4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
218 /* Is it from 0 to ~0? */
219 tlb
->fullmm
= !(start
| (end
+1));
220 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb
);
244 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
246 struct mmu_gather_batch
*batch
;
248 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
249 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
252 tlb
->active
= &tlb
->local
;
255 void tlb_flush_mmu(struct mmu_gather
*tlb
)
257 if (!tlb
->need_flush
)
259 tlb_flush_mmu_tlbonly(tlb
);
260 tlb_flush_mmu_free(tlb
);
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
267 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
269 struct mmu_gather_batch
*batch
, *next
;
273 /* keep the page table cache within bounds */
276 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
278 free_pages((unsigned long)batch
, 0);
280 tlb
->local
.next
= NULL
;
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
289 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
291 struct mmu_gather_batch
*batch
;
293 VM_BUG_ON(!tlb
->need_flush
);
296 batch
->pages
[batch
->nr
++] = page
;
297 if (batch
->nr
== batch
->max
) {
298 if (!tlb_next_batch(tlb
))
302 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
304 return batch
->max
- batch
->nr
;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg
)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table
)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
330 __tlb_remove_table(table
);
333 static void tlb_remove_table_rcu(struct rcu_head
*head
)
335 struct mmu_table_batch
*batch
;
338 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
340 for (i
= 0; i
< batch
->nr
; i
++)
341 __tlb_remove_table(batch
->tables
[i
]);
343 free_page((unsigned long)batch
);
346 void tlb_table_flush(struct mmu_gather
*tlb
)
348 struct mmu_table_batch
**batch
= &tlb
->batch
;
351 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
356 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
358 struct mmu_table_batch
**batch
= &tlb
->batch
;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
367 __tlb_remove_table(table
);
371 if (*batch
== NULL
) {
372 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
373 if (*batch
== NULL
) {
374 tlb_remove_table_one(table
);
379 (*batch
)->tables
[(*batch
)->nr
++] = table
;
380 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
381 tlb_table_flush(tlb
);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
393 pgtable_t token
= pmd_pgtable(*pmd
);
395 pte_free_tlb(tlb
, token
, addr
);
396 atomic_long_dec(&tlb
->mm
->nr_ptes
);
399 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
400 unsigned long addr
, unsigned long end
,
401 unsigned long floor
, unsigned long ceiling
)
408 pmd
= pmd_offset(pud
, addr
);
410 next
= pmd_addr_end(addr
, end
);
411 if (pmd_none_or_clear_bad(pmd
))
413 free_pte_range(tlb
, pmd
, addr
);
414 } while (pmd
++, addr
= next
, addr
!= end
);
424 if (end
- 1 > ceiling
- 1)
427 pmd
= pmd_offset(pud
, start
);
429 pmd_free_tlb(tlb
, pmd
, start
);
432 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
433 unsigned long addr
, unsigned long end
,
434 unsigned long floor
, unsigned long ceiling
)
441 pud
= pud_offset(pgd
, addr
);
443 next
= pud_addr_end(addr
, end
);
444 if (pud_none_or_clear_bad(pud
))
446 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
447 } while (pud
++, addr
= next
, addr
!= end
);
453 ceiling
&= PGDIR_MASK
;
457 if (end
- 1 > ceiling
- 1)
460 pud
= pud_offset(pgd
, start
);
462 pud_free_tlb(tlb
, pud
, start
);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather
*tlb
,
469 unsigned long addr
, unsigned long end
,
470 unsigned long floor
, unsigned long ceiling
)
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
512 if (end
- 1 > ceiling
- 1)
517 pgd
= pgd_offset(tlb
->mm
, addr
);
519 next
= pgd_addr_end(addr
, end
);
520 if (pgd_none_or_clear_bad(pgd
))
522 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
523 } while (pgd
++, addr
= next
, addr
!= end
);
526 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
527 unsigned long floor
, unsigned long ceiling
)
530 struct vm_area_struct
*next
= vma
->vm_next
;
531 unsigned long addr
= vma
->vm_start
;
534 * Hide vma from rmap and truncate_pagecache before freeing
537 unlink_anon_vmas(vma
);
538 unlink_file_vma(vma
);
540 if (is_vm_hugetlb_page(vma
)) {
541 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
542 floor
, next
? next
->vm_start
: ceiling
);
545 * Optimization: gather nearby vmas into one call down
547 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
548 && !is_vm_hugetlb_page(next
)) {
551 unlink_anon_vmas(vma
);
552 unlink_file_vma(vma
);
554 free_pgd_range(tlb
, addr
, vma
->vm_end
,
555 floor
, next
? next
->vm_start
: ceiling
);
561 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
562 pmd_t
*pmd
, unsigned long address
)
565 pgtable_t
new = pte_alloc_one(mm
, address
);
566 int wait_split_huge_page
;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl
= pmd_lock(mm
, pmd
);
586 wait_split_huge_page
= 0;
587 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
588 atomic_long_inc(&mm
->nr_ptes
);
589 pmd_populate(mm
, pmd
, new);
591 } else if (unlikely(pmd_trans_splitting(*pmd
)))
592 wait_split_huge_page
= 1;
596 if (wait_split_huge_page
)
597 wait_split_huge_page(vma
->anon_vma
, pmd
);
601 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
603 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm
.page_table_lock
);
610 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm
, pmd
, new);
614 VM_BUG_ON(pmd_trans_splitting(*pmd
));
615 spin_unlock(&init_mm
.page_table_lock
);
617 pte_free_kernel(&init_mm
, new);
621 static inline void init_rss_vec(int *rss
)
623 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
626 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
630 if (current
->mm
== mm
)
632 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
634 add_mm_counter(mm
, i
, rss
[i
]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
645 pte_t pte
, struct page
*page
)
647 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
648 pud_t
*pud
= pud_offset(pgd
, addr
);
649 pmd_t
*pmd
= pmd_offset(pud
, addr
);
650 struct address_space
*mapping
;
652 static unsigned long resume
;
653 static unsigned long nr_shown
;
654 static unsigned long nr_unshown
;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown
== 60) {
661 if (time_before(jiffies
, resume
)) {
667 "BUG: Bad page map: %lu messages suppressed\n",
674 resume
= jiffies
+ 60 * HZ
;
676 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
677 index
= linear_page_index(vma
, addr
);
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
682 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
684 dump_page(page
, "bad pte");
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
695 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
696 vma
->vm_file
->f_op
->mmap
);
698 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
701 static inline bool is_cow_mapping(vm_flags_t flags
)
703 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
709 * "Special" mappings do not wish to be associated with a "struct page" (either
710 * it doesn't exist, or it exists but they don't want to touch it). In this
711 * case, NULL is returned here. "Normal" mappings do have a struct page.
713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714 * pte bit, in which case this function is trivial. Secondly, an architecture
715 * may not have a spare pte bit, which requires a more complicated scheme,
718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719 * special mapping (even if there are underlying and valid "struct pages").
720 * COWed pages of a VM_PFNMAP are always normal.
722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725 * mapping will always honor the rule
727 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729 * And for normal mappings this is false.
731 * This restricts such mappings to be a linear translation from virtual address
732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
733 * as the vma is not a COW mapping; in that case, we know that all ptes are
734 * special (because none can have been COWed).
737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740 * page" backing, however the difference is that _all_ pages with a struct
741 * page (that is, those where pfn_valid is true) are refcounted and considered
742 * normal pages by the VM. The disadvantage is that pages are refcounted
743 * (which can be slower and simply not an option for some PFNMAP users). The
744 * advantage is that we don't have to follow the strict linearity rule of
745 * PFNMAP mappings in order to support COWable mappings.
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
751 # define HAVE_PTE_SPECIAL 0
753 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
756 unsigned long pfn
= pte_pfn(pte
);
758 if (HAVE_PTE_SPECIAL
) {
759 if (likely(!pte_special(pte
)))
761 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
763 if (!is_zero_pfn(pfn
))
764 print_bad_pte(vma
, addr
, pte
, NULL
);
768 /* !HAVE_PTE_SPECIAL case follows: */
770 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
771 if (vma
->vm_flags
& VM_MIXEDMAP
) {
777 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
778 if (pfn
== vma
->vm_pgoff
+ off
)
780 if (!is_cow_mapping(vma
->vm_flags
))
785 if (is_zero_pfn(pfn
))
788 if (unlikely(pfn
> highest_memmap_pfn
)) {
789 print_bad_pte(vma
, addr
, pte
, NULL
);
794 * NOTE! We still have PageReserved() pages in the page tables.
795 * eg. VDSO mappings can cause them to exist.
798 return pfn_to_page(pfn
);
802 * copy one vm_area from one task to the other. Assumes the page tables
803 * already present in the new task to be cleared in the whole range
804 * covered by this vma.
807 static inline unsigned long
808 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
809 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
810 unsigned long addr
, int *rss
)
812 unsigned long vm_flags
= vma
->vm_flags
;
813 pte_t pte
= *src_pte
;
816 /* pte contains position in swap or file, so copy. */
817 if (unlikely(!pte_present(pte
))) {
818 if (!pte_file(pte
)) {
819 swp_entry_t entry
= pte_to_swp_entry(pte
);
821 if (swap_duplicate(entry
) < 0)
824 /* make sure dst_mm is on swapoff's mmlist. */
825 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
826 spin_lock(&mmlist_lock
);
827 if (list_empty(&dst_mm
->mmlist
))
828 list_add(&dst_mm
->mmlist
,
830 spin_unlock(&mmlist_lock
);
832 if (likely(!non_swap_entry(entry
)))
834 else if (is_migration_entry(entry
)) {
835 page
= migration_entry_to_page(entry
);
842 if (is_write_migration_entry(entry
) &&
843 is_cow_mapping(vm_flags
)) {
845 * COW mappings require pages in both
846 * parent and child to be set to read.
848 make_migration_entry_read(&entry
);
849 pte
= swp_entry_to_pte(entry
);
850 if (pte_swp_soft_dirty(*src_pte
))
851 pte
= pte_swp_mksoft_dirty(pte
);
852 set_pte_at(src_mm
, addr
, src_pte
, pte
);
860 * If it's a COW mapping, write protect it both
861 * in the parent and the child
863 if (is_cow_mapping(vm_flags
)) {
864 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
865 pte
= pte_wrprotect(pte
);
869 * If it's a shared mapping, mark it clean in
872 if (vm_flags
& VM_SHARED
)
873 pte
= pte_mkclean(pte
);
874 pte
= pte_mkold(pte
);
876 page
= vm_normal_page(vma
, addr
, pte
);
887 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
891 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
892 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
893 unsigned long addr
, unsigned long end
)
895 pte_t
*orig_src_pte
, *orig_dst_pte
;
896 pte_t
*src_pte
, *dst_pte
;
897 spinlock_t
*src_ptl
, *dst_ptl
;
899 int rss
[NR_MM_COUNTERS
];
900 swp_entry_t entry
= (swp_entry_t
){0};
905 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
908 src_pte
= pte_offset_map(src_pmd
, addr
);
909 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
910 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
911 orig_src_pte
= src_pte
;
912 orig_dst_pte
= dst_pte
;
913 arch_enter_lazy_mmu_mode();
917 * We are holding two locks at this point - either of them
918 * could generate latencies in another task on another CPU.
920 if (progress
>= 32) {
922 if (need_resched() ||
923 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
926 if (pte_none(*src_pte
)) {
930 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
935 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
937 arch_leave_lazy_mmu_mode();
938 spin_unlock(src_ptl
);
939 pte_unmap(orig_src_pte
);
940 add_mm_rss_vec(dst_mm
, rss
);
941 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
945 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
954 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
955 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
956 unsigned long addr
, unsigned long end
)
958 pmd_t
*src_pmd
, *dst_pmd
;
961 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
964 src_pmd
= pmd_offset(src_pud
, addr
);
966 next
= pmd_addr_end(addr
, end
);
967 if (pmd_trans_huge(*src_pmd
)) {
969 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
970 err
= copy_huge_pmd(dst_mm
, src_mm
,
971 dst_pmd
, src_pmd
, addr
, vma
);
978 if (pmd_none_or_clear_bad(src_pmd
))
980 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
983 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
987 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
988 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
989 unsigned long addr
, unsigned long end
)
991 pud_t
*src_pud
, *dst_pud
;
994 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
997 src_pud
= pud_offset(src_pgd
, addr
);
999 next
= pud_addr_end(addr
, end
);
1000 if (pud_none_or_clear_bad(src_pud
))
1002 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1005 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1009 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1010 struct vm_area_struct
*vma
)
1012 pgd_t
*src_pgd
, *dst_pgd
;
1014 unsigned long addr
= vma
->vm_start
;
1015 unsigned long end
= vma
->vm_end
;
1016 unsigned long mmun_start
; /* For mmu_notifiers */
1017 unsigned long mmun_end
; /* For mmu_notifiers */
1022 * Don't copy ptes where a page fault will fill them correctly.
1023 * Fork becomes much lighter when there are big shared or private
1024 * readonly mappings. The tradeoff is that copy_page_range is more
1025 * efficient than faulting.
1027 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1028 VM_PFNMAP
| VM_MIXEDMAP
))) {
1033 if (is_vm_hugetlb_page(vma
))
1034 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1036 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1038 * We do not free on error cases below as remove_vma
1039 * gets called on error from higher level routine
1041 ret
= track_pfn_copy(vma
);
1047 * We need to invalidate the secondary MMU mappings only when
1048 * there could be a permission downgrade on the ptes of the
1049 * parent mm. And a permission downgrade will only happen if
1050 * is_cow_mapping() returns true.
1052 is_cow
= is_cow_mapping(vma
->vm_flags
);
1056 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1060 dst_pgd
= pgd_offset(dst_mm
, addr
);
1061 src_pgd
= pgd_offset(src_mm
, addr
);
1063 next
= pgd_addr_end(addr
, end
);
1064 if (pgd_none_or_clear_bad(src_pgd
))
1066 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1067 vma
, addr
, next
))) {
1071 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1074 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1078 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1079 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1080 unsigned long addr
, unsigned long end
,
1081 struct zap_details
*details
)
1083 struct mm_struct
*mm
= tlb
->mm
;
1084 int force_flush
= 0;
1085 int rss
[NR_MM_COUNTERS
];
1092 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1094 arch_enter_lazy_mmu_mode();
1097 if (pte_none(ptent
)) {
1101 if (pte_present(ptent
)) {
1104 page
= vm_normal_page(vma
, addr
, ptent
);
1105 if (unlikely(details
) && page
) {
1107 * unmap_shared_mapping_pages() wants to
1108 * invalidate cache without truncating:
1109 * unmap shared but keep private pages.
1111 if (details
->check_mapping
&&
1112 details
->check_mapping
!= page
->mapping
)
1115 * Each page->index must be checked when
1116 * invalidating or truncating nonlinear.
1118 if (details
->nonlinear_vma
&&
1119 (page
->index
< details
->first_index
||
1120 page
->index
> details
->last_index
))
1123 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1125 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1126 if (unlikely(!page
))
1128 if (unlikely(details
) && details
->nonlinear_vma
1129 && linear_page_index(details
->nonlinear_vma
,
1130 addr
) != page
->index
) {
1131 pte_t ptfile
= pgoff_to_pte(page
->index
);
1132 if (pte_soft_dirty(ptent
))
1133 pte_file_mksoft_dirty(ptfile
);
1134 set_pte_at(mm
, addr
, pte
, ptfile
);
1137 rss
[MM_ANONPAGES
]--;
1139 if (pte_dirty(ptent
)) {
1141 set_page_dirty(page
);
1143 if (pte_young(ptent
) &&
1144 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1145 mark_page_accessed(page
);
1146 rss
[MM_FILEPAGES
]--;
1148 page_remove_rmap(page
);
1149 if (unlikely(page_mapcount(page
) < 0))
1150 print_bad_pte(vma
, addr
, ptent
, page
);
1151 if (unlikely(!__tlb_remove_page(tlb
, page
))) {
1158 * If details->check_mapping, we leave swap entries;
1159 * if details->nonlinear_vma, we leave file entries.
1161 if (unlikely(details
))
1163 if (pte_file(ptent
)) {
1164 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1165 print_bad_pte(vma
, addr
, ptent
, NULL
);
1167 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1169 if (!non_swap_entry(entry
))
1171 else if (is_migration_entry(entry
)) {
1174 page
= migration_entry_to_page(entry
);
1177 rss
[MM_ANONPAGES
]--;
1179 rss
[MM_FILEPAGES
]--;
1181 if (unlikely(!free_swap_and_cache(entry
)))
1182 print_bad_pte(vma
, addr
, ptent
, NULL
);
1184 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1185 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1187 add_mm_rss_vec(mm
, rss
);
1188 arch_leave_lazy_mmu_mode();
1190 /* Do the actual TLB flush before dropping ptl */
1192 unsigned long old_end
;
1195 * Flush the TLB just for the previous segment,
1196 * then update the range to be the remaining
1201 tlb_flush_mmu_tlbonly(tlb
);
1205 pte_unmap_unlock(start_pte
, ptl
);
1208 * If we forced a TLB flush (either due to running out of
1209 * batch buffers or because we needed to flush dirty TLB
1210 * entries before releasing the ptl), free the batched
1211 * memory too. Restart if we didn't do everything.
1215 tlb_flush_mmu_free(tlb
);
1224 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1225 struct vm_area_struct
*vma
, pud_t
*pud
,
1226 unsigned long addr
, unsigned long end
,
1227 struct zap_details
*details
)
1232 pmd
= pmd_offset(pud
, addr
);
1234 next
= pmd_addr_end(addr
, end
);
1235 if (pmd_trans_huge(*pmd
)) {
1236 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1237 #ifdef CONFIG_DEBUG_VM
1238 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 __func__
, addr
, end
,
1246 split_huge_page_pmd(vma
, addr
, pmd
);
1247 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1252 * Here there can be other concurrent MADV_DONTNEED or
1253 * trans huge page faults running, and if the pmd is
1254 * none or trans huge it can change under us. This is
1255 * because MADV_DONTNEED holds the mmap_sem in read
1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1260 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1263 } while (pmd
++, addr
= next
, addr
!= end
);
1268 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1269 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1270 unsigned long addr
, unsigned long end
,
1271 struct zap_details
*details
)
1276 pud
= pud_offset(pgd
, addr
);
1278 next
= pud_addr_end(addr
, end
);
1279 if (pud_none_or_clear_bad(pud
))
1281 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1282 } while (pud
++, addr
= next
, addr
!= end
);
1287 static void unmap_page_range(struct mmu_gather
*tlb
,
1288 struct vm_area_struct
*vma
,
1289 unsigned long addr
, unsigned long end
,
1290 struct zap_details
*details
)
1295 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1298 BUG_ON(addr
>= end
);
1299 mem_cgroup_uncharge_start();
1300 tlb_start_vma(tlb
, vma
);
1301 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1303 next
= pgd_addr_end(addr
, end
);
1304 if (pgd_none_or_clear_bad(pgd
))
1306 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1307 } while (pgd
++, addr
= next
, addr
!= end
);
1308 tlb_end_vma(tlb
, vma
);
1309 mem_cgroup_uncharge_end();
1313 static void unmap_single_vma(struct mmu_gather
*tlb
,
1314 struct vm_area_struct
*vma
, unsigned long start_addr
,
1315 unsigned long end_addr
,
1316 struct zap_details
*details
)
1318 unsigned long start
= max(vma
->vm_start
, start_addr
);
1321 if (start
>= vma
->vm_end
)
1323 end
= min(vma
->vm_end
, end_addr
);
1324 if (end
<= vma
->vm_start
)
1328 uprobe_munmap(vma
, start
, end
);
1330 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1331 untrack_pfn(vma
, 0, 0);
1334 if (unlikely(is_vm_hugetlb_page(vma
))) {
1336 * It is undesirable to test vma->vm_file as it
1337 * should be non-null for valid hugetlb area.
1338 * However, vm_file will be NULL in the error
1339 * cleanup path of mmap_region. When
1340 * hugetlbfs ->mmap method fails,
1341 * mmap_region() nullifies vma->vm_file
1342 * before calling this function to clean up.
1343 * Since no pte has actually been setup, it is
1344 * safe to do nothing in this case.
1347 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1348 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1349 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1352 unmap_page_range(tlb
, vma
, start
, end
, details
);
1357 * unmap_vmas - unmap a range of memory covered by a list of vma's
1358 * @tlb: address of the caller's struct mmu_gather
1359 * @vma: the starting vma
1360 * @start_addr: virtual address at which to start unmapping
1361 * @end_addr: virtual address at which to end unmapping
1363 * Unmap all pages in the vma list.
1365 * Only addresses between `start' and `end' will be unmapped.
1367 * The VMA list must be sorted in ascending virtual address order.
1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370 * range after unmap_vmas() returns. So the only responsibility here is to
1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372 * drops the lock and schedules.
1374 void unmap_vmas(struct mmu_gather
*tlb
,
1375 struct vm_area_struct
*vma
, unsigned long start_addr
,
1376 unsigned long end_addr
)
1378 struct mm_struct
*mm
= vma
->vm_mm
;
1380 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1381 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1382 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1383 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1387 * zap_page_range - remove user pages in a given range
1388 * @vma: vm_area_struct holding the applicable pages
1389 * @start: starting address of pages to zap
1390 * @size: number of bytes to zap
1391 * @details: details of nonlinear truncation or shared cache invalidation
1393 * Caller must protect the VMA list
1395 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1396 unsigned long size
, struct zap_details
*details
)
1398 struct mm_struct
*mm
= vma
->vm_mm
;
1399 struct mmu_gather tlb
;
1400 unsigned long end
= start
+ size
;
1403 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1404 update_hiwater_rss(mm
);
1405 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1406 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1407 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1408 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1409 tlb_finish_mmu(&tlb
, start
, end
);
1413 * zap_page_range_single - remove user pages in a given range
1414 * @vma: vm_area_struct holding the applicable pages
1415 * @address: starting address of pages to zap
1416 * @size: number of bytes to zap
1417 * @details: details of nonlinear truncation or shared cache invalidation
1419 * The range must fit into one VMA.
1421 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1422 unsigned long size
, struct zap_details
*details
)
1424 struct mm_struct
*mm
= vma
->vm_mm
;
1425 struct mmu_gather tlb
;
1426 unsigned long end
= address
+ size
;
1429 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1430 update_hiwater_rss(mm
);
1431 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1432 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1433 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1434 tlb_finish_mmu(&tlb
, address
, end
);
1438 * zap_vma_ptes - remove ptes mapping the vma
1439 * @vma: vm_area_struct holding ptes to be zapped
1440 * @address: starting address of pages to zap
1441 * @size: number of bytes to zap
1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445 * The entire address range must be fully contained within the vma.
1447 * Returns 0 if successful.
1449 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1452 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1453 !(vma
->vm_flags
& VM_PFNMAP
))
1455 zap_page_range_single(vma
, address
, size
, NULL
);
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1461 * follow_page_mask - look up a page descriptor from a user-virtual address
1462 * @vma: vm_area_struct mapping @address
1463 * @address: virtual address to look up
1464 * @flags: flags modifying lookup behaviour
1465 * @page_mask: on output, *page_mask is set according to the size of the page
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1473 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1474 unsigned long address
, unsigned int flags
,
1475 unsigned int *page_mask
)
1483 struct mm_struct
*mm
= vma
->vm_mm
;
1487 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1488 if (!IS_ERR(page
)) {
1489 BUG_ON(flags
& FOLL_GET
);
1494 pgd
= pgd_offset(mm
, address
);
1495 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1498 pud
= pud_offset(pgd
, address
);
1501 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1502 if (flags
& FOLL_GET
)
1504 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1507 if (unlikely(pud_bad(*pud
)))
1510 pmd
= pmd_offset(pud
, address
);
1513 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1514 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1515 if (flags
& FOLL_GET
) {
1517 * Refcount on tail pages are not well-defined and
1518 * shouldn't be taken. The caller should handle a NULL
1519 * return when trying to follow tail pages.
1530 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1532 if (pmd_trans_huge(*pmd
)) {
1533 if (flags
& FOLL_SPLIT
) {
1534 split_huge_page_pmd(vma
, address
, pmd
);
1535 goto split_fallthrough
;
1537 ptl
= pmd_lock(mm
, pmd
);
1538 if (likely(pmd_trans_huge(*pmd
))) {
1539 if (unlikely(pmd_trans_splitting(*pmd
))) {
1541 wait_split_huge_page(vma
->anon_vma
, pmd
);
1543 page
= follow_trans_huge_pmd(vma
, address
,
1546 *page_mask
= HPAGE_PMD_NR
- 1;
1554 if (unlikely(pmd_bad(*pmd
)))
1557 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1560 if (!pte_present(pte
)) {
1563 * KSM's break_ksm() relies upon recognizing a ksm page
1564 * even while it is being migrated, so for that case we
1565 * need migration_entry_wait().
1567 if (likely(!(flags
& FOLL_MIGRATION
)))
1569 if (pte_none(pte
) || pte_file(pte
))
1571 entry
= pte_to_swp_entry(pte
);
1572 if (!is_migration_entry(entry
))
1574 pte_unmap_unlock(ptep
, ptl
);
1575 migration_entry_wait(mm
, pmd
, address
);
1576 goto split_fallthrough
;
1578 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1580 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1583 page
= vm_normal_page(vma
, address
, pte
);
1584 if (unlikely(!page
)) {
1585 if ((flags
& FOLL_DUMP
) ||
1586 !is_zero_pfn(pte_pfn(pte
)))
1588 page
= pte_page(pte
);
1591 if (flags
& FOLL_GET
)
1592 get_page_foll(page
);
1593 if (flags
& FOLL_TOUCH
) {
1594 if ((flags
& FOLL_WRITE
) &&
1595 !pte_dirty(pte
) && !PageDirty(page
))
1596 set_page_dirty(page
);
1598 * pte_mkyoung() would be more correct here, but atomic care
1599 * is needed to avoid losing the dirty bit: it is easier to use
1600 * mark_page_accessed().
1602 mark_page_accessed(page
);
1604 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1606 * The preliminary mapping check is mainly to avoid the
1607 * pointless overhead of lock_page on the ZERO_PAGE
1608 * which might bounce very badly if there is contention.
1610 * If the page is already locked, we don't need to
1611 * handle it now - vmscan will handle it later if and
1612 * when it attempts to reclaim the page.
1614 if (page
->mapping
&& trylock_page(page
)) {
1615 lru_add_drain(); /* push cached pages to LRU */
1617 * Because we lock page here, and migration is
1618 * blocked by the pte's page reference, and we
1619 * know the page is still mapped, we don't even
1620 * need to check for file-cache page truncation.
1622 mlock_vma_page(page
);
1627 pte_unmap_unlock(ptep
, ptl
);
1632 pte_unmap_unlock(ptep
, ptl
);
1633 return ERR_PTR(-EFAULT
);
1636 pte_unmap_unlock(ptep
, ptl
);
1642 * When core dumping an enormous anonymous area that nobody
1643 * has touched so far, we don't want to allocate unnecessary pages or
1644 * page tables. Return error instead of NULL to skip handle_mm_fault,
1645 * then get_dump_page() will return NULL to leave a hole in the dump.
1646 * But we can only make this optimization where a hole would surely
1647 * be zero-filled if handle_mm_fault() actually did handle it.
1649 if ((flags
& FOLL_DUMP
) &&
1650 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1651 return ERR_PTR(-EFAULT
);
1655 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1657 return stack_guard_page_start(vma
, addr
) ||
1658 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1662 * __get_user_pages() - pin user pages in memory
1663 * @tsk: task_struct of target task
1664 * @mm: mm_struct of target mm
1665 * @start: starting user address
1666 * @nr_pages: number of pages from start to pin
1667 * @gup_flags: flags modifying pin behaviour
1668 * @pages: array that receives pointers to the pages pinned.
1669 * Should be at least nr_pages long. Or NULL, if caller
1670 * only intends to ensure the pages are faulted in.
1671 * @vmas: array of pointers to vmas corresponding to each page.
1672 * Or NULL if the caller does not require them.
1673 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1675 * Returns number of pages pinned. This may be fewer than the number
1676 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1677 * were pinned, returns -errno. Each page returned must be released
1678 * with a put_page() call when it is finished with. vmas will only
1679 * remain valid while mmap_sem is held.
1681 * Must be called with mmap_sem held for read or write.
1683 * __get_user_pages walks a process's page tables and takes a reference to
1684 * each struct page that each user address corresponds to at a given
1685 * instant. That is, it takes the page that would be accessed if a user
1686 * thread accesses the given user virtual address at that instant.
1688 * This does not guarantee that the page exists in the user mappings when
1689 * __get_user_pages returns, and there may even be a completely different
1690 * page there in some cases (eg. if mmapped pagecache has been invalidated
1691 * and subsequently re faulted). However it does guarantee that the page
1692 * won't be freed completely. And mostly callers simply care that the page
1693 * contains data that was valid *at some point in time*. Typically, an IO
1694 * or similar operation cannot guarantee anything stronger anyway because
1695 * locks can't be held over the syscall boundary.
1697 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1698 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1699 * appropriate) must be called after the page is finished with, and
1700 * before put_page is called.
1702 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1703 * or mmap_sem contention, and if waiting is needed to pin all pages,
1704 * *@nonblocking will be set to 0.
1706 * In most cases, get_user_pages or get_user_pages_fast should be used
1707 * instead of __get_user_pages. __get_user_pages should be used only if
1708 * you need some special @gup_flags.
1710 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1711 unsigned long start
, unsigned long nr_pages
,
1712 unsigned int gup_flags
, struct page
**pages
,
1713 struct vm_area_struct
**vmas
, int *nonblocking
)
1716 unsigned long vm_flags
;
1717 unsigned int page_mask
;
1722 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1725 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726 * would be called on PROT_NONE ranges. We must never invoke
1727 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728 * page faults would unprotect the PROT_NONE ranges if
1729 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731 * FOLL_FORCE is set.
1733 if (!(gup_flags
& FOLL_FORCE
))
1734 gup_flags
|= FOLL_NUMA
;
1739 struct vm_area_struct
*vma
;
1741 vma
= find_extend_vma(mm
, start
);
1742 if (!vma
&& in_gate_area(mm
, start
)) {
1743 unsigned long pg
= start
& PAGE_MASK
;
1749 /* user gate pages are read-only */
1750 if (gup_flags
& FOLL_WRITE
)
1753 pgd
= pgd_offset_k(pg
);
1755 pgd
= pgd_offset_gate(mm
, pg
);
1756 BUG_ON(pgd_none(*pgd
));
1757 pud
= pud_offset(pgd
, pg
);
1758 BUG_ON(pud_none(*pud
));
1759 pmd
= pmd_offset(pud
, pg
);
1762 VM_BUG_ON(pmd_trans_huge(*pmd
));
1763 pte
= pte_offset_map(pmd
, pg
);
1764 if (pte_none(*pte
)) {
1768 vma
= get_gate_vma(mm
);
1772 page
= vm_normal_page(vma
, start
, *pte
);
1774 if (!(gup_flags
& FOLL_DUMP
) &&
1775 is_zero_pfn(pte_pfn(*pte
)))
1776 page
= pte_page(*pte
);
1792 vm_flags
= vma
->vm_flags
;
1793 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
1796 if (gup_flags
& FOLL_WRITE
) {
1797 if (!(vm_flags
& VM_WRITE
)) {
1798 if (!(gup_flags
& FOLL_FORCE
))
1801 * We used to let the write,force case do COW
1802 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1803 * ptrace could set a breakpoint in a read-only
1804 * mapping of an executable, without corrupting
1805 * the file (yet only when that file had been
1806 * opened for writing!). Anon pages in shared
1807 * mappings are surprising: now just reject it.
1809 if (!is_cow_mapping(vm_flags
)) {
1810 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
1815 if (!(vm_flags
& VM_READ
)) {
1816 if (!(gup_flags
& FOLL_FORCE
))
1819 * Is there actually any vma we can reach here
1820 * which does not have VM_MAYREAD set?
1822 if (!(vm_flags
& VM_MAYREAD
))
1827 if (is_vm_hugetlb_page(vma
)) {
1828 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1829 &start
, &nr_pages
, i
, gup_flags
);
1835 unsigned int foll_flags
= gup_flags
;
1836 unsigned int page_increm
;
1839 * If we have a pending SIGKILL, don't keep faulting
1840 * pages and potentially allocating memory.
1842 if (unlikely(fatal_signal_pending(current
)))
1843 return i
? i
: -ERESTARTSYS
;
1846 while (!(page
= follow_page_mask(vma
, start
,
1847 foll_flags
, &page_mask
))) {
1849 unsigned int fault_flags
= 0;
1851 /* For mlock, just skip the stack guard page. */
1852 if (foll_flags
& FOLL_MLOCK
) {
1853 if (stack_guard_page(vma
, start
))
1856 if (foll_flags
& FOLL_WRITE
)
1857 fault_flags
|= FAULT_FLAG_WRITE
;
1859 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1860 if (foll_flags
& FOLL_NOWAIT
)
1861 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1863 ret
= handle_mm_fault(mm
, vma
, start
,
1866 if (ret
& VM_FAULT_ERROR
) {
1867 if (ret
& VM_FAULT_OOM
)
1868 return i
? i
: -ENOMEM
;
1869 if (ret
& (VM_FAULT_HWPOISON
|
1870 VM_FAULT_HWPOISON_LARGE
)) {
1873 else if (gup_flags
& FOLL_HWPOISON
)
1878 if (ret
& VM_FAULT_SIGBUS
)
1884 if (ret
& VM_FAULT_MAJOR
)
1890 if (ret
& VM_FAULT_RETRY
) {
1897 * The VM_FAULT_WRITE bit tells us that
1898 * do_wp_page has broken COW when necessary,
1899 * even if maybe_mkwrite decided not to set
1900 * pte_write. We can thus safely do subsequent
1901 * page lookups as if they were reads. But only
1902 * do so when looping for pte_write is futile:
1903 * in some cases userspace may also be wanting
1904 * to write to the gotten user page, which a
1905 * read fault here might prevent (a readonly
1906 * page might get reCOWed by userspace write).
1908 if ((ret
& VM_FAULT_WRITE
) &&
1909 !(vma
->vm_flags
& VM_WRITE
))
1910 foll_flags
&= ~FOLL_WRITE
;
1915 return i
? i
: PTR_ERR(page
);
1919 flush_anon_page(vma
, page
, start
);
1920 flush_dcache_page(page
);
1928 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
1929 if (page_increm
> nr_pages
)
1930 page_increm
= nr_pages
;
1932 start
+= page_increm
* PAGE_SIZE
;
1933 nr_pages
-= page_increm
;
1934 } while (nr_pages
&& start
< vma
->vm_end
);
1938 return i
? : -EFAULT
;
1940 EXPORT_SYMBOL(__get_user_pages
);
1943 * fixup_user_fault() - manually resolve a user page fault
1944 * @tsk: the task_struct to use for page fault accounting, or
1945 * NULL if faults are not to be recorded.
1946 * @mm: mm_struct of target mm
1947 * @address: user address
1948 * @fault_flags:flags to pass down to handle_mm_fault()
1950 * This is meant to be called in the specific scenario where for locking reasons
1951 * we try to access user memory in atomic context (within a pagefault_disable()
1952 * section), this returns -EFAULT, and we want to resolve the user fault before
1955 * Typically this is meant to be used by the futex code.
1957 * The main difference with get_user_pages() is that this function will
1958 * unconditionally call handle_mm_fault() which will in turn perform all the
1959 * necessary SW fixup of the dirty and young bits in the PTE, while
1960 * handle_mm_fault() only guarantees to update these in the struct page.
1962 * This is important for some architectures where those bits also gate the
1963 * access permission to the page because they are maintained in software. On
1964 * such architectures, gup() will not be enough to make a subsequent access
1967 * This should be called with the mm_sem held for read.
1969 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1970 unsigned long address
, unsigned int fault_flags
)
1972 struct vm_area_struct
*vma
;
1973 vm_flags_t vm_flags
;
1976 vma
= find_extend_vma(mm
, address
);
1977 if (!vma
|| address
< vma
->vm_start
)
1980 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
1981 if (!(vm_flags
& vma
->vm_flags
))
1984 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1985 if (ret
& VM_FAULT_ERROR
) {
1986 if (ret
& VM_FAULT_OOM
)
1988 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1990 if (ret
& VM_FAULT_SIGBUS
)
1995 if (ret
& VM_FAULT_MAJOR
)
2004 * get_user_pages() - pin user pages in memory
2005 * @tsk: the task_struct to use for page fault accounting, or
2006 * NULL if faults are not to be recorded.
2007 * @mm: mm_struct of target mm
2008 * @start: starting user address
2009 * @nr_pages: number of pages from start to pin
2010 * @write: whether pages will be written to by the caller
2011 * @force: whether to force access even when user mapping is currently
2012 * protected (but never forces write access to shared mapping).
2013 * @pages: array that receives pointers to the pages pinned.
2014 * Should be at least nr_pages long. Or NULL, if caller
2015 * only intends to ensure the pages are faulted in.
2016 * @vmas: array of pointers to vmas corresponding to each page.
2017 * Or NULL if the caller does not require them.
2019 * Returns number of pages pinned. This may be fewer than the number
2020 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2021 * were pinned, returns -errno. Each page returned must be released
2022 * with a put_page() call when it is finished with. vmas will only
2023 * remain valid while mmap_sem is held.
2025 * Must be called with mmap_sem held for read or write.
2027 * get_user_pages walks a process's page tables and takes a reference to
2028 * each struct page that each user address corresponds to at a given
2029 * instant. That is, it takes the page that would be accessed if a user
2030 * thread accesses the given user virtual address at that instant.
2032 * This does not guarantee that the page exists in the user mappings when
2033 * get_user_pages returns, and there may even be a completely different
2034 * page there in some cases (eg. if mmapped pagecache has been invalidated
2035 * and subsequently re faulted). However it does guarantee that the page
2036 * won't be freed completely. And mostly callers simply care that the page
2037 * contains data that was valid *at some point in time*. Typically, an IO
2038 * or similar operation cannot guarantee anything stronger anyway because
2039 * locks can't be held over the syscall boundary.
2041 * If write=0, the page must not be written to. If the page is written to,
2042 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2043 * after the page is finished with, and before put_page is called.
2045 * get_user_pages is typically used for fewer-copy IO operations, to get a
2046 * handle on the memory by some means other than accesses via the user virtual
2047 * addresses. The pages may be submitted for DMA to devices or accessed via
2048 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2049 * use the correct cache flushing APIs.
2051 * See also get_user_pages_fast, for performance critical applications.
2053 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
2054 unsigned long start
, unsigned long nr_pages
, int write
,
2055 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
2057 int flags
= FOLL_TOUCH
;
2062 flags
|= FOLL_WRITE
;
2064 flags
|= FOLL_FORCE
;
2066 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
2069 EXPORT_SYMBOL(get_user_pages
);
2072 * get_dump_page() - pin user page in memory while writing it to core dump
2073 * @addr: user address
2075 * Returns struct page pointer of user page pinned for dump,
2076 * to be freed afterwards by page_cache_release() or put_page().
2078 * Returns NULL on any kind of failure - a hole must then be inserted into
2079 * the corefile, to preserve alignment with its headers; and also returns
2080 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2081 * allowing a hole to be left in the corefile to save diskspace.
2083 * Called without mmap_sem, but after all other threads have been killed.
2085 #ifdef CONFIG_ELF_CORE
2086 struct page
*get_dump_page(unsigned long addr
)
2088 struct vm_area_struct
*vma
;
2091 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2092 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2095 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2098 #endif /* CONFIG_ELF_CORE */
2100 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2103 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2104 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2106 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2108 VM_BUG_ON(pmd_trans_huge(*pmd
));
2109 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2116 * This is the old fallback for page remapping.
2118 * For historical reasons, it only allows reserved pages. Only
2119 * old drivers should use this, and they needed to mark their
2120 * pages reserved for the old functions anyway.
2122 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2123 struct page
*page
, pgprot_t prot
)
2125 struct mm_struct
*mm
= vma
->vm_mm
;
2134 flush_dcache_page(page
);
2135 pte
= get_locked_pte(mm
, addr
, &ptl
);
2139 if (!pte_none(*pte
))
2142 /* Ok, finally just insert the thing.. */
2144 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2145 page_add_file_rmap(page
);
2146 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2149 pte_unmap_unlock(pte
, ptl
);
2152 pte_unmap_unlock(pte
, ptl
);
2158 * vm_insert_page - insert single page into user vma
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @page: source kernel page
2163 * This allows drivers to insert individual pages they've allocated
2166 * The page has to be a nice clean _individual_ kernel allocation.
2167 * If you allocate a compound page, you need to have marked it as
2168 * such (__GFP_COMP), or manually just split the page up yourself
2169 * (see split_page()).
2171 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2172 * took an arbitrary page protection parameter. This doesn't allow
2173 * that. Your vma protection will have to be set up correctly, which
2174 * means that if you want a shared writable mapping, you'd better
2175 * ask for a shared writable mapping!
2177 * The page does not need to be reserved.
2179 * Usually this function is called from f_op->mmap() handler
2180 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2181 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2182 * function from other places, for example from page-fault handler.
2184 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2187 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2189 if (!page_count(page
))
2191 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2192 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2193 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2194 vma
->vm_flags
|= VM_MIXEDMAP
;
2196 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2198 EXPORT_SYMBOL(vm_insert_page
);
2200 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2201 unsigned long pfn
, pgprot_t prot
)
2203 struct mm_struct
*mm
= vma
->vm_mm
;
2209 pte
= get_locked_pte(mm
, addr
, &ptl
);
2213 if (!pte_none(*pte
))
2216 /* Ok, finally just insert the thing.. */
2217 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2218 set_pte_at(mm
, addr
, pte
, entry
);
2219 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2223 pte_unmap_unlock(pte
, ptl
);
2229 * vm_insert_pfn - insert single pfn into user vma
2230 * @vma: user vma to map to
2231 * @addr: target user address of this page
2232 * @pfn: source kernel pfn
2234 * Similar to vm_insert_page, this allows drivers to insert individual pages
2235 * they've allocated into a user vma. Same comments apply.
2237 * This function should only be called from a vm_ops->fault handler, and
2238 * in that case the handler should return NULL.
2240 * vma cannot be a COW mapping.
2242 * As this is called only for pages that do not currently exist, we
2243 * do not need to flush old virtual caches or the TLB.
2245 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2249 pgprot_t pgprot
= vma
->vm_page_prot
;
2251 * Technically, architectures with pte_special can avoid all these
2252 * restrictions (same for remap_pfn_range). However we would like
2253 * consistency in testing and feature parity among all, so we should
2254 * try to keep these invariants in place for everybody.
2256 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2257 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2258 (VM_PFNMAP
|VM_MIXEDMAP
));
2259 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2260 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2262 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2264 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2267 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2271 EXPORT_SYMBOL(vm_insert_pfn
);
2273 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2276 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2278 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2282 * If we don't have pte special, then we have to use the pfn_valid()
2283 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284 * refcount the page if pfn_valid is true (hence insert_page rather
2285 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2286 * without pte special, it would there be refcounted as a normal page.
2288 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2291 page
= pfn_to_page(pfn
);
2292 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2294 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2296 EXPORT_SYMBOL(vm_insert_mixed
);
2299 * maps a range of physical memory into the requested pages. the old
2300 * mappings are removed. any references to nonexistent pages results
2301 * in null mappings (currently treated as "copy-on-access")
2303 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2304 unsigned long addr
, unsigned long end
,
2305 unsigned long pfn
, pgprot_t prot
)
2310 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2313 arch_enter_lazy_mmu_mode();
2315 BUG_ON(!pte_none(*pte
));
2316 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2318 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2319 arch_leave_lazy_mmu_mode();
2320 pte_unmap_unlock(pte
- 1, ptl
);
2324 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2325 unsigned long addr
, unsigned long end
,
2326 unsigned long pfn
, pgprot_t prot
)
2331 pfn
-= addr
>> PAGE_SHIFT
;
2332 pmd
= pmd_alloc(mm
, pud
, addr
);
2335 VM_BUG_ON(pmd_trans_huge(*pmd
));
2337 next
= pmd_addr_end(addr
, end
);
2338 if (remap_pte_range(mm
, pmd
, addr
, next
,
2339 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2341 } while (pmd
++, addr
= next
, addr
!= end
);
2345 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2346 unsigned long addr
, unsigned long end
,
2347 unsigned long pfn
, pgprot_t prot
)
2352 pfn
-= addr
>> PAGE_SHIFT
;
2353 pud
= pud_alloc(mm
, pgd
, addr
);
2357 next
= pud_addr_end(addr
, end
);
2358 if (remap_pmd_range(mm
, pud
, addr
, next
,
2359 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2361 } while (pud
++, addr
= next
, addr
!= end
);
2366 * remap_pfn_range - remap kernel memory to userspace
2367 * @vma: user vma to map to
2368 * @addr: target user address to start at
2369 * @pfn: physical address of kernel memory
2370 * @size: size of map area
2371 * @prot: page protection flags for this mapping
2373 * Note: this is only safe if the mm semaphore is held when called.
2375 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2376 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2380 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2381 struct mm_struct
*mm
= vma
->vm_mm
;
2385 * Physically remapped pages are special. Tell the
2386 * rest of the world about it:
2387 * VM_IO tells people not to look at these pages
2388 * (accesses can have side effects).
2389 * VM_PFNMAP tells the core MM that the base pages are just
2390 * raw PFN mappings, and do not have a "struct page" associated
2393 * Disable vma merging and expanding with mremap().
2395 * Omit vma from core dump, even when VM_IO turned off.
2397 * There's a horrible special case to handle copy-on-write
2398 * behaviour that some programs depend on. We mark the "original"
2399 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2400 * See vm_normal_page() for details.
2402 if (is_cow_mapping(vma
->vm_flags
)) {
2403 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2405 vma
->vm_pgoff
= pfn
;
2408 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2412 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2414 BUG_ON(addr
>= end
);
2415 pfn
-= addr
>> PAGE_SHIFT
;
2416 pgd
= pgd_offset(mm
, addr
);
2417 flush_cache_range(vma
, addr
, end
);
2419 next
= pgd_addr_end(addr
, end
);
2420 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2421 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2424 } while (pgd
++, addr
= next
, addr
!= end
);
2427 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2431 EXPORT_SYMBOL(remap_pfn_range
);
2434 * vm_iomap_memory - remap memory to userspace
2435 * @vma: user vma to map to
2436 * @start: start of area
2437 * @len: size of area
2439 * This is a simplified io_remap_pfn_range() for common driver use. The
2440 * driver just needs to give us the physical memory range to be mapped,
2441 * we'll figure out the rest from the vma information.
2443 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2444 * whatever write-combining details or similar.
2446 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2448 unsigned long vm_len
, pfn
, pages
;
2450 /* Check that the physical memory area passed in looks valid */
2451 if (start
+ len
< start
)
2454 * You *really* shouldn't map things that aren't page-aligned,
2455 * but we've historically allowed it because IO memory might
2456 * just have smaller alignment.
2458 len
+= start
& ~PAGE_MASK
;
2459 pfn
= start
>> PAGE_SHIFT
;
2460 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2461 if (pfn
+ pages
< pfn
)
2464 /* We start the mapping 'vm_pgoff' pages into the area */
2465 if (vma
->vm_pgoff
> pages
)
2467 pfn
+= vma
->vm_pgoff
;
2468 pages
-= vma
->vm_pgoff
;
2470 /* Can we fit all of the mapping? */
2471 vm_len
= vma
->vm_end
- vma
->vm_start
;
2472 if (vm_len
>> PAGE_SHIFT
> pages
)
2475 /* Ok, let it rip */
2476 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2478 EXPORT_SYMBOL(vm_iomap_memory
);
2480 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2481 unsigned long addr
, unsigned long end
,
2482 pte_fn_t fn
, void *data
)
2487 spinlock_t
*uninitialized_var(ptl
);
2489 pte
= (mm
== &init_mm
) ?
2490 pte_alloc_kernel(pmd
, addr
) :
2491 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2495 BUG_ON(pmd_huge(*pmd
));
2497 arch_enter_lazy_mmu_mode();
2499 token
= pmd_pgtable(*pmd
);
2502 err
= fn(pte
++, token
, addr
, data
);
2505 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2507 arch_leave_lazy_mmu_mode();
2510 pte_unmap_unlock(pte
-1, ptl
);
2514 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2515 unsigned long addr
, unsigned long end
,
2516 pte_fn_t fn
, void *data
)
2522 BUG_ON(pud_huge(*pud
));
2524 pmd
= pmd_alloc(mm
, pud
, addr
);
2528 next
= pmd_addr_end(addr
, end
);
2529 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2532 } while (pmd
++, addr
= next
, addr
!= end
);
2536 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2537 unsigned long addr
, unsigned long end
,
2538 pte_fn_t fn
, void *data
)
2544 pud
= pud_alloc(mm
, pgd
, addr
);
2548 next
= pud_addr_end(addr
, end
);
2549 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2552 } while (pud
++, addr
= next
, addr
!= end
);
2557 * Scan a region of virtual memory, filling in page tables as necessary
2558 * and calling a provided function on each leaf page table.
2560 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2561 unsigned long size
, pte_fn_t fn
, void *data
)
2565 unsigned long end
= addr
+ size
;
2568 BUG_ON(addr
>= end
);
2569 pgd
= pgd_offset(mm
, addr
);
2571 next
= pgd_addr_end(addr
, end
);
2572 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2575 } while (pgd
++, addr
= next
, addr
!= end
);
2579 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2582 * handle_pte_fault chooses page fault handler according to an entry
2583 * which was read non-atomically. Before making any commitment, on
2584 * those architectures or configurations (e.g. i386 with PAE) which
2585 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2586 * must check under lock before unmapping the pte and proceeding
2587 * (but do_wp_page is only called after already making such a check;
2588 * and do_anonymous_page can safely check later on).
2590 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2591 pte_t
*page_table
, pte_t orig_pte
)
2594 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2595 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2596 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2598 same
= pte_same(*page_table
, orig_pte
);
2602 pte_unmap(page_table
);
2606 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2608 debug_dma_assert_idle(src
);
2611 * If the source page was a PFN mapping, we don't have
2612 * a "struct page" for it. We do a best-effort copy by
2613 * just copying from the original user address. If that
2614 * fails, we just zero-fill it. Live with it.
2616 if (unlikely(!src
)) {
2617 void *kaddr
= kmap_atomic(dst
);
2618 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2621 * This really shouldn't fail, because the page is there
2622 * in the page tables. But it might just be unreadable,
2623 * in which case we just give up and fill the result with
2626 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2628 kunmap_atomic(kaddr
);
2629 flush_dcache_page(dst
);
2631 copy_user_highpage(dst
, src
, va
, vma
);
2635 * Notify the address space that the page is about to become writable so that
2636 * it can prohibit this or wait for the page to get into an appropriate state.
2638 * We do this without the lock held, so that it can sleep if it needs to.
2640 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2641 unsigned long address
)
2643 struct vm_fault vmf
;
2646 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2647 vmf
.pgoff
= page
->index
;
2648 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2651 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2652 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2654 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2656 if (!page
->mapping
) {
2658 return 0; /* retry */
2660 ret
|= VM_FAULT_LOCKED
;
2662 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2667 * This routine handles present pages, when users try to write
2668 * to a shared page. It is done by copying the page to a new address
2669 * and decrementing the shared-page counter for the old page.
2671 * Note that this routine assumes that the protection checks have been
2672 * done by the caller (the low-level page fault routine in most cases).
2673 * Thus we can safely just mark it writable once we've done any necessary
2676 * We also mark the page dirty at this point even though the page will
2677 * change only once the write actually happens. This avoids a few races,
2678 * and potentially makes it more efficient.
2680 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681 * but allow concurrent faults), with pte both mapped and locked.
2682 * We return with mmap_sem still held, but pte unmapped and unlocked.
2684 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2685 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2686 spinlock_t
*ptl
, pte_t orig_pte
)
2689 struct page
*old_page
, *new_page
= NULL
;
2692 int page_mkwrite
= 0;
2693 struct page
*dirty_page
= NULL
;
2694 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2695 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2697 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2700 * VM_MIXEDMAP !pfn_valid() case
2702 * We should not cow pages in a shared writeable mapping.
2703 * Just mark the pages writable as we can't do any dirty
2704 * accounting on raw pfn maps.
2706 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2707 (VM_WRITE
|VM_SHARED
))
2713 * Take out anonymous pages first, anonymous shared vmas are
2714 * not dirty accountable.
2716 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2717 if (!trylock_page(old_page
)) {
2718 page_cache_get(old_page
);
2719 pte_unmap_unlock(page_table
, ptl
);
2720 lock_page(old_page
);
2721 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2723 if (!pte_same(*page_table
, orig_pte
)) {
2724 unlock_page(old_page
);
2727 page_cache_release(old_page
);
2729 if (reuse_swap_page(old_page
)) {
2731 * The page is all ours. Move it to our anon_vma so
2732 * the rmap code will not search our parent or siblings.
2733 * Protected against the rmap code by the page lock.
2735 page_move_anon_rmap(old_page
, vma
, address
);
2736 unlock_page(old_page
);
2739 unlock_page(old_page
);
2740 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2741 (VM_WRITE
|VM_SHARED
))) {
2743 * Only catch write-faults on shared writable pages,
2744 * read-only shared pages can get COWed by
2745 * get_user_pages(.write=1, .force=1).
2747 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2749 page_cache_get(old_page
);
2750 pte_unmap_unlock(page_table
, ptl
);
2751 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2752 if (unlikely(!tmp
|| (tmp
&
2753 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2754 page_cache_release(old_page
);
2758 * Since we dropped the lock we need to revalidate
2759 * the PTE as someone else may have changed it. If
2760 * they did, we just return, as we can count on the
2761 * MMU to tell us if they didn't also make it writable.
2763 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2765 if (!pte_same(*page_table
, orig_pte
)) {
2766 unlock_page(old_page
);
2772 dirty_page
= old_page
;
2773 get_page(dirty_page
);
2777 * Clear the pages cpupid information as the existing
2778 * information potentially belongs to a now completely
2779 * unrelated process.
2782 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2784 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2785 entry
= pte_mkyoung(orig_pte
);
2786 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2787 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2788 update_mmu_cache(vma
, address
, page_table
);
2789 pte_unmap_unlock(page_table
, ptl
);
2790 ret
|= VM_FAULT_WRITE
;
2796 * Yes, Virginia, this is actually required to prevent a race
2797 * with clear_page_dirty_for_io() from clearing the page dirty
2798 * bit after it clear all dirty ptes, but before a racing
2799 * do_wp_page installs a dirty pte.
2801 * do_shared_fault is protected similarly.
2803 if (!page_mkwrite
) {
2804 wait_on_page_locked(dirty_page
);
2805 set_page_dirty_balance(dirty_page
);
2806 /* file_update_time outside page_lock */
2808 file_update_time(vma
->vm_file
);
2810 put_page(dirty_page
);
2812 struct address_space
*mapping
= dirty_page
->mapping
;
2814 set_page_dirty(dirty_page
);
2815 unlock_page(dirty_page
);
2816 page_cache_release(dirty_page
);
2819 * Some device drivers do not set page.mapping
2820 * but still dirty their pages
2822 balance_dirty_pages_ratelimited(mapping
);
2830 * Ok, we need to copy. Oh, well..
2832 page_cache_get(old_page
);
2834 pte_unmap_unlock(page_table
, ptl
);
2836 if (unlikely(anon_vma_prepare(vma
)))
2839 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2840 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2844 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2847 cow_user_page(new_page
, old_page
, address
, vma
);
2849 __SetPageUptodate(new_page
);
2851 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))
2854 mmun_start
= address
& PAGE_MASK
;
2855 mmun_end
= mmun_start
+ PAGE_SIZE
;
2856 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2859 * Re-check the pte - we dropped the lock
2861 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2862 if (likely(pte_same(*page_table
, orig_pte
))) {
2864 if (!PageAnon(old_page
)) {
2865 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2866 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2869 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2870 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2871 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2872 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2874 * Clear the pte entry and flush it first, before updating the
2875 * pte with the new entry. This will avoid a race condition
2876 * seen in the presence of one thread doing SMC and another
2879 ptep_clear_flush(vma
, address
, page_table
);
2880 page_add_new_anon_rmap(new_page
, vma
, address
);
2882 * We call the notify macro here because, when using secondary
2883 * mmu page tables (such as kvm shadow page tables), we want the
2884 * new page to be mapped directly into the secondary page table.
2886 set_pte_at_notify(mm
, address
, page_table
, entry
);
2887 update_mmu_cache(vma
, address
, page_table
);
2890 * Only after switching the pte to the new page may
2891 * we remove the mapcount here. Otherwise another
2892 * process may come and find the rmap count decremented
2893 * before the pte is switched to the new page, and
2894 * "reuse" the old page writing into it while our pte
2895 * here still points into it and can be read by other
2898 * The critical issue is to order this
2899 * page_remove_rmap with the ptp_clear_flush above.
2900 * Those stores are ordered by (if nothing else,)
2901 * the barrier present in the atomic_add_negative
2902 * in page_remove_rmap.
2904 * Then the TLB flush in ptep_clear_flush ensures that
2905 * no process can access the old page before the
2906 * decremented mapcount is visible. And the old page
2907 * cannot be reused until after the decremented
2908 * mapcount is visible. So transitively, TLBs to
2909 * old page will be flushed before it can be reused.
2911 page_remove_rmap(old_page
);
2914 /* Free the old page.. */
2915 new_page
= old_page
;
2916 ret
|= VM_FAULT_WRITE
;
2918 mem_cgroup_uncharge_page(new_page
);
2921 page_cache_release(new_page
);
2923 pte_unmap_unlock(page_table
, ptl
);
2924 if (mmun_end
> mmun_start
)
2925 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2928 * Don't let another task, with possibly unlocked vma,
2929 * keep the mlocked page.
2931 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2932 lock_page(old_page
); /* LRU manipulation */
2933 munlock_vma_page(old_page
);
2934 unlock_page(old_page
);
2936 page_cache_release(old_page
);
2940 page_cache_release(new_page
);
2943 page_cache_release(old_page
);
2944 return VM_FAULT_OOM
;
2947 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2948 unsigned long start_addr
, unsigned long end_addr
,
2949 struct zap_details
*details
)
2951 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2954 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2955 struct zap_details
*details
)
2957 struct vm_area_struct
*vma
;
2958 pgoff_t vba
, vea
, zba
, zea
;
2960 vma_interval_tree_foreach(vma
, root
,
2961 details
->first_index
, details
->last_index
) {
2963 vba
= vma
->vm_pgoff
;
2964 vea
= vba
+ vma_pages(vma
) - 1;
2965 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2966 zba
= details
->first_index
;
2969 zea
= details
->last_index
;
2973 unmap_mapping_range_vma(vma
,
2974 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2975 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2980 static inline void unmap_mapping_range_list(struct list_head
*head
,
2981 struct zap_details
*details
)
2983 struct vm_area_struct
*vma
;
2986 * In nonlinear VMAs there is no correspondence between virtual address
2987 * offset and file offset. So we must perform an exhaustive search
2988 * across *all* the pages in each nonlinear VMA, not just the pages
2989 * whose virtual address lies outside the file truncation point.
2991 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2992 details
->nonlinear_vma
= vma
;
2993 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2998 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2999 * @mapping: the address space containing mmaps to be unmapped.
3000 * @holebegin: byte in first page to unmap, relative to the start of
3001 * the underlying file. This will be rounded down to a PAGE_SIZE
3002 * boundary. Note that this is different from truncate_pagecache(), which
3003 * must keep the partial page. In contrast, we must get rid of
3005 * @holelen: size of prospective hole in bytes. This will be rounded
3006 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3008 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3009 * but 0 when invalidating pagecache, don't throw away private data.
3011 void unmap_mapping_range(struct address_space
*mapping
,
3012 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
3014 struct zap_details details
;
3015 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
3016 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3018 /* Check for overflow. */
3019 if (sizeof(holelen
) > sizeof(hlen
)) {
3021 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3022 if (holeend
& ~(long long)ULONG_MAX
)
3023 hlen
= ULONG_MAX
- hba
+ 1;
3026 details
.check_mapping
= even_cows
? NULL
: mapping
;
3027 details
.nonlinear_vma
= NULL
;
3028 details
.first_index
= hba
;
3029 details
.last_index
= hba
+ hlen
- 1;
3030 if (details
.last_index
< details
.first_index
)
3031 details
.last_index
= ULONG_MAX
;
3034 mutex_lock(&mapping
->i_mmap_mutex
);
3035 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
3036 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3037 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
3038 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
3039 mutex_unlock(&mapping
->i_mmap_mutex
);
3041 EXPORT_SYMBOL(unmap_mapping_range
);
3044 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3045 * but allow concurrent faults), and pte mapped but not yet locked.
3046 * We return with mmap_sem still held, but pte unmapped and unlocked.
3048 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3049 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3050 unsigned int flags
, pte_t orig_pte
)
3053 struct page
*page
, *swapcache
;
3057 struct mem_cgroup
*ptr
;
3061 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3064 entry
= pte_to_swp_entry(orig_pte
);
3065 if (unlikely(non_swap_entry(entry
))) {
3066 if (is_migration_entry(entry
)) {
3067 migration_entry_wait(mm
, pmd
, address
);
3068 } else if (is_hwpoison_entry(entry
)) {
3069 ret
= VM_FAULT_HWPOISON
;
3071 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3072 ret
= VM_FAULT_SIGBUS
;
3076 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3077 page
= lookup_swap_cache(entry
);
3079 page
= swapin_readahead(entry
,
3080 GFP_HIGHUSER_MOVABLE
, vma
, address
);
3083 * Back out if somebody else faulted in this pte
3084 * while we released the pte lock.
3086 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3087 if (likely(pte_same(*page_table
, orig_pte
)))
3089 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3093 /* Had to read the page from swap area: Major fault */
3094 ret
= VM_FAULT_MAJOR
;
3095 count_vm_event(PGMAJFAULT
);
3096 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
3097 } else if (PageHWPoison(page
)) {
3099 * hwpoisoned dirty swapcache pages are kept for killing
3100 * owner processes (which may be unknown at hwpoison time)
3102 ret
= VM_FAULT_HWPOISON
;
3103 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3109 locked
= lock_page_or_retry(page
, mm
, flags
);
3111 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3113 ret
|= VM_FAULT_RETRY
;
3118 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3119 * release the swapcache from under us. The page pin, and pte_same
3120 * test below, are not enough to exclude that. Even if it is still
3121 * swapcache, we need to check that the page's swap has not changed.
3123 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
3126 page
= ksm_might_need_to_copy(page
, vma
, address
);
3127 if (unlikely(!page
)) {
3133 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3139 * Back out if somebody else already faulted in this pte.
3141 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3142 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3145 if (unlikely(!PageUptodate(page
))) {
3146 ret
= VM_FAULT_SIGBUS
;
3151 * The page isn't present yet, go ahead with the fault.
3153 * Be careful about the sequence of operations here.
3154 * To get its accounting right, reuse_swap_page() must be called
3155 * while the page is counted on swap but not yet in mapcount i.e.
3156 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3157 * must be called after the swap_free(), or it will never succeed.
3158 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3159 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3160 * in page->private. In this case, a record in swap_cgroup is silently
3161 * discarded at swap_free().
3164 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3165 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3166 pte
= mk_pte(page
, vma
->vm_page_prot
);
3167 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3168 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3169 flags
&= ~FAULT_FLAG_WRITE
;
3170 ret
|= VM_FAULT_WRITE
;
3173 flush_icache_page(vma
, page
);
3174 if (pte_swp_soft_dirty(orig_pte
))
3175 pte
= pte_mksoft_dirty(pte
);
3176 set_pte_at(mm
, address
, page_table
, pte
);
3177 if (page
== swapcache
)
3178 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3179 else /* ksm created a completely new copy */
3180 page_add_new_anon_rmap(page
, vma
, address
);
3181 /* It's better to call commit-charge after rmap is established */
3182 mem_cgroup_commit_charge_swapin(page
, ptr
);
3185 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3186 try_to_free_swap(page
);
3188 if (page
!= swapcache
) {
3190 * Hold the lock to avoid the swap entry to be reused
3191 * until we take the PT lock for the pte_same() check
3192 * (to avoid false positives from pte_same). For
3193 * further safety release the lock after the swap_free
3194 * so that the swap count won't change under a
3195 * parallel locked swapcache.
3197 unlock_page(swapcache
);
3198 page_cache_release(swapcache
);
3201 if (flags
& FAULT_FLAG_WRITE
) {
3202 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3203 if (ret
& VM_FAULT_ERROR
)
3204 ret
&= VM_FAULT_ERROR
;
3208 /* No need to invalidate - it was non-present before */
3209 update_mmu_cache(vma
, address
, page_table
);
3211 pte_unmap_unlock(page_table
, ptl
);
3215 mem_cgroup_cancel_charge_swapin(ptr
);
3216 pte_unmap_unlock(page_table
, ptl
);
3220 page_cache_release(page
);
3221 if (page
!= swapcache
) {
3222 unlock_page(swapcache
);
3223 page_cache_release(swapcache
);
3229 * This is like a special single-page "expand_{down|up}wards()",
3230 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3231 * doesn't hit another vma.
3233 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3235 address
&= PAGE_MASK
;
3236 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3237 struct vm_area_struct
*prev
= vma
->vm_prev
;
3240 * Is there a mapping abutting this one below?
3242 * That's only ok if it's the same stack mapping
3243 * that has gotten split..
3245 if (prev
&& prev
->vm_end
== address
)
3246 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3248 expand_downwards(vma
, address
- PAGE_SIZE
);
3250 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3251 struct vm_area_struct
*next
= vma
->vm_next
;
3253 /* As VM_GROWSDOWN but s/below/above/ */
3254 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3255 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3257 expand_upwards(vma
, address
+ PAGE_SIZE
);
3263 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264 * but allow concurrent faults), and pte mapped but not yet locked.
3265 * We return with mmap_sem still held, but pte unmapped and unlocked.
3267 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3268 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3275 pte_unmap(page_table
);
3277 /* Check if we need to add a guard page to the stack */
3278 if (check_stack_guard_page(vma
, address
) < 0)
3279 return VM_FAULT_SIGBUS
;
3281 /* Use the zero-page for reads */
3282 if (!(flags
& FAULT_FLAG_WRITE
)) {
3283 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3284 vma
->vm_page_prot
));
3285 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3286 if (!pte_none(*page_table
))
3291 /* Allocate our own private page. */
3292 if (unlikely(anon_vma_prepare(vma
)))
3294 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3298 * The memory barrier inside __SetPageUptodate makes sure that
3299 * preceeding stores to the page contents become visible before
3300 * the set_pte_at() write.
3302 __SetPageUptodate(page
);
3304 if (mem_cgroup_charge_anon(page
, mm
, GFP_KERNEL
))
3307 entry
= mk_pte(page
, vma
->vm_page_prot
);
3308 if (vma
->vm_flags
& VM_WRITE
)
3309 entry
= pte_mkwrite(pte_mkdirty(entry
));
3311 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3312 if (!pte_none(*page_table
))
3315 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3316 page_add_new_anon_rmap(page
, vma
, address
);
3318 set_pte_at(mm
, address
, page_table
, entry
);
3320 /* No need to invalidate - it was non-present before */
3321 update_mmu_cache(vma
, address
, page_table
);
3323 pte_unmap_unlock(page_table
, ptl
);
3326 mem_cgroup_uncharge_page(page
);
3327 page_cache_release(page
);
3330 page_cache_release(page
);
3332 return VM_FAULT_OOM
;
3335 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
3336 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
3338 struct vm_fault vmf
;
3341 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3346 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3347 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3350 if (unlikely(PageHWPoison(vmf
.page
))) {
3351 if (ret
& VM_FAULT_LOCKED
)
3352 unlock_page(vmf
.page
);
3353 page_cache_release(vmf
.page
);
3354 return VM_FAULT_HWPOISON
;
3357 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3358 lock_page(vmf
.page
);
3360 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
3367 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3369 * @vma: virtual memory area
3370 * @address: user virtual address
3371 * @page: page to map
3372 * @pte: pointer to target page table entry
3373 * @write: true, if new entry is writable
3374 * @anon: true, if it's anonymous page
3376 * Caller must hold page table lock relevant for @pte.
3378 * Target users are page handler itself and implementations of
3379 * vm_ops->map_pages.
3381 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
3382 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
3386 flush_icache_page(vma
, page
);
3387 entry
= mk_pte(page
, vma
->vm_page_prot
);
3389 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3390 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
3391 pte_mksoft_dirty(entry
);
3393 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3394 page_add_new_anon_rmap(page
, vma
, address
);
3396 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
3397 page_add_file_rmap(page
);
3399 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
3401 /* no need to invalidate: a not-present page won't be cached */
3402 update_mmu_cache(vma
, address
, pte
);
3405 #define FAULT_AROUND_ORDER 4
3407 #ifdef CONFIG_DEBUG_FS
3408 static unsigned int fault_around_order
= FAULT_AROUND_ORDER
;
3410 static int fault_around_order_get(void *data
, u64
*val
)
3412 *val
= fault_around_order
;
3416 static int fault_around_order_set(void *data
, u64 val
)
3418 BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER
) > PTRS_PER_PTE
);
3419 if (1UL << val
> PTRS_PER_PTE
)
3421 fault_around_order
= val
;
3424 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops
,
3425 fault_around_order_get
, fault_around_order_set
, "%llu\n");
3427 static int __init
fault_around_debugfs(void)
3431 ret
= debugfs_create_file("fault_around_order", 0644, NULL
, NULL
,
3432 &fault_around_order_fops
);
3434 pr_warn("Failed to create fault_around_order in debugfs");
3437 late_initcall(fault_around_debugfs
);
3439 static inline unsigned long fault_around_pages(void)
3441 return 1UL << fault_around_order
;
3444 static inline unsigned long fault_around_mask(void)
3446 return ~((1UL << (PAGE_SHIFT
+ fault_around_order
)) - 1);
3449 static inline unsigned long fault_around_pages(void)
3451 unsigned long nr_pages
;
3453 nr_pages
= 1UL << FAULT_AROUND_ORDER
;
3454 BUILD_BUG_ON(nr_pages
> PTRS_PER_PTE
);
3458 static inline unsigned long fault_around_mask(void)
3460 return ~((1UL << (PAGE_SHIFT
+ FAULT_AROUND_ORDER
)) - 1);
3464 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
3465 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
3467 unsigned long start_addr
;
3469 struct vm_fault vmf
;
3472 start_addr
= max(address
& fault_around_mask(), vma
->vm_start
);
3473 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3478 * max_pgoff is either end of page table or end of vma
3479 * or fault_around_pages() from pgoff, depending what is neast.
3481 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3483 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
3484 pgoff
+ fault_around_pages() - 1);
3486 /* Check if it makes any sense to call ->map_pages */
3487 while (!pte_none(*pte
)) {
3488 if (++pgoff
> max_pgoff
)
3490 start_addr
+= PAGE_SIZE
;
3491 if (start_addr
>= vma
->vm_end
)
3496 vmf
.virtual_address
= (void __user
*) start_addr
;
3499 vmf
.max_pgoff
= max_pgoff
;
3501 vma
->vm_ops
->map_pages(vma
, &vmf
);
3504 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3505 unsigned long address
, pmd_t
*pmd
,
3506 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3508 struct page
*fault_page
;
3514 * Let's call ->map_pages() first and use ->fault() as fallback
3515 * if page by the offset is not ready to be mapped (cold cache or
3518 if (vma
->vm_ops
->map_pages
) {
3519 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3520 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
3521 if (!pte_same(*pte
, orig_pte
))
3523 pte_unmap_unlock(pte
, ptl
);
3526 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3527 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3530 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3531 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3532 pte_unmap_unlock(pte
, ptl
);
3533 unlock_page(fault_page
);
3534 page_cache_release(fault_page
);
3537 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
3538 unlock_page(fault_page
);
3540 pte_unmap_unlock(pte
, ptl
);
3544 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3545 unsigned long address
, pmd_t
*pmd
,
3546 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3548 struct page
*fault_page
, *new_page
;
3553 if (unlikely(anon_vma_prepare(vma
)))
3554 return VM_FAULT_OOM
;
3556 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3558 return VM_FAULT_OOM
;
3560 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
)) {
3561 page_cache_release(new_page
);
3562 return VM_FAULT_OOM
;
3565 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3566 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3569 copy_user_highpage(new_page
, fault_page
, address
, vma
);
3570 __SetPageUptodate(new_page
);
3572 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3573 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3574 pte_unmap_unlock(pte
, ptl
);
3575 unlock_page(fault_page
);
3576 page_cache_release(fault_page
);
3579 do_set_pte(vma
, address
, new_page
, pte
, true, true);
3580 pte_unmap_unlock(pte
, ptl
);
3581 unlock_page(fault_page
);
3582 page_cache_release(fault_page
);
3585 mem_cgroup_uncharge_page(new_page
);
3586 page_cache_release(new_page
);
3590 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3591 unsigned long address
, pmd_t
*pmd
,
3592 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3594 struct page
*fault_page
;
3595 struct address_space
*mapping
;
3601 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3602 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3606 * Check if the backing address space wants to know that the page is
3607 * about to become writable
3609 if (vma
->vm_ops
->page_mkwrite
) {
3610 unlock_page(fault_page
);
3611 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
3612 if (unlikely(!tmp
||
3613 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3614 page_cache_release(fault_page
);
3619 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3620 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3621 pte_unmap_unlock(pte
, ptl
);
3622 unlock_page(fault_page
);
3623 page_cache_release(fault_page
);
3626 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3627 pte_unmap_unlock(pte
, ptl
);
3629 if (set_page_dirty(fault_page
))
3631 mapping
= fault_page
->mapping
;
3632 unlock_page(fault_page
);
3633 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3635 * Some device drivers do not set page.mapping but still
3638 balance_dirty_pages_ratelimited(mapping
);
3641 /* file_update_time outside page_lock */
3642 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3643 file_update_time(vma
->vm_file
);
3648 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3649 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3650 unsigned int flags
, pte_t orig_pte
)
3652 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3653 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3655 pte_unmap(page_table
);
3656 if (!(flags
& FAULT_FLAG_WRITE
))
3657 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3659 if (!(vma
->vm_flags
& VM_SHARED
))
3660 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3662 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3666 * Fault of a previously existing named mapping. Repopulate the pte
3667 * from the encoded file_pte if possible. This enables swappable
3670 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3671 * but allow concurrent faults), and pte mapped but not yet locked.
3672 * We return with mmap_sem still held, but pte unmapped and unlocked.
3674 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3675 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3676 unsigned int flags
, pte_t orig_pte
)
3680 flags
|= FAULT_FLAG_NONLINEAR
;
3682 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3685 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3687 * Page table corrupted: show pte and kill process.
3689 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3690 return VM_FAULT_SIGBUS
;
3693 pgoff
= pte_to_pgoff(orig_pte
);
3694 if (!(flags
& FAULT_FLAG_WRITE
))
3695 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3697 if (!(vma
->vm_flags
& VM_SHARED
))
3698 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3700 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3703 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3704 unsigned long addr
, int page_nid
,
3709 count_vm_numa_event(NUMA_HINT_FAULTS
);
3710 if (page_nid
== numa_node_id()) {
3711 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3712 *flags
|= TNF_FAULT_LOCAL
;
3715 return mpol_misplaced(page
, vma
, addr
);
3718 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3719 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3721 struct page
*page
= NULL
;
3726 bool migrated
= false;
3730 * The "pte" at this point cannot be used safely without
3731 * validation through pte_unmap_same(). It's of NUMA type but
3732 * the pfn may be screwed if the read is non atomic.
3734 * ptep_modify_prot_start is not called as this is clearing
3735 * the _PAGE_NUMA bit and it is not really expected that there
3736 * would be concurrent hardware modifications to the PTE.
3738 ptl
= pte_lockptr(mm
, pmd
);
3740 if (unlikely(!pte_same(*ptep
, pte
))) {
3741 pte_unmap_unlock(ptep
, ptl
);
3745 pte
= pte_mknonnuma(pte
);
3746 set_pte_at(mm
, addr
, ptep
, pte
);
3747 update_mmu_cache(vma
, addr
, ptep
);
3749 page
= vm_normal_page(vma
, addr
, pte
);
3751 pte_unmap_unlock(ptep
, ptl
);
3754 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3757 * Avoid grouping on DSO/COW pages in specific and RO pages
3758 * in general, RO pages shouldn't hurt as much anyway since
3759 * they can be in shared cache state.
3761 if (!pte_write(pte
))
3762 flags
|= TNF_NO_GROUP
;
3765 * Flag if the page is shared between multiple address spaces. This
3766 * is later used when determining whether to group tasks together
3768 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3769 flags
|= TNF_SHARED
;
3771 last_cpupid
= page_cpupid_last(page
);
3772 page_nid
= page_to_nid(page
);
3773 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3774 pte_unmap_unlock(ptep
, ptl
);
3775 if (target_nid
== -1) {
3780 /* Migrate to the requested node */
3781 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3783 page_nid
= target_nid
;
3784 flags
|= TNF_MIGRATED
;
3789 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3794 * These routines also need to handle stuff like marking pages dirty
3795 * and/or accessed for architectures that don't do it in hardware (most
3796 * RISC architectures). The early dirtying is also good on the i386.
3798 * There is also a hook called "update_mmu_cache()" that architectures
3799 * with external mmu caches can use to update those (ie the Sparc or
3800 * PowerPC hashed page tables that act as extended TLBs).
3802 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3803 * but allow concurrent faults), and pte mapped but not yet locked.
3804 * We return with mmap_sem still held, but pte unmapped and unlocked.
3806 static int handle_pte_fault(struct mm_struct
*mm
,
3807 struct vm_area_struct
*vma
, unsigned long address
,
3808 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3814 if (!pte_present(entry
)) {
3815 if (pte_none(entry
)) {
3817 if (likely(vma
->vm_ops
->fault
))
3818 return do_linear_fault(mm
, vma
, address
,
3819 pte
, pmd
, flags
, entry
);
3821 return do_anonymous_page(mm
, vma
, address
,
3824 if (pte_file(entry
))
3825 return do_nonlinear_fault(mm
, vma
, address
,
3826 pte
, pmd
, flags
, entry
);
3827 return do_swap_page(mm
, vma
, address
,
3828 pte
, pmd
, flags
, entry
);
3831 if (pte_numa(entry
))
3832 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3834 ptl
= pte_lockptr(mm
, pmd
);
3836 if (unlikely(!pte_same(*pte
, entry
)))
3838 if (flags
& FAULT_FLAG_WRITE
) {
3839 if (!pte_write(entry
))
3840 return do_wp_page(mm
, vma
, address
,
3841 pte
, pmd
, ptl
, entry
);
3842 entry
= pte_mkdirty(entry
);
3844 entry
= pte_mkyoung(entry
);
3845 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3846 update_mmu_cache(vma
, address
, pte
);
3849 * This is needed only for protection faults but the arch code
3850 * is not yet telling us if this is a protection fault or not.
3851 * This still avoids useless tlb flushes for .text page faults
3854 if (flags
& FAULT_FLAG_WRITE
)
3855 flush_tlb_fix_spurious_fault(vma
, address
);
3858 pte_unmap_unlock(pte
, ptl
);
3863 * By the time we get here, we already hold the mm semaphore
3865 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3866 unsigned long address
, unsigned int flags
)
3873 if (unlikely(is_vm_hugetlb_page(vma
)))
3874 return hugetlb_fault(mm
, vma
, address
, flags
);
3876 pgd
= pgd_offset(mm
, address
);
3877 pud
= pud_alloc(mm
, pgd
, address
);
3879 return VM_FAULT_OOM
;
3880 pmd
= pmd_alloc(mm
, pud
, address
);
3882 return VM_FAULT_OOM
;
3883 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3884 int ret
= VM_FAULT_FALLBACK
;
3886 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3888 if (!(ret
& VM_FAULT_FALLBACK
))
3891 pmd_t orig_pmd
= *pmd
;
3895 if (pmd_trans_huge(orig_pmd
)) {
3896 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3899 * If the pmd is splitting, return and retry the
3900 * the fault. Alternative: wait until the split
3901 * is done, and goto retry.
3903 if (pmd_trans_splitting(orig_pmd
))
3906 if (pmd_numa(orig_pmd
))
3907 return do_huge_pmd_numa_page(mm
, vma
, address
,
3910 if (dirty
&& !pmd_write(orig_pmd
)) {
3911 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3913 if (!(ret
& VM_FAULT_FALLBACK
))
3916 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3923 /* THP should already have been handled */
3924 BUG_ON(pmd_numa(*pmd
));
3927 * Use __pte_alloc instead of pte_alloc_map, because we can't
3928 * run pte_offset_map on the pmd, if an huge pmd could
3929 * materialize from under us from a different thread.
3931 if (unlikely(pmd_none(*pmd
)) &&
3932 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3933 return VM_FAULT_OOM
;
3934 /* if an huge pmd materialized from under us just retry later */
3935 if (unlikely(pmd_trans_huge(*pmd
)))
3938 * A regular pmd is established and it can't morph into a huge pmd
3939 * from under us anymore at this point because we hold the mmap_sem
3940 * read mode and khugepaged takes it in write mode. So now it's
3941 * safe to run pte_offset_map().
3943 pte
= pte_offset_map(pmd
, address
);
3945 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3948 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3949 unsigned long address
, unsigned int flags
)
3953 __set_current_state(TASK_RUNNING
);
3955 count_vm_event(PGFAULT
);
3956 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3958 /* do counter updates before entering really critical section. */
3959 check_sync_rss_stat(current
);
3962 * Enable the memcg OOM handling for faults triggered in user
3963 * space. Kernel faults are handled more gracefully.
3965 if (flags
& FAULT_FLAG_USER
)
3966 mem_cgroup_oom_enable();
3968 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3970 if (flags
& FAULT_FLAG_USER
) {
3971 mem_cgroup_oom_disable();
3973 * The task may have entered a memcg OOM situation but
3974 * if the allocation error was handled gracefully (no
3975 * VM_FAULT_OOM), there is no need to kill anything.
3976 * Just clean up the OOM state peacefully.
3978 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3979 mem_cgroup_oom_synchronize(false);
3985 #ifndef __PAGETABLE_PUD_FOLDED
3987 * Allocate page upper directory.
3988 * We've already handled the fast-path in-line.
3990 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3992 pud_t
*new = pud_alloc_one(mm
, address
);
3996 smp_wmb(); /* See comment in __pte_alloc */
3998 spin_lock(&mm
->page_table_lock
);
3999 if (pgd_present(*pgd
)) /* Another has populated it */
4002 pgd_populate(mm
, pgd
, new);
4003 spin_unlock(&mm
->page_table_lock
);
4006 #endif /* __PAGETABLE_PUD_FOLDED */
4008 #ifndef __PAGETABLE_PMD_FOLDED
4010 * Allocate page middle directory.
4011 * We've already handled the fast-path in-line.
4013 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4015 pmd_t
*new = pmd_alloc_one(mm
, address
);
4019 smp_wmb(); /* See comment in __pte_alloc */
4021 spin_lock(&mm
->page_table_lock
);
4022 #ifndef __ARCH_HAS_4LEVEL_HACK
4023 if (pud_present(*pud
)) /* Another has populated it */
4026 pud_populate(mm
, pud
, new);
4028 if (pgd_present(*pud
)) /* Another has populated it */
4031 pgd_populate(mm
, pud
, new);
4032 #endif /* __ARCH_HAS_4LEVEL_HACK */
4033 spin_unlock(&mm
->page_table_lock
);
4036 #endif /* __PAGETABLE_PMD_FOLDED */
4038 #if !defined(__HAVE_ARCH_GATE_AREA)
4040 #if defined(AT_SYSINFO_EHDR)
4041 static struct vm_area_struct gate_vma
;
4043 static int __init
gate_vma_init(void)
4045 gate_vma
.vm_mm
= NULL
;
4046 gate_vma
.vm_start
= FIXADDR_USER_START
;
4047 gate_vma
.vm_end
= FIXADDR_USER_END
;
4048 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
4049 gate_vma
.vm_page_prot
= __P101
;
4053 __initcall(gate_vma_init
);
4056 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
4058 #ifdef AT_SYSINFO_EHDR
4065 int in_gate_area_no_mm(unsigned long addr
)
4067 #ifdef AT_SYSINFO_EHDR
4068 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
4074 #endif /* __HAVE_ARCH_GATE_AREA */
4076 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
4077 pte_t
**ptepp
, spinlock_t
**ptlp
)
4084 pgd
= pgd_offset(mm
, address
);
4085 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4088 pud
= pud_offset(pgd
, address
);
4089 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4092 pmd
= pmd_offset(pud
, address
);
4093 VM_BUG_ON(pmd_trans_huge(*pmd
));
4094 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4097 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4101 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4104 if (!pte_present(*ptep
))
4109 pte_unmap_unlock(ptep
, *ptlp
);
4114 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4115 pte_t
**ptepp
, spinlock_t
**ptlp
)
4119 /* (void) is needed to make gcc happy */
4120 (void) __cond_lock(*ptlp
,
4121 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
4126 * follow_pfn - look up PFN at a user virtual address
4127 * @vma: memory mapping
4128 * @address: user virtual address
4129 * @pfn: location to store found PFN
4131 * Only IO mappings and raw PFN mappings are allowed.
4133 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4135 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4142 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4145 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4148 *pfn
= pte_pfn(*ptep
);
4149 pte_unmap_unlock(ptep
, ptl
);
4152 EXPORT_SYMBOL(follow_pfn
);
4154 #ifdef CONFIG_HAVE_IOREMAP_PROT
4155 int follow_phys(struct vm_area_struct
*vma
,
4156 unsigned long address
, unsigned int flags
,
4157 unsigned long *prot
, resource_size_t
*phys
)
4163 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4166 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4170 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4173 *prot
= pgprot_val(pte_pgprot(pte
));
4174 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4178 pte_unmap_unlock(ptep
, ptl
);
4183 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4184 void *buf
, int len
, int write
)
4186 resource_size_t phys_addr
;
4187 unsigned long prot
= 0;
4188 void __iomem
*maddr
;
4189 int offset
= addr
& (PAGE_SIZE
-1);
4191 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4194 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4196 memcpy_toio(maddr
+ offset
, buf
, len
);
4198 memcpy_fromio(buf
, maddr
+ offset
, len
);
4203 EXPORT_SYMBOL_GPL(generic_access_phys
);
4207 * Access another process' address space as given in mm. If non-NULL, use the
4208 * given task for page fault accounting.
4210 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4211 unsigned long addr
, void *buf
, int len
, int write
)
4213 struct vm_area_struct
*vma
;
4214 void *old_buf
= buf
;
4216 down_read(&mm
->mmap_sem
);
4217 /* ignore errors, just check how much was successfully transferred */
4219 int bytes
, ret
, offset
;
4221 struct page
*page
= NULL
;
4223 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4224 write
, 1, &page
, &vma
);
4227 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228 * we can access using slightly different code.
4230 #ifdef CONFIG_HAVE_IOREMAP_PROT
4231 vma
= find_vma(mm
, addr
);
4232 if (!vma
|| vma
->vm_start
> addr
)
4234 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4235 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4243 offset
= addr
& (PAGE_SIZE
-1);
4244 if (bytes
> PAGE_SIZE
-offset
)
4245 bytes
= PAGE_SIZE
-offset
;
4249 copy_to_user_page(vma
, page
, addr
,
4250 maddr
+ offset
, buf
, bytes
);
4251 set_page_dirty_lock(page
);
4253 copy_from_user_page(vma
, page
, addr
,
4254 buf
, maddr
+ offset
, bytes
);
4257 page_cache_release(page
);
4263 up_read(&mm
->mmap_sem
);
4265 return buf
- old_buf
;
4269 * access_remote_vm - access another process' address space
4270 * @mm: the mm_struct of the target address space
4271 * @addr: start address to access
4272 * @buf: source or destination buffer
4273 * @len: number of bytes to transfer
4274 * @write: whether the access is a write
4276 * The caller must hold a reference on @mm.
4278 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4279 void *buf
, int len
, int write
)
4281 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4285 * Access another process' address space.
4286 * Source/target buffer must be kernel space,
4287 * Do not walk the page table directly, use get_user_pages
4289 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4290 void *buf
, int len
, int write
)
4292 struct mm_struct
*mm
;
4295 mm
= get_task_mm(tsk
);
4299 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4306 * Print the name of a VMA.
4308 void print_vma_addr(char *prefix
, unsigned long ip
)
4310 struct mm_struct
*mm
= current
->mm
;
4311 struct vm_area_struct
*vma
;
4314 * Do not print if we are in atomic
4315 * contexts (in exception stacks, etc.):
4317 if (preempt_count())
4320 down_read(&mm
->mmap_sem
);
4321 vma
= find_vma(mm
, ip
);
4322 if (vma
&& vma
->vm_file
) {
4323 struct file
*f
= vma
->vm_file
;
4324 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4328 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4331 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4333 vma
->vm_end
- vma
->vm_start
);
4334 free_page((unsigned long)buf
);
4337 up_read(&mm
->mmap_sem
);
4340 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4341 void might_fault(void)
4344 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345 * holding the mmap_sem, this is safe because kernel memory doesn't
4346 * get paged out, therefore we'll never actually fault, and the
4347 * below annotations will generate false positives.
4349 if (segment_eq(get_fs(), KERNEL_DS
))
4353 * it would be nicer only to annotate paths which are not under
4354 * pagefault_disable, however that requires a larger audit and
4355 * providing helpers like get_user_atomic.
4360 __might_sleep(__FILE__
, __LINE__
, 0);
4363 might_lock_read(¤t
->mm
->mmap_sem
);
4365 EXPORT_SYMBOL(might_fault
);
4368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4369 static void clear_gigantic_page(struct page
*page
,
4371 unsigned int pages_per_huge_page
)
4374 struct page
*p
= page
;
4377 for (i
= 0; i
< pages_per_huge_page
;
4378 i
++, p
= mem_map_next(p
, page
, i
)) {
4380 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4383 void clear_huge_page(struct page
*page
,
4384 unsigned long addr
, unsigned int pages_per_huge_page
)
4388 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4389 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4394 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4396 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4400 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4402 struct vm_area_struct
*vma
,
4403 unsigned int pages_per_huge_page
)
4406 struct page
*dst_base
= dst
;
4407 struct page
*src_base
= src
;
4409 for (i
= 0; i
< pages_per_huge_page
; ) {
4411 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4414 dst
= mem_map_next(dst
, dst_base
, i
);
4415 src
= mem_map_next(src
, src_base
, i
);
4419 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4420 unsigned long addr
, struct vm_area_struct
*vma
,
4421 unsigned int pages_per_huge_page
)
4425 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4426 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4427 pages_per_huge_page
);
4432 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4434 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4437 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4439 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4441 static struct kmem_cache
*page_ptl_cachep
;
4443 void __init
ptlock_cache_init(void)
4445 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4449 bool ptlock_alloc(struct page
*page
)
4453 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4460 void ptlock_free(struct page
*page
)
4462 kmem_cache_free(page_ptl_cachep
, page
->ptl
);