2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr) \
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
94 #else /* CONFIG_SMP */
95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98 #endif /* CONFIG_SMP */
101 struct list_head list
; /* linked to pcpu_slot lists */
102 int free_size
; /* free bytes in the chunk */
103 int contig_hint
; /* max contiguous size hint */
104 void *base_addr
; /* base address of this chunk */
105 int map_used
; /* # of map entries used before the sentry */
106 int map_alloc
; /* # of map entries allocated */
107 int *map
; /* allocation map */
108 void *data
; /* chunk data */
109 int first_free
; /* no free below this */
110 bool immutable
; /* no [de]population allowed */
111 unsigned long populated
[]; /* populated bitmap */
114 static int pcpu_unit_pages __read_mostly
;
115 static int pcpu_unit_size __read_mostly
;
116 static int pcpu_nr_units __read_mostly
;
117 static int pcpu_atom_size __read_mostly
;
118 static int pcpu_nr_slots __read_mostly
;
119 static size_t pcpu_chunk_struct_size __read_mostly
;
121 /* cpus with the lowest and highest unit addresses */
122 static unsigned int pcpu_low_unit_cpu __read_mostly
;
123 static unsigned int pcpu_high_unit_cpu __read_mostly
;
125 /* the address of the first chunk which starts with the kernel static area */
126 void *pcpu_base_addr __read_mostly
;
127 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
129 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
130 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
132 /* group information, used for vm allocation */
133 static int pcpu_nr_groups __read_mostly
;
134 static const unsigned long *pcpu_group_offsets __read_mostly
;
135 static const size_t *pcpu_group_sizes __read_mostly
;
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
142 static struct pcpu_chunk
*pcpu_first_chunk
;
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
151 static struct pcpu_chunk
*pcpu_reserved_chunk
;
152 static int pcpu_reserved_chunk_limit
;
155 * Synchronization rules.
157 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
158 * protects allocation/reclaim paths, chunks, populated bitmap and
159 * vmalloc mapping. The latter is a spinlock and protects the index
160 * data structures - chunk slots, chunks and area maps in chunks.
162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
163 * pcpu_lock is grabbed and released as necessary. All actual memory
164 * allocations are done using GFP_KERNEL with pcpu_lock released. In
165 * general, percpu memory can't be allocated with irq off but
166 * irqsave/restore are still used in alloc path so that it can be used
167 * from early init path - sched_init() specifically.
169 * Free path accesses and alters only the index data structures, so it
170 * can be safely called from atomic context. When memory needs to be
171 * returned to the system, free path schedules reclaim_work which
172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
173 * reclaimed, release both locks and frees the chunks. Note that it's
174 * necessary to grab both locks to remove a chunk from circulation as
175 * allocation path might be referencing the chunk with only
176 * pcpu_alloc_mutex locked.
178 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* protects whole alloc and reclaim */
179 static DEFINE_SPINLOCK(pcpu_lock
); /* protects index data structures */
181 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
183 /* reclaim work to release fully free chunks, scheduled from free path */
184 static void pcpu_reclaim(struct work_struct
*work
);
185 static DECLARE_WORK(pcpu_reclaim_work
, pcpu_reclaim
);
187 static bool pcpu_addr_in_first_chunk(void *addr
)
189 void *first_start
= pcpu_first_chunk
->base_addr
;
191 return addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
;
194 static bool pcpu_addr_in_reserved_chunk(void *addr
)
196 void *first_start
= pcpu_first_chunk
->base_addr
;
198 return addr
>= first_start
&&
199 addr
< first_start
+ pcpu_reserved_chunk_limit
;
202 static int __pcpu_size_to_slot(int size
)
204 int highbit
= fls(size
); /* size is in bytes */
205 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
208 static int pcpu_size_to_slot(int size
)
210 if (size
== pcpu_unit_size
)
211 return pcpu_nr_slots
- 1;
212 return __pcpu_size_to_slot(size
);
215 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
217 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
220 return pcpu_size_to_slot(chunk
->free_size
);
223 /* set the pointer to a chunk in a page struct */
224 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
226 page
->index
= (unsigned long)pcpu
;
229 /* obtain pointer to a chunk from a page struct */
230 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
232 return (struct pcpu_chunk
*)page
->index
;
235 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
237 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
240 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
241 unsigned int cpu
, int page_idx
)
243 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
244 (page_idx
<< PAGE_SHIFT
);
247 static void __maybe_unused
pcpu_next_unpop(struct pcpu_chunk
*chunk
,
248 int *rs
, int *re
, int end
)
250 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
251 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
254 static void __maybe_unused
pcpu_next_pop(struct pcpu_chunk
*chunk
,
255 int *rs
, int *re
, int end
)
257 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
258 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
262 * (Un)populated page region iterators. Iterate over (un)populated
263 * page regions between @start and @end in @chunk. @rs and @re should
264 * be integer variables and will be set to start and end page index of
265 * the current region.
267 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
272 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
278 * pcpu_mem_zalloc - allocate memory
279 * @size: bytes to allocate
281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
282 * kzalloc() is used; otherwise, vzalloc() is used. The returned
283 * memory is always zeroed.
286 * Does GFP_KERNEL allocation.
289 * Pointer to the allocated area on success, NULL on failure.
291 static void *pcpu_mem_zalloc(size_t size
)
293 if (WARN_ON_ONCE(!slab_is_available()))
296 if (size
<= PAGE_SIZE
)
297 return kzalloc(size
, GFP_KERNEL
);
299 return vzalloc(size
);
303 * pcpu_mem_free - free memory
304 * @ptr: memory to free
305 * @size: size of the area
307 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
309 static void pcpu_mem_free(void *ptr
, size_t size
)
311 if (size
<= PAGE_SIZE
)
318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
319 * @chunk: chunk of interest
320 * @oslot: the previous slot it was on
322 * This function is called after an allocation or free changed @chunk.
323 * New slot according to the changed state is determined and @chunk is
324 * moved to the slot. Note that the reserved chunk is never put on
330 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
332 int nslot
= pcpu_chunk_slot(chunk
);
334 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
336 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
338 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
344 * @chunk: chunk of interest
346 * Determine whether area map of @chunk needs to be extended to
347 * accommodate a new allocation.
353 * New target map allocation length if extension is necessary, 0
356 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
)
360 if (chunk
->map_alloc
>= chunk
->map_used
+ 3)
363 new_alloc
= PCPU_DFL_MAP_ALLOC
;
364 while (new_alloc
< chunk
->map_used
+ 3)
371 * pcpu_extend_area_map - extend area map of a chunk
372 * @chunk: chunk of interest
373 * @new_alloc: new target allocation length of the area map
375 * Extend area map of @chunk to have @new_alloc entries.
378 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
381 * 0 on success, -errno on failure.
383 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
385 int *old
= NULL
, *new = NULL
;
386 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
389 new = pcpu_mem_zalloc(new_size
);
393 /* acquire pcpu_lock and switch to new area map */
394 spin_lock_irqsave(&pcpu_lock
, flags
);
396 if (new_alloc
<= chunk
->map_alloc
)
399 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
402 memcpy(new, old
, old_size
);
404 chunk
->map_alloc
= new_alloc
;
409 spin_unlock_irqrestore(&pcpu_lock
, flags
);
412 * pcpu_mem_free() might end up calling vfree() which uses
413 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
415 pcpu_mem_free(old
, old_size
);
416 pcpu_mem_free(new, new_size
);
422 * pcpu_alloc_area - allocate area from a pcpu_chunk
423 * @chunk: chunk of interest
424 * @size: wanted size in bytes
425 * @align: wanted align
427 * Try to allocate @size bytes area aligned at @align from @chunk.
428 * Note that this function only allocates the offset. It doesn't
429 * populate or map the area.
431 * @chunk->map must have at least two free slots.
437 * Allocated offset in @chunk on success, -1 if no matching area is
440 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
)
442 int oslot
= pcpu_chunk_slot(chunk
);
445 bool seen_free
= false;
448 for (i
= chunk
->first_free
, p
= chunk
->map
+ i
; i
< chunk
->map_used
; i
++, p
++) {
456 /* extra for alignment requirement */
457 head
= ALIGN(off
, align
) - off
;
459 this_size
= (p
[1] & ~1) - off
;
460 if (this_size
< head
+ size
) {
462 chunk
->first_free
= i
;
465 max_contig
= max(this_size
, max_contig
);
470 * If head is small or the previous block is free,
471 * merge'em. Note that 'small' is defined as smaller
472 * than sizeof(int), which is very small but isn't too
473 * uncommon for percpu allocations.
475 if (head
&& (head
< sizeof(int) || !(p
[-1] & 1))) {
478 chunk
->free_size
-= head
;
480 max_contig
= max(*p
- p
[-1], max_contig
);
485 /* if tail is small, just keep it around */
486 tail
= this_size
- head
- size
;
487 if (tail
< sizeof(int)) {
489 size
= this_size
- head
;
492 /* split if warranted */
494 int nr_extra
= !!head
+ !!tail
;
496 /* insert new subblocks */
497 memmove(p
+ nr_extra
+ 1, p
+ 1,
498 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
499 chunk
->map_used
+= nr_extra
;
503 chunk
->first_free
= i
;
508 max_contig
= max(head
, max_contig
);
512 max_contig
= max(tail
, max_contig
);
517 chunk
->first_free
= i
+ 1;
519 /* update hint and mark allocated */
520 if (i
+ 1 == chunk
->map_used
)
521 chunk
->contig_hint
= max_contig
; /* fully scanned */
523 chunk
->contig_hint
= max(chunk
->contig_hint
,
526 chunk
->free_size
-= size
;
529 pcpu_chunk_relocate(chunk
, oslot
);
533 chunk
->contig_hint
= max_contig
; /* fully scanned */
534 pcpu_chunk_relocate(chunk
, oslot
);
536 /* tell the upper layer that this chunk has no matching area */
541 * pcpu_free_area - free area to a pcpu_chunk
542 * @chunk: chunk of interest
543 * @freeme: offset of area to free
545 * Free area starting from @freeme to @chunk. Note that this function
546 * only modifies the allocation map. It doesn't depopulate or unmap
552 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
)
554 int oslot
= pcpu_chunk_slot(chunk
);
560 freeme
|= 1; /* we are searching for <given offset, in use> pair */
565 unsigned k
= (i
+ j
) / 2;
569 else if (off
> freeme
)
574 BUG_ON(off
!= freeme
);
576 if (i
< chunk
->first_free
)
577 chunk
->first_free
= i
;
581 chunk
->free_size
+= (p
[1] & ~1) - off
;
583 /* merge with next? */
586 /* merge with previous? */
587 if (i
> 0 && !(p
[-1] & 1)) {
593 chunk
->map_used
-= to_free
;
594 memmove(p
+ 1, p
+ 1 + to_free
,
595 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
598 chunk
->contig_hint
= max(chunk
->map
[i
+ 1] - chunk
->map
[i
] - 1, chunk
->contig_hint
);
599 pcpu_chunk_relocate(chunk
, oslot
);
602 static struct pcpu_chunk
*pcpu_alloc_chunk(void)
604 struct pcpu_chunk
*chunk
;
606 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
);
610 chunk
->map
= pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC
*
611 sizeof(chunk
->map
[0]));
617 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
619 chunk
->map
[1] = pcpu_unit_size
| 1;
622 INIT_LIST_HEAD(&chunk
->list
);
623 chunk
->free_size
= pcpu_unit_size
;
624 chunk
->contig_hint
= pcpu_unit_size
;
629 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
633 pcpu_mem_free(chunk
->map
, chunk
->map_alloc
* sizeof(chunk
->map
[0]));
634 pcpu_mem_free(chunk
, pcpu_chunk_struct_size
);
638 * Chunk management implementation.
640 * To allow different implementations, chunk alloc/free and
641 * [de]population are implemented in a separate file which is pulled
642 * into this file and compiled together. The following functions
643 * should be implemented.
645 * pcpu_populate_chunk - populate the specified range of a chunk
646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
647 * pcpu_create_chunk - create a new chunk
648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
649 * pcpu_addr_to_page - translate address to physical address
650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
652 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
653 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
654 static struct pcpu_chunk
*pcpu_create_chunk(void);
655 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
656 static struct page
*pcpu_addr_to_page(void *addr
);
657 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
659 #ifdef CONFIG_NEED_PER_CPU_KM
660 #include "percpu-km.c"
662 #include "percpu-vm.c"
666 * pcpu_chunk_addr_search - determine chunk containing specified address
667 * @addr: address for which the chunk needs to be determined.
670 * The address of the found chunk.
672 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
674 /* is it in the first chunk? */
675 if (pcpu_addr_in_first_chunk(addr
)) {
676 /* is it in the reserved area? */
677 if (pcpu_addr_in_reserved_chunk(addr
))
678 return pcpu_reserved_chunk
;
679 return pcpu_first_chunk
;
683 * The address is relative to unit0 which might be unused and
684 * thus unmapped. Offset the address to the unit space of the
685 * current processor before looking it up in the vmalloc
686 * space. Note that any possible cpu id can be used here, so
687 * there's no need to worry about preemption or cpu hotplug.
689 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
694 * pcpu_alloc - the percpu allocator
695 * @size: size of area to allocate in bytes
696 * @align: alignment of area (max PAGE_SIZE)
697 * @reserved: allocate from the reserved chunk if available
699 * Allocate percpu area of @size bytes aligned at @align.
702 * Does GFP_KERNEL allocation.
705 * Percpu pointer to the allocated area on success, NULL on failure.
707 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
)
709 static int warn_limit
= 10;
710 struct pcpu_chunk
*chunk
;
712 int slot
, off
, new_alloc
;
717 * We want the lowest bit of offset available for in-use/free
718 * indicator, so force >= 16bit alignment and make size even.
720 if (unlikely(align
< 2))
723 if (unlikely(size
& 1))
726 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
727 WARN(true, "illegal size (%zu) or align (%zu) for "
728 "percpu allocation\n", size
, align
);
732 mutex_lock(&pcpu_alloc_mutex
);
733 spin_lock_irqsave(&pcpu_lock
, flags
);
735 /* serve reserved allocations from the reserved chunk if available */
736 if (reserved
&& pcpu_reserved_chunk
) {
737 chunk
= pcpu_reserved_chunk
;
739 if (size
> chunk
->contig_hint
) {
740 err
= "alloc from reserved chunk failed";
744 while ((new_alloc
= pcpu_need_to_extend(chunk
))) {
745 spin_unlock_irqrestore(&pcpu_lock
, flags
);
746 if (pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
747 err
= "failed to extend area map of reserved chunk";
748 goto fail_unlock_mutex
;
750 spin_lock_irqsave(&pcpu_lock
, flags
);
753 off
= pcpu_alloc_area(chunk
, size
, align
);
757 err
= "alloc from reserved chunk failed";
762 /* search through normal chunks */
763 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
764 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
765 if (size
> chunk
->contig_hint
)
768 new_alloc
= pcpu_need_to_extend(chunk
);
770 spin_unlock_irqrestore(&pcpu_lock
, flags
);
771 if (pcpu_extend_area_map(chunk
,
773 err
= "failed to extend area map";
774 goto fail_unlock_mutex
;
776 spin_lock_irqsave(&pcpu_lock
, flags
);
778 * pcpu_lock has been dropped, need to
779 * restart cpu_slot list walking.
784 off
= pcpu_alloc_area(chunk
, size
, align
);
790 /* hmmm... no space left, create a new chunk */
791 spin_unlock_irqrestore(&pcpu_lock
, flags
);
793 chunk
= pcpu_create_chunk();
795 err
= "failed to allocate new chunk";
796 goto fail_unlock_mutex
;
799 spin_lock_irqsave(&pcpu_lock
, flags
);
800 pcpu_chunk_relocate(chunk
, -1);
804 spin_unlock_irqrestore(&pcpu_lock
, flags
);
806 /* populate, map and clear the area */
807 if (pcpu_populate_chunk(chunk
, off
, size
)) {
808 spin_lock_irqsave(&pcpu_lock
, flags
);
809 pcpu_free_area(chunk
, off
);
810 err
= "failed to populate";
814 mutex_unlock(&pcpu_alloc_mutex
);
816 /* return address relative to base address */
817 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
818 kmemleak_alloc_percpu(ptr
, size
);
822 spin_unlock_irqrestore(&pcpu_lock
, flags
);
824 mutex_unlock(&pcpu_alloc_mutex
);
826 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
827 "%s\n", size
, align
, err
);
830 pr_info("PERCPU: limit reached, disable warning\n");
836 * __alloc_percpu - allocate dynamic percpu area
837 * @size: size of area to allocate in bytes
838 * @align: alignment of area (max PAGE_SIZE)
840 * Allocate zero-filled percpu area of @size bytes aligned at @align.
841 * Might sleep. Might trigger writeouts.
844 * Does GFP_KERNEL allocation.
847 * Percpu pointer to the allocated area on success, NULL on failure.
849 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
851 return pcpu_alloc(size
, align
, false);
853 EXPORT_SYMBOL_GPL(__alloc_percpu
);
856 * __alloc_reserved_percpu - allocate reserved percpu area
857 * @size: size of area to allocate in bytes
858 * @align: alignment of area (max PAGE_SIZE)
860 * Allocate zero-filled percpu area of @size bytes aligned at @align
861 * from reserved percpu area if arch has set it up; otherwise,
862 * allocation is served from the same dynamic area. Might sleep.
863 * Might trigger writeouts.
866 * Does GFP_KERNEL allocation.
869 * Percpu pointer to the allocated area on success, NULL on failure.
871 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
873 return pcpu_alloc(size
, align
, true);
877 * pcpu_reclaim - reclaim fully free chunks, workqueue function
880 * Reclaim all fully free chunks except for the first one.
885 static void pcpu_reclaim(struct work_struct
*work
)
888 struct list_head
*head
= &pcpu_slot
[pcpu_nr_slots
- 1];
889 struct pcpu_chunk
*chunk
, *next
;
891 mutex_lock(&pcpu_alloc_mutex
);
892 spin_lock_irq(&pcpu_lock
);
894 list_for_each_entry_safe(chunk
, next
, head
, list
) {
895 WARN_ON(chunk
->immutable
);
897 /* spare the first one */
898 if (chunk
== list_first_entry(head
, struct pcpu_chunk
, list
))
901 list_move(&chunk
->list
, &todo
);
904 spin_unlock_irq(&pcpu_lock
);
906 list_for_each_entry_safe(chunk
, next
, &todo
, list
) {
907 pcpu_depopulate_chunk(chunk
, 0, pcpu_unit_size
);
908 pcpu_destroy_chunk(chunk
);
911 mutex_unlock(&pcpu_alloc_mutex
);
915 * free_percpu - free percpu area
916 * @ptr: pointer to area to free
918 * Free percpu area @ptr.
921 * Can be called from atomic context.
923 void free_percpu(void __percpu
*ptr
)
926 struct pcpu_chunk
*chunk
;
933 kmemleak_free_percpu(ptr
);
935 addr
= __pcpu_ptr_to_addr(ptr
);
937 spin_lock_irqsave(&pcpu_lock
, flags
);
939 chunk
= pcpu_chunk_addr_search(addr
);
940 off
= addr
- chunk
->base_addr
;
942 pcpu_free_area(chunk
, off
);
944 /* if there are more than one fully free chunks, wake up grim reaper */
945 if (chunk
->free_size
== pcpu_unit_size
) {
946 struct pcpu_chunk
*pos
;
948 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
950 schedule_work(&pcpu_reclaim_work
);
955 spin_unlock_irqrestore(&pcpu_lock
, flags
);
957 EXPORT_SYMBOL_GPL(free_percpu
);
960 * is_kernel_percpu_address - test whether address is from static percpu area
961 * @addr: address to test
963 * Test whether @addr belongs to in-kernel static percpu area. Module
964 * static percpu areas are not considered. For those, use
965 * is_module_percpu_address().
968 * %true if @addr is from in-kernel static percpu area, %false otherwise.
970 bool is_kernel_percpu_address(unsigned long addr
)
973 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
974 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
977 for_each_possible_cpu(cpu
) {
978 void *start
= per_cpu_ptr(base
, cpu
);
980 if ((void *)addr
>= start
&& (void *)addr
< start
+ static_size
)
984 /* on UP, can't distinguish from other static vars, always false */
989 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
990 * @addr: the address to be converted to physical address
992 * Given @addr which is dereferenceable address obtained via one of
993 * percpu access macros, this function translates it into its physical
994 * address. The caller is responsible for ensuring @addr stays valid
995 * until this function finishes.
997 * percpu allocator has special setup for the first chunk, which currently
998 * supports either embedding in linear address space or vmalloc mapping,
999 * and, from the second one, the backing allocator (currently either vm or
1000 * km) provides translation.
1002 * The addr can be tranlated simply without checking if it falls into the
1003 * first chunk. But the current code reflects better how percpu allocator
1004 * actually works, and the verification can discover both bugs in percpu
1005 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1009 * The physical address for @addr.
1011 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1013 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1014 bool in_first_chunk
= false;
1015 unsigned long first_low
, first_high
;
1019 * The following test on unit_low/high isn't strictly
1020 * necessary but will speed up lookups of addresses which
1021 * aren't in the first chunk.
1023 first_low
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_low_unit_cpu
, 0);
1024 first_high
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_high_unit_cpu
,
1026 if ((unsigned long)addr
>= first_low
&&
1027 (unsigned long)addr
< first_high
) {
1028 for_each_possible_cpu(cpu
) {
1029 void *start
= per_cpu_ptr(base
, cpu
);
1031 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
1032 in_first_chunk
= true;
1038 if (in_first_chunk
) {
1039 if (!is_vmalloc_addr(addr
))
1042 return page_to_phys(vmalloc_to_page(addr
)) +
1043 offset_in_page(addr
);
1045 return page_to_phys(pcpu_addr_to_page(addr
)) +
1046 offset_in_page(addr
);
1050 * pcpu_alloc_alloc_info - allocate percpu allocation info
1051 * @nr_groups: the number of groups
1052 * @nr_units: the number of units
1054 * Allocate ai which is large enough for @nr_groups groups containing
1055 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1056 * cpu_map array which is long enough for @nr_units and filled with
1057 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1058 * pointer of other groups.
1061 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1064 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1067 struct pcpu_alloc_info
*ai
;
1068 size_t base_size
, ai_size
;
1072 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1073 __alignof__(ai
->groups
[0].cpu_map
[0]));
1074 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1076 ptr
= memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size
), 0);
1082 ai
->groups
[0].cpu_map
= ptr
;
1084 for (unit
= 0; unit
< nr_units
; unit
++)
1085 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1087 ai
->nr_groups
= nr_groups
;
1088 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1094 * pcpu_free_alloc_info - free percpu allocation info
1095 * @ai: pcpu_alloc_info to free
1097 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1099 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1101 memblock_free_early(__pa(ai
), ai
->__ai_size
);
1105 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1107 * @ai: allocation info to dump
1109 * Print out information about @ai using loglevel @lvl.
1111 static void pcpu_dump_alloc_info(const char *lvl
,
1112 const struct pcpu_alloc_info
*ai
)
1114 int group_width
= 1, cpu_width
= 1, width
;
1115 char empty_str
[] = "--------";
1116 int alloc
= 0, alloc_end
= 0;
1118 int upa
, apl
; /* units per alloc, allocs per line */
1124 v
= num_possible_cpus();
1127 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1129 upa
= ai
->alloc_size
/ ai
->unit_size
;
1130 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1131 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1133 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1134 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1135 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1137 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1138 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1139 int unit
= 0, unit_end
= 0;
1141 BUG_ON(gi
->nr_units
% upa
);
1142 for (alloc_end
+= gi
->nr_units
/ upa
;
1143 alloc
< alloc_end
; alloc
++) {
1144 if (!(alloc
% apl
)) {
1145 printk(KERN_CONT
"\n");
1146 printk("%spcpu-alloc: ", lvl
);
1148 printk(KERN_CONT
"[%0*d] ", group_width
, group
);
1150 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1151 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1152 printk(KERN_CONT
"%0*d ", cpu_width
,
1155 printk(KERN_CONT
"%s ", empty_str
);
1158 printk(KERN_CONT
"\n");
1162 * pcpu_setup_first_chunk - initialize the first percpu chunk
1163 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1164 * @base_addr: mapped address
1166 * Initialize the first percpu chunk which contains the kernel static
1167 * perpcu area. This function is to be called from arch percpu area
1170 * @ai contains all information necessary to initialize the first
1171 * chunk and prime the dynamic percpu allocator.
1173 * @ai->static_size is the size of static percpu area.
1175 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1176 * reserve after the static area in the first chunk. This reserves
1177 * the first chunk such that it's available only through reserved
1178 * percpu allocation. This is primarily used to serve module percpu
1179 * static areas on architectures where the addressing model has
1180 * limited offset range for symbol relocations to guarantee module
1181 * percpu symbols fall inside the relocatable range.
1183 * @ai->dyn_size determines the number of bytes available for dynamic
1184 * allocation in the first chunk. The area between @ai->static_size +
1185 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1187 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1188 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1191 * @ai->atom_size is the allocation atom size and used as alignment
1194 * @ai->alloc_size is the allocation size and always multiple of
1195 * @ai->atom_size. This is larger than @ai->atom_size if
1196 * @ai->unit_size is larger than @ai->atom_size.
1198 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1199 * percpu areas. Units which should be colocated are put into the
1200 * same group. Dynamic VM areas will be allocated according to these
1201 * groupings. If @ai->nr_groups is zero, a single group containing
1202 * all units is assumed.
1204 * The caller should have mapped the first chunk at @base_addr and
1205 * copied static data to each unit.
1207 * If the first chunk ends up with both reserved and dynamic areas, it
1208 * is served by two chunks - one to serve the core static and reserved
1209 * areas and the other for the dynamic area. They share the same vm
1210 * and page map but uses different area allocation map to stay away
1211 * from each other. The latter chunk is circulated in the chunk slots
1212 * and available for dynamic allocation like any other chunks.
1215 * 0 on success, -errno on failure.
1217 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1220 static char cpus_buf
[4096] __initdata
;
1221 static int smap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1222 static int dmap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1223 size_t dyn_size
= ai
->dyn_size
;
1224 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1225 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1226 unsigned long *group_offsets
;
1227 size_t *group_sizes
;
1228 unsigned long *unit_off
;
1233 cpumask_scnprintf(cpus_buf
, sizeof(cpus_buf
), cpu_possible_mask
);
1235 #define PCPU_SETUP_BUG_ON(cond) do { \
1236 if (unlikely(cond)) { \
1237 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1238 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1239 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1245 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1247 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1248 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start
& ~PAGE_MASK
);
1250 PCPU_SETUP_BUG_ON(!base_addr
);
1251 PCPU_SETUP_BUG_ON((unsigned long)base_addr
& ~PAGE_MASK
);
1252 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1253 PCPU_SETUP_BUG_ON(ai
->unit_size
& ~PAGE_MASK
);
1254 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1255 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
1256 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
1258 /* process group information and build config tables accordingly */
1259 group_offsets
= memblock_virt_alloc(ai
->nr_groups
*
1260 sizeof(group_offsets
[0]), 0);
1261 group_sizes
= memblock_virt_alloc(ai
->nr_groups
*
1262 sizeof(group_sizes
[0]), 0);
1263 unit_map
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_map
[0]), 0);
1264 unit_off
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_off
[0]), 0);
1266 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1267 unit_map
[cpu
] = UINT_MAX
;
1269 pcpu_low_unit_cpu
= NR_CPUS
;
1270 pcpu_high_unit_cpu
= NR_CPUS
;
1272 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1273 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1275 group_offsets
[group
] = gi
->base_offset
;
1276 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1278 for (i
= 0; i
< gi
->nr_units
; i
++) {
1279 cpu
= gi
->cpu_map
[i
];
1283 PCPU_SETUP_BUG_ON(cpu
> nr_cpu_ids
);
1284 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1285 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1287 unit_map
[cpu
] = unit
+ i
;
1288 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1290 /* determine low/high unit_cpu */
1291 if (pcpu_low_unit_cpu
== NR_CPUS
||
1292 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
1293 pcpu_low_unit_cpu
= cpu
;
1294 if (pcpu_high_unit_cpu
== NR_CPUS
||
1295 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
1296 pcpu_high_unit_cpu
= cpu
;
1299 pcpu_nr_units
= unit
;
1301 for_each_possible_cpu(cpu
)
1302 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1304 /* we're done parsing the input, undefine BUG macro and dump config */
1305 #undef PCPU_SETUP_BUG_ON
1306 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
1308 pcpu_nr_groups
= ai
->nr_groups
;
1309 pcpu_group_offsets
= group_offsets
;
1310 pcpu_group_sizes
= group_sizes
;
1311 pcpu_unit_map
= unit_map
;
1312 pcpu_unit_offsets
= unit_off
;
1314 /* determine basic parameters */
1315 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1316 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1317 pcpu_atom_size
= ai
->atom_size
;
1318 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1319 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1322 * Allocate chunk slots. The additional last slot is for
1325 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1326 pcpu_slot
= memblock_virt_alloc(
1327 pcpu_nr_slots
* sizeof(pcpu_slot
[0]), 0);
1328 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1329 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1332 * Initialize static chunk. If reserved_size is zero, the
1333 * static chunk covers static area + dynamic allocation area
1334 * in the first chunk. If reserved_size is not zero, it
1335 * covers static area + reserved area (mostly used for module
1336 * static percpu allocation).
1338 schunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1339 INIT_LIST_HEAD(&schunk
->list
);
1340 schunk
->base_addr
= base_addr
;
1342 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1343 schunk
->immutable
= true;
1344 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1346 if (ai
->reserved_size
) {
1347 schunk
->free_size
= ai
->reserved_size
;
1348 pcpu_reserved_chunk
= schunk
;
1349 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1351 schunk
->free_size
= dyn_size
;
1352 dyn_size
= 0; /* dynamic area covered */
1354 schunk
->contig_hint
= schunk
->free_size
;
1357 schunk
->map
[1] = ai
->static_size
;
1358 schunk
->map_used
= 1;
1359 if (schunk
->free_size
)
1360 schunk
->map
[++schunk
->map_used
] = 1 | (ai
->static_size
+ schunk
->free_size
);
1362 schunk
->map
[1] |= 1;
1364 /* init dynamic chunk if necessary */
1366 dchunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1367 INIT_LIST_HEAD(&dchunk
->list
);
1368 dchunk
->base_addr
= base_addr
;
1370 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1371 dchunk
->immutable
= true;
1372 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1374 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1376 dchunk
->map
[1] = pcpu_reserved_chunk_limit
;
1377 dchunk
->map
[2] = (pcpu_reserved_chunk_limit
+ dchunk
->free_size
) | 1;
1378 dchunk
->map_used
= 2;
1381 /* link the first chunk in */
1382 pcpu_first_chunk
= dchunk
?: schunk
;
1383 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1386 pcpu_base_addr
= base_addr
;
1392 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
1393 [PCPU_FC_AUTO
] = "auto",
1394 [PCPU_FC_EMBED
] = "embed",
1395 [PCPU_FC_PAGE
] = "page",
1398 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1400 static int __init
percpu_alloc_setup(char *str
)
1407 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1408 else if (!strcmp(str
, "embed"))
1409 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1411 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1412 else if (!strcmp(str
, "page"))
1413 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1416 pr_warning("PERCPU: unknown allocator %s specified\n", str
);
1420 early_param("percpu_alloc", percpu_alloc_setup
);
1423 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1424 * Build it if needed by the arch config or the generic setup is going
1427 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1428 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1429 #define BUILD_EMBED_FIRST_CHUNK
1432 /* build pcpu_page_first_chunk() iff needed by the arch config */
1433 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1434 #define BUILD_PAGE_FIRST_CHUNK
1437 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1438 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1440 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1441 * @reserved_size: the size of reserved percpu area in bytes
1442 * @dyn_size: minimum free size for dynamic allocation in bytes
1443 * @atom_size: allocation atom size
1444 * @cpu_distance_fn: callback to determine distance between cpus, optional
1446 * This function determines grouping of units, their mappings to cpus
1447 * and other parameters considering needed percpu size, allocation
1448 * atom size and distances between CPUs.
1450 * Groups are always mutliples of atom size and CPUs which are of
1451 * LOCAL_DISTANCE both ways are grouped together and share space for
1452 * units in the same group. The returned configuration is guaranteed
1453 * to have CPUs on different nodes on different groups and >=75% usage
1454 * of allocated virtual address space.
1457 * On success, pointer to the new allocation_info is returned. On
1458 * failure, ERR_PTR value is returned.
1460 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1461 size_t reserved_size
, size_t dyn_size
,
1463 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1465 static int group_map
[NR_CPUS
] __initdata
;
1466 static int group_cnt
[NR_CPUS
] __initdata
;
1467 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1468 int nr_groups
= 1, nr_units
= 0;
1469 size_t size_sum
, min_unit_size
, alloc_size
;
1470 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1471 int last_allocs
, group
, unit
;
1472 unsigned int cpu
, tcpu
;
1473 struct pcpu_alloc_info
*ai
;
1474 unsigned int *cpu_map
;
1476 /* this function may be called multiple times */
1477 memset(group_map
, 0, sizeof(group_map
));
1478 memset(group_cnt
, 0, sizeof(group_cnt
));
1480 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1481 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1482 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
1483 dyn_size
= size_sum
- static_size
- reserved_size
;
1486 * Determine min_unit_size, alloc_size and max_upa such that
1487 * alloc_size is multiple of atom_size and is the smallest
1488 * which can accommodate 4k aligned segments which are equal to
1489 * or larger than min_unit_size.
1491 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1493 alloc_size
= roundup(min_unit_size
, atom_size
);
1494 upa
= alloc_size
/ min_unit_size
;
1495 while (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1499 /* group cpus according to their proximity */
1500 for_each_possible_cpu(cpu
) {
1503 for_each_possible_cpu(tcpu
) {
1506 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1507 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1508 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1510 nr_groups
= max(nr_groups
, group
+ 1);
1514 group_map
[cpu
] = group
;
1519 * Expand unit size until address space usage goes over 75%
1520 * and then as much as possible without using more address
1523 last_allocs
= INT_MAX
;
1524 for (upa
= max_upa
; upa
; upa
--) {
1525 int allocs
= 0, wasted
= 0;
1527 if (alloc_size
% upa
|| ((alloc_size
/ upa
) & ~PAGE_MASK
))
1530 for (group
= 0; group
< nr_groups
; group
++) {
1531 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1532 allocs
+= this_allocs
;
1533 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1537 * Don't accept if wastage is over 1/3. The
1538 * greater-than comparison ensures upa==1 always
1539 * passes the following check.
1541 if (wasted
> num_possible_cpus() / 3)
1544 /* and then don't consume more memory */
1545 if (allocs
> last_allocs
)
1547 last_allocs
= allocs
;
1552 /* allocate and fill alloc_info */
1553 for (group
= 0; group
< nr_groups
; group
++)
1554 nr_units
+= roundup(group_cnt
[group
], upa
);
1556 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1558 return ERR_PTR(-ENOMEM
);
1559 cpu_map
= ai
->groups
[0].cpu_map
;
1561 for (group
= 0; group
< nr_groups
; group
++) {
1562 ai
->groups
[group
].cpu_map
= cpu_map
;
1563 cpu_map
+= roundup(group_cnt
[group
], upa
);
1566 ai
->static_size
= static_size
;
1567 ai
->reserved_size
= reserved_size
;
1568 ai
->dyn_size
= dyn_size
;
1569 ai
->unit_size
= alloc_size
/ upa
;
1570 ai
->atom_size
= atom_size
;
1571 ai
->alloc_size
= alloc_size
;
1573 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1574 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1577 * Initialize base_offset as if all groups are located
1578 * back-to-back. The caller should update this to
1579 * reflect actual allocation.
1581 gi
->base_offset
= unit
* ai
->unit_size
;
1583 for_each_possible_cpu(cpu
)
1584 if (group_map
[cpu
] == group
)
1585 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1586 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1587 unit
+= gi
->nr_units
;
1589 BUG_ON(unit
!= nr_units
);
1593 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1595 #if defined(BUILD_EMBED_FIRST_CHUNK)
1597 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1598 * @reserved_size: the size of reserved percpu area in bytes
1599 * @dyn_size: minimum free size for dynamic allocation in bytes
1600 * @atom_size: allocation atom size
1601 * @cpu_distance_fn: callback to determine distance between cpus, optional
1602 * @alloc_fn: function to allocate percpu page
1603 * @free_fn: function to free percpu page
1605 * This is a helper to ease setting up embedded first percpu chunk and
1606 * can be called where pcpu_setup_first_chunk() is expected.
1608 * If this function is used to setup the first chunk, it is allocated
1609 * by calling @alloc_fn and used as-is without being mapped into
1610 * vmalloc area. Allocations are always whole multiples of @atom_size
1611 * aligned to @atom_size.
1613 * This enables the first chunk to piggy back on the linear physical
1614 * mapping which often uses larger page size. Please note that this
1615 * can result in very sparse cpu->unit mapping on NUMA machines thus
1616 * requiring large vmalloc address space. Don't use this allocator if
1617 * vmalloc space is not orders of magnitude larger than distances
1618 * between node memory addresses (ie. 32bit NUMA machines).
1620 * @dyn_size specifies the minimum dynamic area size.
1622 * If the needed size is smaller than the minimum or specified unit
1623 * size, the leftover is returned using @free_fn.
1626 * 0 on success, -errno on failure.
1628 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
1630 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1631 pcpu_fc_alloc_fn_t alloc_fn
,
1632 pcpu_fc_free_fn_t free_fn
)
1634 void *base
= (void *)ULONG_MAX
;
1635 void **areas
= NULL
;
1636 struct pcpu_alloc_info
*ai
;
1637 size_t size_sum
, areas_size
, max_distance
;
1640 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1645 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1646 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1648 areas
= memblock_virt_alloc_nopanic(areas_size
, 0);
1654 /* allocate, copy and determine base address */
1655 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1656 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1657 unsigned int cpu
= NR_CPUS
;
1660 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1661 cpu
= gi
->cpu_map
[i
];
1662 BUG_ON(cpu
== NR_CPUS
);
1664 /* allocate space for the whole group */
1665 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1668 goto out_free_areas
;
1670 /* kmemleak tracks the percpu allocations separately */
1674 base
= min(ptr
, base
);
1678 * Copy data and free unused parts. This should happen after all
1679 * allocations are complete; otherwise, we may end up with
1680 * overlapping groups.
1682 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1683 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1684 void *ptr
= areas
[group
];
1686 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1687 if (gi
->cpu_map
[i
] == NR_CPUS
) {
1688 /* unused unit, free whole */
1689 free_fn(ptr
, ai
->unit_size
);
1692 /* copy and return the unused part */
1693 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
1694 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
1698 /* base address is now known, determine group base offsets */
1700 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1701 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
1702 max_distance
= max_t(size_t, max_distance
,
1703 ai
->groups
[group
].base_offset
);
1705 max_distance
+= ai
->unit_size
;
1707 /* warn if maximum distance is further than 75% of vmalloc space */
1708 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
1709 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1710 "space 0x%lx\n", max_distance
,
1712 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1713 /* and fail if we have fallback */
1719 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1720 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
1721 ai
->dyn_size
, ai
->unit_size
);
1723 rc
= pcpu_setup_first_chunk(ai
, base
);
1727 for (group
= 0; group
< ai
->nr_groups
; group
++)
1729 free_fn(areas
[group
],
1730 ai
->groups
[group
].nr_units
* ai
->unit_size
);
1732 pcpu_free_alloc_info(ai
);
1734 memblock_free_early(__pa(areas
), areas_size
);
1737 #endif /* BUILD_EMBED_FIRST_CHUNK */
1739 #ifdef BUILD_PAGE_FIRST_CHUNK
1741 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1742 * @reserved_size: the size of reserved percpu area in bytes
1743 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1744 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1745 * @populate_pte_fn: function to populate pte
1747 * This is a helper to ease setting up page-remapped first percpu
1748 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1750 * This is the basic allocator. Static percpu area is allocated
1751 * page-by-page into vmalloc area.
1754 * 0 on success, -errno on failure.
1756 int __init
pcpu_page_first_chunk(size_t reserved_size
,
1757 pcpu_fc_alloc_fn_t alloc_fn
,
1758 pcpu_fc_free_fn_t free_fn
,
1759 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
1761 static struct vm_struct vm
;
1762 struct pcpu_alloc_info
*ai
;
1766 struct page
**pages
;
1769 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
1771 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
1774 BUG_ON(ai
->nr_groups
!= 1);
1775 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
1777 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1779 /* unaligned allocations can't be freed, round up to page size */
1780 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
1782 pages
= memblock_virt_alloc(pages_size
, 0);
1784 /* allocate pages */
1786 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
1787 for (i
= 0; i
< unit_pages
; i
++) {
1788 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
1791 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
1793 pr_warning("PERCPU: failed to allocate %s page "
1794 "for cpu%u\n", psize_str
, cpu
);
1797 /* kmemleak tracks the percpu allocations separately */
1799 pages
[j
++] = virt_to_page(ptr
);
1802 /* allocate vm area, map the pages and copy static data */
1803 vm
.flags
= VM_ALLOC
;
1804 vm
.size
= num_possible_cpus() * ai
->unit_size
;
1805 vm_area_register_early(&vm
, PAGE_SIZE
);
1807 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
1808 unsigned long unit_addr
=
1809 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
1811 for (i
= 0; i
< unit_pages
; i
++)
1812 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
1814 /* pte already populated, the following shouldn't fail */
1815 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
1818 panic("failed to map percpu area, err=%d\n", rc
);
1821 * FIXME: Archs with virtual cache should flush local
1822 * cache for the linear mapping here - something
1823 * equivalent to flush_cache_vmap() on the local cpu.
1824 * flush_cache_vmap() can't be used as most supporting
1825 * data structures are not set up yet.
1828 /* copy static data */
1829 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
1832 /* we're ready, commit */
1833 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1834 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
1835 ai
->reserved_size
, ai
->dyn_size
);
1837 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
1842 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
1845 memblock_free_early(__pa(pages
), pages_size
);
1846 pcpu_free_alloc_info(ai
);
1849 #endif /* BUILD_PAGE_FIRST_CHUNK */
1851 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1853 * Generic SMP percpu area setup.
1855 * The embedding helper is used because its behavior closely resembles
1856 * the original non-dynamic generic percpu area setup. This is
1857 * important because many archs have addressing restrictions and might
1858 * fail if the percpu area is located far away from the previous
1859 * location. As an added bonus, in non-NUMA cases, embedding is
1860 * generally a good idea TLB-wise because percpu area can piggy back
1861 * on the physical linear memory mapping which uses large page
1862 * mappings on applicable archs.
1864 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
1865 EXPORT_SYMBOL(__per_cpu_offset
);
1867 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
1870 return memblock_virt_alloc_from_nopanic(
1871 size
, align
, __pa(MAX_DMA_ADDRESS
));
1874 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
1876 memblock_free_early(__pa(ptr
), size
);
1879 void __init
setup_per_cpu_areas(void)
1881 unsigned long delta
;
1886 * Always reserve area for module percpu variables. That's
1887 * what the legacy allocator did.
1889 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
1890 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
1891 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
1893 panic("Failed to initialize percpu areas.");
1895 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
1896 for_each_possible_cpu(cpu
)
1897 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
1899 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1901 #else /* CONFIG_SMP */
1904 * UP percpu area setup.
1906 * UP always uses km-based percpu allocator with identity mapping.
1907 * Static percpu variables are indistinguishable from the usual static
1908 * variables and don't require any special preparation.
1910 void __init
setup_per_cpu_areas(void)
1912 const size_t unit_size
=
1913 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
1914 PERCPU_DYNAMIC_RESERVE
));
1915 struct pcpu_alloc_info
*ai
;
1918 ai
= pcpu_alloc_alloc_info(1, 1);
1919 fc
= memblock_virt_alloc_from_nopanic(unit_size
,
1921 __pa(MAX_DMA_ADDRESS
));
1923 panic("Failed to allocate memory for percpu areas.");
1924 /* kmemleak tracks the percpu allocations separately */
1927 ai
->dyn_size
= unit_size
;
1928 ai
->unit_size
= unit_size
;
1929 ai
->atom_size
= unit_size
;
1930 ai
->alloc_size
= unit_size
;
1931 ai
->groups
[0].nr_units
= 1;
1932 ai
->groups
[0].cpu_map
[0] = 0;
1934 if (pcpu_setup_first_chunk(ai
, fc
) < 0)
1935 panic("Failed to initialize percpu areas.");
1938 #endif /* CONFIG_SMP */
1941 * First and reserved chunks are initialized with temporary allocation
1942 * map in initdata so that they can be used before slab is online.
1943 * This function is called after slab is brought up and replaces those
1944 * with properly allocated maps.
1946 void __init
percpu_init_late(void)
1948 struct pcpu_chunk
*target_chunks
[] =
1949 { pcpu_first_chunk
, pcpu_reserved_chunk
, NULL
};
1950 struct pcpu_chunk
*chunk
;
1951 unsigned long flags
;
1954 for (i
= 0; (chunk
= target_chunks
[i
]); i
++) {
1956 const size_t size
= PERCPU_DYNAMIC_EARLY_SLOTS
* sizeof(map
[0]);
1958 BUILD_BUG_ON(size
> PAGE_SIZE
);
1960 map
= pcpu_mem_zalloc(size
);
1963 spin_lock_irqsave(&pcpu_lock
, flags
);
1964 memcpy(map
, chunk
->map
, size
);
1966 spin_unlock_irqrestore(&pcpu_lock
, flags
);