2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_errortag.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
30 #include "xfs_log_priv.h"
31 #include "xfs_log_recover.h"
32 #include "xfs_inode.h"
33 #include "xfs_trace.h"
34 #include "xfs_fsops.h"
35 #include "xfs_cksum.h"
36 #include "xfs_sysfs.h"
39 kmem_zone_t
*xfs_log_ticket_zone
;
41 /* Local miscellaneous function prototypes */
45 struct xlog_ticket
*ticket
,
46 struct xlog_in_core
**iclog
,
47 xfs_lsn_t
*commitlsnp
);
52 struct xfs_buftarg
*log_target
,
53 xfs_daddr_t blk_offset
,
62 struct xlog_in_core
*iclog
);
67 /* local state machine functions */
68 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
70 xlog_state_do_callback(
73 struct xlog_in_core
*iclog
);
75 xlog_state_get_iclog_space(
78 struct xlog_in_core
**iclog
,
79 struct xlog_ticket
*ticket
,
83 xlog_state_release_iclog(
85 struct xlog_in_core
*iclog
);
87 xlog_state_switch_iclogs(
89 struct xlog_in_core
*iclog
,
94 struct xlog_in_core
*iclog
);
101 xlog_regrant_reserve_log_space(
103 struct xlog_ticket
*ticket
);
105 xlog_ungrant_log_space(
107 struct xlog_ticket
*ticket
);
111 xlog_verify_dest_ptr(
115 xlog_verify_grant_tail(
120 struct xlog_in_core
*iclog
,
124 xlog_verify_tail_lsn(
126 struct xlog_in_core
*iclog
,
129 #define xlog_verify_dest_ptr(a,b)
130 #define xlog_verify_grant_tail(a)
131 #define xlog_verify_iclog(a,b,c,d)
132 #define xlog_verify_tail_lsn(a,b,c)
140 xlog_grant_sub_space(
145 int64_t head_val
= atomic64_read(head
);
151 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
155 space
+= log
->l_logsize
;
160 new = xlog_assign_grant_head_val(cycle
, space
);
161 head_val
= atomic64_cmpxchg(head
, old
, new);
162 } while (head_val
!= old
);
166 xlog_grant_add_space(
171 int64_t head_val
= atomic64_read(head
);
178 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
180 tmp
= log
->l_logsize
- space
;
189 new = xlog_assign_grant_head_val(cycle
, space
);
190 head_val
= atomic64_cmpxchg(head
, old
, new);
191 } while (head_val
!= old
);
195 xlog_grant_head_init(
196 struct xlog_grant_head
*head
)
198 xlog_assign_grant_head(&head
->grant
, 1, 0);
199 INIT_LIST_HEAD(&head
->waiters
);
200 spin_lock_init(&head
->lock
);
204 xlog_grant_head_wake_all(
205 struct xlog_grant_head
*head
)
207 struct xlog_ticket
*tic
;
209 spin_lock(&head
->lock
);
210 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
211 wake_up_process(tic
->t_task
);
212 spin_unlock(&head
->lock
);
216 xlog_ticket_reservation(
218 struct xlog_grant_head
*head
,
219 struct xlog_ticket
*tic
)
221 if (head
== &log
->l_write_head
) {
222 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
223 return tic
->t_unit_res
;
225 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
226 return tic
->t_unit_res
* tic
->t_cnt
;
228 return tic
->t_unit_res
;
233 xlog_grant_head_wake(
235 struct xlog_grant_head
*head
,
238 struct xlog_ticket
*tic
;
241 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
242 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
243 if (*free_bytes
< need_bytes
)
246 *free_bytes
-= need_bytes
;
247 trace_xfs_log_grant_wake_up(log
, tic
);
248 wake_up_process(tic
->t_task
);
255 xlog_grant_head_wait(
257 struct xlog_grant_head
*head
,
258 struct xlog_ticket
*tic
,
259 int need_bytes
) __releases(&head
->lock
)
260 __acquires(&head
->lock
)
262 list_add_tail(&tic
->t_queue
, &head
->waiters
);
265 if (XLOG_FORCED_SHUTDOWN(log
))
267 xlog_grant_push_ail(log
, need_bytes
);
269 __set_current_state(TASK_UNINTERRUPTIBLE
);
270 spin_unlock(&head
->lock
);
272 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
274 trace_xfs_log_grant_sleep(log
, tic
);
276 trace_xfs_log_grant_wake(log
, tic
);
278 spin_lock(&head
->lock
);
279 if (XLOG_FORCED_SHUTDOWN(log
))
281 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
283 list_del_init(&tic
->t_queue
);
286 list_del_init(&tic
->t_queue
);
291 * Atomically get the log space required for a log ticket.
293 * Once a ticket gets put onto head->waiters, it will only return after the
294 * needed reservation is satisfied.
296 * This function is structured so that it has a lock free fast path. This is
297 * necessary because every new transaction reservation will come through this
298 * path. Hence any lock will be globally hot if we take it unconditionally on
301 * As tickets are only ever moved on and off head->waiters under head->lock, we
302 * only need to take that lock if we are going to add the ticket to the queue
303 * and sleep. We can avoid taking the lock if the ticket was never added to
304 * head->waiters because the t_queue list head will be empty and we hold the
305 * only reference to it so it can safely be checked unlocked.
308 xlog_grant_head_check(
310 struct xlog_grant_head
*head
,
311 struct xlog_ticket
*tic
,
317 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
320 * If there are other waiters on the queue then give them a chance at
321 * logspace before us. Wake up the first waiters, if we do not wake
322 * up all the waiters then go to sleep waiting for more free space,
323 * otherwise try to get some space for this transaction.
325 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
326 free_bytes
= xlog_space_left(log
, &head
->grant
);
327 if (!list_empty_careful(&head
->waiters
)) {
328 spin_lock(&head
->lock
);
329 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
330 free_bytes
< *need_bytes
) {
331 error
= xlog_grant_head_wait(log
, head
, tic
,
334 spin_unlock(&head
->lock
);
335 } else if (free_bytes
< *need_bytes
) {
336 spin_lock(&head
->lock
);
337 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
338 spin_unlock(&head
->lock
);
345 xlog_tic_reset_res(xlog_ticket_t
*tic
)
348 tic
->t_res_arr_sum
= 0;
349 tic
->t_res_num_ophdrs
= 0;
353 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
355 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
356 /* add to overflow and start again */
357 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
359 tic
->t_res_arr_sum
= 0;
362 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
363 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
364 tic
->t_res_arr_sum
+= len
;
369 * Replenish the byte reservation required by moving the grant write head.
373 struct xfs_mount
*mp
,
374 struct xlog_ticket
*tic
)
376 struct xlog
*log
= mp
->m_log
;
380 if (XLOG_FORCED_SHUTDOWN(log
))
383 XFS_STATS_INC(mp
, xs_try_logspace
);
386 * This is a new transaction on the ticket, so we need to change the
387 * transaction ID so that the next transaction has a different TID in
388 * the log. Just add one to the existing tid so that we can see chains
389 * of rolling transactions in the log easily.
393 xlog_grant_push_ail(log
, tic
->t_unit_res
);
395 tic
->t_curr_res
= tic
->t_unit_res
;
396 xlog_tic_reset_res(tic
);
401 trace_xfs_log_regrant(log
, tic
);
403 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
408 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
409 trace_xfs_log_regrant_exit(log
, tic
);
410 xlog_verify_grant_tail(log
);
415 * If we are failing, make sure the ticket doesn't have any current
416 * reservations. We don't want to add this back when the ticket/
417 * transaction gets cancelled.
420 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
425 * Reserve log space and return a ticket corresponding the reservation.
427 * Each reservation is going to reserve extra space for a log record header.
428 * When writes happen to the on-disk log, we don't subtract the length of the
429 * log record header from any reservation. By wasting space in each
430 * reservation, we prevent over allocation problems.
434 struct xfs_mount
*mp
,
437 struct xlog_ticket
**ticp
,
441 struct xlog
*log
= mp
->m_log
;
442 struct xlog_ticket
*tic
;
446 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
448 if (XLOG_FORCED_SHUTDOWN(log
))
451 XFS_STATS_INC(mp
, xs_try_logspace
);
453 ASSERT(*ticp
== NULL
);
454 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
455 KM_SLEEP
| KM_MAYFAIL
);
461 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
464 trace_xfs_log_reserve(log
, tic
);
466 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
471 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
472 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
473 trace_xfs_log_reserve_exit(log
, tic
);
474 xlog_verify_grant_tail(log
);
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
484 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
512 struct xfs_mount
*mp
,
513 struct xlog_ticket
*ticket
,
514 struct xlog_in_core
**iclog
,
517 struct xlog
*log
= mp
->m_log
;
520 if (XLOG_FORCED_SHUTDOWN(log
) ||
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
525 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
526 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
527 lsn
= (xfs_lsn_t
) -1;
533 trace_xfs_log_done_nonperm(log
, ticket
);
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
539 xlog_ungrant_log_space(log
, ticket
);
541 trace_xfs_log_done_perm(log
, ticket
);
543 xlog_regrant_reserve_log_space(log
, ticket
);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
548 ticket
->t_flags
|= XLOG_TIC_INITED
;
551 xfs_log_ticket_put(ticket
);
556 * Attaches a new iclog I/O completion callback routine during
557 * transaction commit. If the log is in error state, a non-zero
558 * return code is handed back and the caller is responsible for
559 * executing the callback at an appropriate time.
563 struct xfs_mount
*mp
,
564 struct xlog_in_core
*iclog
,
565 xfs_log_callback_t
*cb
)
569 spin_lock(&iclog
->ic_callback_lock
);
570 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
572 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
573 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
575 *(iclog
->ic_callback_tail
) = cb
;
576 iclog
->ic_callback_tail
= &(cb
->cb_next
);
578 spin_unlock(&iclog
->ic_callback_lock
);
583 xfs_log_release_iclog(
584 struct xfs_mount
*mp
,
585 struct xlog_in_core
*iclog
)
587 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
588 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
596 * Mount a log filesystem
598 * mp - ubiquitous xfs mount point structure
599 * log_target - buftarg of on-disk log device
600 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
601 * num_bblocks - Number of BBSIZE blocks in on-disk log
603 * Return error or zero.
608 xfs_buftarg_t
*log_target
,
609 xfs_daddr_t blk_offset
,
612 bool fatal
= xfs_sb_version_hascrc(&mp
->m_sb
);
616 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
617 xfs_notice(mp
, "Mounting V%d Filesystem",
618 XFS_SB_VERSION_NUM(&mp
->m_sb
));
621 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
622 XFS_SB_VERSION_NUM(&mp
->m_sb
));
623 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
626 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
627 if (IS_ERR(mp
->m_log
)) {
628 error
= PTR_ERR(mp
->m_log
);
633 * Validate the given log space and drop a critical message via syslog
634 * if the log size is too small that would lead to some unexpected
635 * situations in transaction log space reservation stage.
637 * Note: we can't just reject the mount if the validation fails. This
638 * would mean that people would have to downgrade their kernel just to
639 * remedy the situation as there is no way to grow the log (short of
640 * black magic surgery with xfs_db).
642 * We can, however, reject mounts for CRC format filesystems, as the
643 * mkfs binary being used to make the filesystem should never create a
644 * filesystem with a log that is too small.
646 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
648 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
650 "Log size %d blocks too small, minimum size is %d blocks",
651 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
653 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
655 "Log size %d blocks too large, maximum size is %lld blocks",
656 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
658 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
660 "log size %lld bytes too large, maximum size is %lld bytes",
661 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
664 } else if (mp
->m_sb
.sb_logsunit
> 1 &&
665 mp
->m_sb
.sb_logsunit
% mp
->m_sb
.sb_blocksize
) {
667 "log stripe unit %u bytes must be a multiple of block size",
668 mp
->m_sb
.sb_logsunit
);
674 * Log check errors are always fatal on v5; or whenever bad
675 * metadata leads to a crash.
678 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
682 xfs_crit(mp
, "Log size out of supported range.");
684 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
688 * Initialize the AIL now we have a log.
690 error
= xfs_trans_ail_init(mp
);
692 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
695 mp
->m_log
->l_ailp
= mp
->m_ail
;
698 * skip log recovery on a norecovery mount. pretend it all
701 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
702 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
705 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
707 error
= xlog_recover(mp
->m_log
);
710 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
712 xfs_warn(mp
, "log mount/recovery failed: error %d",
714 xlog_recover_cancel(mp
->m_log
);
715 goto out_destroy_ail
;
719 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
722 goto out_destroy_ail
;
724 /* Normal transactions can now occur */
725 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
728 * Now the log has been fully initialised and we know were our
729 * space grant counters are, we can initialise the permanent ticket
730 * needed for delayed logging to work.
732 xlog_cil_init_post_recovery(mp
->m_log
);
737 xfs_trans_ail_destroy(mp
);
739 xlog_dealloc_log(mp
->m_log
);
745 * Finish the recovery of the file system. This is separate from the
746 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
747 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
750 * If we finish recovery successfully, start the background log work. If we are
751 * not doing recovery, then we have a RO filesystem and we don't need to start
755 xfs_log_mount_finish(
756 struct xfs_mount
*mp
)
759 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
760 bool recovered
= mp
->m_log
->l_flags
& XLOG_RECOVERY_NEEDED
;
762 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
763 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
765 } else if (readonly
) {
766 /* Allow unlinked processing to proceed */
767 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
771 * During the second phase of log recovery, we need iget and
772 * iput to behave like they do for an active filesystem.
773 * xfs_fs_drop_inode needs to be able to prevent the deletion
774 * of inodes before we're done replaying log items on those
775 * inodes. Turn it off immediately after recovery finishes
776 * so that we don't leak the quota inodes if subsequent mount
779 * We let all inodes involved in redo item processing end up on
780 * the LRU instead of being evicted immediately so that if we do
781 * something to an unlinked inode, the irele won't cause
782 * premature truncation and freeing of the inode, which results
783 * in log recovery failure. We have to evict the unreferenced
784 * lru inodes after clearing SB_ACTIVE because we don't
785 * otherwise clean up the lru if there's a subsequent failure in
786 * xfs_mountfs, which leads to us leaking the inodes if nothing
787 * else (e.g. quotacheck) references the inodes before the
788 * mount failure occurs.
790 mp
->m_super
->s_flags
|= SB_ACTIVE
;
791 error
= xlog_recover_finish(mp
->m_log
);
793 xfs_log_work_queue(mp
);
794 mp
->m_super
->s_flags
&= ~SB_ACTIVE
;
795 evict_inodes(mp
->m_super
);
798 * Drain the buffer LRU after log recovery. This is required for v4
799 * filesystems to avoid leaving around buffers with NULL verifier ops,
800 * but we do it unconditionally to make sure we're always in a clean
801 * cache state after mount.
803 * Don't push in the error case because the AIL may have pending intents
804 * that aren't removed until recovery is cancelled.
806 if (!error
&& recovered
) {
807 xfs_log_force(mp
, XFS_LOG_SYNC
);
808 xfs_ail_push_all_sync(mp
->m_ail
);
810 xfs_wait_buftarg(mp
->m_ddev_targp
);
813 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
819 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
823 xfs_log_mount_cancel(
824 struct xfs_mount
*mp
)
828 error
= xlog_recover_cancel(mp
->m_log
);
835 * Final log writes as part of unmount.
837 * Mark the filesystem clean as unmount happens. Note that during relocation
838 * this routine needs to be executed as part of source-bag while the
839 * deallocation must not be done until source-end.
843 * Unmount record used to have a string "Unmount filesystem--" in the
844 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
845 * We just write the magic number now since that particular field isn't
846 * currently architecture converted and "Unmount" is a bit foo.
847 * As far as I know, there weren't any dependencies on the old behaviour.
851 xfs_log_unmount_write(xfs_mount_t
*mp
)
853 struct xlog
*log
= mp
->m_log
;
854 xlog_in_core_t
*iclog
;
856 xlog_in_core_t
*first_iclog
;
858 xlog_ticket_t
*tic
= NULL
;
863 * Don't write out unmount record on norecovery mounts or ro devices.
864 * Or, if we are doing a forced umount (typically because of IO errors).
866 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
867 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
868 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
872 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
873 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
876 first_iclog
= iclog
= log
->l_iclog
;
878 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
879 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
880 ASSERT(iclog
->ic_offset
== 0);
882 iclog
= iclog
->ic_next
;
883 } while (iclog
!= first_iclog
);
885 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
886 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
888 /* the data section must be 32 bit size aligned */
892 uint32_t pad2
; /* may as well make it 64 bits */
894 .magic
= XLOG_UNMOUNT_TYPE
,
896 struct xfs_log_iovec reg
= {
898 .i_len
= sizeof(magic
),
899 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
901 struct xfs_log_vec vec
= {
906 /* remove inited flag, and account for space used */
908 tic
->t_curr_res
-= sizeof(magic
);
909 error
= xlog_write(log
, &vec
, tic
, &lsn
,
910 NULL
, XLOG_UNMOUNT_TRANS
);
912 * At this point, we're umounting anyway,
913 * so there's no point in transitioning log state
914 * to IOERROR. Just continue...
919 xfs_alert(mp
, "%s: unmount record failed", __func__
);
922 spin_lock(&log
->l_icloglock
);
923 iclog
= log
->l_iclog
;
924 atomic_inc(&iclog
->ic_refcnt
);
925 xlog_state_want_sync(log
, iclog
);
926 spin_unlock(&log
->l_icloglock
);
927 error
= xlog_state_release_iclog(log
, iclog
);
929 spin_lock(&log
->l_icloglock
);
930 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
931 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
932 if (!XLOG_FORCED_SHUTDOWN(log
)) {
933 xlog_wait(&iclog
->ic_force_wait
,
936 spin_unlock(&log
->l_icloglock
);
939 spin_unlock(&log
->l_icloglock
);
942 trace_xfs_log_umount_write(log
, tic
);
943 xlog_ungrant_log_space(log
, tic
);
944 xfs_log_ticket_put(tic
);
948 * We're already in forced_shutdown mode, couldn't
949 * even attempt to write out the unmount transaction.
951 * Go through the motions of sync'ing and releasing
952 * the iclog, even though no I/O will actually happen,
953 * we need to wait for other log I/Os that may already
954 * be in progress. Do this as a separate section of
955 * code so we'll know if we ever get stuck here that
956 * we're in this odd situation of trying to unmount
957 * a file system that went into forced_shutdown as
958 * the result of an unmount..
960 spin_lock(&log
->l_icloglock
);
961 iclog
= log
->l_iclog
;
962 atomic_inc(&iclog
->ic_refcnt
);
964 xlog_state_want_sync(log
, iclog
);
965 spin_unlock(&log
->l_icloglock
);
966 error
= xlog_state_release_iclog(log
, iclog
);
968 spin_lock(&log
->l_icloglock
);
970 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
971 || iclog
->ic_state
== XLOG_STATE_DIRTY
972 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
974 xlog_wait(&iclog
->ic_force_wait
,
977 spin_unlock(&log
->l_icloglock
);
982 } /* xfs_log_unmount_write */
985 * Empty the log for unmount/freeze.
987 * To do this, we first need to shut down the background log work so it is not
988 * trying to cover the log as we clean up. We then need to unpin all objects in
989 * the log so we can then flush them out. Once they have completed their IO and
990 * run the callbacks removing themselves from the AIL, we can write the unmount
995 struct xfs_mount
*mp
)
997 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
998 xfs_log_force(mp
, XFS_LOG_SYNC
);
1001 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1002 * will push it, xfs_wait_buftarg() will not wait for it. Further,
1003 * xfs_buf_iowait() cannot be used because it was pushed with the
1004 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1005 * the IO to complete.
1007 xfs_ail_push_all_sync(mp
->m_ail
);
1008 xfs_wait_buftarg(mp
->m_ddev_targp
);
1009 xfs_buf_lock(mp
->m_sb_bp
);
1010 xfs_buf_unlock(mp
->m_sb_bp
);
1012 xfs_log_unmount_write(mp
);
1016 * Shut down and release the AIL and Log.
1018 * During unmount, we need to ensure we flush all the dirty metadata objects
1019 * from the AIL so that the log is empty before we write the unmount record to
1020 * the log. Once this is done, we can tear down the AIL and the log.
1024 struct xfs_mount
*mp
)
1026 xfs_log_quiesce(mp
);
1028 xfs_trans_ail_destroy(mp
);
1030 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1032 xlog_dealloc_log(mp
->m_log
);
1037 struct xfs_mount
*mp
,
1038 struct xfs_log_item
*item
,
1040 const struct xfs_item_ops
*ops
)
1042 item
->li_mountp
= mp
;
1043 item
->li_ailp
= mp
->m_ail
;
1044 item
->li_type
= type
;
1048 INIT_LIST_HEAD(&item
->li_ail
);
1049 INIT_LIST_HEAD(&item
->li_cil
);
1053 * Wake up processes waiting for log space after we have moved the log tail.
1057 struct xfs_mount
*mp
)
1059 struct xlog
*log
= mp
->m_log
;
1062 if (XLOG_FORCED_SHUTDOWN(log
))
1065 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1066 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1068 spin_lock(&log
->l_write_head
.lock
);
1069 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1070 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1071 spin_unlock(&log
->l_write_head
.lock
);
1074 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1075 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1077 spin_lock(&log
->l_reserve_head
.lock
);
1078 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1079 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1080 spin_unlock(&log
->l_reserve_head
.lock
);
1085 * Determine if we have a transaction that has gone to disk that needs to be
1086 * covered. To begin the transition to the idle state firstly the log needs to
1087 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1088 * we start attempting to cover the log.
1090 * Only if we are then in a state where covering is needed, the caller is
1091 * informed that dummy transactions are required to move the log into the idle
1094 * If there are any items in the AIl or CIL, then we do not want to attempt to
1095 * cover the log as we may be in a situation where there isn't log space
1096 * available to run a dummy transaction and this can lead to deadlocks when the
1097 * tail of the log is pinned by an item that is modified in the CIL. Hence
1098 * there's no point in running a dummy transaction at this point because we
1099 * can't start trying to idle the log until both the CIL and AIL are empty.
1102 xfs_log_need_covered(xfs_mount_t
*mp
)
1104 struct xlog
*log
= mp
->m_log
;
1107 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1110 if (!xlog_cil_empty(log
))
1113 spin_lock(&log
->l_icloglock
);
1114 switch (log
->l_covered_state
) {
1115 case XLOG_STATE_COVER_DONE
:
1116 case XLOG_STATE_COVER_DONE2
:
1117 case XLOG_STATE_COVER_IDLE
:
1119 case XLOG_STATE_COVER_NEED
:
1120 case XLOG_STATE_COVER_NEED2
:
1121 if (xfs_ail_min_lsn(log
->l_ailp
))
1123 if (!xlog_iclogs_empty(log
))
1127 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1128 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1130 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1136 spin_unlock(&log
->l_icloglock
);
1141 * We may be holding the log iclog lock upon entering this routine.
1144 xlog_assign_tail_lsn_locked(
1145 struct xfs_mount
*mp
)
1147 struct xlog
*log
= mp
->m_log
;
1148 struct xfs_log_item
*lip
;
1151 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1154 * To make sure we always have a valid LSN for the log tail we keep
1155 * track of the last LSN which was committed in log->l_last_sync_lsn,
1156 * and use that when the AIL was empty.
1158 lip
= xfs_ail_min(mp
->m_ail
);
1160 tail_lsn
= lip
->li_lsn
;
1162 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1163 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1164 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1169 xlog_assign_tail_lsn(
1170 struct xfs_mount
*mp
)
1174 spin_lock(&mp
->m_ail
->xa_lock
);
1175 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1176 spin_unlock(&mp
->m_ail
->xa_lock
);
1182 * Return the space in the log between the tail and the head. The head
1183 * is passed in the cycle/bytes formal parms. In the special case where
1184 * the reserve head has wrapped passed the tail, this calculation is no
1185 * longer valid. In this case, just return 0 which means there is no space
1186 * in the log. This works for all places where this function is called
1187 * with the reserve head. Of course, if the write head were to ever
1188 * wrap the tail, we should blow up. Rather than catch this case here,
1189 * we depend on other ASSERTions in other parts of the code. XXXmiken
1191 * This code also handles the case where the reservation head is behind
1192 * the tail. The details of this case are described below, but the end
1193 * result is that we return the size of the log as the amount of space left.
1206 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1207 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1208 tail_bytes
= BBTOB(tail_bytes
);
1209 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1210 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1211 else if (tail_cycle
+ 1 < head_cycle
)
1213 else if (tail_cycle
< head_cycle
) {
1214 ASSERT(tail_cycle
== (head_cycle
- 1));
1215 free_bytes
= tail_bytes
- head_bytes
;
1218 * The reservation head is behind the tail.
1219 * In this case we just want to return the size of the
1220 * log as the amount of space left.
1222 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1223 xfs_alert(log
->l_mp
,
1224 " tail_cycle = %d, tail_bytes = %d",
1225 tail_cycle
, tail_bytes
);
1226 xfs_alert(log
->l_mp
,
1227 " GH cycle = %d, GH bytes = %d",
1228 head_cycle
, head_bytes
);
1230 free_bytes
= log
->l_logsize
;
1237 * Log function which is called when an io completes.
1239 * The log manager needs its own routine, in order to control what
1240 * happens with the buffer after the write completes.
1243 xlog_iodone(xfs_buf_t
*bp
)
1245 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1246 struct xlog
*l
= iclog
->ic_log
;
1250 * Race to shutdown the filesystem if we see an error or the iclog is in
1251 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1252 * CRC errors into log recovery.
1254 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
) ||
1255 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1256 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1257 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1259 xfs_buf_ioerror_alert(bp
, __func__
);
1261 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1263 * This flag will be propagated to the trans-committed
1264 * callback routines to let them know that the log-commit
1267 aborted
= XFS_LI_ABORTED
;
1268 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1269 aborted
= XFS_LI_ABORTED
;
1272 /* log I/O is always issued ASYNC */
1273 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1274 xlog_state_done_syncing(iclog
, aborted
);
1277 * drop the buffer lock now that we are done. Nothing references
1278 * the buffer after this, so an unmount waiting on this lock can now
1279 * tear it down safely. As such, it is unsafe to reference the buffer
1280 * (bp) after the unlock as we could race with it being freed.
1286 * Return size of each in-core log record buffer.
1288 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1290 * If the filesystem blocksize is too large, we may need to choose a
1291 * larger size since the directory code currently logs entire blocks.
1295 xlog_get_iclog_buffer_size(
1296 struct xfs_mount
*mp
,
1302 if (mp
->m_logbufs
<= 0)
1303 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1305 log
->l_iclog_bufs
= mp
->m_logbufs
;
1308 * Buffer size passed in from mount system call.
1310 if (mp
->m_logbsize
> 0) {
1311 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1312 log
->l_iclog_size_log
= 0;
1314 log
->l_iclog_size_log
++;
1318 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1319 /* # headers = size / 32k
1320 * one header holds cycles from 32k of data
1323 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1324 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1326 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1327 log
->l_iclog_heads
= xhdrs
;
1329 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1330 log
->l_iclog_hsize
= BBSIZE
;
1331 log
->l_iclog_heads
= 1;
1336 /* All machines use 32kB buffers by default. */
1337 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1338 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1340 /* the default log size is 16k or 32k which is one header sector */
1341 log
->l_iclog_hsize
= BBSIZE
;
1342 log
->l_iclog_heads
= 1;
1345 /* are we being asked to make the sizes selected above visible? */
1346 if (mp
->m_logbufs
== 0)
1347 mp
->m_logbufs
= log
->l_iclog_bufs
;
1348 if (mp
->m_logbsize
== 0)
1349 mp
->m_logbsize
= log
->l_iclog_size
;
1350 } /* xlog_get_iclog_buffer_size */
1355 struct xfs_mount
*mp
)
1357 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1358 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1362 * Every sync period we need to unpin all items in the AIL and push them to
1363 * disk. If there is nothing dirty, then we might need to cover the log to
1364 * indicate that the filesystem is idle.
1368 struct work_struct
*work
)
1370 struct xlog
*log
= container_of(to_delayed_work(work
),
1371 struct xlog
, l_work
);
1372 struct xfs_mount
*mp
= log
->l_mp
;
1374 /* dgc: errors ignored - not fatal and nowhere to report them */
1375 if (xfs_log_need_covered(mp
)) {
1377 * Dump a transaction into the log that contains no real change.
1378 * This is needed to stamp the current tail LSN into the log
1379 * during the covering operation.
1381 * We cannot use an inode here for this - that will push dirty
1382 * state back up into the VFS and then periodic inode flushing
1383 * will prevent log covering from making progress. Hence we
1384 * synchronously log the superblock instead to ensure the
1385 * superblock is immediately unpinned and can be written back.
1387 xfs_sync_sb(mp
, true);
1389 xfs_log_force(mp
, 0);
1391 /* start pushing all the metadata that is currently dirty */
1392 xfs_ail_push_all(mp
->m_ail
);
1394 /* queue us up again */
1395 xfs_log_work_queue(mp
);
1399 * This routine initializes some of the log structure for a given mount point.
1400 * Its primary purpose is to fill in enough, so recovery can occur. However,
1401 * some other stuff may be filled in too.
1403 STATIC
struct xlog
*
1405 struct xfs_mount
*mp
,
1406 struct xfs_buftarg
*log_target
,
1407 xfs_daddr_t blk_offset
,
1411 xlog_rec_header_t
*head
;
1412 xlog_in_core_t
**iclogp
;
1413 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1416 int error
= -ENOMEM
;
1419 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1421 xfs_warn(mp
, "Log allocation failed: No memory!");
1426 log
->l_targ
= log_target
;
1427 log
->l_logsize
= BBTOB(num_bblks
);
1428 log
->l_logBBstart
= blk_offset
;
1429 log
->l_logBBsize
= num_bblks
;
1430 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1431 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1432 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1434 log
->l_prev_block
= -1;
1435 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1436 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1437 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1438 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1440 xlog_grant_head_init(&log
->l_reserve_head
);
1441 xlog_grant_head_init(&log
->l_write_head
);
1443 error
= -EFSCORRUPTED
;
1444 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1445 log2_size
= mp
->m_sb
.sb_logsectlog
;
1446 if (log2_size
< BBSHIFT
) {
1447 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1448 log2_size
, BBSHIFT
);
1452 log2_size
-= BBSHIFT
;
1453 if (log2_size
> mp
->m_sectbb_log
) {
1454 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1455 log2_size
, mp
->m_sectbb_log
);
1459 /* for larger sector sizes, must have v2 or external log */
1460 if (log2_size
&& log
->l_logBBstart
> 0 &&
1461 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1463 "log sector size (0x%x) invalid for configuration.",
1468 log
->l_sectBBsize
= 1 << log2_size
;
1470 xlog_get_iclog_buffer_size(mp
, log
);
1473 * Use a NULL block for the extra log buffer used during splits so that
1474 * it will trigger errors if we ever try to do IO on it without first
1475 * having set it up properly.
1478 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1479 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1484 * The iclogbuf buffer locks are held over IO but we are not going to do
1485 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1486 * when appropriately.
1488 ASSERT(xfs_buf_islocked(bp
));
1491 /* use high priority wq for log I/O completion */
1492 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1493 bp
->b_iodone
= xlog_iodone
;
1496 spin_lock_init(&log
->l_icloglock
);
1497 init_waitqueue_head(&log
->l_flush_wait
);
1499 iclogp
= &log
->l_iclog
;
1501 * The amount of memory to allocate for the iclog structure is
1502 * rather funky due to the way the structure is defined. It is
1503 * done this way so that we can use different sizes for machines
1504 * with different amounts of memory. See the definition of
1505 * xlog_in_core_t in xfs_log_priv.h for details.
1507 ASSERT(log
->l_iclog_size
>= 4096);
1508 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1509 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1511 goto out_free_iclog
;
1514 iclog
->ic_prev
= prev_iclog
;
1517 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1518 BTOBB(log
->l_iclog_size
),
1521 goto out_free_iclog
;
1523 ASSERT(xfs_buf_islocked(bp
));
1526 /* use high priority wq for log I/O completion */
1527 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1528 bp
->b_iodone
= xlog_iodone
;
1530 iclog
->ic_data
= bp
->b_addr
;
1532 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1534 head
= &iclog
->ic_header
;
1535 memset(head
, 0, sizeof(xlog_rec_header_t
));
1536 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1537 head
->h_version
= cpu_to_be32(
1538 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1539 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1541 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1542 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1544 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1545 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1546 iclog
->ic_log
= log
;
1547 atomic_set(&iclog
->ic_refcnt
, 0);
1548 spin_lock_init(&iclog
->ic_callback_lock
);
1549 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1550 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1552 init_waitqueue_head(&iclog
->ic_force_wait
);
1553 init_waitqueue_head(&iclog
->ic_write_wait
);
1555 iclogp
= &iclog
->ic_next
;
1557 *iclogp
= log
->l_iclog
; /* complete ring */
1558 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1560 error
= xlog_cil_init(log
);
1562 goto out_free_iclog
;
1566 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1567 prev_iclog
= iclog
->ic_next
;
1569 xfs_buf_free(iclog
->ic_bp
);
1572 spinlock_destroy(&log
->l_icloglock
);
1573 xfs_buf_free(log
->l_xbuf
);
1577 return ERR_PTR(error
);
1578 } /* xlog_alloc_log */
1582 * Write out the commit record of a transaction associated with the given
1583 * ticket. Return the lsn of the commit record.
1588 struct xlog_ticket
*ticket
,
1589 struct xlog_in_core
**iclog
,
1590 xfs_lsn_t
*commitlsnp
)
1592 struct xfs_mount
*mp
= log
->l_mp
;
1594 struct xfs_log_iovec reg
= {
1597 .i_type
= XLOG_REG_TYPE_COMMIT
,
1599 struct xfs_log_vec vec
= {
1604 ASSERT_ALWAYS(iclog
);
1605 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1608 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1613 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1614 * log space. This code pushes on the lsn which would supposedly free up
1615 * the 25% which we want to leave free. We may need to adopt a policy which
1616 * pushes on an lsn which is further along in the log once we reach the high
1617 * water mark. In this manner, we would be creating a low water mark.
1620 xlog_grant_push_ail(
1624 xfs_lsn_t threshold_lsn
= 0;
1625 xfs_lsn_t last_sync_lsn
;
1628 int threshold_block
;
1629 int threshold_cycle
;
1632 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1634 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1635 free_blocks
= BTOBBT(free_bytes
);
1638 * Set the threshold for the minimum number of free blocks in the
1639 * log to the maximum of what the caller needs, one quarter of the
1640 * log, and 256 blocks.
1642 free_threshold
= BTOBB(need_bytes
);
1643 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1644 free_threshold
= MAX(free_threshold
, 256);
1645 if (free_blocks
>= free_threshold
)
1648 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1650 threshold_block
+= free_threshold
;
1651 if (threshold_block
>= log
->l_logBBsize
) {
1652 threshold_block
-= log
->l_logBBsize
;
1653 threshold_cycle
+= 1;
1655 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1658 * Don't pass in an lsn greater than the lsn of the last
1659 * log record known to be on disk. Use a snapshot of the last sync lsn
1660 * so that it doesn't change between the compare and the set.
1662 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1663 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1664 threshold_lsn
= last_sync_lsn
;
1667 * Get the transaction layer to kick the dirty buffers out to
1668 * disk asynchronously. No point in trying to do this if
1669 * the filesystem is shutting down.
1671 if (!XLOG_FORCED_SHUTDOWN(log
))
1672 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1676 * Stamp cycle number in every block
1681 struct xlog_in_core
*iclog
,
1685 int size
= iclog
->ic_offset
+ roundoff
;
1689 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1691 dp
= iclog
->ic_datap
;
1692 for (i
= 0; i
< BTOBB(size
); i
++) {
1693 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1695 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1696 *(__be32
*)dp
= cycle_lsn
;
1700 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1701 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1703 for ( ; i
< BTOBB(size
); i
++) {
1704 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1705 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1706 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1707 *(__be32
*)dp
= cycle_lsn
;
1711 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1712 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1717 * Calculate the checksum for a log buffer.
1719 * This is a little more complicated than it should be because the various
1720 * headers and the actual data are non-contiguous.
1725 struct xlog_rec_header
*rhead
,
1731 /* first generate the crc for the record header ... */
1732 crc
= xfs_start_cksum_update((char *)rhead
,
1733 sizeof(struct xlog_rec_header
),
1734 offsetof(struct xlog_rec_header
, h_crc
));
1736 /* ... then for additional cycle data for v2 logs ... */
1737 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1738 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1742 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1743 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1746 for (i
= 1; i
< xheads
; i
++) {
1747 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1748 sizeof(struct xlog_rec_ext_header
));
1752 /* ... and finally for the payload */
1753 crc
= crc32c(crc
, dp
, size
);
1755 return xfs_end_cksum(crc
);
1759 * The bdstrat callback function for log bufs. This gives us a central
1760 * place to trap bufs in case we get hit by a log I/O error and need to
1761 * shutdown. Actually, in practice, even when we didn't get a log error,
1762 * we transition the iclogs to IOERROR state *after* flushing all existing
1763 * iclogs to disk. This is because we don't want anymore new transactions to be
1764 * started or completed afterwards.
1766 * We lock the iclogbufs here so that we can serialise against IO completion
1767 * during unmount. We might be processing a shutdown triggered during unmount,
1768 * and that can occur asynchronously to the unmount thread, and hence we need to
1769 * ensure that completes before tearing down the iclogbufs. Hence we need to
1770 * hold the buffer lock across the log IO to acheive that.
1776 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1779 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1780 xfs_buf_ioerror(bp
, -EIO
);
1784 * It would seem logical to return EIO here, but we rely on
1785 * the log state machine to propagate I/O errors instead of
1786 * doing it here. Similarly, IO completion will unlock the
1787 * buffer, so we don't do it here.
1797 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1798 * fashion. Previously, we should have moved the current iclog
1799 * ptr in the log to point to the next available iclog. This allows further
1800 * write to continue while this code syncs out an iclog ready to go.
1801 * Before an in-core log can be written out, the data section must be scanned
1802 * to save away the 1st word of each BBSIZE block into the header. We replace
1803 * it with the current cycle count. Each BBSIZE block is tagged with the
1804 * cycle count because there in an implicit assumption that drives will
1805 * guarantee that entire 512 byte blocks get written at once. In other words,
1806 * we can't have part of a 512 byte block written and part not written. By
1807 * tagging each block, we will know which blocks are valid when recovering
1808 * after an unclean shutdown.
1810 * This routine is single threaded on the iclog. No other thread can be in
1811 * this routine with the same iclog. Changing contents of iclog can there-
1812 * fore be done without grabbing the state machine lock. Updating the global
1813 * log will require grabbing the lock though.
1815 * The entire log manager uses a logical block numbering scheme. Only
1816 * log_sync (and then only bwrite()) know about the fact that the log may
1817 * not start with block zero on a given device. The log block start offset
1818 * is added immediately before calling bwrite().
1824 struct xlog_in_core
*iclog
)
1828 uint count
; /* byte count of bwrite */
1829 uint count_init
; /* initial count before roundup */
1830 int roundoff
; /* roundoff to BB or stripe */
1831 int split
= 0; /* split write into two regions */
1833 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1836 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1837 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1839 /* Add for LR header */
1840 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1842 /* Round out the log write size */
1843 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1844 /* we have a v2 stripe unit to use */
1845 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1847 count
= BBTOB(BTOBB(count_init
));
1849 roundoff
= count
- count_init
;
1850 ASSERT(roundoff
>= 0);
1851 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1852 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1854 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1855 roundoff
< BBTOB(1)));
1857 /* move grant heads by roundoff in sync */
1858 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1859 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1861 /* put cycle number in every block */
1862 xlog_pack_data(log
, iclog
, roundoff
);
1864 /* real byte length */
1865 size
= iclog
->ic_offset
;
1868 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1871 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1873 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1875 /* Do we need to split this write into 2 parts? */
1876 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1879 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1880 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1881 iclog
->ic_bwritecnt
= 2;
1884 * Bump the cycle numbers at the start of each block in the
1885 * part of the iclog that ends up in the buffer that gets
1886 * written to the start of the log.
1888 * Watch out for the header magic number case, though.
1890 dptr
= (char *)&iclog
->ic_header
+ count
;
1891 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1892 uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1893 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1895 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1900 iclog
->ic_bwritecnt
= 1;
1903 /* calculcate the checksum */
1904 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1905 iclog
->ic_datap
, size
);
1907 * Intentionally corrupt the log record CRC based on the error injection
1908 * frequency, if defined. This facilitates testing log recovery in the
1909 * event of torn writes. Hence, set the IOABORT state to abort the log
1910 * write on I/O completion and shutdown the fs. The subsequent mount
1911 * detects the bad CRC and attempts to recover.
1913 if (XFS_TEST_ERROR(false, log
->l_mp
, XFS_ERRTAG_LOG_BAD_CRC
)) {
1914 iclog
->ic_header
.h_crc
&= cpu_to_le32(0xAAAAAAAA);
1915 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1917 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1918 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1921 bp
->b_io_length
= BTOBB(count
);
1922 bp
->b_fspriv
= iclog
;
1923 bp
->b_flags
&= ~XBF_FLUSH
;
1924 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1927 * Flush the data device before flushing the log to make sure all meta
1928 * data written back from the AIL actually made it to disk before
1929 * stamping the new log tail LSN into the log buffer. For an external
1930 * log we need to issue the flush explicitly, and unfortunately
1931 * synchronously here; for an internal log we can simply use the block
1932 * layer state machine for preflushes.
1934 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1935 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1937 bp
->b_flags
|= XBF_FLUSH
;
1939 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1940 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1942 xlog_verify_iclog(log
, iclog
, count
, true);
1944 /* account for log which doesn't start at block #0 */
1945 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1948 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1951 error
= xlog_bdstrat(bp
);
1953 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1957 bp
= iclog
->ic_log
->l_xbuf
;
1958 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1959 xfs_buf_associate_memory(bp
,
1960 (char *)&iclog
->ic_header
+ count
, split
);
1961 bp
->b_fspriv
= iclog
;
1962 bp
->b_flags
&= ~XBF_FLUSH
;
1963 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
| XBF_FUA
);
1965 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1966 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1968 /* account for internal log which doesn't start at block #0 */
1969 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1970 error
= xlog_bdstrat(bp
);
1972 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1980 * Deallocate a log structure
1986 xlog_in_core_t
*iclog
, *next_iclog
;
1989 xlog_cil_destroy(log
);
1992 * Cycle all the iclogbuf locks to make sure all log IO completion
1993 * is done before we tear down these buffers.
1995 iclog
= log
->l_iclog
;
1996 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1997 xfs_buf_lock(iclog
->ic_bp
);
1998 xfs_buf_unlock(iclog
->ic_bp
);
1999 iclog
= iclog
->ic_next
;
2003 * Always need to ensure that the extra buffer does not point to memory
2004 * owned by another log buffer before we free it. Also, cycle the lock
2005 * first to ensure we've completed IO on it.
2007 xfs_buf_lock(log
->l_xbuf
);
2008 xfs_buf_unlock(log
->l_xbuf
);
2009 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
2010 xfs_buf_free(log
->l_xbuf
);
2012 iclog
= log
->l_iclog
;
2013 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
2014 xfs_buf_free(iclog
->ic_bp
);
2015 next_iclog
= iclog
->ic_next
;
2019 spinlock_destroy(&log
->l_icloglock
);
2021 log
->l_mp
->m_log
= NULL
;
2023 } /* xlog_dealloc_log */
2026 * Update counters atomically now that memcpy is done.
2030 xlog_state_finish_copy(
2032 struct xlog_in_core
*iclog
,
2036 spin_lock(&log
->l_icloglock
);
2038 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2039 iclog
->ic_offset
+= copy_bytes
;
2041 spin_unlock(&log
->l_icloglock
);
2042 } /* xlog_state_finish_copy */
2048 * print out info relating to regions written which consume
2053 struct xfs_mount
*mp
,
2054 struct xlog_ticket
*ticket
)
2057 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2059 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2060 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2061 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2062 REG_TYPE_STR(BFORMAT
, "bformat"),
2063 REG_TYPE_STR(BCHUNK
, "bchunk"),
2064 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2065 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2066 REG_TYPE_STR(IFORMAT
, "iformat"),
2067 REG_TYPE_STR(ICORE
, "icore"),
2068 REG_TYPE_STR(IEXT
, "iext"),
2069 REG_TYPE_STR(IBROOT
, "ibroot"),
2070 REG_TYPE_STR(ILOCAL
, "ilocal"),
2071 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2072 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2073 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2074 REG_TYPE_STR(QFORMAT
, "qformat"),
2075 REG_TYPE_STR(DQUOT
, "dquot"),
2076 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2077 REG_TYPE_STR(LRHEADER
, "LR header"),
2078 REG_TYPE_STR(UNMOUNT
, "unmount"),
2079 REG_TYPE_STR(COMMIT
, "commit"),
2080 REG_TYPE_STR(TRANSHDR
, "trans header"),
2081 REG_TYPE_STR(ICREATE
, "inode create")
2085 xfs_warn(mp
, "ticket reservation summary:");
2086 xfs_warn(mp
, " unit res = %d bytes",
2087 ticket
->t_unit_res
);
2088 xfs_warn(mp
, " current res = %d bytes",
2089 ticket
->t_curr_res
);
2090 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2091 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2092 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2093 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2094 xfs_warn(mp
, " ophdr + reg = %u bytes",
2095 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2096 xfs_warn(mp
, " num regions = %u",
2099 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2100 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2101 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2102 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2103 "bad-rtype" : res_type_str
[r_type
]),
2104 ticket
->t_res_arr
[i
].r_len
);
2109 * Print a summary of the transaction.
2113 struct xfs_trans
*tp
)
2115 struct xfs_mount
*mp
= tp
->t_mountp
;
2116 struct xfs_log_item_desc
*lidp
;
2118 /* dump core transaction and ticket info */
2119 xfs_warn(mp
, "transaction summary:");
2120 xfs_warn(mp
, " flags = 0x%x", tp
->t_flags
);
2122 xlog_print_tic_res(mp
, tp
->t_ticket
);
2124 /* dump each log item */
2125 list_for_each_entry(lidp
, &tp
->t_items
, lid_trans
) {
2126 struct xfs_log_item
*lip
= lidp
->lid_item
;
2127 struct xfs_log_vec
*lv
= lip
->li_lv
;
2128 struct xfs_log_iovec
*vec
;
2131 xfs_warn(mp
, "log item: ");
2132 xfs_warn(mp
, " type = 0x%x", lip
->li_type
);
2133 xfs_warn(mp
, " flags = 0x%x", lip
->li_flags
);
2136 xfs_warn(mp
, " niovecs = %d", lv
->lv_niovecs
);
2137 xfs_warn(mp
, " size = %d", lv
->lv_size
);
2138 xfs_warn(mp
, " bytes = %d", lv
->lv_bytes
);
2139 xfs_warn(mp
, " buf len = %d", lv
->lv_buf_len
);
2141 /* dump each iovec for the log item */
2142 vec
= lv
->lv_iovecp
;
2143 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2144 int dumplen
= min(vec
->i_len
, 32);
2146 xfs_warn(mp
, " iovec[%d]", i
);
2147 xfs_warn(mp
, " type = 0x%x", vec
->i_type
);
2148 xfs_warn(mp
, " len = %d", vec
->i_len
);
2149 xfs_warn(mp
, " first %d bytes of iovec[%d]:", dumplen
, i
);
2150 xfs_hex_dump(vec
->i_addr
, dumplen
);
2158 * Calculate the potential space needed by the log vector. Each region gets
2159 * its own xlog_op_header_t and may need to be double word aligned.
2162 xlog_write_calc_vec_length(
2163 struct xlog_ticket
*ticket
,
2164 struct xfs_log_vec
*log_vector
)
2166 struct xfs_log_vec
*lv
;
2171 /* acct for start rec of xact */
2172 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2175 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2176 /* we don't write ordered log vectors */
2177 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2180 headers
+= lv
->lv_niovecs
;
2182 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2183 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2186 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2190 ticket
->t_res_num_ophdrs
+= headers
;
2191 len
+= headers
* sizeof(struct xlog_op_header
);
2197 * If first write for transaction, insert start record We can't be trying to
2198 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2201 xlog_write_start_rec(
2202 struct xlog_op_header
*ophdr
,
2203 struct xlog_ticket
*ticket
)
2205 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2208 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2209 ophdr
->oh_clientid
= ticket
->t_clientid
;
2211 ophdr
->oh_flags
= XLOG_START_TRANS
;
2214 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2216 return sizeof(struct xlog_op_header
);
2219 static xlog_op_header_t
*
2220 xlog_write_setup_ophdr(
2222 struct xlog_op_header
*ophdr
,
2223 struct xlog_ticket
*ticket
,
2226 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2227 ophdr
->oh_clientid
= ticket
->t_clientid
;
2230 /* are we copying a commit or unmount record? */
2231 ophdr
->oh_flags
= flags
;
2234 * We've seen logs corrupted with bad transaction client ids. This
2235 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2236 * and shut down the filesystem.
2238 switch (ophdr
->oh_clientid
) {
2239 case XFS_TRANSACTION
:
2245 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2246 ophdr
->oh_clientid
, ticket
);
2254 * Set up the parameters of the region copy into the log. This has
2255 * to handle region write split across multiple log buffers - this
2256 * state is kept external to this function so that this code can
2257 * be written in an obvious, self documenting manner.
2260 xlog_write_setup_copy(
2261 struct xlog_ticket
*ticket
,
2262 struct xlog_op_header
*ophdr
,
2263 int space_available
,
2267 int *last_was_partial_copy
,
2268 int *bytes_consumed
)
2272 still_to_copy
= space_required
- *bytes_consumed
;
2273 *copy_off
= *bytes_consumed
;
2275 if (still_to_copy
<= space_available
) {
2276 /* write of region completes here */
2277 *copy_len
= still_to_copy
;
2278 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2279 if (*last_was_partial_copy
)
2280 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2281 *last_was_partial_copy
= 0;
2282 *bytes_consumed
= 0;
2286 /* partial write of region, needs extra log op header reservation */
2287 *copy_len
= space_available
;
2288 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2289 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2290 if (*last_was_partial_copy
)
2291 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2292 *bytes_consumed
+= *copy_len
;
2293 (*last_was_partial_copy
)++;
2295 /* account for new log op header */
2296 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2297 ticket
->t_res_num_ophdrs
++;
2299 return sizeof(struct xlog_op_header
);
2303 xlog_write_copy_finish(
2305 struct xlog_in_core
*iclog
,
2310 int *partial_copy_len
,
2312 struct xlog_in_core
**commit_iclog
)
2314 if (*partial_copy
) {
2316 * This iclog has already been marked WANT_SYNC by
2317 * xlog_state_get_iclog_space.
2319 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2322 return xlog_state_release_iclog(log
, iclog
);
2326 *partial_copy_len
= 0;
2328 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2329 /* no more space in this iclog - push it. */
2330 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2334 spin_lock(&log
->l_icloglock
);
2335 xlog_state_want_sync(log
, iclog
);
2336 spin_unlock(&log
->l_icloglock
);
2339 return xlog_state_release_iclog(log
, iclog
);
2340 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2341 *commit_iclog
= iclog
;
2348 * Write some region out to in-core log
2350 * This will be called when writing externally provided regions or when
2351 * writing out a commit record for a given transaction.
2353 * General algorithm:
2354 * 1. Find total length of this write. This may include adding to the
2355 * lengths passed in.
2356 * 2. Check whether we violate the tickets reservation.
2357 * 3. While writing to this iclog
2358 * A. Reserve as much space in this iclog as can get
2359 * B. If this is first write, save away start lsn
2360 * C. While writing this region:
2361 * 1. If first write of transaction, write start record
2362 * 2. Write log operation header (header per region)
2363 * 3. Find out if we can fit entire region into this iclog
2364 * 4. Potentially, verify destination memcpy ptr
2365 * 5. Memcpy (partial) region
2366 * 6. If partial copy, release iclog; otherwise, continue
2367 * copying more regions into current iclog
2368 * 4. Mark want sync bit (in simulation mode)
2369 * 5. Release iclog for potential flush to on-disk log.
2372 * 1. Panic if reservation is overrun. This should never happen since
2373 * reservation amounts are generated internal to the filesystem.
2375 * 1. Tickets are single threaded data structures.
2376 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2377 * syncing routine. When a single log_write region needs to span
2378 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2379 * on all log operation writes which don't contain the end of the
2380 * region. The XLOG_END_TRANS bit is used for the in-core log
2381 * operation which contains the end of the continued log_write region.
2382 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2383 * we don't really know exactly how much space will be used. As a result,
2384 * we don't update ic_offset until the end when we know exactly how many
2385 * bytes have been written out.
2390 struct xfs_log_vec
*log_vector
,
2391 struct xlog_ticket
*ticket
,
2392 xfs_lsn_t
*start_lsn
,
2393 struct xlog_in_core
**commit_iclog
,
2396 struct xlog_in_core
*iclog
= NULL
;
2397 struct xfs_log_iovec
*vecp
;
2398 struct xfs_log_vec
*lv
;
2401 int partial_copy
= 0;
2402 int partial_copy_len
= 0;
2410 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2413 * Region headers and bytes are already accounted for.
2414 * We only need to take into account start records and
2415 * split regions in this function.
2417 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2418 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2421 * Commit record headers need to be accounted for. These
2422 * come in as separate writes so are easy to detect.
2424 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2425 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2427 if (ticket
->t_curr_res
< 0) {
2428 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
2429 "ctx ticket reservation ran out. Need to up reservation");
2430 xlog_print_tic_res(log
->l_mp
, ticket
);
2431 xfs_force_shutdown(log
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
2436 vecp
= lv
->lv_iovecp
;
2437 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2441 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2442 &contwr
, &log_offset
);
2446 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2447 ptr
= iclog
->ic_datap
+ log_offset
;
2449 /* start_lsn is the first lsn written to. That's all we need. */
2451 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2454 * This loop writes out as many regions as can fit in the amount
2455 * of space which was allocated by xlog_state_get_iclog_space().
2457 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2458 struct xfs_log_iovec
*reg
;
2459 struct xlog_op_header
*ophdr
;
2463 bool ordered
= false;
2465 /* ordered log vectors have no regions to write */
2466 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2467 ASSERT(lv
->lv_niovecs
== 0);
2473 ASSERT(reg
->i_len
% sizeof(int32_t) == 0);
2474 ASSERT((unsigned long)ptr
% sizeof(int32_t) == 0);
2476 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2477 if (start_rec_copy
) {
2479 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2483 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2487 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2488 sizeof(struct xlog_op_header
));
2490 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2491 iclog
->ic_size
-log_offset
,
2493 ©_off
, ©_len
,
2496 xlog_verify_dest_ptr(log
, ptr
);
2501 * Unmount records just log an opheader, so can have
2502 * empty payloads with no data region to copy. Hence we
2503 * only copy the payload if the vector says it has data
2506 ASSERT(copy_len
>= 0);
2508 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2509 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2512 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2514 data_cnt
+= contwr
? copy_len
: 0;
2516 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2517 &record_cnt
, &data_cnt
,
2526 * if we had a partial copy, we need to get more iclog
2527 * space but we don't want to increment the region
2528 * index because there is still more is this region to
2531 * If we completed writing this region, and we flushed
2532 * the iclog (indicated by resetting of the record
2533 * count), then we also need to get more log space. If
2534 * this was the last record, though, we are done and
2540 if (++index
== lv
->lv_niovecs
) {
2545 vecp
= lv
->lv_iovecp
;
2547 if (record_cnt
== 0 && !ordered
) {
2557 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2559 return xlog_state_release_iclog(log
, iclog
);
2561 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2562 *commit_iclog
= iclog
;
2567 /*****************************************************************************
2569 * State Machine functions
2571 *****************************************************************************
2574 /* Clean iclogs starting from the head. This ordering must be
2575 * maintained, so an iclog doesn't become ACTIVE beyond one that
2576 * is SYNCING. This is also required to maintain the notion that we use
2577 * a ordered wait queue to hold off would be writers to the log when every
2578 * iclog is trying to sync to disk.
2580 * State Change: DIRTY -> ACTIVE
2583 xlog_state_clean_log(
2586 xlog_in_core_t
*iclog
;
2589 iclog
= log
->l_iclog
;
2591 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2592 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2593 iclog
->ic_offset
= 0;
2594 ASSERT(iclog
->ic_callback
== NULL
);
2596 * If the number of ops in this iclog indicate it just
2597 * contains the dummy transaction, we can
2598 * change state into IDLE (the second time around).
2599 * Otherwise we should change the state into
2601 * We don't need to cover the dummy.
2604 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2609 * We have two dirty iclogs so start over
2610 * This could also be num of ops indicates
2611 * this is not the dummy going out.
2615 iclog
->ic_header
.h_num_logops
= 0;
2616 memset(iclog
->ic_header
.h_cycle_data
, 0,
2617 sizeof(iclog
->ic_header
.h_cycle_data
));
2618 iclog
->ic_header
.h_lsn
= 0;
2619 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2622 break; /* stop cleaning */
2623 iclog
= iclog
->ic_next
;
2624 } while (iclog
!= log
->l_iclog
);
2626 /* log is locked when we are called */
2628 * Change state for the dummy log recording.
2629 * We usually go to NEED. But we go to NEED2 if the changed indicates
2630 * we are done writing the dummy record.
2631 * If we are done with the second dummy recored (DONE2), then
2635 switch (log
->l_covered_state
) {
2636 case XLOG_STATE_COVER_IDLE
:
2637 case XLOG_STATE_COVER_NEED
:
2638 case XLOG_STATE_COVER_NEED2
:
2639 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2642 case XLOG_STATE_COVER_DONE
:
2644 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2646 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2649 case XLOG_STATE_COVER_DONE2
:
2651 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2653 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2660 } /* xlog_state_clean_log */
2663 xlog_get_lowest_lsn(
2666 xlog_in_core_t
*lsn_log
;
2667 xfs_lsn_t lowest_lsn
, lsn
;
2669 lsn_log
= log
->l_iclog
;
2672 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2673 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2674 if ((lsn
&& !lowest_lsn
) ||
2675 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2679 lsn_log
= lsn_log
->ic_next
;
2680 } while (lsn_log
!= log
->l_iclog
);
2686 xlog_state_do_callback(
2689 struct xlog_in_core
*ciclog
)
2691 xlog_in_core_t
*iclog
;
2692 xlog_in_core_t
*first_iclog
; /* used to know when we've
2693 * processed all iclogs once */
2694 xfs_log_callback_t
*cb
, *cb_next
;
2696 xfs_lsn_t lowest_lsn
;
2697 int ioerrors
; /* counter: iclogs with errors */
2698 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2699 int funcdidcallbacks
; /* flag: function did callbacks */
2700 int repeats
; /* for issuing console warnings if
2701 * looping too many times */
2704 spin_lock(&log
->l_icloglock
);
2705 first_iclog
= iclog
= log
->l_iclog
;
2707 funcdidcallbacks
= 0;
2712 * Scan all iclogs starting with the one pointed to by the
2713 * log. Reset this starting point each time the log is
2714 * unlocked (during callbacks).
2716 * Keep looping through iclogs until one full pass is made
2717 * without running any callbacks.
2719 first_iclog
= log
->l_iclog
;
2720 iclog
= log
->l_iclog
;
2721 loopdidcallbacks
= 0;
2726 /* skip all iclogs in the ACTIVE & DIRTY states */
2727 if (iclog
->ic_state
&
2728 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2729 iclog
= iclog
->ic_next
;
2734 * Between marking a filesystem SHUTDOWN and stopping
2735 * the log, we do flush all iclogs to disk (if there
2736 * wasn't a log I/O error). So, we do want things to
2737 * go smoothly in case of just a SHUTDOWN w/o a
2740 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2742 * Can only perform callbacks in order. Since
2743 * this iclog is not in the DONE_SYNC/
2744 * DO_CALLBACK state, we skip the rest and
2745 * just try to clean up. If we set our iclog
2746 * to DO_CALLBACK, we will not process it when
2747 * we retry since a previous iclog is in the
2748 * CALLBACK and the state cannot change since
2749 * we are holding the l_icloglock.
2751 if (!(iclog
->ic_state
&
2752 (XLOG_STATE_DONE_SYNC
|
2753 XLOG_STATE_DO_CALLBACK
))) {
2754 if (ciclog
&& (ciclog
->ic_state
==
2755 XLOG_STATE_DONE_SYNC
)) {
2756 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2761 * We now have an iclog that is in either the
2762 * DO_CALLBACK or DONE_SYNC states. The other
2763 * states (WANT_SYNC, SYNCING, or CALLBACK were
2764 * caught by the above if and are going to
2765 * clean (i.e. we aren't doing their callbacks)
2770 * We will do one more check here to see if we
2771 * have chased our tail around.
2774 lowest_lsn
= xlog_get_lowest_lsn(log
);
2776 XFS_LSN_CMP(lowest_lsn
,
2777 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2778 iclog
= iclog
->ic_next
;
2779 continue; /* Leave this iclog for
2783 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2787 * Completion of a iclog IO does not imply that
2788 * a transaction has completed, as transactions
2789 * can be large enough to span many iclogs. We
2790 * cannot change the tail of the log half way
2791 * through a transaction as this may be the only
2792 * transaction in the log and moving th etail to
2793 * point to the middle of it will prevent
2794 * recovery from finding the start of the
2795 * transaction. Hence we should only update the
2796 * last_sync_lsn if this iclog contains
2797 * transaction completion callbacks on it.
2799 * We have to do this before we drop the
2800 * icloglock to ensure we are the only one that
2803 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2804 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2805 if (iclog
->ic_callback
)
2806 atomic64_set(&log
->l_last_sync_lsn
,
2807 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2812 spin_unlock(&log
->l_icloglock
);
2815 * Keep processing entries in the callback list until
2816 * we come around and it is empty. We need to
2817 * atomically see that the list is empty and change the
2818 * state to DIRTY so that we don't miss any more
2819 * callbacks being added.
2821 spin_lock(&iclog
->ic_callback_lock
);
2822 cb
= iclog
->ic_callback
;
2824 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2825 iclog
->ic_callback
= NULL
;
2826 spin_unlock(&iclog
->ic_callback_lock
);
2828 /* perform callbacks in the order given */
2829 for (; cb
; cb
= cb_next
) {
2830 cb_next
= cb
->cb_next
;
2831 cb
->cb_func(cb
->cb_arg
, aborted
);
2833 spin_lock(&iclog
->ic_callback_lock
);
2834 cb
= iclog
->ic_callback
;
2840 spin_lock(&log
->l_icloglock
);
2841 ASSERT(iclog
->ic_callback
== NULL
);
2842 spin_unlock(&iclog
->ic_callback_lock
);
2843 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2844 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2847 * Transition from DIRTY to ACTIVE if applicable.
2848 * NOP if STATE_IOERROR.
2850 xlog_state_clean_log(log
);
2852 /* wake up threads waiting in xfs_log_force() */
2853 wake_up_all(&iclog
->ic_force_wait
);
2855 iclog
= iclog
->ic_next
;
2856 } while (first_iclog
!= iclog
);
2858 if (repeats
> 5000) {
2859 flushcnt
+= repeats
;
2862 "%s: possible infinite loop (%d iterations)",
2863 __func__
, flushcnt
);
2865 } while (!ioerrors
&& loopdidcallbacks
);
2869 * Make one last gasp attempt to see if iclogs are being left in limbo.
2870 * If the above loop finds an iclog earlier than the current iclog and
2871 * in one of the syncing states, the current iclog is put into
2872 * DO_CALLBACK and the callbacks are deferred to the completion of the
2873 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2874 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2877 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2878 * for ic_state == SYNCING.
2880 if (funcdidcallbacks
) {
2881 first_iclog
= iclog
= log
->l_iclog
;
2883 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2885 * Terminate the loop if iclogs are found in states
2886 * which will cause other threads to clean up iclogs.
2888 * SYNCING - i/o completion will go through logs
2889 * DONE_SYNC - interrupt thread should be waiting for
2891 * IOERROR - give up hope all ye who enter here
2893 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2894 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2895 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2896 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2898 iclog
= iclog
->ic_next
;
2899 } while (first_iclog
!= iclog
);
2903 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2905 spin_unlock(&log
->l_icloglock
);
2908 wake_up_all(&log
->l_flush_wait
);
2913 * Finish transitioning this iclog to the dirty state.
2915 * Make sure that we completely execute this routine only when this is
2916 * the last call to the iclog. There is a good chance that iclog flushes,
2917 * when we reach the end of the physical log, get turned into 2 separate
2918 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2919 * routine. By using the reference count bwritecnt, we guarantee that only
2920 * the second completion goes through.
2922 * Callbacks could take time, so they are done outside the scope of the
2923 * global state machine log lock.
2926 xlog_state_done_syncing(
2927 xlog_in_core_t
*iclog
,
2930 struct xlog
*log
= iclog
->ic_log
;
2932 spin_lock(&log
->l_icloglock
);
2934 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2935 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2936 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2937 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2941 * If we got an error, either on the first buffer, or in the case of
2942 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2943 * and none should ever be attempted to be written to disk
2946 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2947 if (--iclog
->ic_bwritecnt
== 1) {
2948 spin_unlock(&log
->l_icloglock
);
2951 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2955 * Someone could be sleeping prior to writing out the next
2956 * iclog buffer, we wake them all, one will get to do the
2957 * I/O, the others get to wait for the result.
2959 wake_up_all(&iclog
->ic_write_wait
);
2960 spin_unlock(&log
->l_icloglock
);
2961 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2962 } /* xlog_state_done_syncing */
2966 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2967 * sleep. We wait on the flush queue on the head iclog as that should be
2968 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2969 * we will wait here and all new writes will sleep until a sync completes.
2971 * The in-core logs are used in a circular fashion. They are not used
2972 * out-of-order even when an iclog past the head is free.
2975 * * log_offset where xlog_write() can start writing into the in-core
2977 * * in-core log pointer to which xlog_write() should write.
2978 * * boolean indicating this is a continued write to an in-core log.
2979 * If this is the last write, then the in-core log's offset field
2980 * needs to be incremented, depending on the amount of data which
2984 xlog_state_get_iclog_space(
2987 struct xlog_in_core
**iclogp
,
2988 struct xlog_ticket
*ticket
,
2989 int *continued_write
,
2993 xlog_rec_header_t
*head
;
2994 xlog_in_core_t
*iclog
;
2998 spin_lock(&log
->l_icloglock
);
2999 if (XLOG_FORCED_SHUTDOWN(log
)) {
3000 spin_unlock(&log
->l_icloglock
);
3004 iclog
= log
->l_iclog
;
3005 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
3006 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
3008 /* Wait for log writes to have flushed */
3009 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
3013 head
= &iclog
->ic_header
;
3015 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
3016 log_offset
= iclog
->ic_offset
;
3018 /* On the 1st write to an iclog, figure out lsn. This works
3019 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3020 * committing to. If the offset is set, that's how many blocks
3023 if (log_offset
== 0) {
3024 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
3025 xlog_tic_add_region(ticket
,
3027 XLOG_REG_TYPE_LRHEADER
);
3028 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
3029 head
->h_lsn
= cpu_to_be64(
3030 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
3031 ASSERT(log
->l_curr_block
>= 0);
3034 /* If there is enough room to write everything, then do it. Otherwise,
3035 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3036 * bit is on, so this will get flushed out. Don't update ic_offset
3037 * until you know exactly how many bytes get copied. Therefore, wait
3038 * until later to update ic_offset.
3040 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3041 * can fit into remaining data section.
3043 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
3044 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3047 * If I'm the only one writing to this iclog, sync it to disk.
3048 * We need to do an atomic compare and decrement here to avoid
3049 * racing with concurrent atomic_dec_and_lock() calls in
3050 * xlog_state_release_iclog() when there is more than one
3051 * reference to the iclog.
3053 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
3054 /* we are the only one */
3055 spin_unlock(&log
->l_icloglock
);
3056 error
= xlog_state_release_iclog(log
, iclog
);
3060 spin_unlock(&log
->l_icloglock
);
3065 /* Do we have enough room to write the full amount in the remainder
3066 * of this iclog? Or must we continue a write on the next iclog and
3067 * mark this iclog as completely taken? In the case where we switch
3068 * iclogs (to mark it taken), this particular iclog will release/sync
3069 * to disk in xlog_write().
3071 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3072 *continued_write
= 0;
3073 iclog
->ic_offset
+= len
;
3075 *continued_write
= 1;
3076 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3080 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3081 spin_unlock(&log
->l_icloglock
);
3083 *logoffsetp
= log_offset
;
3085 } /* xlog_state_get_iclog_space */
3087 /* The first cnt-1 times through here we don't need to
3088 * move the grant write head because the permanent
3089 * reservation has reserved cnt times the unit amount.
3090 * Release part of current permanent unit reservation and
3091 * reset current reservation to be one units worth. Also
3092 * move grant reservation head forward.
3095 xlog_regrant_reserve_log_space(
3097 struct xlog_ticket
*ticket
)
3099 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3101 if (ticket
->t_cnt
> 0)
3104 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3105 ticket
->t_curr_res
);
3106 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3107 ticket
->t_curr_res
);
3108 ticket
->t_curr_res
= ticket
->t_unit_res
;
3109 xlog_tic_reset_res(ticket
);
3111 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3113 /* just return if we still have some of the pre-reserved space */
3114 if (ticket
->t_cnt
> 0)
3117 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3118 ticket
->t_unit_res
);
3120 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3122 ticket
->t_curr_res
= ticket
->t_unit_res
;
3123 xlog_tic_reset_res(ticket
);
3124 } /* xlog_regrant_reserve_log_space */
3128 * Give back the space left from a reservation.
3130 * All the information we need to make a correct determination of space left
3131 * is present. For non-permanent reservations, things are quite easy. The
3132 * count should have been decremented to zero. We only need to deal with the
3133 * space remaining in the current reservation part of the ticket. If the
3134 * ticket contains a permanent reservation, there may be left over space which
3135 * needs to be released. A count of N means that N-1 refills of the current
3136 * reservation can be done before we need to ask for more space. The first
3137 * one goes to fill up the first current reservation. Once we run out of
3138 * space, the count will stay at zero and the only space remaining will be
3139 * in the current reservation field.
3142 xlog_ungrant_log_space(
3144 struct xlog_ticket
*ticket
)
3148 if (ticket
->t_cnt
> 0)
3151 trace_xfs_log_ungrant_enter(log
, ticket
);
3152 trace_xfs_log_ungrant_sub(log
, ticket
);
3155 * If this is a permanent reservation ticket, we may be able to free
3156 * up more space based on the remaining count.
3158 bytes
= ticket
->t_curr_res
;
3159 if (ticket
->t_cnt
> 0) {
3160 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3161 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3164 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3165 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3167 trace_xfs_log_ungrant_exit(log
, ticket
);
3169 xfs_log_space_wake(log
->l_mp
);
3173 * Flush iclog to disk if this is the last reference to the given iclog and
3174 * the WANT_SYNC bit is set.
3176 * When this function is entered, the iclog is not necessarily in the
3177 * WANT_SYNC state. It may be sitting around waiting to get filled.
3182 xlog_state_release_iclog(
3184 struct xlog_in_core
*iclog
)
3186 int sync
= 0; /* do we sync? */
3188 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3191 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3192 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3195 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3196 spin_unlock(&log
->l_icloglock
);
3199 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3200 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3202 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3203 /* update tail before writing to iclog */
3204 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3206 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3207 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3208 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3209 /* cycle incremented when incrementing curr_block */
3211 spin_unlock(&log
->l_icloglock
);
3214 * We let the log lock go, so it's possible that we hit a log I/O
3215 * error or some other SHUTDOWN condition that marks the iclog
3216 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3217 * this iclog has consistent data, so we ignore IOERROR
3218 * flags after this point.
3221 return xlog_sync(log
, iclog
);
3223 } /* xlog_state_release_iclog */
3227 * This routine will mark the current iclog in the ring as WANT_SYNC
3228 * and move the current iclog pointer to the next iclog in the ring.
3229 * When this routine is called from xlog_state_get_iclog_space(), the
3230 * exact size of the iclog has not yet been determined. All we know is
3231 * that every data block. We have run out of space in this log record.
3234 xlog_state_switch_iclogs(
3236 struct xlog_in_core
*iclog
,
3239 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3241 eventual_size
= iclog
->ic_offset
;
3242 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3243 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3244 log
->l_prev_block
= log
->l_curr_block
;
3245 log
->l_prev_cycle
= log
->l_curr_cycle
;
3247 /* roll log?: ic_offset changed later */
3248 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3250 /* Round up to next log-sunit */
3251 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3252 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3253 uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3254 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3257 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3259 * Rewind the current block before the cycle is bumped to make
3260 * sure that the combined LSN never transiently moves forward
3261 * when the log wraps to the next cycle. This is to support the
3262 * unlocked sample of these fields from xlog_valid_lsn(). Most
3263 * other cases should acquire l_icloglock.
3265 log
->l_curr_block
-= log
->l_logBBsize
;
3266 ASSERT(log
->l_curr_block
>= 0);
3268 log
->l_curr_cycle
++;
3269 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3270 log
->l_curr_cycle
++;
3272 ASSERT(iclog
== log
->l_iclog
);
3273 log
->l_iclog
= iclog
->ic_next
;
3274 } /* xlog_state_switch_iclogs */
3277 * Write out all data in the in-core log as of this exact moment in time.
3279 * Data may be written to the in-core log during this call. However,
3280 * we don't guarantee this data will be written out. A change from past
3281 * implementation means this routine will *not* write out zero length LRs.
3283 * Basically, we try and perform an intelligent scan of the in-core logs.
3284 * If we determine there is no flushable data, we just return. There is no
3285 * flushable data if:
3287 * 1. the current iclog is active and has no data; the previous iclog
3288 * is in the active or dirty state.
3289 * 2. the current iclog is drity, and the previous iclog is in the
3290 * active or dirty state.
3294 * 1. the current iclog is not in the active nor dirty state.
3295 * 2. the current iclog dirty, and the previous iclog is not in the
3296 * active nor dirty state.
3297 * 3. the current iclog is active, and there is another thread writing
3298 * to this particular iclog.
3299 * 4. a) the current iclog is active and has no other writers
3300 * b) when we return from flushing out this iclog, it is still
3301 * not in the active nor dirty state.
3305 struct xfs_mount
*mp
,
3309 struct xlog
*log
= mp
->m_log
;
3310 struct xlog_in_core
*iclog
;
3313 XFS_STATS_INC(mp
, xs_log_force
);
3315 xlog_cil_force(log
);
3317 spin_lock(&log
->l_icloglock
);
3319 iclog
= log
->l_iclog
;
3320 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3321 spin_unlock(&log
->l_icloglock
);
3325 /* If the head iclog is not active nor dirty, we just attach
3326 * ourselves to the head and go to sleep.
3328 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3329 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3331 * If the head is dirty or (active and empty), then
3332 * we need to look at the previous iclog. If the previous
3333 * iclog is active or dirty we are done. There is nothing
3334 * to sync out. Otherwise, we attach ourselves to the
3335 * previous iclog and go to sleep.
3337 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3338 (atomic_read(&iclog
->ic_refcnt
) == 0
3339 && iclog
->ic_offset
== 0)) {
3340 iclog
= iclog
->ic_prev
;
3341 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3342 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3347 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3348 /* We are the only one with access to this
3349 * iclog. Flush it out now. There should
3350 * be a roundoff of zero to show that someone
3351 * has already taken care of the roundoff from
3352 * the previous sync.
3354 atomic_inc(&iclog
->ic_refcnt
);
3355 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3356 xlog_state_switch_iclogs(log
, iclog
, 0);
3357 spin_unlock(&log
->l_icloglock
);
3359 if (xlog_state_release_iclog(log
, iclog
))
3364 spin_lock(&log
->l_icloglock
);
3365 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3366 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3371 /* Someone else is writing to this iclog.
3372 * Use its call to flush out the data. However,
3373 * the other thread may not force out this LR,
3374 * so we mark it WANT_SYNC.
3376 xlog_state_switch_iclogs(log
, iclog
, 0);
3382 /* By the time we come around again, the iclog could've been filled
3383 * which would give it another lsn. If we have a new lsn, just
3384 * return because the relevant data has been flushed.
3387 if (flags
& XFS_LOG_SYNC
) {
3389 * We must check if we're shutting down here, before
3390 * we wait, while we're holding the l_icloglock.
3391 * Then we check again after waking up, in case our
3392 * sleep was disturbed by a bad news.
3394 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3395 spin_unlock(&log
->l_icloglock
);
3398 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3399 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3401 * No need to grab the log lock here since we're
3402 * only deciding whether or not to return EIO
3403 * and the memory read should be atomic.
3405 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3410 spin_unlock(&log
->l_icloglock
);
3416 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3417 * about errors or whether the log was flushed or not. This is the normal
3418 * interface to use when trying to unpin items or move the log forward.
3425 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3426 _xfs_log_force(mp
, flags
, NULL
);
3430 * Force the in-core log to disk for a specific LSN.
3432 * Find in-core log with lsn.
3433 * If it is in the DIRTY state, just return.
3434 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3435 * state and go to sleep or return.
3436 * If it is in any other state, go to sleep or return.
3438 * Synchronous forces are implemented with a signal variable. All callers
3439 * to force a given lsn to disk will wait on a the sv attached to the
3440 * specific in-core log. When given in-core log finally completes its
3441 * write to disk, that thread will wake up all threads waiting on the
3446 struct xfs_mount
*mp
,
3451 struct xlog
*log
= mp
->m_log
;
3452 struct xlog_in_core
*iclog
;
3453 int already_slept
= 0;
3457 XFS_STATS_INC(mp
, xs_log_force
);
3459 lsn
= xlog_cil_force_lsn(log
, lsn
);
3460 if (lsn
== NULLCOMMITLSN
)
3464 spin_lock(&log
->l_icloglock
);
3465 iclog
= log
->l_iclog
;
3466 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3467 spin_unlock(&log
->l_icloglock
);
3472 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3473 iclog
= iclog
->ic_next
;
3477 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3478 spin_unlock(&log
->l_icloglock
);
3482 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3484 * We sleep here if we haven't already slept (e.g.
3485 * this is the first time we've looked at the correct
3486 * iclog buf) and the buffer before us is going to
3487 * be sync'ed. The reason for this is that if we
3488 * are doing sync transactions here, by waiting for
3489 * the previous I/O to complete, we can allow a few
3490 * more transactions into this iclog before we close
3493 * Otherwise, we mark the buffer WANT_SYNC, and bump
3494 * up the refcnt so we can release the log (which
3495 * drops the ref count). The state switch keeps new
3496 * transaction commits from using this buffer. When
3497 * the current commits finish writing into the buffer,
3498 * the refcount will drop to zero and the buffer will
3501 if (!already_slept
&&
3502 (iclog
->ic_prev
->ic_state
&
3503 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3504 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3506 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3508 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3513 atomic_inc(&iclog
->ic_refcnt
);
3514 xlog_state_switch_iclogs(log
, iclog
, 0);
3515 spin_unlock(&log
->l_icloglock
);
3516 if (xlog_state_release_iclog(log
, iclog
))
3520 spin_lock(&log
->l_icloglock
);
3523 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3525 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3527 * Don't wait on completion if we know that we've
3528 * gotten a log write error.
3530 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3531 spin_unlock(&log
->l_icloglock
);
3534 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3535 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3537 * No need to grab the log lock here since we're
3538 * only deciding whether or not to return EIO
3539 * and the memory read should be atomic.
3541 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3543 } else { /* just return */
3544 spin_unlock(&log
->l_icloglock
);
3548 } while (iclog
!= log
->l_iclog
);
3550 spin_unlock(&log
->l_icloglock
);
3555 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3556 * about errors or whether the log was flushed or not. This is the normal
3557 * interface to use when trying to unpin items or move the log forward.
3565 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3566 _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3570 * Called when we want to mark the current iclog as being ready to sync to
3574 xlog_state_want_sync(
3576 struct xlog_in_core
*iclog
)
3578 assert_spin_locked(&log
->l_icloglock
);
3580 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3581 xlog_state_switch_iclogs(log
, iclog
, 0);
3583 ASSERT(iclog
->ic_state
&
3584 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3589 /*****************************************************************************
3593 *****************************************************************************
3597 * Free a used ticket when its refcount falls to zero.
3601 xlog_ticket_t
*ticket
)
3603 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3604 if (atomic_dec_and_test(&ticket
->t_ref
))
3605 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3610 xlog_ticket_t
*ticket
)
3612 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3613 atomic_inc(&ticket
->t_ref
);
3618 * Figure out the total log space unit (in bytes) that would be
3619 * required for a log ticket.
3622 xfs_log_calc_unit_res(
3623 struct xfs_mount
*mp
,
3626 struct xlog
*log
= mp
->m_log
;
3631 * Permanent reservations have up to 'cnt'-1 active log operations
3632 * in the log. A unit in this case is the amount of space for one
3633 * of these log operations. Normal reservations have a cnt of 1
3634 * and their unit amount is the total amount of space required.
3636 * The following lines of code account for non-transaction data
3637 * which occupy space in the on-disk log.
3639 * Normal form of a transaction is:
3640 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3641 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3643 * We need to account for all the leadup data and trailer data
3644 * around the transaction data.
3645 * And then we need to account for the worst case in terms of using
3647 * The worst case will happen if:
3648 * - the placement of the transaction happens to be such that the
3649 * roundoff is at its maximum
3650 * - the transaction data is synced before the commit record is synced
3651 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3652 * Therefore the commit record is in its own Log Record.
3653 * This can happen as the commit record is called with its
3654 * own region to xlog_write().
3655 * This then means that in the worst case, roundoff can happen for
3656 * the commit-rec as well.
3657 * The commit-rec is smaller than padding in this scenario and so it is
3658 * not added separately.
3661 /* for trans header */
3662 unit_bytes
+= sizeof(xlog_op_header_t
);
3663 unit_bytes
+= sizeof(xfs_trans_header_t
);
3666 unit_bytes
+= sizeof(xlog_op_header_t
);
3669 * for LR headers - the space for data in an iclog is the size minus
3670 * the space used for the headers. If we use the iclog size, then we
3671 * undercalculate the number of headers required.
3673 * Furthermore - the addition of op headers for split-recs might
3674 * increase the space required enough to require more log and op
3675 * headers, so take that into account too.
3677 * IMPORTANT: This reservation makes the assumption that if this
3678 * transaction is the first in an iclog and hence has the LR headers
3679 * accounted to it, then the remaining space in the iclog is
3680 * exclusively for this transaction. i.e. if the transaction is larger
3681 * than the iclog, it will be the only thing in that iclog.
3682 * Fundamentally, this means we must pass the entire log vector to
3683 * xlog_write to guarantee this.
3685 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3686 num_headers
= howmany(unit_bytes
, iclog_space
);
3688 /* for split-recs - ophdrs added when data split over LRs */
3689 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3691 /* add extra header reservations if we overrun */
3692 while (!num_headers
||
3693 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3694 unit_bytes
+= sizeof(xlog_op_header_t
);
3697 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3699 /* for commit-rec LR header - note: padding will subsume the ophdr */
3700 unit_bytes
+= log
->l_iclog_hsize
;
3702 /* for roundoff padding for transaction data and one for commit record */
3703 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3704 /* log su roundoff */
3705 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3708 unit_bytes
+= 2 * BBSIZE
;
3715 * Allocate and initialise a new log ticket.
3717 struct xlog_ticket
*
3724 xfs_km_flags_t alloc_flags
)
3726 struct xlog_ticket
*tic
;
3729 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3733 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3735 atomic_set(&tic
->t_ref
, 1);
3736 tic
->t_task
= current
;
3737 INIT_LIST_HEAD(&tic
->t_queue
);
3738 tic
->t_unit_res
= unit_res
;
3739 tic
->t_curr_res
= unit_res
;
3742 tic
->t_tid
= prandom_u32();
3743 tic
->t_clientid
= client
;
3744 tic
->t_flags
= XLOG_TIC_INITED
;
3746 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3748 xlog_tic_reset_res(tic
);
3754 /******************************************************************************
3756 * Log debug routines
3758 ******************************************************************************
3762 * Make sure that the destination ptr is within the valid data region of
3763 * one of the iclogs. This uses backup pointers stored in a different
3764 * part of the log in case we trash the log structure.
3767 xlog_verify_dest_ptr(
3774 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3775 if (ptr
>= log
->l_iclog_bak
[i
] &&
3776 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3781 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3785 * Check to make sure the grant write head didn't just over lap the tail. If
3786 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3787 * the cycles differ by exactly one and check the byte count.
3789 * This check is run unlocked, so can give false positives. Rather than assert
3790 * on failures, use a warn-once flag and a panic tag to allow the admin to
3791 * determine if they want to panic the machine when such an error occurs. For
3792 * debug kernels this will have the same effect as using an assert but, unlinke
3793 * an assert, it can be turned off at runtime.
3796 xlog_verify_grant_tail(
3799 int tail_cycle
, tail_blocks
;
3802 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3803 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3804 if (tail_cycle
!= cycle
) {
3805 if (cycle
- 1 != tail_cycle
&&
3806 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3807 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3808 "%s: cycle - 1 != tail_cycle", __func__
);
3809 log
->l_flags
|= XLOG_TAIL_WARN
;
3812 if (space
> BBTOB(tail_blocks
) &&
3813 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3814 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3815 "%s: space > BBTOB(tail_blocks)", __func__
);
3816 log
->l_flags
|= XLOG_TAIL_WARN
;
3821 /* check if it will fit */
3823 xlog_verify_tail_lsn(
3825 struct xlog_in_core
*iclog
,
3830 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3832 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3833 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3834 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3836 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3838 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3839 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3841 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3842 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3843 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3845 } /* xlog_verify_tail_lsn */
3848 * Perform a number of checks on the iclog before writing to disk.
3850 * 1. Make sure the iclogs are still circular
3851 * 2. Make sure we have a good magic number
3852 * 3. Make sure we don't have magic numbers in the data
3853 * 4. Check fields of each log operation header for:
3854 * A. Valid client identifier
3855 * B. tid ptr value falls in valid ptr space (user space code)
3856 * C. Length in log record header is correct according to the
3857 * individual operation headers within record.
3858 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3859 * log, check the preceding blocks of the physical log to make sure all
3860 * the cycle numbers agree with the current cycle number.
3865 struct xlog_in_core
*iclog
,
3869 xlog_op_header_t
*ophead
;
3870 xlog_in_core_t
*icptr
;
3871 xlog_in_core_2_t
*xhdr
;
3872 void *base_ptr
, *ptr
, *p
;
3873 ptrdiff_t field_offset
;
3875 int len
, i
, j
, k
, op_len
;
3878 /* check validity of iclog pointers */
3879 spin_lock(&log
->l_icloglock
);
3880 icptr
= log
->l_iclog
;
3881 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3884 if (icptr
!= log
->l_iclog
)
3885 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3886 spin_unlock(&log
->l_icloglock
);
3888 /* check log magic numbers */
3889 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3890 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3892 base_ptr
= ptr
= &iclog
->ic_header
;
3893 p
= &iclog
->ic_header
;
3894 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3895 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3896 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3901 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3902 base_ptr
= ptr
= iclog
->ic_datap
;
3904 xhdr
= iclog
->ic_data
;
3905 for (i
= 0; i
< len
; i
++) {
3908 /* clientid is only 1 byte */
3909 p
= &ophead
->oh_clientid
;
3910 field_offset
= p
- base_ptr
;
3911 if (!syncing
|| (field_offset
& 0x1ff)) {
3912 clientid
= ophead
->oh_clientid
;
3914 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3915 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3916 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3917 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3918 clientid
= xlog_get_client_id(
3919 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3921 clientid
= xlog_get_client_id(
3922 iclog
->ic_header
.h_cycle_data
[idx
]);
3925 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3927 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3928 __func__
, clientid
, ophead
,
3929 (unsigned long)field_offset
);
3932 p
= &ophead
->oh_len
;
3933 field_offset
= p
- base_ptr
;
3934 if (!syncing
|| (field_offset
& 0x1ff)) {
3935 op_len
= be32_to_cpu(ophead
->oh_len
);
3937 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3938 (uintptr_t)iclog
->ic_datap
);
3939 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3940 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3941 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3942 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3944 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3947 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3949 } /* xlog_verify_iclog */
3953 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3959 xlog_in_core_t
*iclog
, *ic
;
3961 iclog
= log
->l_iclog
;
3962 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3964 * Mark all the incore logs IOERROR.
3965 * From now on, no log flushes will result.
3969 ic
->ic_state
= XLOG_STATE_IOERROR
;
3971 } while (ic
!= iclog
);
3975 * Return non-zero, if state transition has already happened.
3981 * This is called from xfs_force_shutdown, when we're forcibly
3982 * shutting down the filesystem, typically because of an IO error.
3983 * Our main objectives here are to make sure that:
3984 * a. if !logerror, flush the logs to disk. Anything modified
3985 * after this is ignored.
3986 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3987 * parties to find out, 'atomically'.
3988 * c. those who're sleeping on log reservations, pinned objects and
3989 * other resources get woken up, and be told the bad news.
3990 * d. nothing new gets queued up after (b) and (c) are done.
3992 * Note: for the !logerror case we need to flush the regions held in memory out
3993 * to disk first. This needs to be done before the log is marked as shutdown,
3994 * otherwise the iclog writes will fail.
3997 xfs_log_force_umount(
3998 struct xfs_mount
*mp
,
4007 * If this happens during log recovery, don't worry about
4008 * locking; the log isn't open for business yet.
4011 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
4012 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4014 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4019 * Somebody could've already done the hard work for us.
4020 * No need to get locks for this.
4022 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
4023 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
4028 * Flush all the completed transactions to disk before marking the log
4029 * being shut down. We need to do it in this order to ensure that
4030 * completed operations are safely on disk before we shut down, and that
4031 * we don't have to issue any buffer IO after the shutdown flags are set
4032 * to guarantee this.
4035 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
4038 * mark the filesystem and the as in a shutdown state and wake
4039 * everybody up to tell them the bad news.
4041 spin_lock(&log
->l_icloglock
);
4042 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
4044 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
4047 * Mark the log and the iclogs with IO error flags to prevent any
4048 * further log IO from being issued or completed.
4050 log
->l_flags
|= XLOG_IO_ERROR
;
4051 retval
= xlog_state_ioerror(log
);
4052 spin_unlock(&log
->l_icloglock
);
4055 * We don't want anybody waiting for log reservations after this. That
4056 * means we have to wake up everybody queued up on reserveq as well as
4057 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
4058 * we don't enqueue anything once the SHUTDOWN flag is set, and this
4059 * action is protected by the grant locks.
4061 xlog_grant_head_wake_all(&log
->l_reserve_head
);
4062 xlog_grant_head_wake_all(&log
->l_write_head
);
4065 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4066 * as if the log writes were completed. The abort handling in the log
4067 * item committed callback functions will do this again under lock to
4070 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4071 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4073 #ifdef XFSERRORDEBUG
4075 xlog_in_core_t
*iclog
;
4077 spin_lock(&log
->l_icloglock
);
4078 iclog
= log
->l_iclog
;
4080 ASSERT(iclog
->ic_callback
== 0);
4081 iclog
= iclog
->ic_next
;
4082 } while (iclog
!= log
->l_iclog
);
4083 spin_unlock(&log
->l_icloglock
);
4086 /* return non-zero if log IOERROR transition had already happened */
4094 xlog_in_core_t
*iclog
;
4096 iclog
= log
->l_iclog
;
4098 /* endianness does not matter here, zero is zero in
4101 if (iclog
->ic_header
.h_num_logops
)
4103 iclog
= iclog
->ic_next
;
4104 } while (iclog
!= log
->l_iclog
);
4109 * Verify that an LSN stamped into a piece of metadata is valid. This is
4110 * intended for use in read verifiers on v5 superblocks.
4114 struct xfs_mount
*mp
,
4117 struct xlog
*log
= mp
->m_log
;
4121 * norecovery mode skips mount-time log processing and unconditionally
4122 * resets the in-core LSN. We can't validate in this mode, but
4123 * modifications are not allowed anyways so just return true.
4125 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4129 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4130 * handled by recovery and thus safe to ignore here.
4132 if (lsn
== NULLCOMMITLSN
)
4135 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4137 /* warn the user about what's gone wrong before verifier failure */
4139 spin_lock(&log
->l_icloglock
);
4141 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4142 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4143 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4144 log
->l_curr_cycle
, log
->l_curr_block
);
4145 spin_unlock(&log
->l_icloglock
);