2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item
)
27 static inline void count_compact_events(enum vm_event_item item
, long delta
)
29 count_vm_events(item
, delta
);
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head
*freelist
)
43 struct page
*page
, *next
;
44 unsigned long count
= 0;
46 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
55 static void map_pages(struct list_head
*list
)
59 list_for_each_entry(page
, list
, lru
) {
60 arch_alloc_page(page
, 0);
61 kernel_map_pages(page
, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype
)
67 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control
*cc
,
75 if (cc
->ignore_skip_hint
)
78 return !get_pageblock_skip(page
);
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
86 static void __reset_isolation_suitable(struct zone
*zone
)
88 unsigned long start_pfn
= zone
->zone_start_pfn
;
89 unsigned long end_pfn
= zone_end_pfn(zone
);
92 zone
->compact_cached_migrate_pfn
= start_pfn
;
93 zone
->compact_cached_free_pfn
= end_pfn
;
94 zone
->compact_blockskip_flush
= false;
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
105 page
= pfn_to_page(pfn
);
106 if (zone
!= page_zone(page
))
109 clear_pageblock_skip(page
);
113 void reset_isolation_suitable(pg_data_t
*pgdat
)
117 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
118 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
119 if (!populated_zone(zone
))
122 /* Only flush if a full compaction finished recently */
123 if (zone
->compact_blockskip_flush
)
124 __reset_isolation_suitable(zone
);
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
132 static void update_pageblock_skip(struct compact_control
*cc
,
133 struct page
*page
, unsigned long nr_isolated
,
134 bool migrate_scanner
)
136 struct zone
*zone
= cc
->zone
;
138 if (cc
->ignore_skip_hint
)
145 unsigned long pfn
= page_to_pfn(page
);
146 set_pageblock_skip(page
);
148 /* Update where compaction should restart */
149 if (migrate_scanner
) {
150 if (!cc
->finished_update_migrate
&&
151 pfn
> zone
->compact_cached_migrate_pfn
)
152 zone
->compact_cached_migrate_pfn
= pfn
;
154 if (!cc
->finished_update_free
&&
155 pfn
< zone
->compact_cached_free_pfn
)
156 zone
->compact_cached_free_pfn
= pfn
;
161 static inline bool isolation_suitable(struct compact_control
*cc
,
167 static void update_pageblock_skip(struct compact_control
*cc
,
168 struct page
*page
, unsigned long nr_isolated
,
169 bool migrate_scanner
)
172 #endif /* CONFIG_COMPACTION */
174 static inline bool should_release_lock(spinlock_t
*lock
)
176 return need_resched() || spin_is_contended(lock
);
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
188 static bool compact_checklock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
189 bool locked
, struct compact_control
*cc
)
191 if (should_release_lock(lock
)) {
193 spin_unlock_irqrestore(lock
, *flags
);
197 /* async aborts if taking too long or contended */
199 cc
->contended
= true;
207 spin_lock_irqsave(lock
, *flags
);
211 static inline bool compact_trylock_irqsave(spinlock_t
*lock
,
212 unsigned long *flags
, struct compact_control
*cc
)
214 return compact_checklock_irqsave(lock
, flags
, false, cc
);
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page
*page
)
220 /* If the page is a large free page, then disallow migration */
221 if (PageBuddy(page
) && page_order(page
) >= pageblock_order
)
224 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
225 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
228 /* Otherwise skip the block */
233 * Isolate free pages onto a private freelist. If @strict is true, will abort
234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
235 * (even though it may still end up isolating some pages).
237 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
238 unsigned long blockpfn
,
239 unsigned long end_pfn
,
240 struct list_head
*freelist
,
243 int nr_scanned
= 0, total_isolated
= 0;
244 struct page
*cursor
, *valid_page
= NULL
;
247 bool checked_pageblock
= false;
249 cursor
= pfn_to_page(blockpfn
);
251 /* Isolate free pages. */
252 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
254 struct page
*page
= cursor
;
257 if (!pfn_valid_within(blockpfn
))
262 if (!PageBuddy(page
))
266 * The zone lock must be held to isolate freepages.
267 * Unfortunately this is a very coarse lock and can be
268 * heavily contended if there are parallel allocations
269 * or parallel compactions. For async compaction do not
270 * spin on the lock and we acquire the lock as late as
273 locked
= compact_checklock_irqsave(&cc
->zone
->lock
, &flags
,
278 /* Recheck this is a suitable migration target under lock */
279 if (!strict
&& !checked_pageblock
) {
281 * We need to check suitability of pageblock only once
282 * and this isolate_freepages_block() is called with
283 * pageblock range, so just check once is sufficient.
285 checked_pageblock
= true;
286 if (!suitable_migration_target(page
))
290 /* Recheck this is a buddy page under lock */
291 if (!PageBuddy(page
))
294 /* Found a free page, break it into order-0 pages */
295 isolated
= split_free_page(page
);
296 total_isolated
+= isolated
;
297 for (i
= 0; i
< isolated
; i
++) {
298 list_add(&page
->lru
, freelist
);
302 /* If a page was split, advance to the end of it */
304 blockpfn
+= isolated
- 1;
305 cursor
+= isolated
- 1;
317 trace_mm_compaction_isolate_freepages(nr_scanned
, total_isolated
);
320 * If strict isolation is requested by CMA then check that all the
321 * pages requested were isolated. If there were any failures, 0 is
322 * returned and CMA will fail.
324 if (strict
&& blockpfn
< end_pfn
)
328 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
330 /* Update the pageblock-skip if the whole pageblock was scanned */
331 if (blockpfn
== end_pfn
)
332 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
334 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
336 count_compact_events(COMPACTISOLATED
, total_isolated
);
337 return total_isolated
;
341 * isolate_freepages_range() - isolate free pages.
342 * @start_pfn: The first PFN to start isolating.
343 * @end_pfn: The one-past-last PFN.
345 * Non-free pages, invalid PFNs, or zone boundaries within the
346 * [start_pfn, end_pfn) range are considered errors, cause function to
347 * undo its actions and return zero.
349 * Otherwise, function returns one-past-the-last PFN of isolated page
350 * (which may be greater then end_pfn if end fell in a middle of
354 isolate_freepages_range(struct compact_control
*cc
,
355 unsigned long start_pfn
, unsigned long end_pfn
)
357 unsigned long isolated
, pfn
, block_end_pfn
;
360 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= isolated
) {
361 if (!pfn_valid(pfn
) || cc
->zone
!= page_zone(pfn_to_page(pfn
)))
365 * On subsequent iterations ALIGN() is actually not needed,
366 * but we keep it that we not to complicate the code.
368 block_end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
369 block_end_pfn
= min(block_end_pfn
, end_pfn
);
371 isolated
= isolate_freepages_block(cc
, pfn
, block_end_pfn
,
375 * In strict mode, isolate_freepages_block() returns 0 if
376 * there are any holes in the block (ie. invalid PFNs or
383 * If we managed to isolate pages, it is always (1 << n) *
384 * pageblock_nr_pages for some non-negative n. (Max order
385 * page may span two pageblocks).
389 /* split_free_page does not map the pages */
390 map_pages(&freelist
);
393 /* Loop terminated early, cleanup. */
394 release_freepages(&freelist
);
398 /* We don't use freelists for anything. */
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone
*zone
, bool locked
, struct compact_control
*cc
)
406 unsigned int count
[2] = { 0, };
408 list_for_each_entry(page
, &cc
->migratepages
, lru
)
409 count
[!!page_is_file_cache(page
)]++;
411 /* If locked we can use the interrupt unsafe versions */
413 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
414 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
416 mod_zone_page_state(zone
, NR_ISOLATED_ANON
, count
[0]);
417 mod_zone_page_state(zone
, NR_ISOLATED_FILE
, count
[1]);
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone
*zone
)
424 unsigned long active
, inactive
, isolated
;
426 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
427 zone_page_state(zone
, NR_INACTIVE_ANON
);
428 active
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
429 zone_page_state(zone
, NR_ACTIVE_ANON
);
430 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
) +
431 zone_page_state(zone
, NR_ISOLATED_ANON
);
433 return isolated
> (inactive
+ active
) / 2;
437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
438 * @zone: Zone pages are in.
439 * @cc: Compaction control structure.
440 * @low_pfn: The first PFN of the range.
441 * @end_pfn: The one-past-the-last PFN of the range.
442 * @unevictable: true if it allows to isolate unevictable pages
444 * Isolate all pages that can be migrated from the range specified by
445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
446 * pending), otherwise PFN of the first page that was not scanned
447 * (which may be both less, equal to or more then end_pfn).
449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
452 * Apart from cc->migratepages and cc->nr_migratetypes this function
453 * does not modify any cc's fields, in particular it does not modify
454 * (or read for that matter) cc->migrate_pfn.
457 isolate_migratepages_range(struct zone
*zone
, struct compact_control
*cc
,
458 unsigned long low_pfn
, unsigned long end_pfn
, bool unevictable
)
460 unsigned long last_pageblock_nr
= 0, pageblock_nr
;
461 unsigned long nr_scanned
= 0, nr_isolated
= 0;
462 struct list_head
*migratelist
= &cc
->migratepages
;
463 struct lruvec
*lruvec
;
466 struct page
*page
= NULL
, *valid_page
= NULL
;
467 bool skipped_async_unsuitable
= false;
468 const isolate_mode_t mode
= (!cc
->sync
? ISOLATE_ASYNC_MIGRATE
: 0) |
469 (unevictable
? ISOLATE_UNEVICTABLE
: 0);
472 * Ensure that there are not too many pages isolated from the LRU
473 * list by either parallel reclaimers or compaction. If there are,
474 * delay for some time until fewer pages are isolated
476 while (unlikely(too_many_isolated(zone
))) {
477 /* async migration should just abort */
481 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
483 if (fatal_signal_pending(current
))
487 /* Time to isolate some pages for migration */
489 for (; low_pfn
< end_pfn
; low_pfn
++) {
490 /* give a chance to irqs before checking need_resched() */
491 if (locked
&& !(low_pfn
% SWAP_CLUSTER_MAX
)) {
492 if (should_release_lock(&zone
->lru_lock
)) {
493 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
499 * migrate_pfn does not necessarily start aligned to a
500 * pageblock. Ensure that pfn_valid is called when moving
501 * into a new MAX_ORDER_NR_PAGES range in case of large
502 * memory holes within the zone
504 if ((low_pfn
& (MAX_ORDER_NR_PAGES
- 1)) == 0) {
505 if (!pfn_valid(low_pfn
)) {
506 low_pfn
+= MAX_ORDER_NR_PAGES
- 1;
511 if (!pfn_valid_within(low_pfn
))
516 * Get the page and ensure the page is within the same zone.
517 * See the comment in isolate_freepages about overlapping
518 * nodes. It is deliberate that the new zone lock is not taken
519 * as memory compaction should not move pages between nodes.
521 page
= pfn_to_page(low_pfn
);
522 if (page_zone(page
) != zone
)
528 /* If isolation recently failed, do not retry */
529 pageblock_nr
= low_pfn
>> pageblock_order
;
530 if (last_pageblock_nr
!= pageblock_nr
) {
533 last_pageblock_nr
= pageblock_nr
;
534 if (!isolation_suitable(cc
, page
))
538 * For async migration, also only scan in MOVABLE
539 * blocks. Async migration is optimistic to see if
540 * the minimum amount of work satisfies the allocation
542 mt
= get_pageblock_migratetype(page
);
543 if (!cc
->sync
&& !migrate_async_suitable(mt
)) {
544 cc
->finished_update_migrate
= true;
545 skipped_async_unsuitable
= true;
551 * Skip if free. page_order cannot be used without zone->lock
552 * as nothing prevents parallel allocations or buddy merging.
558 * Check may be lockless but that's ok as we recheck later.
559 * It's possible to migrate LRU pages and balloon pages
560 * Skip any other type of page
562 if (!PageLRU(page
)) {
563 if (unlikely(balloon_page_movable(page
))) {
564 if (locked
&& balloon_page_isolate(page
)) {
565 /* Successfully isolated */
566 goto isolate_success
;
573 * PageLRU is set. lru_lock normally excludes isolation
574 * splitting and collapsing (collapsing has already happened
575 * if PageLRU is set) but the lock is not necessarily taken
576 * here and it is wasteful to take it just to check transhuge.
577 * Check TransHuge without lock and skip the whole pageblock if
578 * it's either a transhuge or hugetlbfs page, as calling
579 * compound_order() without preventing THP from splitting the
580 * page underneath us may return surprising results.
582 if (PageTransHuge(page
)) {
585 low_pfn
+= (1 << compound_order(page
)) - 1;
590 * Migration will fail if an anonymous page is pinned in memory,
591 * so avoid taking lru_lock and isolating it unnecessarily in an
592 * admittedly racy check.
594 if (!page_mapping(page
) &&
595 page_count(page
) > page_mapcount(page
))
598 /* Check if it is ok to still hold the lock */
599 locked
= compact_checklock_irqsave(&zone
->lru_lock
, &flags
,
601 if (!locked
|| fatal_signal_pending(current
))
604 /* Recheck PageLRU and PageTransHuge under lock */
607 if (PageTransHuge(page
)) {
608 low_pfn
+= (1 << compound_order(page
)) - 1;
612 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
614 /* Try isolate the page */
615 if (__isolate_lru_page(page
, mode
) != 0)
618 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
620 /* Successfully isolated */
621 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
624 cc
->finished_update_migrate
= true;
625 list_add(&page
->lru
, migratelist
);
626 cc
->nr_migratepages
++;
629 /* Avoid isolating too much */
630 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
638 low_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
) - 1;
641 acct_isolated(zone
, locked
, cc
);
644 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
647 * Update the pageblock-skip information and cached scanner pfn,
648 * if the whole pageblock was scanned without isolating any page.
649 * This is not done when pageblock was skipped due to being unsuitable
650 * for async compaction, so that eventual sync compaction can try.
652 if (low_pfn
== end_pfn
&& !skipped_async_unsuitable
)
653 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
655 trace_mm_compaction_isolate_migratepages(nr_scanned
, nr_isolated
);
657 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
659 count_compact_events(COMPACTISOLATED
, nr_isolated
);
664 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
665 #ifdef CONFIG_COMPACTION
667 * Based on information in the current compact_control, find blocks
668 * suitable for isolating free pages from and then isolate them.
670 static void isolate_freepages(struct zone
*zone
,
671 struct compact_control
*cc
)
674 unsigned long high_pfn
, low_pfn
, pfn
, z_end_pfn
, end_pfn
;
675 int nr_freepages
= cc
->nr_freepages
;
676 struct list_head
*freelist
= &cc
->freepages
;
679 * Initialise the free scanner. The starting point is where we last
680 * scanned from (or the end of the zone if starting). The low point
681 * is the end of the pageblock the migration scanner is using.
684 low_pfn
= ALIGN(cc
->migrate_pfn
+ 1, pageblock_nr_pages
);
687 * Take care that if the migration scanner is at the end of the zone
688 * that the free scanner does not accidentally move to the next zone
689 * in the next isolation cycle.
691 high_pfn
= min(low_pfn
, pfn
);
693 z_end_pfn
= zone_end_pfn(zone
);
696 * Isolate free pages until enough are available to migrate the
697 * pages on cc->migratepages. We stop searching if the migrate
698 * and free page scanners meet or enough free pages are isolated.
700 for (; pfn
>= low_pfn
&& cc
->nr_migratepages
> nr_freepages
;
701 pfn
-= pageblock_nr_pages
) {
702 unsigned long isolated
;
705 * This can iterate a massively long zone without finding any
706 * suitable migration targets, so periodically check if we need
715 * Check for overlapping nodes/zones. It's possible on some
716 * configurations to have a setup like
718 * i.e. it's possible that all pages within a zones range of
719 * pages do not belong to a single zone.
721 page
= pfn_to_page(pfn
);
722 if (page_zone(page
) != zone
)
725 /* Check the block is suitable for migration */
726 if (!suitable_migration_target(page
))
729 /* If isolation recently failed, do not retry */
730 if (!isolation_suitable(cc
, page
))
733 /* Found a block suitable for isolating free pages from */
737 * As pfn may not start aligned, pfn+pageblock_nr_page
738 * may cross a MAX_ORDER_NR_PAGES boundary and miss
739 * a pfn_valid check. Ensure isolate_freepages_block()
740 * only scans within a pageblock
742 end_pfn
= ALIGN(pfn
+ 1, pageblock_nr_pages
);
743 end_pfn
= min(end_pfn
, z_end_pfn
);
744 isolated
= isolate_freepages_block(cc
, pfn
, end_pfn
,
746 nr_freepages
+= isolated
;
749 * Record the highest PFN we isolated pages from. When next
750 * looking for free pages, the search will restart here as
751 * page migration may have returned some pages to the allocator
754 cc
->finished_update_free
= true;
755 high_pfn
= max(high_pfn
, pfn
);
759 /* split_free_page does not map the pages */
763 * If we crossed the migrate scanner, we want to keep it that way
764 * so that compact_finished() may detect this
767 cc
->free_pfn
= max(pfn
, zone
->zone_start_pfn
);
769 cc
->free_pfn
= high_pfn
;
770 cc
->nr_freepages
= nr_freepages
;
774 * This is a migrate-callback that "allocates" freepages by taking pages
775 * from the isolated freelists in the block we are migrating to.
777 static struct page
*compaction_alloc(struct page
*migratepage
,
781 struct compact_control
*cc
= (struct compact_control
*)data
;
782 struct page
*freepage
;
784 /* Isolate free pages if necessary */
785 if (list_empty(&cc
->freepages
)) {
786 isolate_freepages(cc
->zone
, cc
);
788 if (list_empty(&cc
->freepages
))
792 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
793 list_del(&freepage
->lru
);
800 * We cannot control nr_migratepages and nr_freepages fully when migration is
801 * running as migrate_pages() has no knowledge of compact_control. When
802 * migration is complete, we count the number of pages on the lists by hand.
804 static void update_nr_listpages(struct compact_control
*cc
)
806 int nr_migratepages
= 0;
807 int nr_freepages
= 0;
810 list_for_each_entry(page
, &cc
->migratepages
, lru
)
812 list_for_each_entry(page
, &cc
->freepages
, lru
)
815 cc
->nr_migratepages
= nr_migratepages
;
816 cc
->nr_freepages
= nr_freepages
;
819 /* possible outcome of isolate_migratepages */
821 ISOLATE_ABORT
, /* Abort compaction now */
822 ISOLATE_NONE
, /* No pages isolated, continue scanning */
823 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
827 * Isolate all pages that can be migrated from the block pointed to by
828 * the migrate scanner within compact_control.
830 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
831 struct compact_control
*cc
)
833 unsigned long low_pfn
, end_pfn
;
835 /* Do not scan outside zone boundaries */
836 low_pfn
= max(cc
->migrate_pfn
, zone
->zone_start_pfn
);
838 /* Only scan within a pageblock boundary */
839 end_pfn
= ALIGN(low_pfn
+ 1, pageblock_nr_pages
);
841 /* Do not cross the free scanner or scan within a memory hole */
842 if (end_pfn
> cc
->free_pfn
|| !pfn_valid(low_pfn
)) {
843 cc
->migrate_pfn
= end_pfn
;
847 /* Perform the isolation */
848 low_pfn
= isolate_migratepages_range(zone
, cc
, low_pfn
, end_pfn
, false);
849 if (!low_pfn
|| cc
->contended
)
850 return ISOLATE_ABORT
;
852 cc
->migrate_pfn
= low_pfn
;
854 return ISOLATE_SUCCESS
;
857 static int compact_finished(struct zone
*zone
,
858 struct compact_control
*cc
)
861 unsigned long watermark
;
863 if (fatal_signal_pending(current
))
864 return COMPACT_PARTIAL
;
866 /* Compaction run completes if the migrate and free scanner meet */
867 if (cc
->free_pfn
<= cc
->migrate_pfn
) {
868 /* Let the next compaction start anew. */
869 zone
->compact_cached_migrate_pfn
= zone
->zone_start_pfn
;
870 zone
->compact_cached_free_pfn
= zone_end_pfn(zone
);
873 * Mark that the PG_migrate_skip information should be cleared
874 * by kswapd when it goes to sleep. kswapd does not set the
875 * flag itself as the decision to be clear should be directly
876 * based on an allocation request.
878 if (!current_is_kswapd())
879 zone
->compact_blockskip_flush
= true;
881 return COMPACT_COMPLETE
;
885 * order == -1 is expected when compacting via
886 * /proc/sys/vm/compact_memory
889 return COMPACT_CONTINUE
;
891 /* Compaction run is not finished if the watermark is not met */
892 watermark
= low_wmark_pages(zone
);
893 watermark
+= (1 << cc
->order
);
895 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, 0, 0))
896 return COMPACT_CONTINUE
;
898 /* Direct compactor: Is a suitable page free? */
899 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
900 struct free_area
*area
= &zone
->free_area
[order
];
902 /* Job done if page is free of the right migratetype */
903 if (!list_empty(&area
->free_list
[cc
->migratetype
]))
904 return COMPACT_PARTIAL
;
906 /* Job done if allocation would set block type */
907 if (cc
->order
>= pageblock_order
&& area
->nr_free
)
908 return COMPACT_PARTIAL
;
911 return COMPACT_CONTINUE
;
915 * compaction_suitable: Is this suitable to run compaction on this zone now?
917 * COMPACT_SKIPPED - If there are too few free pages for compaction
918 * COMPACT_PARTIAL - If the allocation would succeed without compaction
919 * COMPACT_CONTINUE - If compaction should run now
921 unsigned long compaction_suitable(struct zone
*zone
, int order
)
924 unsigned long watermark
;
927 * order == -1 is expected when compacting via
928 * /proc/sys/vm/compact_memory
931 return COMPACT_CONTINUE
;
934 * Watermarks for order-0 must be met for compaction. Note the 2UL.
935 * This is because during migration, copies of pages need to be
936 * allocated and for a short time, the footprint is higher
938 watermark
= low_wmark_pages(zone
) + (2UL << order
);
939 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
940 return COMPACT_SKIPPED
;
943 * fragmentation index determines if allocation failures are due to
944 * low memory or external fragmentation
946 * index of -1000 implies allocations might succeed depending on
948 * index towards 0 implies failure is due to lack of memory
949 * index towards 1000 implies failure is due to fragmentation
951 * Only compact if a failure would be due to fragmentation.
953 fragindex
= fragmentation_index(zone
, order
);
954 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
955 return COMPACT_SKIPPED
;
957 if (fragindex
== -1000 && zone_watermark_ok(zone
, order
, watermark
,
959 return COMPACT_PARTIAL
;
961 return COMPACT_CONTINUE
;
964 static int compact_zone(struct zone
*zone
, struct compact_control
*cc
)
967 unsigned long start_pfn
= zone
->zone_start_pfn
;
968 unsigned long end_pfn
= zone_end_pfn(zone
);
970 ret
= compaction_suitable(zone
, cc
->order
);
972 case COMPACT_PARTIAL
:
973 case COMPACT_SKIPPED
:
974 /* Compaction is likely to fail */
976 case COMPACT_CONTINUE
:
977 /* Fall through to compaction */
982 * Clear pageblock skip if there were failures recently and compaction
983 * is about to be retried after being deferred. kswapd does not do
984 * this reset as it'll reset the cached information when going to sleep.
986 if (compaction_restarting(zone
, cc
->order
) && !current_is_kswapd())
987 __reset_isolation_suitable(zone
);
990 * Setup to move all movable pages to the end of the zone. Used cached
991 * information on where the scanners should start but check that it
992 * is initialised by ensuring the values are within zone boundaries.
994 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
;
995 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
996 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
> end_pfn
) {
997 cc
->free_pfn
= end_pfn
& ~(pageblock_nr_pages
-1);
998 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1000 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
> end_pfn
) {
1001 cc
->migrate_pfn
= start_pfn
;
1002 zone
->compact_cached_migrate_pfn
= cc
->migrate_pfn
;
1005 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
, cc
->free_pfn
, end_pfn
);
1007 migrate_prep_local();
1009 while ((ret
= compact_finished(zone
, cc
)) == COMPACT_CONTINUE
) {
1010 unsigned long nr_migrate
, nr_remaining
;
1013 switch (isolate_migratepages(zone
, cc
)) {
1015 ret
= COMPACT_PARTIAL
;
1016 putback_movable_pages(&cc
->migratepages
);
1017 cc
->nr_migratepages
= 0;
1021 case ISOLATE_SUCCESS
:
1025 nr_migrate
= cc
->nr_migratepages
;
1026 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1028 cc
->sync
? MIGRATE_SYNC_LIGHT
: MIGRATE_ASYNC
,
1030 update_nr_listpages(cc
);
1031 nr_remaining
= cc
->nr_migratepages
;
1033 trace_mm_compaction_migratepages(nr_migrate
- nr_remaining
,
1036 /* Release isolated pages not migrated */
1038 putback_movable_pages(&cc
->migratepages
);
1039 cc
->nr_migratepages
= 0;
1041 * migrate_pages() may return -ENOMEM when scanners meet
1042 * and we want compact_finished() to detect it
1044 if (err
== -ENOMEM
&& cc
->free_pfn
> cc
->migrate_pfn
) {
1045 ret
= COMPACT_PARTIAL
;
1052 /* Release free pages and check accounting */
1053 cc
->nr_freepages
-= release_freepages(&cc
->freepages
);
1054 VM_BUG_ON(cc
->nr_freepages
!= 0);
1056 trace_mm_compaction_end(ret
);
1061 static unsigned long compact_zone_order(struct zone
*zone
,
1062 int order
, gfp_t gfp_mask
,
1063 bool sync
, bool *contended
)
1066 struct compact_control cc
= {
1068 .nr_migratepages
= 0,
1070 .migratetype
= allocflags_to_migratetype(gfp_mask
),
1074 INIT_LIST_HEAD(&cc
.freepages
);
1075 INIT_LIST_HEAD(&cc
.migratepages
);
1077 ret
= compact_zone(zone
, &cc
);
1079 VM_BUG_ON(!list_empty(&cc
.freepages
));
1080 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1082 *contended
= cc
.contended
;
1086 int sysctl_extfrag_threshold
= 500;
1089 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1090 * @zonelist: The zonelist used for the current allocation
1091 * @order: The order of the current allocation
1092 * @gfp_mask: The GFP mask of the current allocation
1093 * @nodemask: The allowed nodes to allocate from
1094 * @sync: Whether migration is synchronous or not
1095 * @contended: Return value that is true if compaction was aborted due to lock contention
1096 * @page: Optionally capture a free page of the requested order during compaction
1098 * This is the main entry point for direct page compaction.
1100 unsigned long try_to_compact_pages(struct zonelist
*zonelist
,
1101 int order
, gfp_t gfp_mask
, nodemask_t
*nodemask
,
1102 bool sync
, bool *contended
)
1104 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1105 int may_enter_fs
= gfp_mask
& __GFP_FS
;
1106 int may_perform_io
= gfp_mask
& __GFP_IO
;
1109 int rc
= COMPACT_SKIPPED
;
1110 int alloc_flags
= 0;
1112 /* Check if the GFP flags allow compaction */
1113 if (!order
|| !may_enter_fs
|| !may_perform_io
)
1116 count_compact_event(COMPACTSTALL
);
1119 if (allocflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
1120 alloc_flags
|= ALLOC_CMA
;
1122 /* Compact each zone in the list */
1123 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1127 status
= compact_zone_order(zone
, order
, gfp_mask
, sync
,
1129 rc
= max(status
, rc
);
1131 /* If a normal allocation would succeed, stop compacting */
1132 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0,
1141 /* Compact all zones within a node */
1142 static void __compact_pgdat(pg_data_t
*pgdat
, struct compact_control
*cc
)
1147 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1149 zone
= &pgdat
->node_zones
[zoneid
];
1150 if (!populated_zone(zone
))
1153 cc
->nr_freepages
= 0;
1154 cc
->nr_migratepages
= 0;
1156 INIT_LIST_HEAD(&cc
->freepages
);
1157 INIT_LIST_HEAD(&cc
->migratepages
);
1159 if (cc
->order
== -1 || !compaction_deferred(zone
, cc
->order
))
1160 compact_zone(zone
, cc
);
1162 if (cc
->order
> 0) {
1163 if (zone_watermark_ok(zone
, cc
->order
,
1164 low_wmark_pages(zone
), 0, 0))
1165 compaction_defer_reset(zone
, cc
->order
, false);
1166 /* Currently async compaction is never deferred. */
1168 defer_compaction(zone
, cc
->order
);
1171 VM_BUG_ON(!list_empty(&cc
->freepages
));
1172 VM_BUG_ON(!list_empty(&cc
->migratepages
));
1176 void compact_pgdat(pg_data_t
*pgdat
, int order
)
1178 struct compact_control cc
= {
1186 __compact_pgdat(pgdat
, &cc
);
1189 static void compact_node(int nid
)
1191 struct compact_control cc
= {
1194 .ignore_skip_hint
= true,
1197 __compact_pgdat(NODE_DATA(nid
), &cc
);
1200 /* Compact all nodes in the system */
1201 static void compact_nodes(void)
1205 /* Flush pending updates to the LRU lists */
1206 lru_add_drain_all();
1208 for_each_online_node(nid
)
1212 /* The written value is actually unused, all memory is compacted */
1213 int sysctl_compact_memory
;
1215 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1216 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1217 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1225 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1226 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1228 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1233 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1234 static ssize_t
sysfs_compact_node(struct device
*dev
,
1235 struct device_attribute
*attr
,
1236 const char *buf
, size_t count
)
1240 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1241 /* Flush pending updates to the LRU lists */
1242 lru_add_drain_all();
1249 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1251 int compaction_register_node(struct node
*node
)
1253 return device_create_file(&node
->dev
, &dev_attr_compact
);
1256 void compaction_unregister_node(struct node
*node
)
1258 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1260 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1262 #endif /* CONFIG_COMPACTION */