd_uinfo *) (dev->pdr_uinfo +
220 sizeof(struct pd_uinfo) * i);
222 /* alloc 256 bytes which is enough for any kind of dynamic sa */
223 pd_uinfo->sa_va = dev->shadow_sa_pool + 256 * i;
224 pd_uinfo->sa_pa = dev->shadow_sa_pool_pa + 256 * i;
226 /* alloc state record */
227 pd_uinfo->sr_va = dev->shadow_sr_pool +
228 sizeof(struct sa_state_record) * i;
229 pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
230 sizeof(struct sa_state_record) * i;
233 return 0;
236 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
238 if (dev->pdr != NULL)
239 dma_free_coherent(dev->core_dev->device,
240 sizeof(struct ce_pd) * PPC4XX_NUM_PD,
241 dev->pdr, dev->pdr_pa);
242 if (dev->shadow_sa_pool)
243 dma_free_coherent(dev->core_dev->device, 256 * PPC4XX_NUM_PD,
244 dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
245 if (dev->shadow_sr_pool)
246 dma_free_coherent(dev->core_dev->device,
247 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
248 dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
250 kfree(dev->pdr_uinfo);
253 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
255 u32 retval;
256 u32 tmp;
258 retval = dev->pdr_head;
259 tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
261 if (tmp == dev->pdr_tail)
262 return ERING_WAS_FULL;
264 dev->pdr_head = tmp;
266 return retval;
269 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
271 struct pd_uinfo *pd_uinfo;
272 unsigned long flags;
274 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
275 sizeof(struct pd_uinfo) * idx);
276 spin_lock_irqsave(&dev->core_dev->lock, flags);
277 if (dev->pdr_tail != PPC4XX_LAST_PD)
278 dev->pdr_tail++;
279 else
280 dev->pdr_tail = 0;
281 pd_uinfo->state = PD_ENTRY_FREE;
282 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
284 return 0;
287 static struct ce_pd *crypto4xx_get_pdp(struct crypto4xx_device *dev,
288 dma_addr_t *pd_dma, u32 idx)
290 *pd_dma = dev->pdr_pa + sizeof(struct ce_pd) * idx;
292 return dev->pdr + sizeof(struct ce_pd) * idx;
296 * alloc memory for the gather ring
297 * no need to alloc buf for the ring
298 * gdr_tail, gdr_head and gdr_count are initialized by this function
300 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
302 dev->gdr = dma_alloc_coherent(dev->core_dev->device,
303 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
304 &dev->gdr_pa, GFP_ATOMIC);
305 if (!dev->gdr)
306 return -ENOMEM;
308 memset(dev->gdr, 0, sizeof(struct ce_gd) * PPC4XX_NUM_GD);
310 return 0;
313 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
315 dma_free_coherent(dev->core_dev->device,
316 sizeof(struct ce_gd) * PPC4XX_NUM_GD,
317 dev->gdr, dev->gdr_pa);
321 * when this function is called.
322 * preemption or interrupt must be disabled
324 u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
326 u32 retval;
327 u32 tmp;
328 if (n >= PPC4XX_NUM_GD)
329 return ERING_WAS_FULL;
331 retval = dev->gdr_head;
332 tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
333 if (dev->gdr_head > dev->gdr_tail) {
334 if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
335 return ERING_WAS_FULL;
336 } else if (dev->gdr_head < dev->gdr_tail) {
337 if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
338 return ERING_WAS_FULL;
340 dev->gdr_head = tmp;
342 return retval;
345 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
347 unsigned long flags;
349 spin_lock_irqsave(&dev->core_dev->lock, flags);
350 if (dev->gdr_tail == dev->gdr_head) {
351 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
352 return 0;
355 if (dev->gdr_tail != PPC4XX_LAST_GD)
356 dev->gdr_tail++;
357 else
358 dev->gdr_tail = 0;
360 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
362 return 0;
365 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
366 dma_addr_t *gd_dma, u32 idx)
368 *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
370 return (struct ce_gd *) (dev->gdr + sizeof(struct ce_gd) * idx);
374 * alloc memory for the scatter ring
375 * need to alloc buf for the ring
376 * sdr_tail, sdr_head and sdr_count are initialized by this function
378 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
380 int i;
381 struct ce_sd *sd_array;
383 /* alloc memory for scatter descriptor ring */
384 dev->sdr = dma_alloc_coherent(dev->core_dev->device,
385 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
386 &dev->sdr_pa, GFP_ATOMIC);
387 if (!dev->sdr)
388 return -ENOMEM;
390 dev->scatter_buffer_size = PPC4XX_SD_BUFFER_SIZE;
391 dev->scatter_buffer_va =
392 dma_alloc_coherent(dev->core_dev->device,
393 dev->scatter_buffer_size * PPC4XX_NUM_SD,
394 &dev->scatter_buffer_pa, GFP_ATOMIC);
395 if (!dev->scatter_buffer_va) {
396 dma_free_coherent(dev->core_dev->device,
397 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
398 dev->sdr, dev->sdr_pa);
399 return -ENOMEM;
402 sd_array = dev->sdr;
404 for (i = 0; i < PPC4XX_NUM_SD; i++) {
405 sd_array[i].ptr = dev->scatter_buffer_pa +
406 dev->scatter_buffer_size * i;
409 return 0;
412 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
414 if (dev->sdr != NULL)
415 dma_free_coherent(dev->core_dev->device,
416 sizeof(struct ce_sd) * PPC4XX_NUM_SD,
417 dev->sdr, dev->sdr_pa);
419 if (dev->scatter_buffer_va != NULL)
420 dma_free_coherent(dev->core_dev->device,
421 dev->scatter_buffer_size * PPC4XX_NUM_SD,
422 dev->scatter_buffer_va,
423 dev->scatter_buffer_pa);
427 * when this function is called.
428 * preemption or interrupt must be disabled
430 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
432 u32 retval;
433 u32 tmp;
435 if (n >= PPC4XX_NUM_SD)
436 return ERING_WAS_FULL;
438 retval = dev->sdr_head;
439 tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
440 if (dev->sdr_head > dev->gdr_tail) {
441 if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
442 return ERING_WAS_FULL;
443 } else if (dev->sdr_head < dev->sdr_tail) {
444 if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
445 return ERING_WAS_FULL;
446 } /* the head = tail, or empty case is already take cared */
447 dev->sdr_head = tmp;
449 return retval;
452 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
454 unsigned long flags;
456 spin_lock_irqsave(&dev->core_dev->lock, flags);
457 if (dev->sdr_tail == dev->sdr_head) {
458 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
459 return 0;
461 if (dev->sdr_tail != PPC4XX_LAST_SD)
462 dev->sdr_tail++;
463 else
464 dev->sdr_tail = 0;
465 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
467 return 0;
470 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
471 dma_addr_t *sd_dma, u32 idx)
473 *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
475 return (struct ce_sd *)(dev->sdr + sizeof(struct ce_sd) * idx);
478 static u32 crypto4xx_fill_one_page(struct crypto4xx_device *dev,
479 dma_addr_t *addr, u32 *length,
480 u32 *idx, u32 *offset, u32 *nbytes)
482 u32 len;
484 if (*length > dev->scatter_buffer_size) {
485 memcpy(phys_to_virt(*addr),
486 dev->scatter_buffer_va +
487 *idx * dev->scatter_buffer_size + *offset,
488 dev->scatter_buffer_size);
489 *offset = 0;
490 *length -= dev->scatter_buffer_size;
491 *nbytes -= dev->scatter_buffer_size;
492 if (*idx == PPC4XX_LAST_SD)
493 *idx = 0;
494 else
495 (*idx)++;
496 *addr = *addr + dev->scatter_buffer_size;
497 return 1;
498 } else if (*length < dev->scatter_buffer_size) {
499 memcpy(phys_to_virt(*addr),
500 dev->scatter_buffer_va +
501 *idx * dev->scatter_buffer_size + *offset, *length);
502 if ((*offset + *length) == dev->scatter_buffer_size) {
503 if (*idx == PPC4XX_LAST_SD)
504 *idx = 0;
505 else
506 (*idx)++;
507 *nbytes -= *length;
508 *offset = 0;
509 } else {
510 *nbytes -= *length;
511 *offset += *length;
514 return 0;
515 } else {
516 len = (*nbytes <= dev->scatter_buffer_size) ?
517 (*nbytes) : dev->scatter_buffer_size;
518 memcpy(phys_to_virt(*addr),
519 dev->scatter_buffer_va +
520 *idx * dev->scatter_buffer_size + *offset,
521 len);
522 *offset = 0;
523 *nbytes -= len;
525 if (*idx == PPC4XX_LAST_SD)
526 *idx = 0;
527 else
528 (*idx)++;
530 return 0;
534 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
535 struct ce_pd *pd,
536 struct pd_uinfo *pd_uinfo,
537 u32 nbytes,
538 struct scatterlist *dst)
540 dma_addr_t addr;
541 u32 this_sd;
542 u32 offset;
543 u32 len;
544 u32 i;
545 u32 sg_len;
546 struct scatterlist *sg;
548 this_sd = pd_uinfo->first_sd;
549 offset = 0;
550 i = 0;
552 while (nbytes) {
553 sg = &dst[i];
554 sg_len = sg->length;
555 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
556 sg->offset, sg->length, DMA_TO_DEVICE);
558 if (offset == 0) {
559 len = (nbytes <= sg->length) ? nbytes : sg->length;
560 while (crypto4xx_fill_one_page(dev, &addr, &len,
561 &this_sd, &offset, &nbytes))
563 if (!nbytes)
564 return;
565 i++;
566 } else {
567 len = (nbytes <= (dev->scatter_buffer_size - offset)) ?
568 nbytes : (dev->scatter_buffer_size - offset);
569 len = (sg->length < len) ? sg->length : len;
570 while (crypto4xx_fill_one_page(dev, &addr, &len,
571 &this_sd, &offset, &nbytes))
573 if (!nbytes)
574 return;
575 sg_len -= len;
576 if (sg_len) {
577 addr += len;
578 while (crypto4xx_fill_one_page(dev, &addr,
579 &sg_len, &this_sd, &offset, &nbytes))
582 i++;
587 static u32 crypto4xx_copy_digest_to_dst(struct pd_uinfo *pd_uinfo,
588 struct crypto4xx_ctx *ctx)
590 struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
591 struct sa_state_record *state_record =
592 (struct sa_state_record *) pd_uinfo->sr_va;
594 if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
595 memcpy((void *) pd_uinfo->dest_va, state_record->save_digest,
596 SA_HASH_ALG_SHA1_DIGEST_SIZE);
599 return 0;
602 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
603 struct pd_uinfo *pd_uinfo)
605 int i;
606 if (pd_uinfo->num_gd) {
607 for (i = 0; i < pd_uinfo->num_gd; i++)
608 crypto4xx_put_gd_to_gdr(dev);
609 pd_uinfo->first_gd = 0xffffffff;
610 pd_uinfo->num_gd = 0;
612 if (pd_uinfo->num_sd) {
613 for (i = 0; i < pd_uinfo->num_sd; i++)
614 crypto4xx_put_sd_to_sdr(dev);
616 pd_uinfo->first_sd = 0xffffffff;
617 pd_uinfo->num_sd = 0;
621 static u32 crypto4xx_ablkcipher_done(struct crypto4xx_device *dev,
622 struct pd_uinfo *pd_uinfo,
623 struct ce_pd *pd)
625 struct crypto4xx_ctx *ctx;
626 struct ablkcipher_request *ablk_req;
627 struct scatterlist *dst;
628 dma_addr_t addr;
630 ablk_req = ablkcipher_request_cast(pd_uinfo->async_req);
631 ctx = crypto_tfm_ctx(ablk_req->base.tfm);
633 if (pd_uinfo->using_sd) {
634 crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, ablk_req->nbytes,
635 ablk_req->dst);
636 } else {
637 dst = pd_uinfo->dest_va;
638 addr = dma_map_page(dev->core_dev->device, sg_page(dst),
639 dst->offset, dst->length, DMA_FROM_DEVICE);
641 crypto4xx_ret_sg_desc(dev, pd_uinfo);
642 if (ablk_req->base.complete != NULL)
643 ablk_req->base.complete(&ablk_req->base, 0);
645 return 0;
648 static u32 crypto4xx_ahash_done(struct crypto4xx_device *dev,
649 struct pd_uinfo *pd_uinfo)
651 struct crypto4xx_ctx *ctx;
652 struct ahash_request *ahash_req;
654 ahash_req = ahash_request_cast(pd_uinfo->async_req);
655 ctx = crypto_tfm_ctx(ahash_req->base.tfm);
657 crypto4xx_copy_digest_to_dst(pd_uinfo,
658 crypto_tfm_ctx(ahash_req->base.tfm));
659 crypto4xx_ret_sg_desc(dev, pd_uinfo);
660 /* call user provided callback function x */
661 if (ahash_req->base.complete != NULL)
662 ahash_req->base.complete(&ahash_req->base, 0);
664 return 0;
667 static u32 crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
669 struct ce_pd *pd;
670 struct pd_uinfo *pd_uinfo;
672 pd = dev->pdr + sizeof(struct ce_pd)*idx;
673 pd_uinfo = dev->pdr_uinfo + sizeof(struct pd_uinfo)*idx;
674 if (crypto_tfm_alg_type(pd_uinfo->async_req->tfm) ==
675 CRYPTO_ALG_TYPE_ABLKCIPHER)
676 return crypto4xx_ablkcipher_done(dev, pd_uinfo, pd);
677 else
678 return crypto4xx_ahash_done(dev, pd_uinfo);
682 * Note: Only use this function to copy items that is word aligned.
684 void crypto4xx_memcpy_le(unsigned int *dst,
685 const unsigned char *buf,
686 int len)
688 u8 *tmp;
689 for (; len >= 4; buf += 4, len -= 4)
690 *dst++ = cpu_to_le32(*(unsigned int *) buf);
692 tmp = (u8 *)dst;
693 switch (len) {
694 case 3:
695 *tmp++ = 0;
696 *tmp++ = *(buf+2);
697 *tmp++ = *(buf+1);
698 *tmp++ = *buf;
699 break;
700 case 2:
701 *tmp++ = 0;
702 *tmp++ = 0;
703 *tmp++ = *(buf+1);
704 *tmp++ = *buf;
705 break;
706 case 1:
707 *tmp++ = 0;
708 *tmp++ = 0;
709 *tmp++ = 0;
710 *tmp++ = *buf;
711 break;
712 default:
713 break;
717 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
719 crypto4xx_destroy_pdr(core_dev->dev);
720 crypto4xx_destroy_gdr(core_dev->dev);
721 crypto4xx_destroy_sdr(core_dev->dev);
722 dev_set_drvdata(core_dev->device, NULL);
723 iounmap(core_dev->dev->ce_base);
724 kfree(core_dev->dev);
725 kfree(core_dev);
728 void crypto4xx_return_pd(struct crypto4xx_device *dev,
729 u32 pd_entry, struct ce_pd *pd,
730 struct pd_uinfo *pd_uinfo)
732 /* irq should be already disabled */
733 dev->pdr_head = pd_entry;
734 pd->pd_ctl.w = 0;
735 pd->pd_ctl_len.w = 0;
736 pd_uinfo->state = PD_ENTRY_FREE;
740 * derive number of elements in scatterlist
741 * Shamlessly copy from talitos.c
743 static int get_sg_count(struct scatterlist *sg_list, int nbytes)
745 struct scatterlist *sg = sg_list;
746 int sg_nents = 0;
748 while (nbytes) {
749 sg_nents++;
750 if (sg->length > nbytes)
751 break;
752 nbytes -= sg->length;
753 sg = sg_next(sg);
756 return sg_nents;
759 static u32 get_next_gd(u32 current)
761 if (current != PPC4XX_LAST_GD)
762 return current + 1;
763 else
764 return 0;
767 static u32 get_next_sd(u32 current)
769 if (current != PPC4XX_LAST_SD)
770 return current + 1;
771 else
772 return 0;
775 u32 crypto4xx_build_pd(struct crypto_async_request *req,
776 struct crypto4xx_ctx *ctx,
777 struct scatterlist *src,
778 struct scatterlist *dst,
779 unsigned int datalen,
780 void *iv, u32 iv_len)
782 struct crypto4xx_device *dev = ctx->dev;
783 dma_addr_t addr, pd_dma, sd_dma, gd_dma;
784 struct dynamic_sa_ctl *sa;
785 struct scatterlist *sg;
786 struct ce_gd *gd;
787 struct ce_pd *pd;
788 u32 num_gd, num_sd;
789 u32 fst_gd = 0xffffffff;
790 u32 fst_sd = 0xffffffff;
791 u32 pd_entry;
792 unsigned long flags;
793 struct pd_uinfo *pd_uinfo = NULL;
794 unsigned int nbytes = datalen, idx;
795 unsigned int ivlen = 0;
796 u32 gd_idx = 0;
798 /* figure how many gd is needed */
799 num_gd = get_sg_count(src, datalen);
800 if (num_gd == 1)
801 num_gd = 0;
803 /* figure how many sd is needed */
804 if (sg_is_last(dst) || ctx->is_hash) {
805 num_sd = 0;
806 } else {
807 if (datalen > PPC4XX_SD_BUFFER_SIZE) {
808 num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
809 if (datalen % PPC4XX_SD_BUFFER_SIZE)
810 num_sd++;
811 } else {
812 num_sd = 1;
817 * The follow section of code needs to be protected
818 * The gather ring and scatter ring needs to be consecutive
819 * In case of run out of any kind of descriptor, the descriptor
820 * already got must be return the original place.
822 spin_lock_irqsave(&dev->core_dev->lock, flags);
823 if (num_gd) {
824 fst_gd = crypto4xx_get_n_gd(dev, num_gd);
825 if (fst_gd == ERING_WAS_FULL) {
826 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
827 return -EAGAIN;
830 if (num_sd) {
831 fst_sd = crypto4xx_get_n_sd(dev, num_sd);
832 if (fst_sd == ERING_WAS_FULL) {
833 if (num_gd)
834 dev->gdr_head = fst_gd;
835 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
836 return -EAGAIN;
839 pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
840 if (pd_entry == ERING_WAS_FULL) {
841 if (num_gd)
842 dev->gdr_head = fst_gd;
843 if (num_sd)
844 dev->sdr_head = fst_sd;
845 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
846 return -EAGAIN;
848 spin_unlock_irqrestore(&dev->core_dev->lock, flags);
850 pd_uinfo = (struct pd_uinfo *)(dev->pdr_uinfo +
851 sizeof(struct pd_uinfo) * pd_entry);
852 pd = crypto4xx_get_pdp(dev, &pd_dma, pd_entry);
853 pd_uinfo->async_req = req;
854 pd_uinfo->num_gd = num_gd;
855 pd_uinfo->num_sd = num_sd;
857 if (iv_len || ctx->is_hash) {
858 ivlen = iv_len;
859 pd->sa = pd_uinfo->sa_pa;
860 sa = (struct dynamic_sa_ctl *) pd_uinfo->sa_va;
861 if (ctx->direction == DIR_INBOUND)
862 memcpy(sa, ctx->sa_in, ctx->sa_len * 4);
863 else
864 memcpy(sa, ctx->sa_out, ctx->sa_len * 4);
866 memcpy((void *) sa + ctx->offset_to_sr_ptr,
867 &pd_uinfo->sr_pa, 4);
869 if (iv_len)
870 crypto4xx_memcpy_le(pd_uinfo->sr_va, iv, iv_len);
871 } else {
872 if (ctx->direction == DIR_INBOUND) {
873 pd->sa = ctx->sa_in_dma_addr;
874 sa = (struct dynamic_sa_ctl *) ctx->sa_in;
875 } else {
876 pd->sa = ctx->sa_out_dma_addr;
877 sa = (struct dynamic_sa_ctl *) ctx->sa_out;
880 pd->sa_len = ctx->sa_len;
881 if (num_gd) {
882 /* get first gd we are going to use */
883 gd_idx = fst_gd;
884 pd_uinfo->first_gd = fst_gd;
885 pd_uinfo->num_gd = num_gd;
886 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
887 pd->src = gd_dma;
888 /* enable gather */
889 sa->sa_command_0.bf.gather = 1;
890 idx = 0;
891 src = &src[0];
892 /* walk the sg, and setup gather array */
893 while (nbytes) {
894 sg = &src[idx];
895 addr = dma_map_page(dev->core_dev->device, sg_page(sg),
896 sg->offset, sg->length, DMA_TO_DEVICE);
897 gd->ptr = addr;
898 gd->ctl_len.len = sg->length;
899 gd->ctl_len.done = 0;
900 gd->ctl_len.ready = 1;
901 if (sg->length >= nbytes)
902 break;
903 nbytes -= sg->length;
904 gd_idx = get_next_gd(gd_idx);
905 gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
906 idx++;
908 } else {
909 pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
910 src->offset, src->length, DMA_TO_DEVICE);
912 * Disable gather in sa command
914 sa->sa_command_0.bf.gather = 0;
916 * Indicate gather array is not used
918 pd_uinfo->first_gd = 0xffffffff;
919 pd_uinfo->num_gd = 0;
921 if (ctx->is_hash || sg_is_last(dst)) {
923 * we know application give us dst a whole piece of memory
924 * no need to use scatter ring.
925 * In case of is_hash, the icv is always at end of src data.
927 pd_uinfo->using_sd = 0;
928 pd_uinfo->first_sd = 0xffffffff;
929 pd_uinfo->num_sd = 0;
930 pd_uinfo->dest_va = dst;
931 sa->sa_command_0.bf.scatter = 0;
932 if (ctx->is_hash)
933 pd->dest = virt_to_phys((void *)dst);
934 else
935 pd->dest = (u32)dma_map_page(dev->core_dev->device,
936 sg_page(dst), dst->offset,
937 dst->length, DMA_TO_DEVICE);
938 } else {
939 struct ce_sd *sd = NULL;
940 u32 sd_idx = fst_sd;
941 nbytes = datalen;
942 sa->sa_command_0.bf.scatter = 1;
943 pd_uinfo->using_sd = 1;
944 pd_uinfo->dest_va = dst;
945 pd_uinfo->first_sd = fst_sd;
946 pd_uinfo->num_sd = num_sd;
947 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
948 pd->dest = sd_dma;
949 /* setup scatter descriptor */
950 sd->ctl.done = 0;
951 sd->ctl.rdy = 1;
952 /* sd->ptr should be setup by sd_init routine*/
953 idx = 0;
954 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
955 nbytes -= PPC4XX_SD_BUFFER_SIZE;
956 else
957 nbytes = 0;
958 while (nbytes) {
959 sd_idx = get_next_sd(sd_idx);
960 sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
961 /* setup scatter descriptor */
962 sd->ctl.done = 0;
963 sd->ctl.rdy = 1;
964 if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
965 nbytes -= PPC4XX_SD_BUFFER_SIZE;
966 else
968 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
969 * which is more than nbytes, so done.
971 nbytes = 0;
975 sa->sa_command_1.bf.hash_crypto_offset = 0;
976 pd->pd_ctl.w = ctx->pd_ctl;
977 pd->pd_ctl_len.w = 0x00400000 | (ctx->bypass << 24) | datalen;
978 pd_uinfo->state = PD_ENTRY_INUSE;
979 wmb();
980 /* write any value to push engine to read a pd */
981 writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
982 return -EINPROGRESS;
986 * Algorithm Registration Functions
988 static int crypto4xx_alg_init(struct crypto_tfm *tfm)
990 struct crypto_alg *alg = tfm->__crt_alg;
991 struct crypto4xx_alg *amcc_alg = crypto_alg_to_crypto4xx_alg(alg);
992 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
994 ctx->dev = amcc_alg->dev;
995 ctx->sa_in = NULL;
996 ctx->sa_out = NULL;
997 ctx->sa_in_dma_addr = 0;
998 ctx->sa_out_dma_addr = 0;
999 ctx->sa_len = 0;
1001 if (alg->cra_type == &crypto_ablkcipher_type)
1002 tfm->crt_ablkcipher.reqsize = sizeof(struct crypto4xx_ctx);
1003 else if (alg->cra_type == &crypto_ahash_type)
1004 tfm->crt_ahash.reqsize = sizeof(struct crypto4xx_ctx);
1006 return 0;
1009 static void crypto4xx_alg_exit(struct crypto_tfm *tfm)
1011 struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
1013 crypto4xx_free_sa(ctx);
1014 crypto4xx_free_state_record(ctx);
1017 int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1018 struct crypto_alg *crypto_alg, int array_size)
1020 struct crypto4xx_alg *alg;
1021 int i;
1022 int rc = 0;
1024 for (i = 0; i < array_size; i++) {
1025 alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1026 if (!alg)
1027 return -ENOMEM;
1029 alg->alg = crypto_alg[i];
1030 INIT_LIST_HEAD(&alg->alg.cra_list);
1031 if (alg->alg.cra_init == NULL)
1032 alg->alg.cra_init = crypto4xx_alg_init;
1033 if (alg->alg.cra_exit == NULL)
1034 alg->alg.cra_exit = crypto4xx_alg_exit;
1035 alg->dev = sec_dev;
1036 rc = crypto_register_alg(&alg->alg);
1037 if (rc) {
1038 list_del(&alg->entry);
1039 kfree(alg);
1040 } else {
1041 list_add_tail(&alg->entry, &sec_dev->alg_list);
1045 return 0;
1048 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1050 struct crypto4xx_alg *alg, *tmp;
1052 list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1053 list_del(&alg->entry);
1054 crypto_unregister_alg(&alg->alg);
1055 kfree(alg);
1059 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1061 struct device *dev = (struct device *)data;
1062 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1063 struct pd_uinfo *pd_uinfo;
1064 struct ce_pd *pd;
1065 u32 tail;
1067 while (core_dev->dev->pdr_head != core_dev->dev->pdr_tail) {
1068 tail = core_dev->dev->pdr_tail;
1069 pd_uinfo = core_dev->dev->pdr_uinfo +
1070 sizeof(struct pd_uinfo)*tail;
1071 pd = core_dev->dev->pdr + sizeof(struct ce_pd) * tail;
1072 if ((pd_uinfo->state == PD_ENTRY_INUSE) &&
1073 pd->pd_ctl.bf.pe_done &&
1074 !pd->pd_ctl.bf.host_ready) {
1075 pd->pd_ctl.bf.pe_done = 0;
1076 crypto4xx_pd_done(core_dev->dev, tail);
1077 crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1078 pd_uinfo->state = PD_ENTRY_FREE;
1079 } else {
1080 /* if tail not done, break */
1081 break;
1087 * Top Half of isr.
1089 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1091 struct device *dev = (struct device *)data;
1092 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1094 if (core_dev->dev->ce_base == 0)
1095 return 0;
1097 writel(PPC4XX_INTERRUPT_CLR,
1098 core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1099 tasklet_schedule(&core_dev->tasklet);
1101 return IRQ_HANDLED;
1105 * Supported Crypto Algorithms
1107 struct crypto_alg crypto4xx_alg[] = {
1108 /* Crypto AES modes */
1110 .cra_name = "cbc(aes)",
1111 .cra_driver_name = "cbc-aes-ppc4xx",
1112 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1113 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1114 .cra_blocksize = AES_BLOCK_SIZE,
1115 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1116 .cra_alignmask = 0,
1117 .cra_type = &crypto_ablkcipher_type,
1118 .cra_module = THIS_MODULE,
1119 .cra_u = {
1120 .ablkcipher = {
1121 .min_keysize = AES_MIN_KEY_SIZE,
1122 .max_keysize = AES_MAX_KEY_SIZE,
1123 .ivsize = AES_IV_SIZE,
1124 .setkey = crypto4xx_setkey_aes_cbc,
1125 .encrypt = crypto4xx_encrypt,
1126 .decrypt = crypto4xx_decrypt,
1130 /* Hash SHA1 */
1132 .cra_name = "sha1",
1133 .cra_driver_name = "sha1-ppc4xx",
1134 .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1135 .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
1136 .cra_blocksize = SHA1_BLOCK_SIZE,
1137 .cra_ctxsize = sizeof(struct crypto4xx_ctx),
1138 .cra_alignmask = 0,
1139 .cra_type = &crypto_ahash_type,
1140 .cra_init = crypto4xx_sha1_alg_init,
1141 .cra_module = THIS_MODULE,
1142 .cra_u = {
1143 .ahash = {
1144 .digestsize = SHA1_DIGEST_SIZE,
1145 .init = crypto4xx_hash_init,
1146 .update = crypto4xx_hash_update,
1147 .final = crypto4xx_hash_final,
1148 .digest = crypto4xx_hash_digest,
1155 * Module Initialization Routine
1157 static int __init crypto4xx_probe(struct of_device *ofdev,
1158 const struct of_device_id *match)
1160 int rc;
1161 struct resource res;
1162 struct device *dev = &ofdev->dev;
1163 struct crypto4xx_core_device *core_dev;
1165 rc = of_address_to_resource(ofdev->node, 0, &res);
1166 if (rc)
1167 return -ENODEV;
1169 if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1170 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1171 mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1172 mtdcri(SDR0, PPC460EX_SDR0_SRST,
1173 mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1174 } else if (of_find_compatible_node(NULL, NULL,
1175 "amcc,ppc405ex-crypto")) {
1176 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1177 mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1178 mtdcri(SDR0, PPC405EX_SDR0_SRST,
1179 mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1180 } else if (of_find_compatible_node(NULL, NULL,
1181 "amcc,ppc460sx-crypto")) {
1182 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1183 mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1184 mtdcri(SDR0, PPC460SX_SDR0_SRST,
1185 mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1186 } else {
1187 printk(KERN_ERR "Crypto Function Not supported!\n");
1188 return -EINVAL;
1191 core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1192 if (!core_dev)
1193 return -ENOMEM;
1195 dev_set_drvdata(dev, core_dev);
1196 core_dev->ofdev = ofdev;
1197 core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1198 if (!core_dev->dev)
1199 goto err_alloc_dev;
1201 core_dev->dev->core_dev = core_dev;
1202 core_dev->device = dev;
1203 spin_lock_init(&core_dev->lock);
1204 INIT_LIST_HEAD(&core_dev->dev->alg_list);
1205 rc = crypto4xx_build_pdr(core_dev->dev);
1206 if (rc)
1207 goto err_build_pdr;
1209 rc = crypto4xx_build_gdr(core_dev->dev);
1210 if (rc)
1211 goto err_build_gdr;
1213 rc = crypto4xx_build_sdr(core_dev->dev);
1214 if (rc)
1215 goto err_build_sdr;
1217 /* Init tasklet for bottom half processing */
1218 tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1219 (unsigned long) dev);
1221 /* Register for Crypto isr, Crypto Engine IRQ */
1222 core_dev->irq = irq_of_parse_and_map(ofdev->node, 0);
1223 rc = request_irq(core_dev->irq, crypto4xx_ce_interrupt_handler, 0,
1224 core_dev->dev->name, dev);
1225 if (rc)
1226 goto err_request_irq;
1228 core_dev->dev->ce_base = of_iomap(ofdev->node, 0);
1229 if (!core_dev->dev->ce_base) {
1230 dev_err(dev, "failed to of_iomap\n");
1231 goto err_iomap;
1234 /* need to setup pdr, rdr, gdr and sdr before this */
1235 crypto4xx_hw_init(core_dev->dev);
1237 /* Register security algorithms with Linux CryptoAPI */
1238 rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1239 ARRAY_SIZE(crypto4xx_alg));
1240 if (rc)
1241 goto err_start_dev;
1243 return 0;
1245 err_start_dev:
1246 iounmap(core_dev->dev->ce_base);
1247 err_iomap:
1248 free_irq(core_dev->irq, dev);
1249 irq_dispose_mapping(core_dev->irq);
1250 tasklet_kill(&core_dev->tasklet);
1251 err_request_irq:
1252 crypto4xx_destroy_sdr(core_dev->dev);
1253 err_build_sdr:
1254 crypto4xx_destroy_gdr(core_dev->dev);
1255 err_build_gdr:
1256 crypto4xx_destroy_pdr(core_dev->dev);
1257 err_build_pdr:
1258 kfree(core_dev->dev);
1259 err_alloc_dev:
1260 kfree(core_dev);
1262 return rc;
1265 static int __exit crypto4xx_remove(struct of_device *ofdev)
1267 struct device *dev = &ofdev->dev;
1268 struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1270 free_irq(core_dev->irq, dev);
1271 irq_dispose_mapping(core_dev->irq);
1273 tasklet_kill(&core_dev->tasklet);
1274 /* Un-register with Linux CryptoAPI */
1275 crypto4xx_unregister_alg(core_dev->dev);
1276 /* Free all allocated memory */
1277 crypto4xx_stop_all(core_dev);
1279 return 0;
1282 static struct of_device_id crypto4xx_match[] = {
1283 { .compatible = "amcc,ppc4xx-crypto",},
1284 { },
1287 static struct of_platform_driver crypto4xx_driver = {
1288 .name = "crypto4xx",
1289 .match_table = crypto4xx_match,
1290 .probe = crypto4xx_probe,
1291 .remove = crypto4xx_remove,
1294 static int __init crypto4xx_init(void)
1296 return of_register_platform_driver(&crypto4xx_driver);
1299 static void __exit crypto4xx_exit(void)
1301 of_unregister_platform_driver(&crypto4xx_driver);
1304 module_init(crypto4xx_init);
1305 module_exit(crypto4xx_exit);
1307 MODULE_LICENSE("GPL");
1308 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1309 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");