gma500: oaktrail_crtc: mark few functions as static
[linux/fpc-iii.git] / mm / memcontrol.c
blob556859fec4ef45fe87bd4060612501354ed48c9a
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
56 #include <asm/uaccess.h>
58 #include <trace/events/vmscan.h>
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
75 #else
76 #define do_swap_account (0)
77 #endif
81 * Statistics for memory cgroup.
83 enum mem_cgroup_stat_index {
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
134 * per-zone information in memory controller.
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
204 struct mem_cgroup_threshold_ary *spare;
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
230 * the counter to account for memory usage
232 struct res_counter res;
234 * the counter to account for mem+swap usage.
236 struct res_counter memsw;
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247 #endif
249 * Should the accounting and control be hierarchical, per subtree?
251 bool use_hierarchy;
253 bool oom_lock;
254 atomic_t under_oom;
256 atomic_t refcnt;
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
281 unsigned long move_charge_at_immigrate;
283 * percpu counter.
285 struct mem_cgroup_stat_cpu *stat;
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
293 #ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295 #endif
298 /* Stuffs for move charges at task migration. */
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
303 enum move_type {
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
306 NR_MOVE_TYPE,
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319 } mc = {
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324 static bool move_anon(void)
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
330 static bool move_file(void)
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
343 enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
350 NR_CHARGE_TYPE,
353 /* for encoding cft->private value on file */
354 #define _MEM (0)
355 #define _MEMSWAP (1)
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #include <net/sock.h>
377 #include <net/ip.h>
379 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380 void sock_update_memcg(struct sock *sk)
382 if (mem_cgroup_sockets_enabled) {
383 struct mem_cgroup *memcg;
385 BUG_ON(!sk->sk_prot->proto_cgroup);
387 /* Socket cloning can throw us here with sk_cgrp already
388 * filled. It won't however, necessarily happen from
389 * process context. So the test for root memcg given
390 * the current task's memcg won't help us in this case.
392 * Respecting the original socket's memcg is a better
393 * decision in this case.
395 if (sk->sk_cgrp) {
396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 mem_cgroup_get(sk->sk_cgrp->memcg);
398 return;
401 rcu_read_lock();
402 memcg = mem_cgroup_from_task(current);
403 if (!mem_cgroup_is_root(memcg)) {
404 mem_cgroup_get(memcg);
405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 rcu_read_unlock();
410 EXPORT_SYMBOL(sock_update_memcg);
412 void sock_release_memcg(struct sock *sk)
414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
415 struct mem_cgroup *memcg;
416 WARN_ON(!sk->sk_cgrp->memcg);
417 memcg = sk->sk_cgrp->memcg;
418 mem_cgroup_put(memcg);
422 #ifdef CONFIG_INET
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
428 return &memcg->tcp_mem.cg_proto;
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
444 return &memcg->css;
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
481 if (mz->on_tree)
482 return;
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
568 for_each_node(node) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
583 retry:
584 mz = NULL;
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599 done:
600 return mz;
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
606 struct mem_cgroup_per_zone *mz;
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
615 * Implementation Note: reading percpu statistics for memcg.
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
636 long val = 0;
637 int cpu;
639 get_online_cpus();
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 put_online_cpus();
648 return val;
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 bool charge)
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 enum mem_cgroup_events_index idx)
661 unsigned long val = 0;
662 int cpu;
664 for_each_online_cpu(cpu)
665 val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 return val;
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 bool file, int nr_pages)
677 preempt_disable();
679 if (file)
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
682 else
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 else {
690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 nr_pages = -nr_pages; /* for event */
694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
696 preempt_enable();
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 unsigned int lru_mask)
703 struct mem_cgroup_per_zone *mz;
704 enum lru_list l;
705 unsigned long ret = 0;
707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
713 return ret;
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid, unsigned int lru_mask)
720 u64 total = 0;
721 int zid;
723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
727 return total;
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 unsigned int lru_mask)
733 int nid;
734 u64 total = 0;
736 for_each_node_state(nid, N_HIGH_MEMORY)
737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 return total;
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
744 unsigned long val, next;
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
748 /* from time_after() in jiffies.h */
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
766 return false;
770 * Check events in order.
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
775 preempt_disable();
776 /* threshold event is triggered in finer grain than soft limit */
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783 #if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786 #endif
787 preempt_enable();
789 mem_cgroup_threshold(memcg);
790 if (unlikely(do_softlimit))
791 mem_cgroup_update_tree(memcg, page);
792 #if MAX_NUMNODES > 1
793 if (unlikely(do_numainfo))
794 atomic_inc(&memcg->numainfo_events);
795 #endif
796 } else
797 preempt_enable();
800 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
807 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
814 if (unlikely(!p))
815 return NULL;
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
821 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
823 struct mem_cgroup *memcg = NULL;
825 if (!mm)
826 return NULL;
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
832 rcu_read_lock();
833 do {
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
836 break;
837 } while (!css_tryget(&memcg->css));
838 rcu_read_unlock();
839 return memcg;
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
859 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
866 if (mem_cgroup_disabled())
867 return NULL;
869 if (!root)
870 root = root_mem_cgroup;
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
875 if (prev && prev != root)
876 css_put(&prev->css);
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
884 while (!memcg) {
885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886 struct cgroup_subsys_state *css;
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
908 rcu_read_unlock();
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
918 if (prev && !css)
919 return NULL;
921 return memcg;
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
929 void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
943 #define for_each_mem_cgroup_tree(iter, root) \
944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
945 iter != NULL; \
946 iter = mem_cgroup_iter(root, iter, NULL))
948 #define for_each_mem_cgroup(iter) \
949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
950 iter != NULL; \
951 iter = mem_cgroup_iter(NULL, iter, NULL))
953 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
955 return (memcg == root_mem_cgroup);
958 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
960 struct mem_cgroup *memcg;
962 if (!mm)
963 return;
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
968 goto out;
970 switch (idx) {
971 case PGFAULT:
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 break;
977 default:
978 BUG();
980 out:
981 rcu_read_unlock();
983 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
994 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
997 struct mem_cgroup_per_zone *mz;
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1032 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
1039 if (mem_cgroup_disabled())
1040 return &zone->lruvec;
1042 pc = lookup_page_cgroup(page);
1043 memcg = pc->mem_cgroup;
1044 mz = page_cgroup_zoneinfo(memcg, page);
1045 /* compound_order() is stabilized through lru_lock */
1046 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1047 return &mz->lruvec;
1051 * mem_cgroup_lru_del_list - account for removing an lru page
1052 * @page: the page
1053 * @lru: target lru
1055 * This function accounts for @page being removed from @lru.
1057 * The callsite is then responsible for physically unlinking
1058 * @page->lru.
1060 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1062 struct mem_cgroup_per_zone *mz;
1063 struct mem_cgroup *memcg;
1064 struct page_cgroup *pc;
1066 if (mem_cgroup_disabled())
1067 return;
1069 pc = lookup_page_cgroup(page);
1070 memcg = pc->mem_cgroup;
1071 VM_BUG_ON(!memcg);
1072 mz = page_cgroup_zoneinfo(memcg, page);
1073 /* huge page split is done under lru_lock. so, we have no races. */
1074 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
1075 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1078 void mem_cgroup_lru_del(struct page *page)
1080 mem_cgroup_lru_del_list(page, page_lru(page));
1084 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1085 * @zone: zone of the page
1086 * @page: the page
1087 * @from: current lru
1088 * @to: target lru
1090 * This function accounts for @page being moved between the lrus @from
1091 * and @to, and returns the lruvec for the given @zone and the memcg
1092 * @page is charged to.
1094 * The callsite is then responsible for physically relinking
1095 * @page->lru to the returned lruvec->lists[@to].
1097 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1098 struct page *page,
1099 enum lru_list from,
1100 enum lru_list to)
1102 /* XXX: Optimize this, especially for @from == @to */
1103 mem_cgroup_lru_del_list(page, from);
1104 return mem_cgroup_lru_add_list(zone, page, to);
1108 * Checks whether given mem is same or in the root_mem_cgroup's
1109 * hierarchy subtree
1111 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1112 struct mem_cgroup *memcg)
1114 if (root_memcg != memcg) {
1115 return (root_memcg->use_hierarchy &&
1116 css_is_ancestor(&memcg->css, &root_memcg->css));
1119 return true;
1122 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1124 int ret;
1125 struct mem_cgroup *curr = NULL;
1126 struct task_struct *p;
1128 p = find_lock_task_mm(task);
1129 if (p) {
1130 curr = try_get_mem_cgroup_from_mm(p->mm);
1131 task_unlock(p);
1132 } else {
1134 * All threads may have already detached their mm's, but the oom
1135 * killer still needs to detect if they have already been oom
1136 * killed to prevent needlessly killing additional tasks.
1138 task_lock(task);
1139 curr = mem_cgroup_from_task(task);
1140 if (curr)
1141 css_get(&curr->css);
1142 task_unlock(task);
1144 if (!curr)
1145 return 0;
1147 * We should check use_hierarchy of "memcg" not "curr". Because checking
1148 * use_hierarchy of "curr" here make this function true if hierarchy is
1149 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1150 * hierarchy(even if use_hierarchy is disabled in "memcg").
1152 ret = mem_cgroup_same_or_subtree(memcg, curr);
1153 css_put(&curr->css);
1154 return ret;
1157 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1159 unsigned long inactive_ratio;
1160 int nid = zone_to_nid(zone);
1161 int zid = zone_idx(zone);
1162 unsigned long inactive;
1163 unsigned long active;
1164 unsigned long gb;
1166 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1167 BIT(LRU_INACTIVE_ANON));
1168 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1169 BIT(LRU_ACTIVE_ANON));
1171 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1172 if (gb)
1173 inactive_ratio = int_sqrt(10 * gb);
1174 else
1175 inactive_ratio = 1;
1177 return inactive * inactive_ratio < active;
1180 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1182 unsigned long active;
1183 unsigned long inactive;
1184 int zid = zone_idx(zone);
1185 int nid = zone_to_nid(zone);
1187 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1188 BIT(LRU_INACTIVE_FILE));
1189 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1190 BIT(LRU_ACTIVE_FILE));
1192 return (active > inactive);
1195 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1196 struct zone *zone)
1198 int nid = zone_to_nid(zone);
1199 int zid = zone_idx(zone);
1200 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1202 return &mz->reclaim_stat;
1205 struct zone_reclaim_stat *
1206 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1208 struct page_cgroup *pc;
1209 struct mem_cgroup_per_zone *mz;
1211 if (mem_cgroup_disabled())
1212 return NULL;
1214 pc = lookup_page_cgroup(page);
1215 if (!PageCgroupUsed(pc))
1216 return NULL;
1217 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1218 smp_rmb();
1219 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1220 return &mz->reclaim_stat;
1223 #define mem_cgroup_from_res_counter(counter, member) \
1224 container_of(counter, struct mem_cgroup, member)
1227 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1228 * @mem: the memory cgroup
1230 * Returns the maximum amount of memory @mem can be charged with, in
1231 * pages.
1233 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1235 unsigned long long margin;
1237 margin = res_counter_margin(&memcg->res);
1238 if (do_swap_account)
1239 margin = min(margin, res_counter_margin(&memcg->memsw));
1240 return margin >> PAGE_SHIFT;
1243 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1245 struct cgroup *cgrp = memcg->css.cgroup;
1247 /* root ? */
1248 if (cgrp->parent == NULL)
1249 return vm_swappiness;
1251 return memcg->swappiness;
1254 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1256 int cpu;
1258 get_online_cpus();
1259 spin_lock(&memcg->pcp_counter_lock);
1260 for_each_online_cpu(cpu)
1261 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1262 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1263 spin_unlock(&memcg->pcp_counter_lock);
1264 put_online_cpus();
1266 synchronize_rcu();
1269 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1271 int cpu;
1273 if (!memcg)
1274 return;
1275 get_online_cpus();
1276 spin_lock(&memcg->pcp_counter_lock);
1277 for_each_online_cpu(cpu)
1278 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1279 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1280 spin_unlock(&memcg->pcp_counter_lock);
1281 put_online_cpus();
1284 * 2 routines for checking "mem" is under move_account() or not.
1286 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1287 * for avoiding race in accounting. If true,
1288 * pc->mem_cgroup may be overwritten.
1290 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1291 * under hierarchy of moving cgroups. This is for
1292 * waiting at hith-memory prressure caused by "move".
1295 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1297 VM_BUG_ON(!rcu_read_lock_held());
1298 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1301 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1303 struct mem_cgroup *from;
1304 struct mem_cgroup *to;
1305 bool ret = false;
1307 * Unlike task_move routines, we access mc.to, mc.from not under
1308 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1310 spin_lock(&mc.lock);
1311 from = mc.from;
1312 to = mc.to;
1313 if (!from)
1314 goto unlock;
1316 ret = mem_cgroup_same_or_subtree(memcg, from)
1317 || mem_cgroup_same_or_subtree(memcg, to);
1318 unlock:
1319 spin_unlock(&mc.lock);
1320 return ret;
1323 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1325 if (mc.moving_task && current != mc.moving_task) {
1326 if (mem_cgroup_under_move(memcg)) {
1327 DEFINE_WAIT(wait);
1328 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1329 /* moving charge context might have finished. */
1330 if (mc.moving_task)
1331 schedule();
1332 finish_wait(&mc.waitq, &wait);
1333 return true;
1336 return false;
1340 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1341 * @memcg: The memory cgroup that went over limit
1342 * @p: Task that is going to be killed
1344 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1345 * enabled
1347 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1349 struct cgroup *task_cgrp;
1350 struct cgroup *mem_cgrp;
1352 * Need a buffer in BSS, can't rely on allocations. The code relies
1353 * on the assumption that OOM is serialized for memory controller.
1354 * If this assumption is broken, revisit this code.
1356 static char memcg_name[PATH_MAX];
1357 int ret;
1359 if (!memcg || !p)
1360 return;
1363 rcu_read_lock();
1365 mem_cgrp = memcg->css.cgroup;
1366 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1368 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1369 if (ret < 0) {
1371 * Unfortunately, we are unable to convert to a useful name
1372 * But we'll still print out the usage information
1374 rcu_read_unlock();
1375 goto done;
1377 rcu_read_unlock();
1379 printk(KERN_INFO "Task in %s killed", memcg_name);
1381 rcu_read_lock();
1382 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1383 if (ret < 0) {
1384 rcu_read_unlock();
1385 goto done;
1387 rcu_read_unlock();
1390 * Continues from above, so we don't need an KERN_ level
1392 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1393 done:
1395 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1396 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1397 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1398 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1399 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1400 "failcnt %llu\n",
1401 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1402 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1403 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1407 * This function returns the number of memcg under hierarchy tree. Returns
1408 * 1(self count) if no children.
1410 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1412 int num = 0;
1413 struct mem_cgroup *iter;
1415 for_each_mem_cgroup_tree(iter, memcg)
1416 num++;
1417 return num;
1421 * Return the memory (and swap, if configured) limit for a memcg.
1423 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1425 u64 limit;
1426 u64 memsw;
1428 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1429 limit += total_swap_pages << PAGE_SHIFT;
1431 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1433 * If memsw is finite and limits the amount of swap space available
1434 * to this memcg, return that limit.
1436 return min(limit, memsw);
1439 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1440 gfp_t gfp_mask,
1441 unsigned long flags)
1443 unsigned long total = 0;
1444 bool noswap = false;
1445 int loop;
1447 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1448 noswap = true;
1449 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1450 noswap = true;
1452 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1453 if (loop)
1454 drain_all_stock_async(memcg);
1455 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1457 * Allow limit shrinkers, which are triggered directly
1458 * by userspace, to catch signals and stop reclaim
1459 * after minimal progress, regardless of the margin.
1461 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1462 break;
1463 if (mem_cgroup_margin(memcg))
1464 break;
1466 * If nothing was reclaimed after two attempts, there
1467 * may be no reclaimable pages in this hierarchy.
1469 if (loop && !total)
1470 break;
1472 return total;
1476 * test_mem_cgroup_node_reclaimable
1477 * @mem: the target memcg
1478 * @nid: the node ID to be checked.
1479 * @noswap : specify true here if the user wants flle only information.
1481 * This function returns whether the specified memcg contains any
1482 * reclaimable pages on a node. Returns true if there are any reclaimable
1483 * pages in the node.
1485 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1486 int nid, bool noswap)
1488 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1489 return true;
1490 if (noswap || !total_swap_pages)
1491 return false;
1492 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1493 return true;
1494 return false;
1497 #if MAX_NUMNODES > 1
1500 * Always updating the nodemask is not very good - even if we have an empty
1501 * list or the wrong list here, we can start from some node and traverse all
1502 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1505 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1507 int nid;
1509 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1510 * pagein/pageout changes since the last update.
1512 if (!atomic_read(&memcg->numainfo_events))
1513 return;
1514 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1515 return;
1517 /* make a nodemask where this memcg uses memory from */
1518 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1520 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1522 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1523 node_clear(nid, memcg->scan_nodes);
1526 atomic_set(&memcg->numainfo_events, 0);
1527 atomic_set(&memcg->numainfo_updating, 0);
1531 * Selecting a node where we start reclaim from. Because what we need is just
1532 * reducing usage counter, start from anywhere is O,K. Considering
1533 * memory reclaim from current node, there are pros. and cons.
1535 * Freeing memory from current node means freeing memory from a node which
1536 * we'll use or we've used. So, it may make LRU bad. And if several threads
1537 * hit limits, it will see a contention on a node. But freeing from remote
1538 * node means more costs for memory reclaim because of memory latency.
1540 * Now, we use round-robin. Better algorithm is welcomed.
1542 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1544 int node;
1546 mem_cgroup_may_update_nodemask(memcg);
1547 node = memcg->last_scanned_node;
1549 node = next_node(node, memcg->scan_nodes);
1550 if (node == MAX_NUMNODES)
1551 node = first_node(memcg->scan_nodes);
1553 * We call this when we hit limit, not when pages are added to LRU.
1554 * No LRU may hold pages because all pages are UNEVICTABLE or
1555 * memcg is too small and all pages are not on LRU. In that case,
1556 * we use curret node.
1558 if (unlikely(node == MAX_NUMNODES))
1559 node = numa_node_id();
1561 memcg->last_scanned_node = node;
1562 return node;
1566 * Check all nodes whether it contains reclaimable pages or not.
1567 * For quick scan, we make use of scan_nodes. This will allow us to skip
1568 * unused nodes. But scan_nodes is lazily updated and may not cotain
1569 * enough new information. We need to do double check.
1571 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1573 int nid;
1576 * quick check...making use of scan_node.
1577 * We can skip unused nodes.
1579 if (!nodes_empty(memcg->scan_nodes)) {
1580 for (nid = first_node(memcg->scan_nodes);
1581 nid < MAX_NUMNODES;
1582 nid = next_node(nid, memcg->scan_nodes)) {
1584 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1585 return true;
1589 * Check rest of nodes.
1591 for_each_node_state(nid, N_HIGH_MEMORY) {
1592 if (node_isset(nid, memcg->scan_nodes))
1593 continue;
1594 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1595 return true;
1597 return false;
1600 #else
1601 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1603 return 0;
1606 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1608 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1610 #endif
1612 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1613 struct zone *zone,
1614 gfp_t gfp_mask,
1615 unsigned long *total_scanned)
1617 struct mem_cgroup *victim = NULL;
1618 int total = 0;
1619 int loop = 0;
1620 unsigned long excess;
1621 unsigned long nr_scanned;
1622 struct mem_cgroup_reclaim_cookie reclaim = {
1623 .zone = zone,
1624 .priority = 0,
1627 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1629 while (1) {
1630 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1631 if (!victim) {
1632 loop++;
1633 if (loop >= 2) {
1635 * If we have not been able to reclaim
1636 * anything, it might because there are
1637 * no reclaimable pages under this hierarchy
1639 if (!total)
1640 break;
1642 * We want to do more targeted reclaim.
1643 * excess >> 2 is not to excessive so as to
1644 * reclaim too much, nor too less that we keep
1645 * coming back to reclaim from this cgroup
1647 if (total >= (excess >> 2) ||
1648 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1649 break;
1651 continue;
1653 if (!mem_cgroup_reclaimable(victim, false))
1654 continue;
1655 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1656 zone, &nr_scanned);
1657 *total_scanned += nr_scanned;
1658 if (!res_counter_soft_limit_excess(&root_memcg->res))
1659 break;
1661 mem_cgroup_iter_break(root_memcg, victim);
1662 return total;
1666 * Check OOM-Killer is already running under our hierarchy.
1667 * If someone is running, return false.
1668 * Has to be called with memcg_oom_lock
1670 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1672 struct mem_cgroup *iter, *failed = NULL;
1674 for_each_mem_cgroup_tree(iter, memcg) {
1675 if (iter->oom_lock) {
1677 * this subtree of our hierarchy is already locked
1678 * so we cannot give a lock.
1680 failed = iter;
1681 mem_cgroup_iter_break(memcg, iter);
1682 break;
1683 } else
1684 iter->oom_lock = true;
1687 if (!failed)
1688 return true;
1691 * OK, we failed to lock the whole subtree so we have to clean up
1692 * what we set up to the failing subtree
1694 for_each_mem_cgroup_tree(iter, memcg) {
1695 if (iter == failed) {
1696 mem_cgroup_iter_break(memcg, iter);
1697 break;
1699 iter->oom_lock = false;
1701 return false;
1705 * Has to be called with memcg_oom_lock
1707 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1709 struct mem_cgroup *iter;
1711 for_each_mem_cgroup_tree(iter, memcg)
1712 iter->oom_lock = false;
1713 return 0;
1716 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1718 struct mem_cgroup *iter;
1720 for_each_mem_cgroup_tree(iter, memcg)
1721 atomic_inc(&iter->under_oom);
1724 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1726 struct mem_cgroup *iter;
1729 * When a new child is created while the hierarchy is under oom,
1730 * mem_cgroup_oom_lock() may not be called. We have to use
1731 * atomic_add_unless() here.
1733 for_each_mem_cgroup_tree(iter, memcg)
1734 atomic_add_unless(&iter->under_oom, -1, 0);
1737 static DEFINE_SPINLOCK(memcg_oom_lock);
1738 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1740 struct oom_wait_info {
1741 struct mem_cgroup *mem;
1742 wait_queue_t wait;
1745 static int memcg_oom_wake_function(wait_queue_t *wait,
1746 unsigned mode, int sync, void *arg)
1748 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1749 *oom_wait_memcg;
1750 struct oom_wait_info *oom_wait_info;
1752 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1753 oom_wait_memcg = oom_wait_info->mem;
1756 * Both of oom_wait_info->mem and wake_mem are stable under us.
1757 * Then we can use css_is_ancestor without taking care of RCU.
1759 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1760 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1761 return 0;
1762 return autoremove_wake_function(wait, mode, sync, arg);
1765 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1767 /* for filtering, pass "memcg" as argument. */
1768 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1771 static void memcg_oom_recover(struct mem_cgroup *memcg)
1773 if (memcg && atomic_read(&memcg->under_oom))
1774 memcg_wakeup_oom(memcg);
1778 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1780 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1782 struct oom_wait_info owait;
1783 bool locked, need_to_kill;
1785 owait.mem = memcg;
1786 owait.wait.flags = 0;
1787 owait.wait.func = memcg_oom_wake_function;
1788 owait.wait.private = current;
1789 INIT_LIST_HEAD(&owait.wait.task_list);
1790 need_to_kill = true;
1791 mem_cgroup_mark_under_oom(memcg);
1793 /* At first, try to OOM lock hierarchy under memcg.*/
1794 spin_lock(&memcg_oom_lock);
1795 locked = mem_cgroup_oom_lock(memcg);
1797 * Even if signal_pending(), we can't quit charge() loop without
1798 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1799 * under OOM is always welcomed, use TASK_KILLABLE here.
1801 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1802 if (!locked || memcg->oom_kill_disable)
1803 need_to_kill = false;
1804 if (locked)
1805 mem_cgroup_oom_notify(memcg);
1806 spin_unlock(&memcg_oom_lock);
1808 if (need_to_kill) {
1809 finish_wait(&memcg_oom_waitq, &owait.wait);
1810 mem_cgroup_out_of_memory(memcg, mask);
1811 } else {
1812 schedule();
1813 finish_wait(&memcg_oom_waitq, &owait.wait);
1815 spin_lock(&memcg_oom_lock);
1816 if (locked)
1817 mem_cgroup_oom_unlock(memcg);
1818 memcg_wakeup_oom(memcg);
1819 spin_unlock(&memcg_oom_lock);
1821 mem_cgroup_unmark_under_oom(memcg);
1823 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1824 return false;
1825 /* Give chance to dying process */
1826 schedule_timeout_uninterruptible(1);
1827 return true;
1831 * Currently used to update mapped file statistics, but the routine can be
1832 * generalized to update other statistics as well.
1834 * Notes: Race condition
1836 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1837 * it tends to be costly. But considering some conditions, we doesn't need
1838 * to do so _always_.
1840 * Considering "charge", lock_page_cgroup() is not required because all
1841 * file-stat operations happen after a page is attached to radix-tree. There
1842 * are no race with "charge".
1844 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1845 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1846 * if there are race with "uncharge". Statistics itself is properly handled
1847 * by flags.
1849 * Considering "move", this is an only case we see a race. To make the race
1850 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1851 * possibility of race condition. If there is, we take a lock.
1854 void mem_cgroup_update_page_stat(struct page *page,
1855 enum mem_cgroup_page_stat_item idx, int val)
1857 struct mem_cgroup *memcg;
1858 struct page_cgroup *pc = lookup_page_cgroup(page);
1859 bool need_unlock = false;
1860 unsigned long uninitialized_var(flags);
1862 if (mem_cgroup_disabled())
1863 return;
1865 rcu_read_lock();
1866 memcg = pc->mem_cgroup;
1867 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1868 goto out;
1869 /* pc->mem_cgroup is unstable ? */
1870 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1871 /* take a lock against to access pc->mem_cgroup */
1872 move_lock_page_cgroup(pc, &flags);
1873 need_unlock = true;
1874 memcg = pc->mem_cgroup;
1875 if (!memcg || !PageCgroupUsed(pc))
1876 goto out;
1879 switch (idx) {
1880 case MEMCG_NR_FILE_MAPPED:
1881 if (val > 0)
1882 SetPageCgroupFileMapped(pc);
1883 else if (!page_mapped(page))
1884 ClearPageCgroupFileMapped(pc);
1885 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1886 break;
1887 default:
1888 BUG();
1891 this_cpu_add(memcg->stat->count[idx], val);
1893 out:
1894 if (unlikely(need_unlock))
1895 move_unlock_page_cgroup(pc, &flags);
1896 rcu_read_unlock();
1897 return;
1899 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1902 * size of first charge trial. "32" comes from vmscan.c's magic value.
1903 * TODO: maybe necessary to use big numbers in big irons.
1905 #define CHARGE_BATCH 32U
1906 struct memcg_stock_pcp {
1907 struct mem_cgroup *cached; /* this never be root cgroup */
1908 unsigned int nr_pages;
1909 struct work_struct work;
1910 unsigned long flags;
1911 #define FLUSHING_CACHED_CHARGE (0)
1913 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1914 static DEFINE_MUTEX(percpu_charge_mutex);
1917 * Try to consume stocked charge on this cpu. If success, one page is consumed
1918 * from local stock and true is returned. If the stock is 0 or charges from a
1919 * cgroup which is not current target, returns false. This stock will be
1920 * refilled.
1922 static bool consume_stock(struct mem_cgroup *memcg)
1924 struct memcg_stock_pcp *stock;
1925 bool ret = true;
1927 stock = &get_cpu_var(memcg_stock);
1928 if (memcg == stock->cached && stock->nr_pages)
1929 stock->nr_pages--;
1930 else /* need to call res_counter_charge */
1931 ret = false;
1932 put_cpu_var(memcg_stock);
1933 return ret;
1937 * Returns stocks cached in percpu to res_counter and reset cached information.
1939 static void drain_stock(struct memcg_stock_pcp *stock)
1941 struct mem_cgroup *old = stock->cached;
1943 if (stock->nr_pages) {
1944 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1946 res_counter_uncharge(&old->res, bytes);
1947 if (do_swap_account)
1948 res_counter_uncharge(&old->memsw, bytes);
1949 stock->nr_pages = 0;
1951 stock->cached = NULL;
1955 * This must be called under preempt disabled or must be called by
1956 * a thread which is pinned to local cpu.
1958 static void drain_local_stock(struct work_struct *dummy)
1960 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1961 drain_stock(stock);
1962 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1966 * Cache charges(val) which is from res_counter, to local per_cpu area.
1967 * This will be consumed by consume_stock() function, later.
1969 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1971 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1973 if (stock->cached != memcg) { /* reset if necessary */
1974 drain_stock(stock);
1975 stock->cached = memcg;
1977 stock->nr_pages += nr_pages;
1978 put_cpu_var(memcg_stock);
1982 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1983 * of the hierarchy under it. sync flag says whether we should block
1984 * until the work is done.
1986 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
1988 int cpu, curcpu;
1990 /* Notify other cpus that system-wide "drain" is running */
1991 get_online_cpus();
1992 curcpu = get_cpu();
1993 for_each_online_cpu(cpu) {
1994 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1995 struct mem_cgroup *memcg;
1997 memcg = stock->cached;
1998 if (!memcg || !stock->nr_pages)
1999 continue;
2000 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2001 continue;
2002 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2003 if (cpu == curcpu)
2004 drain_local_stock(&stock->work);
2005 else
2006 schedule_work_on(cpu, &stock->work);
2009 put_cpu();
2011 if (!sync)
2012 goto out;
2014 for_each_online_cpu(cpu) {
2015 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2016 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2017 flush_work(&stock->work);
2019 out:
2020 put_online_cpus();
2024 * Tries to drain stocked charges in other cpus. This function is asynchronous
2025 * and just put a work per cpu for draining localy on each cpu. Caller can
2026 * expects some charges will be back to res_counter later but cannot wait for
2027 * it.
2029 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2032 * If someone calls draining, avoid adding more kworker runs.
2034 if (!mutex_trylock(&percpu_charge_mutex))
2035 return;
2036 drain_all_stock(root_memcg, false);
2037 mutex_unlock(&percpu_charge_mutex);
2040 /* This is a synchronous drain interface. */
2041 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2043 /* called when force_empty is called */
2044 mutex_lock(&percpu_charge_mutex);
2045 drain_all_stock(root_memcg, true);
2046 mutex_unlock(&percpu_charge_mutex);
2050 * This function drains percpu counter value from DEAD cpu and
2051 * move it to local cpu. Note that this function can be preempted.
2053 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2055 int i;
2057 spin_lock(&memcg->pcp_counter_lock);
2058 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2059 long x = per_cpu(memcg->stat->count[i], cpu);
2061 per_cpu(memcg->stat->count[i], cpu) = 0;
2062 memcg->nocpu_base.count[i] += x;
2064 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2065 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2067 per_cpu(memcg->stat->events[i], cpu) = 0;
2068 memcg->nocpu_base.events[i] += x;
2070 /* need to clear ON_MOVE value, works as a kind of lock. */
2071 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2072 spin_unlock(&memcg->pcp_counter_lock);
2075 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2077 int idx = MEM_CGROUP_ON_MOVE;
2079 spin_lock(&memcg->pcp_counter_lock);
2080 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2081 spin_unlock(&memcg->pcp_counter_lock);
2084 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2085 unsigned long action,
2086 void *hcpu)
2088 int cpu = (unsigned long)hcpu;
2089 struct memcg_stock_pcp *stock;
2090 struct mem_cgroup *iter;
2092 if ((action == CPU_ONLINE)) {
2093 for_each_mem_cgroup(iter)
2094 synchronize_mem_cgroup_on_move(iter, cpu);
2095 return NOTIFY_OK;
2098 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2099 return NOTIFY_OK;
2101 for_each_mem_cgroup(iter)
2102 mem_cgroup_drain_pcp_counter(iter, cpu);
2104 stock = &per_cpu(memcg_stock, cpu);
2105 drain_stock(stock);
2106 return NOTIFY_OK;
2110 /* See __mem_cgroup_try_charge() for details */
2111 enum {
2112 CHARGE_OK, /* success */
2113 CHARGE_RETRY, /* need to retry but retry is not bad */
2114 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2115 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2116 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2119 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2120 unsigned int nr_pages, bool oom_check)
2122 unsigned long csize = nr_pages * PAGE_SIZE;
2123 struct mem_cgroup *mem_over_limit;
2124 struct res_counter *fail_res;
2125 unsigned long flags = 0;
2126 int ret;
2128 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2130 if (likely(!ret)) {
2131 if (!do_swap_account)
2132 return CHARGE_OK;
2133 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2134 if (likely(!ret))
2135 return CHARGE_OK;
2137 res_counter_uncharge(&memcg->res, csize);
2138 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2139 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2140 } else
2141 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2143 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2144 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2146 * Never reclaim on behalf of optional batching, retry with a
2147 * single page instead.
2149 if (nr_pages == CHARGE_BATCH)
2150 return CHARGE_RETRY;
2152 if (!(gfp_mask & __GFP_WAIT))
2153 return CHARGE_WOULDBLOCK;
2155 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2156 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2157 return CHARGE_RETRY;
2159 * Even though the limit is exceeded at this point, reclaim
2160 * may have been able to free some pages. Retry the charge
2161 * before killing the task.
2163 * Only for regular pages, though: huge pages are rather
2164 * unlikely to succeed so close to the limit, and we fall back
2165 * to regular pages anyway in case of failure.
2167 if (nr_pages == 1 && ret)
2168 return CHARGE_RETRY;
2171 * At task move, charge accounts can be doubly counted. So, it's
2172 * better to wait until the end of task_move if something is going on.
2174 if (mem_cgroup_wait_acct_move(mem_over_limit))
2175 return CHARGE_RETRY;
2177 /* If we don't need to call oom-killer at el, return immediately */
2178 if (!oom_check)
2179 return CHARGE_NOMEM;
2180 /* check OOM */
2181 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2182 return CHARGE_OOM_DIE;
2184 return CHARGE_RETRY;
2188 * __mem_cgroup_try_charge() does
2189 * 1. detect memcg to be charged against from passed *mm and *ptr,
2190 * 2. update res_counter
2191 * 3. call memory reclaim if necessary.
2193 * In some special case, if the task is fatal, fatal_signal_pending() or
2194 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2195 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2196 * as possible without any hazards. 2: all pages should have a valid
2197 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2198 * pointer, that is treated as a charge to root_mem_cgroup.
2200 * So __mem_cgroup_try_charge() will return
2201 * 0 ... on success, filling *ptr with a valid memcg pointer.
2202 * -ENOMEM ... charge failure because of resource limits.
2203 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2205 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2206 * the oom-killer can be invoked.
2208 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2209 gfp_t gfp_mask,
2210 unsigned int nr_pages,
2211 struct mem_cgroup **ptr,
2212 bool oom)
2214 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2215 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2216 struct mem_cgroup *memcg = NULL;
2217 int ret;
2220 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2221 * in system level. So, allow to go ahead dying process in addition to
2222 * MEMDIE process.
2224 if (unlikely(test_thread_flag(TIF_MEMDIE)
2225 || fatal_signal_pending(current)))
2226 goto bypass;
2229 * We always charge the cgroup the mm_struct belongs to.
2230 * The mm_struct's mem_cgroup changes on task migration if the
2231 * thread group leader migrates. It's possible that mm is not
2232 * set, if so charge the init_mm (happens for pagecache usage).
2234 if (!*ptr && !mm)
2235 *ptr = root_mem_cgroup;
2236 again:
2237 if (*ptr) { /* css should be a valid one */
2238 memcg = *ptr;
2239 VM_BUG_ON(css_is_removed(&memcg->css));
2240 if (mem_cgroup_is_root(memcg))
2241 goto done;
2242 if (nr_pages == 1 && consume_stock(memcg))
2243 goto done;
2244 css_get(&memcg->css);
2245 } else {
2246 struct task_struct *p;
2248 rcu_read_lock();
2249 p = rcu_dereference(mm->owner);
2251 * Because we don't have task_lock(), "p" can exit.
2252 * In that case, "memcg" can point to root or p can be NULL with
2253 * race with swapoff. Then, we have small risk of mis-accouning.
2254 * But such kind of mis-account by race always happens because
2255 * we don't have cgroup_mutex(). It's overkill and we allo that
2256 * small race, here.
2257 * (*) swapoff at el will charge against mm-struct not against
2258 * task-struct. So, mm->owner can be NULL.
2260 memcg = mem_cgroup_from_task(p);
2261 if (!memcg)
2262 memcg = root_mem_cgroup;
2263 if (mem_cgroup_is_root(memcg)) {
2264 rcu_read_unlock();
2265 goto done;
2267 if (nr_pages == 1 && consume_stock(memcg)) {
2269 * It seems dagerous to access memcg without css_get().
2270 * But considering how consume_stok works, it's not
2271 * necessary. If consume_stock success, some charges
2272 * from this memcg are cached on this cpu. So, we
2273 * don't need to call css_get()/css_tryget() before
2274 * calling consume_stock().
2276 rcu_read_unlock();
2277 goto done;
2279 /* after here, we may be blocked. we need to get refcnt */
2280 if (!css_tryget(&memcg->css)) {
2281 rcu_read_unlock();
2282 goto again;
2284 rcu_read_unlock();
2287 do {
2288 bool oom_check;
2290 /* If killed, bypass charge */
2291 if (fatal_signal_pending(current)) {
2292 css_put(&memcg->css);
2293 goto bypass;
2296 oom_check = false;
2297 if (oom && !nr_oom_retries) {
2298 oom_check = true;
2299 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2302 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2303 switch (ret) {
2304 case CHARGE_OK:
2305 break;
2306 case CHARGE_RETRY: /* not in OOM situation but retry */
2307 batch = nr_pages;
2308 css_put(&memcg->css);
2309 memcg = NULL;
2310 goto again;
2311 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2312 css_put(&memcg->css);
2313 goto nomem;
2314 case CHARGE_NOMEM: /* OOM routine works */
2315 if (!oom) {
2316 css_put(&memcg->css);
2317 goto nomem;
2319 /* If oom, we never return -ENOMEM */
2320 nr_oom_retries--;
2321 break;
2322 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2323 css_put(&memcg->css);
2324 goto bypass;
2326 } while (ret != CHARGE_OK);
2328 if (batch > nr_pages)
2329 refill_stock(memcg, batch - nr_pages);
2330 css_put(&memcg->css);
2331 done:
2332 *ptr = memcg;
2333 return 0;
2334 nomem:
2335 *ptr = NULL;
2336 return -ENOMEM;
2337 bypass:
2338 *ptr = root_mem_cgroup;
2339 return -EINTR;
2343 * Somemtimes we have to undo a charge we got by try_charge().
2344 * This function is for that and do uncharge, put css's refcnt.
2345 * gotten by try_charge().
2347 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2348 unsigned int nr_pages)
2350 if (!mem_cgroup_is_root(memcg)) {
2351 unsigned long bytes = nr_pages * PAGE_SIZE;
2353 res_counter_uncharge(&memcg->res, bytes);
2354 if (do_swap_account)
2355 res_counter_uncharge(&memcg->memsw, bytes);
2360 * A helper function to get mem_cgroup from ID. must be called under
2361 * rcu_read_lock(). The caller must check css_is_removed() or some if
2362 * it's concern. (dropping refcnt from swap can be called against removed
2363 * memcg.)
2365 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2367 struct cgroup_subsys_state *css;
2369 /* ID 0 is unused ID */
2370 if (!id)
2371 return NULL;
2372 css = css_lookup(&mem_cgroup_subsys, id);
2373 if (!css)
2374 return NULL;
2375 return container_of(css, struct mem_cgroup, css);
2378 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2380 struct mem_cgroup *memcg = NULL;
2381 struct page_cgroup *pc;
2382 unsigned short id;
2383 swp_entry_t ent;
2385 VM_BUG_ON(!PageLocked(page));
2387 pc = lookup_page_cgroup(page);
2388 lock_page_cgroup(pc);
2389 if (PageCgroupUsed(pc)) {
2390 memcg = pc->mem_cgroup;
2391 if (memcg && !css_tryget(&memcg->css))
2392 memcg = NULL;
2393 } else if (PageSwapCache(page)) {
2394 ent.val = page_private(page);
2395 id = lookup_swap_cgroup_id(ent);
2396 rcu_read_lock();
2397 memcg = mem_cgroup_lookup(id);
2398 if (memcg && !css_tryget(&memcg->css))
2399 memcg = NULL;
2400 rcu_read_unlock();
2402 unlock_page_cgroup(pc);
2403 return memcg;
2406 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2407 struct page *page,
2408 unsigned int nr_pages,
2409 struct page_cgroup *pc,
2410 enum charge_type ctype)
2412 lock_page_cgroup(pc);
2413 if (unlikely(PageCgroupUsed(pc))) {
2414 unlock_page_cgroup(pc);
2415 __mem_cgroup_cancel_charge(memcg, nr_pages);
2416 return;
2419 * we don't need page_cgroup_lock about tail pages, becase they are not
2420 * accessed by any other context at this point.
2422 pc->mem_cgroup = memcg;
2424 * We access a page_cgroup asynchronously without lock_page_cgroup().
2425 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2426 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2427 * before USED bit, we need memory barrier here.
2428 * See mem_cgroup_add_lru_list(), etc.
2430 smp_wmb();
2431 switch (ctype) {
2432 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2433 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2434 SetPageCgroupCache(pc);
2435 SetPageCgroupUsed(pc);
2436 break;
2437 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2438 ClearPageCgroupCache(pc);
2439 SetPageCgroupUsed(pc);
2440 break;
2441 default:
2442 break;
2445 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2446 unlock_page_cgroup(pc);
2447 WARN_ON_ONCE(PageLRU(page));
2449 * "charge_statistics" updated event counter. Then, check it.
2450 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2451 * if they exceeds softlimit.
2453 memcg_check_events(memcg, page);
2456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2458 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2459 (1 << PCG_MIGRATION))
2461 * Because tail pages are not marked as "used", set it. We're under
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
2466 void mem_cgroup_split_huge_fixup(struct page *head)
2468 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2469 struct page_cgroup *pc;
2470 int i;
2472 if (mem_cgroup_disabled())
2473 return;
2474 for (i = 1; i < HPAGE_PMD_NR; i++) {
2475 pc = head_pc + i;
2476 pc->mem_cgroup = head_pc->mem_cgroup;
2477 smp_wmb();/* see __commit_charge() */
2478 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2484 * mem_cgroup_move_account - move account of the page
2485 * @page: the page
2486 * @nr_pages: number of regular pages (>1 for huge pages)
2487 * @pc: page_cgroup of the page.
2488 * @from: mem_cgroup which the page is moved from.
2489 * @to: mem_cgroup which the page is moved to. @from != @to.
2490 * @uncharge: whether we should call uncharge and css_put against @from.
2492 * The caller must confirm following.
2493 * - page is not on LRU (isolate_page() is useful.)
2494 * - compound_lock is held when nr_pages > 1
2496 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2497 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2498 * true, this function does "uncharge" from old cgroup, but it doesn't if
2499 * @uncharge is false, so a caller should do "uncharge".
2501 static int mem_cgroup_move_account(struct page *page,
2502 unsigned int nr_pages,
2503 struct page_cgroup *pc,
2504 struct mem_cgroup *from,
2505 struct mem_cgroup *to,
2506 bool uncharge)
2508 unsigned long flags;
2509 int ret;
2511 VM_BUG_ON(from == to);
2512 VM_BUG_ON(PageLRU(page));
2514 * The page is isolated from LRU. So, collapse function
2515 * will not handle this page. But page splitting can happen.
2516 * Do this check under compound_page_lock(). The caller should
2517 * hold it.
2519 ret = -EBUSY;
2520 if (nr_pages > 1 && !PageTransHuge(page))
2521 goto out;
2523 lock_page_cgroup(pc);
2525 ret = -EINVAL;
2526 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2527 goto unlock;
2529 move_lock_page_cgroup(pc, &flags);
2531 if (PageCgroupFileMapped(pc)) {
2532 /* Update mapped_file data for mem_cgroup */
2533 preempt_disable();
2534 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2535 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 preempt_enable();
2538 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2539 if (uncharge)
2540 /* This is not "cancel", but cancel_charge does all we need. */
2541 __mem_cgroup_cancel_charge(from, nr_pages);
2543 /* caller should have done css_get */
2544 pc->mem_cgroup = to;
2545 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2547 * We charges against "to" which may not have any tasks. Then, "to"
2548 * can be under rmdir(). But in current implementation, caller of
2549 * this function is just force_empty() and move charge, so it's
2550 * guaranteed that "to" is never removed. So, we don't check rmdir
2551 * status here.
2553 move_unlock_page_cgroup(pc, &flags);
2554 ret = 0;
2555 unlock:
2556 unlock_page_cgroup(pc);
2558 * check events
2560 memcg_check_events(to, page);
2561 memcg_check_events(from, page);
2562 out:
2563 return ret;
2567 * move charges to its parent.
2570 static int mem_cgroup_move_parent(struct page *page,
2571 struct page_cgroup *pc,
2572 struct mem_cgroup *child,
2573 gfp_t gfp_mask)
2575 struct cgroup *cg = child->css.cgroup;
2576 struct cgroup *pcg = cg->parent;
2577 struct mem_cgroup *parent;
2578 unsigned int nr_pages;
2579 unsigned long uninitialized_var(flags);
2580 int ret;
2582 /* Is ROOT ? */
2583 if (!pcg)
2584 return -EINVAL;
2586 ret = -EBUSY;
2587 if (!get_page_unless_zero(page))
2588 goto out;
2589 if (isolate_lru_page(page))
2590 goto put;
2592 nr_pages = hpage_nr_pages(page);
2594 parent = mem_cgroup_from_cont(pcg);
2595 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2596 if (ret)
2597 goto put_back;
2599 if (nr_pages > 1)
2600 flags = compound_lock_irqsave(page);
2602 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2603 if (ret)
2604 __mem_cgroup_cancel_charge(parent, nr_pages);
2606 if (nr_pages > 1)
2607 compound_unlock_irqrestore(page, flags);
2608 put_back:
2609 putback_lru_page(page);
2610 put:
2611 put_page(page);
2612 out:
2613 return ret;
2617 * Charge the memory controller for page usage.
2618 * Return
2619 * 0 if the charge was successful
2620 * < 0 if the cgroup is over its limit
2622 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2623 gfp_t gfp_mask, enum charge_type ctype)
2625 struct mem_cgroup *memcg = NULL;
2626 unsigned int nr_pages = 1;
2627 struct page_cgroup *pc;
2628 bool oom = true;
2629 int ret;
2631 if (PageTransHuge(page)) {
2632 nr_pages <<= compound_order(page);
2633 VM_BUG_ON(!PageTransHuge(page));
2635 * Never OOM-kill a process for a huge page. The
2636 * fault handler will fall back to regular pages.
2638 oom = false;
2641 pc = lookup_page_cgroup(page);
2642 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2643 if (ret == -ENOMEM)
2644 return ret;
2645 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2646 return 0;
2649 int mem_cgroup_newpage_charge(struct page *page,
2650 struct mm_struct *mm, gfp_t gfp_mask)
2652 if (mem_cgroup_disabled())
2653 return 0;
2654 VM_BUG_ON(page_mapped(page));
2655 VM_BUG_ON(page->mapping && !PageAnon(page));
2656 VM_BUG_ON(!mm);
2657 return mem_cgroup_charge_common(page, mm, gfp_mask,
2658 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2661 static void
2662 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2663 enum charge_type ctype);
2665 static void
2666 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2667 enum charge_type ctype)
2669 struct page_cgroup *pc = lookup_page_cgroup(page);
2670 struct zone *zone = page_zone(page);
2671 unsigned long flags;
2672 bool removed = false;
2675 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2676 * is already on LRU. It means the page may on some other page_cgroup's
2677 * LRU. Take care of it.
2679 spin_lock_irqsave(&zone->lru_lock, flags);
2680 if (PageLRU(page)) {
2681 del_page_from_lru_list(zone, page, page_lru(page));
2682 ClearPageLRU(page);
2683 removed = true;
2685 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2686 if (removed) {
2687 add_page_to_lru_list(zone, page, page_lru(page));
2688 SetPageLRU(page);
2690 spin_unlock_irqrestore(&zone->lru_lock, flags);
2691 return;
2694 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2695 gfp_t gfp_mask)
2697 struct mem_cgroup *memcg = NULL;
2698 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2699 int ret;
2701 if (mem_cgroup_disabled())
2702 return 0;
2703 if (PageCompound(page))
2704 return 0;
2706 if (unlikely(!mm))
2707 mm = &init_mm;
2708 if (!page_is_file_cache(page))
2709 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2711 if (!PageSwapCache(page))
2712 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2713 else { /* page is swapcache/shmem */
2714 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2715 if (!ret)
2716 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2718 return ret;
2722 * While swap-in, try_charge -> commit or cancel, the page is locked.
2723 * And when try_charge() successfully returns, one refcnt to memcg without
2724 * struct page_cgroup is acquired. This refcnt will be consumed by
2725 * "commit()" or removed by "cancel()"
2727 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2728 struct page *page,
2729 gfp_t mask, struct mem_cgroup **memcgp)
2731 struct mem_cgroup *memcg;
2732 int ret;
2734 *memcgp = NULL;
2736 if (mem_cgroup_disabled())
2737 return 0;
2739 if (!do_swap_account)
2740 goto charge_cur_mm;
2742 * A racing thread's fault, or swapoff, may have already updated
2743 * the pte, and even removed page from swap cache: in those cases
2744 * do_swap_page()'s pte_same() test will fail; but there's also a
2745 * KSM case which does need to charge the page.
2747 if (!PageSwapCache(page))
2748 goto charge_cur_mm;
2749 memcg = try_get_mem_cgroup_from_page(page);
2750 if (!memcg)
2751 goto charge_cur_mm;
2752 *memcgp = memcg;
2753 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2754 css_put(&memcg->css);
2755 if (ret == -EINTR)
2756 ret = 0;
2757 return ret;
2758 charge_cur_mm:
2759 if (unlikely(!mm))
2760 mm = &init_mm;
2761 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2762 if (ret == -EINTR)
2763 ret = 0;
2764 return ret;
2767 static void
2768 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2769 enum charge_type ctype)
2771 if (mem_cgroup_disabled())
2772 return;
2773 if (!memcg)
2774 return;
2775 cgroup_exclude_rmdir(&memcg->css);
2777 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2779 * Now swap is on-memory. This means this page may be
2780 * counted both as mem and swap....double count.
2781 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2782 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2783 * may call delete_from_swap_cache() before reach here.
2785 if (do_swap_account && PageSwapCache(page)) {
2786 swp_entry_t ent = {.val = page_private(page)};
2787 struct mem_cgroup *swap_memcg;
2788 unsigned short id;
2790 id = swap_cgroup_record(ent, 0);
2791 rcu_read_lock();
2792 swap_memcg = mem_cgroup_lookup(id);
2793 if (swap_memcg) {
2795 * This recorded memcg can be obsolete one. So, avoid
2796 * calling css_tryget
2798 if (!mem_cgroup_is_root(swap_memcg))
2799 res_counter_uncharge(&swap_memcg->memsw,
2800 PAGE_SIZE);
2801 mem_cgroup_swap_statistics(swap_memcg, false);
2802 mem_cgroup_put(swap_memcg);
2804 rcu_read_unlock();
2807 * At swapin, we may charge account against cgroup which has no tasks.
2808 * So, rmdir()->pre_destroy() can be called while we do this charge.
2809 * In that case, we need to call pre_destroy() again. check it here.
2811 cgroup_release_and_wakeup_rmdir(&memcg->css);
2814 void mem_cgroup_commit_charge_swapin(struct page *page,
2815 struct mem_cgroup *memcg)
2817 __mem_cgroup_commit_charge_swapin(page, memcg,
2818 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2821 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2823 if (mem_cgroup_disabled())
2824 return;
2825 if (!memcg)
2826 return;
2827 __mem_cgroup_cancel_charge(memcg, 1);
2830 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2831 unsigned int nr_pages,
2832 const enum charge_type ctype)
2834 struct memcg_batch_info *batch = NULL;
2835 bool uncharge_memsw = true;
2837 /* If swapout, usage of swap doesn't decrease */
2838 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2839 uncharge_memsw = false;
2841 batch = &current->memcg_batch;
2843 * In usual, we do css_get() when we remember memcg pointer.
2844 * But in this case, we keep res->usage until end of a series of
2845 * uncharges. Then, it's ok to ignore memcg's refcnt.
2847 if (!batch->memcg)
2848 batch->memcg = memcg;
2850 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2851 * In those cases, all pages freed continuously can be expected to be in
2852 * the same cgroup and we have chance to coalesce uncharges.
2853 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2854 * because we want to do uncharge as soon as possible.
2857 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2858 goto direct_uncharge;
2860 if (nr_pages > 1)
2861 goto direct_uncharge;
2864 * In typical case, batch->memcg == mem. This means we can
2865 * merge a series of uncharges to an uncharge of res_counter.
2866 * If not, we uncharge res_counter ony by one.
2868 if (batch->memcg != memcg)
2869 goto direct_uncharge;
2870 /* remember freed charge and uncharge it later */
2871 batch->nr_pages++;
2872 if (uncharge_memsw)
2873 batch->memsw_nr_pages++;
2874 return;
2875 direct_uncharge:
2876 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2877 if (uncharge_memsw)
2878 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2879 if (unlikely(batch->memcg != memcg))
2880 memcg_oom_recover(memcg);
2881 return;
2885 * uncharge if !page_mapped(page)
2887 static struct mem_cgroup *
2888 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2890 struct mem_cgroup *memcg = NULL;
2891 unsigned int nr_pages = 1;
2892 struct page_cgroup *pc;
2894 if (mem_cgroup_disabled())
2895 return NULL;
2897 if (PageSwapCache(page))
2898 return NULL;
2900 if (PageTransHuge(page)) {
2901 nr_pages <<= compound_order(page);
2902 VM_BUG_ON(!PageTransHuge(page));
2905 * Check if our page_cgroup is valid
2907 pc = lookup_page_cgroup(page);
2908 if (unlikely(!PageCgroupUsed(pc)))
2909 return NULL;
2911 lock_page_cgroup(pc);
2913 memcg = pc->mem_cgroup;
2915 if (!PageCgroupUsed(pc))
2916 goto unlock_out;
2918 switch (ctype) {
2919 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2920 case MEM_CGROUP_CHARGE_TYPE_DROP:
2921 /* See mem_cgroup_prepare_migration() */
2922 if (page_mapped(page) || PageCgroupMigration(pc))
2923 goto unlock_out;
2924 break;
2925 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2926 if (!PageAnon(page)) { /* Shared memory */
2927 if (page->mapping && !page_is_file_cache(page))
2928 goto unlock_out;
2929 } else if (page_mapped(page)) /* Anon */
2930 goto unlock_out;
2931 break;
2932 default:
2933 break;
2936 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
2938 ClearPageCgroupUsed(pc);
2940 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2941 * freed from LRU. This is safe because uncharged page is expected not
2942 * to be reused (freed soon). Exception is SwapCache, it's handled by
2943 * special functions.
2946 unlock_page_cgroup(pc);
2948 * even after unlock, we have memcg->res.usage here and this memcg
2949 * will never be freed.
2951 memcg_check_events(memcg, page);
2952 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2953 mem_cgroup_swap_statistics(memcg, true);
2954 mem_cgroup_get(memcg);
2956 if (!mem_cgroup_is_root(memcg))
2957 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2959 return memcg;
2961 unlock_out:
2962 unlock_page_cgroup(pc);
2963 return NULL;
2966 void mem_cgroup_uncharge_page(struct page *page)
2968 /* early check. */
2969 if (page_mapped(page))
2970 return;
2971 VM_BUG_ON(page->mapping && !PageAnon(page));
2972 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2975 void mem_cgroup_uncharge_cache_page(struct page *page)
2977 VM_BUG_ON(page_mapped(page));
2978 VM_BUG_ON(page->mapping);
2979 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2983 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2984 * In that cases, pages are freed continuously and we can expect pages
2985 * are in the same memcg. All these calls itself limits the number of
2986 * pages freed at once, then uncharge_start/end() is called properly.
2987 * This may be called prural(2) times in a context,
2990 void mem_cgroup_uncharge_start(void)
2992 current->memcg_batch.do_batch++;
2993 /* We can do nest. */
2994 if (current->memcg_batch.do_batch == 1) {
2995 current->memcg_batch.memcg = NULL;
2996 current->memcg_batch.nr_pages = 0;
2997 current->memcg_batch.memsw_nr_pages = 0;
3001 void mem_cgroup_uncharge_end(void)
3003 struct memcg_batch_info *batch = &current->memcg_batch;
3005 if (!batch->do_batch)
3006 return;
3008 batch->do_batch--;
3009 if (batch->do_batch) /* If stacked, do nothing. */
3010 return;
3012 if (!batch->memcg)
3013 return;
3015 * This "batch->memcg" is valid without any css_get/put etc...
3016 * bacause we hide charges behind us.
3018 if (batch->nr_pages)
3019 res_counter_uncharge(&batch->memcg->res,
3020 batch->nr_pages * PAGE_SIZE);
3021 if (batch->memsw_nr_pages)
3022 res_counter_uncharge(&batch->memcg->memsw,
3023 batch->memsw_nr_pages * PAGE_SIZE);
3024 memcg_oom_recover(batch->memcg);
3025 /* forget this pointer (for sanity check) */
3026 batch->memcg = NULL;
3030 * A function for resetting pc->mem_cgroup for newly allocated pages.
3031 * This function should be called if the newpage will be added to LRU
3032 * before start accounting.
3034 void mem_cgroup_reset_owner(struct page *newpage)
3036 struct page_cgroup *pc;
3038 if (mem_cgroup_disabled())
3039 return;
3041 pc = lookup_page_cgroup(newpage);
3042 VM_BUG_ON(PageCgroupUsed(pc));
3043 pc->mem_cgroup = root_mem_cgroup;
3046 #ifdef CONFIG_SWAP
3048 * called after __delete_from_swap_cache() and drop "page" account.
3049 * memcg information is recorded to swap_cgroup of "ent"
3051 void
3052 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3054 struct mem_cgroup *memcg;
3055 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3057 if (!swapout) /* this was a swap cache but the swap is unused ! */
3058 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3060 memcg = __mem_cgroup_uncharge_common(page, ctype);
3063 * record memcg information, if swapout && memcg != NULL,
3064 * mem_cgroup_get() was called in uncharge().
3066 if (do_swap_account && swapout && memcg)
3067 swap_cgroup_record(ent, css_id(&memcg->css));
3069 #endif
3071 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3073 * called from swap_entry_free(). remove record in swap_cgroup and
3074 * uncharge "memsw" account.
3076 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3078 struct mem_cgroup *memcg;
3079 unsigned short id;
3081 if (!do_swap_account)
3082 return;
3084 id = swap_cgroup_record(ent, 0);
3085 rcu_read_lock();
3086 memcg = mem_cgroup_lookup(id);
3087 if (memcg) {
3089 * We uncharge this because swap is freed.
3090 * This memcg can be obsolete one. We avoid calling css_tryget
3092 if (!mem_cgroup_is_root(memcg))
3093 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3094 mem_cgroup_swap_statistics(memcg, false);
3095 mem_cgroup_put(memcg);
3097 rcu_read_unlock();
3101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3102 * @entry: swap entry to be moved
3103 * @from: mem_cgroup which the entry is moved from
3104 * @to: mem_cgroup which the entry is moved to
3105 * @need_fixup: whether we should fixup res_counters and refcounts.
3107 * It succeeds only when the swap_cgroup's record for this entry is the same
3108 * as the mem_cgroup's id of @from.
3110 * Returns 0 on success, -EINVAL on failure.
3112 * The caller must have charged to @to, IOW, called res_counter_charge() about
3113 * both res and memsw, and called css_get().
3115 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3116 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3118 unsigned short old_id, new_id;
3120 old_id = css_id(&from->css);
3121 new_id = css_id(&to->css);
3123 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3124 mem_cgroup_swap_statistics(from, false);
3125 mem_cgroup_swap_statistics(to, true);
3127 * This function is only called from task migration context now.
3128 * It postpones res_counter and refcount handling till the end
3129 * of task migration(mem_cgroup_clear_mc()) for performance
3130 * improvement. But we cannot postpone mem_cgroup_get(to)
3131 * because if the process that has been moved to @to does
3132 * swap-in, the refcount of @to might be decreased to 0.
3134 mem_cgroup_get(to);
3135 if (need_fixup) {
3136 if (!mem_cgroup_is_root(from))
3137 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3138 mem_cgroup_put(from);
3140 * we charged both to->res and to->memsw, so we should
3141 * uncharge to->res.
3143 if (!mem_cgroup_is_root(to))
3144 res_counter_uncharge(&to->res, PAGE_SIZE);
3146 return 0;
3148 return -EINVAL;
3150 #else
3151 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3152 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3154 return -EINVAL;
3156 #endif
3159 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3160 * page belongs to.
3162 int mem_cgroup_prepare_migration(struct page *page,
3163 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3165 struct mem_cgroup *memcg = NULL;
3166 struct page_cgroup *pc;
3167 enum charge_type ctype;
3168 int ret = 0;
3170 *memcgp = NULL;
3172 VM_BUG_ON(PageTransHuge(page));
3173 if (mem_cgroup_disabled())
3174 return 0;
3176 pc = lookup_page_cgroup(page);
3177 lock_page_cgroup(pc);
3178 if (PageCgroupUsed(pc)) {
3179 memcg = pc->mem_cgroup;
3180 css_get(&memcg->css);
3182 * At migrating an anonymous page, its mapcount goes down
3183 * to 0 and uncharge() will be called. But, even if it's fully
3184 * unmapped, migration may fail and this page has to be
3185 * charged again. We set MIGRATION flag here and delay uncharge
3186 * until end_migration() is called
3188 * Corner Case Thinking
3189 * A)
3190 * When the old page was mapped as Anon and it's unmap-and-freed
3191 * while migration was ongoing.
3192 * If unmap finds the old page, uncharge() of it will be delayed
3193 * until end_migration(). If unmap finds a new page, it's
3194 * uncharged when it make mapcount to be 1->0. If unmap code
3195 * finds swap_migration_entry, the new page will not be mapped
3196 * and end_migration() will find it(mapcount==0).
3198 * B)
3199 * When the old page was mapped but migraion fails, the kernel
3200 * remaps it. A charge for it is kept by MIGRATION flag even
3201 * if mapcount goes down to 0. We can do remap successfully
3202 * without charging it again.
3204 * C)
3205 * The "old" page is under lock_page() until the end of
3206 * migration, so, the old page itself will not be swapped-out.
3207 * If the new page is swapped out before end_migraton, our
3208 * hook to usual swap-out path will catch the event.
3210 if (PageAnon(page))
3211 SetPageCgroupMigration(pc);
3213 unlock_page_cgroup(pc);
3215 * If the page is not charged at this point,
3216 * we return here.
3218 if (!memcg)
3219 return 0;
3221 *memcgp = memcg;
3222 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3223 css_put(&memcg->css);/* drop extra refcnt */
3224 if (ret) {
3225 if (PageAnon(page)) {
3226 lock_page_cgroup(pc);
3227 ClearPageCgroupMigration(pc);
3228 unlock_page_cgroup(pc);
3230 * The old page may be fully unmapped while we kept it.
3232 mem_cgroup_uncharge_page(page);
3234 /* we'll need to revisit this error code (we have -EINTR) */
3235 return -ENOMEM;
3238 * We charge new page before it's used/mapped. So, even if unlock_page()
3239 * is called before end_migration, we can catch all events on this new
3240 * page. In the case new page is migrated but not remapped, new page's
3241 * mapcount will be finally 0 and we call uncharge in end_migration().
3243 pc = lookup_page_cgroup(newpage);
3244 if (PageAnon(page))
3245 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3246 else if (page_is_file_cache(page))
3247 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3248 else
3249 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3250 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype);
3251 return ret;
3254 /* remove redundant charge if migration failed*/
3255 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3256 struct page *oldpage, struct page *newpage, bool migration_ok)
3258 struct page *used, *unused;
3259 struct page_cgroup *pc;
3261 if (!memcg)
3262 return;
3263 /* blocks rmdir() */
3264 cgroup_exclude_rmdir(&memcg->css);
3265 if (!migration_ok) {
3266 used = oldpage;
3267 unused = newpage;
3268 } else {
3269 used = newpage;
3270 unused = oldpage;
3273 * We disallowed uncharge of pages under migration because mapcount
3274 * of the page goes down to zero, temporarly.
3275 * Clear the flag and check the page should be charged.
3277 pc = lookup_page_cgroup(oldpage);
3278 lock_page_cgroup(pc);
3279 ClearPageCgroupMigration(pc);
3280 unlock_page_cgroup(pc);
3282 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3285 * If a page is a file cache, radix-tree replacement is very atomic
3286 * and we can skip this check. When it was an Anon page, its mapcount
3287 * goes down to 0. But because we added MIGRATION flage, it's not
3288 * uncharged yet. There are several case but page->mapcount check
3289 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3290 * check. (see prepare_charge() also)
3292 if (PageAnon(used))
3293 mem_cgroup_uncharge_page(used);
3295 * At migration, we may charge account against cgroup which has no
3296 * tasks.
3297 * So, rmdir()->pre_destroy() can be called while we do this charge.
3298 * In that case, we need to call pre_destroy() again. check it here.
3300 cgroup_release_and_wakeup_rmdir(&memcg->css);
3304 * At replace page cache, newpage is not under any memcg but it's on
3305 * LRU. So, this function doesn't touch res_counter but handles LRU
3306 * in correct way. Both pages are locked so we cannot race with uncharge.
3308 void mem_cgroup_replace_page_cache(struct page *oldpage,
3309 struct page *newpage)
3311 struct mem_cgroup *memcg;
3312 struct page_cgroup *pc;
3313 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3315 if (mem_cgroup_disabled())
3316 return;
3318 pc = lookup_page_cgroup(oldpage);
3319 /* fix accounting on old pages */
3320 lock_page_cgroup(pc);
3321 memcg = pc->mem_cgroup;
3322 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3323 ClearPageCgroupUsed(pc);
3324 unlock_page_cgroup(pc);
3326 if (PageSwapBacked(oldpage))
3327 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3330 * Even if newpage->mapping was NULL before starting replacement,
3331 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3332 * LRU while we overwrite pc->mem_cgroup.
3334 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
3337 #ifdef CONFIG_DEBUG_VM
3338 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3340 struct page_cgroup *pc;
3342 pc = lookup_page_cgroup(page);
3344 * Can be NULL while feeding pages into the page allocator for
3345 * the first time, i.e. during boot or memory hotplug;
3346 * or when mem_cgroup_disabled().
3348 if (likely(pc) && PageCgroupUsed(pc))
3349 return pc;
3350 return NULL;
3353 bool mem_cgroup_bad_page_check(struct page *page)
3355 if (mem_cgroup_disabled())
3356 return false;
3358 return lookup_page_cgroup_used(page) != NULL;
3361 void mem_cgroup_print_bad_page(struct page *page)
3363 struct page_cgroup *pc;
3365 pc = lookup_page_cgroup_used(page);
3366 if (pc) {
3367 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3368 pc, pc->flags, pc->mem_cgroup);
3371 #endif
3373 static DEFINE_MUTEX(set_limit_mutex);
3375 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3376 unsigned long long val)
3378 int retry_count;
3379 u64 memswlimit, memlimit;
3380 int ret = 0;
3381 int children = mem_cgroup_count_children(memcg);
3382 u64 curusage, oldusage;
3383 int enlarge;
3386 * For keeping hierarchical_reclaim simple, how long we should retry
3387 * is depends on callers. We set our retry-count to be function
3388 * of # of children which we should visit in this loop.
3390 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3392 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3394 enlarge = 0;
3395 while (retry_count) {
3396 if (signal_pending(current)) {
3397 ret = -EINTR;
3398 break;
3401 * Rather than hide all in some function, I do this in
3402 * open coded manner. You see what this really does.
3403 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3405 mutex_lock(&set_limit_mutex);
3406 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3407 if (memswlimit < val) {
3408 ret = -EINVAL;
3409 mutex_unlock(&set_limit_mutex);
3410 break;
3413 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3414 if (memlimit < val)
3415 enlarge = 1;
3417 ret = res_counter_set_limit(&memcg->res, val);
3418 if (!ret) {
3419 if (memswlimit == val)
3420 memcg->memsw_is_minimum = true;
3421 else
3422 memcg->memsw_is_minimum = false;
3424 mutex_unlock(&set_limit_mutex);
3426 if (!ret)
3427 break;
3429 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3430 MEM_CGROUP_RECLAIM_SHRINK);
3431 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3432 /* Usage is reduced ? */
3433 if (curusage >= oldusage)
3434 retry_count--;
3435 else
3436 oldusage = curusage;
3438 if (!ret && enlarge)
3439 memcg_oom_recover(memcg);
3441 return ret;
3444 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3445 unsigned long long val)
3447 int retry_count;
3448 u64 memlimit, memswlimit, oldusage, curusage;
3449 int children = mem_cgroup_count_children(memcg);
3450 int ret = -EBUSY;
3451 int enlarge = 0;
3453 /* see mem_cgroup_resize_res_limit */
3454 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3455 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3456 while (retry_count) {
3457 if (signal_pending(current)) {
3458 ret = -EINTR;
3459 break;
3462 * Rather than hide all in some function, I do this in
3463 * open coded manner. You see what this really does.
3464 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3466 mutex_lock(&set_limit_mutex);
3467 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3468 if (memlimit > val) {
3469 ret = -EINVAL;
3470 mutex_unlock(&set_limit_mutex);
3471 break;
3473 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3474 if (memswlimit < val)
3475 enlarge = 1;
3476 ret = res_counter_set_limit(&memcg->memsw, val);
3477 if (!ret) {
3478 if (memlimit == val)
3479 memcg->memsw_is_minimum = true;
3480 else
3481 memcg->memsw_is_minimum = false;
3483 mutex_unlock(&set_limit_mutex);
3485 if (!ret)
3486 break;
3488 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3489 MEM_CGROUP_RECLAIM_NOSWAP |
3490 MEM_CGROUP_RECLAIM_SHRINK);
3491 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3492 /* Usage is reduced ? */
3493 if (curusage >= oldusage)
3494 retry_count--;
3495 else
3496 oldusage = curusage;
3498 if (!ret && enlarge)
3499 memcg_oom_recover(memcg);
3500 return ret;
3503 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3504 gfp_t gfp_mask,
3505 unsigned long *total_scanned)
3507 unsigned long nr_reclaimed = 0;
3508 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3509 unsigned long reclaimed;
3510 int loop = 0;
3511 struct mem_cgroup_tree_per_zone *mctz;
3512 unsigned long long excess;
3513 unsigned long nr_scanned;
3515 if (order > 0)
3516 return 0;
3518 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3520 * This loop can run a while, specially if mem_cgroup's continuously
3521 * keep exceeding their soft limit and putting the system under
3522 * pressure
3524 do {
3525 if (next_mz)
3526 mz = next_mz;
3527 else
3528 mz = mem_cgroup_largest_soft_limit_node(mctz);
3529 if (!mz)
3530 break;
3532 nr_scanned = 0;
3533 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3534 gfp_mask, &nr_scanned);
3535 nr_reclaimed += reclaimed;
3536 *total_scanned += nr_scanned;
3537 spin_lock(&mctz->lock);
3540 * If we failed to reclaim anything from this memory cgroup
3541 * it is time to move on to the next cgroup
3543 next_mz = NULL;
3544 if (!reclaimed) {
3545 do {
3547 * Loop until we find yet another one.
3549 * By the time we get the soft_limit lock
3550 * again, someone might have aded the
3551 * group back on the RB tree. Iterate to
3552 * make sure we get a different mem.
3553 * mem_cgroup_largest_soft_limit_node returns
3554 * NULL if no other cgroup is present on
3555 * the tree
3557 next_mz =
3558 __mem_cgroup_largest_soft_limit_node(mctz);
3559 if (next_mz == mz)
3560 css_put(&next_mz->mem->css);
3561 else /* next_mz == NULL or other memcg */
3562 break;
3563 } while (1);
3565 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3566 excess = res_counter_soft_limit_excess(&mz->mem->res);
3568 * One school of thought says that we should not add
3569 * back the node to the tree if reclaim returns 0.
3570 * But our reclaim could return 0, simply because due
3571 * to priority we are exposing a smaller subset of
3572 * memory to reclaim from. Consider this as a longer
3573 * term TODO.
3575 /* If excess == 0, no tree ops */
3576 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3577 spin_unlock(&mctz->lock);
3578 css_put(&mz->mem->css);
3579 loop++;
3581 * Could not reclaim anything and there are no more
3582 * mem cgroups to try or we seem to be looping without
3583 * reclaiming anything.
3585 if (!nr_reclaimed &&
3586 (next_mz == NULL ||
3587 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3588 break;
3589 } while (!nr_reclaimed);
3590 if (next_mz)
3591 css_put(&next_mz->mem->css);
3592 return nr_reclaimed;
3596 * This routine traverse page_cgroup in given list and drop them all.
3597 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3599 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3600 int node, int zid, enum lru_list lru)
3602 struct mem_cgroup_per_zone *mz;
3603 unsigned long flags, loop;
3604 struct list_head *list;
3605 struct page *busy;
3606 struct zone *zone;
3607 int ret = 0;
3609 zone = &NODE_DATA(node)->node_zones[zid];
3610 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3611 list = &mz->lruvec.lists[lru];
3613 loop = MEM_CGROUP_ZSTAT(mz, lru);
3614 /* give some margin against EBUSY etc...*/
3615 loop += 256;
3616 busy = NULL;
3617 while (loop--) {
3618 struct page_cgroup *pc;
3619 struct page *page;
3621 ret = 0;
3622 spin_lock_irqsave(&zone->lru_lock, flags);
3623 if (list_empty(list)) {
3624 spin_unlock_irqrestore(&zone->lru_lock, flags);
3625 break;
3627 page = list_entry(list->prev, struct page, lru);
3628 if (busy == page) {
3629 list_move(&page->lru, list);
3630 busy = NULL;
3631 spin_unlock_irqrestore(&zone->lru_lock, flags);
3632 continue;
3634 spin_unlock_irqrestore(&zone->lru_lock, flags);
3636 pc = lookup_page_cgroup(page);
3638 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3639 if (ret == -ENOMEM || ret == -EINTR)
3640 break;
3642 if (ret == -EBUSY || ret == -EINVAL) {
3643 /* found lock contention or "pc" is obsolete. */
3644 busy = page;
3645 cond_resched();
3646 } else
3647 busy = NULL;
3650 if (!ret && !list_empty(list))
3651 return -EBUSY;
3652 return ret;
3656 * make mem_cgroup's charge to be 0 if there is no task.
3657 * This enables deleting this mem_cgroup.
3659 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3661 int ret;
3662 int node, zid, shrink;
3663 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3664 struct cgroup *cgrp = memcg->css.cgroup;
3666 css_get(&memcg->css);
3668 shrink = 0;
3669 /* should free all ? */
3670 if (free_all)
3671 goto try_to_free;
3672 move_account:
3673 do {
3674 ret = -EBUSY;
3675 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3676 goto out;
3677 ret = -EINTR;
3678 if (signal_pending(current))
3679 goto out;
3680 /* This is for making all *used* pages to be on LRU. */
3681 lru_add_drain_all();
3682 drain_all_stock_sync(memcg);
3683 ret = 0;
3684 mem_cgroup_start_move(memcg);
3685 for_each_node_state(node, N_HIGH_MEMORY) {
3686 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3687 enum lru_list l;
3688 for_each_lru(l) {
3689 ret = mem_cgroup_force_empty_list(memcg,
3690 node, zid, l);
3691 if (ret)
3692 break;
3695 if (ret)
3696 break;
3698 mem_cgroup_end_move(memcg);
3699 memcg_oom_recover(memcg);
3700 /* it seems parent cgroup doesn't have enough mem */
3701 if (ret == -ENOMEM)
3702 goto try_to_free;
3703 cond_resched();
3704 /* "ret" should also be checked to ensure all lists are empty. */
3705 } while (memcg->res.usage > 0 || ret);
3706 out:
3707 css_put(&memcg->css);
3708 return ret;
3710 try_to_free:
3711 /* returns EBUSY if there is a task or if we come here twice. */
3712 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3713 ret = -EBUSY;
3714 goto out;
3716 /* we call try-to-free pages for make this cgroup empty */
3717 lru_add_drain_all();
3718 /* try to free all pages in this cgroup */
3719 shrink = 1;
3720 while (nr_retries && memcg->res.usage > 0) {
3721 int progress;
3723 if (signal_pending(current)) {
3724 ret = -EINTR;
3725 goto out;
3727 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3728 false);
3729 if (!progress) {
3730 nr_retries--;
3731 /* maybe some writeback is necessary */
3732 congestion_wait(BLK_RW_ASYNC, HZ/10);
3736 lru_add_drain();
3737 /* try move_account...there may be some *locked* pages. */
3738 goto move_account;
3741 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3743 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3747 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3749 return mem_cgroup_from_cont(cont)->use_hierarchy;
3752 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3753 u64 val)
3755 int retval = 0;
3756 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3757 struct cgroup *parent = cont->parent;
3758 struct mem_cgroup *parent_memcg = NULL;
3760 if (parent)
3761 parent_memcg = mem_cgroup_from_cont(parent);
3763 cgroup_lock();
3765 * If parent's use_hierarchy is set, we can't make any modifications
3766 * in the child subtrees. If it is unset, then the change can
3767 * occur, provided the current cgroup has no children.
3769 * For the root cgroup, parent_mem is NULL, we allow value to be
3770 * set if there are no children.
3772 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3773 (val == 1 || val == 0)) {
3774 if (list_empty(&cont->children))
3775 memcg->use_hierarchy = val;
3776 else
3777 retval = -EBUSY;
3778 } else
3779 retval = -EINVAL;
3780 cgroup_unlock();
3782 return retval;
3786 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3787 enum mem_cgroup_stat_index idx)
3789 struct mem_cgroup *iter;
3790 long val = 0;
3792 /* Per-cpu values can be negative, use a signed accumulator */
3793 for_each_mem_cgroup_tree(iter, memcg)
3794 val += mem_cgroup_read_stat(iter, idx);
3796 if (val < 0) /* race ? */
3797 val = 0;
3798 return val;
3801 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3803 u64 val;
3805 if (!mem_cgroup_is_root(memcg)) {
3806 if (!swap)
3807 return res_counter_read_u64(&memcg->res, RES_USAGE);
3808 else
3809 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3812 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3813 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3815 if (swap)
3816 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3818 return val << PAGE_SHIFT;
3821 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3823 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3824 u64 val;
3825 int type, name;
3827 type = MEMFILE_TYPE(cft->private);
3828 name = MEMFILE_ATTR(cft->private);
3829 switch (type) {
3830 case _MEM:
3831 if (name == RES_USAGE)
3832 val = mem_cgroup_usage(memcg, false);
3833 else
3834 val = res_counter_read_u64(&memcg->res, name);
3835 break;
3836 case _MEMSWAP:
3837 if (name == RES_USAGE)
3838 val = mem_cgroup_usage(memcg, true);
3839 else
3840 val = res_counter_read_u64(&memcg->memsw, name);
3841 break;
3842 default:
3843 BUG();
3844 break;
3846 return val;
3849 * The user of this function is...
3850 * RES_LIMIT.
3852 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3853 const char *buffer)
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3856 int type, name;
3857 unsigned long long val;
3858 int ret;
3860 type = MEMFILE_TYPE(cft->private);
3861 name = MEMFILE_ATTR(cft->private);
3862 switch (name) {
3863 case RES_LIMIT:
3864 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3865 ret = -EINVAL;
3866 break;
3868 /* This function does all necessary parse...reuse it */
3869 ret = res_counter_memparse_write_strategy(buffer, &val);
3870 if (ret)
3871 break;
3872 if (type == _MEM)
3873 ret = mem_cgroup_resize_limit(memcg, val);
3874 else
3875 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3876 break;
3877 case RES_SOFT_LIMIT:
3878 ret = res_counter_memparse_write_strategy(buffer, &val);
3879 if (ret)
3880 break;
3882 * For memsw, soft limits are hard to implement in terms
3883 * of semantics, for now, we support soft limits for
3884 * control without swap
3886 if (type == _MEM)
3887 ret = res_counter_set_soft_limit(&memcg->res, val);
3888 else
3889 ret = -EINVAL;
3890 break;
3891 default:
3892 ret = -EINVAL; /* should be BUG() ? */
3893 break;
3895 return ret;
3898 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3899 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3901 struct cgroup *cgroup;
3902 unsigned long long min_limit, min_memsw_limit, tmp;
3904 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3905 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3906 cgroup = memcg->css.cgroup;
3907 if (!memcg->use_hierarchy)
3908 goto out;
3910 while (cgroup->parent) {
3911 cgroup = cgroup->parent;
3912 memcg = mem_cgroup_from_cont(cgroup);
3913 if (!memcg->use_hierarchy)
3914 break;
3915 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3916 min_limit = min(min_limit, tmp);
3917 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3918 min_memsw_limit = min(min_memsw_limit, tmp);
3920 out:
3921 *mem_limit = min_limit;
3922 *memsw_limit = min_memsw_limit;
3923 return;
3926 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3928 struct mem_cgroup *memcg;
3929 int type, name;
3931 memcg = mem_cgroup_from_cont(cont);
3932 type = MEMFILE_TYPE(event);
3933 name = MEMFILE_ATTR(event);
3934 switch (name) {
3935 case RES_MAX_USAGE:
3936 if (type == _MEM)
3937 res_counter_reset_max(&memcg->res);
3938 else
3939 res_counter_reset_max(&memcg->memsw);
3940 break;
3941 case RES_FAILCNT:
3942 if (type == _MEM)
3943 res_counter_reset_failcnt(&memcg->res);
3944 else
3945 res_counter_reset_failcnt(&memcg->memsw);
3946 break;
3949 return 0;
3952 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3953 struct cftype *cft)
3955 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3958 #ifdef CONFIG_MMU
3959 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3960 struct cftype *cft, u64 val)
3962 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3964 if (val >= (1 << NR_MOVE_TYPE))
3965 return -EINVAL;
3967 * We check this value several times in both in can_attach() and
3968 * attach(), so we need cgroup lock to prevent this value from being
3969 * inconsistent.
3971 cgroup_lock();
3972 memcg->move_charge_at_immigrate = val;
3973 cgroup_unlock();
3975 return 0;
3977 #else
3978 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3979 struct cftype *cft, u64 val)
3981 return -ENOSYS;
3983 #endif
3986 /* For read statistics */
3987 enum {
3988 MCS_CACHE,
3989 MCS_RSS,
3990 MCS_FILE_MAPPED,
3991 MCS_PGPGIN,
3992 MCS_PGPGOUT,
3993 MCS_SWAP,
3994 MCS_PGFAULT,
3995 MCS_PGMAJFAULT,
3996 MCS_INACTIVE_ANON,
3997 MCS_ACTIVE_ANON,
3998 MCS_INACTIVE_FILE,
3999 MCS_ACTIVE_FILE,
4000 MCS_UNEVICTABLE,
4001 NR_MCS_STAT,
4004 struct mcs_total_stat {
4005 s64 stat[NR_MCS_STAT];
4008 struct {
4009 char *local_name;
4010 char *total_name;
4011 } memcg_stat_strings[NR_MCS_STAT] = {
4012 {"cache", "total_cache"},
4013 {"rss", "total_rss"},
4014 {"mapped_file", "total_mapped_file"},
4015 {"pgpgin", "total_pgpgin"},
4016 {"pgpgout", "total_pgpgout"},
4017 {"swap", "total_swap"},
4018 {"pgfault", "total_pgfault"},
4019 {"pgmajfault", "total_pgmajfault"},
4020 {"inactive_anon", "total_inactive_anon"},
4021 {"active_anon", "total_active_anon"},
4022 {"inactive_file", "total_inactive_file"},
4023 {"active_file", "total_active_file"},
4024 {"unevictable", "total_unevictable"}
4028 static void
4029 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4031 s64 val;
4033 /* per cpu stat */
4034 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4035 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4036 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4037 s->stat[MCS_RSS] += val * PAGE_SIZE;
4038 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4039 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4040 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4041 s->stat[MCS_PGPGIN] += val;
4042 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4043 s->stat[MCS_PGPGOUT] += val;
4044 if (do_swap_account) {
4045 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4046 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4048 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4049 s->stat[MCS_PGFAULT] += val;
4050 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4051 s->stat[MCS_PGMAJFAULT] += val;
4053 /* per zone stat */
4054 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4055 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4056 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4057 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4058 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4059 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4060 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4061 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4062 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4063 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4066 static void
4067 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4069 struct mem_cgroup *iter;
4071 for_each_mem_cgroup_tree(iter, memcg)
4072 mem_cgroup_get_local_stat(iter, s);
4075 #ifdef CONFIG_NUMA
4076 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4078 int nid;
4079 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4080 unsigned long node_nr;
4081 struct cgroup *cont = m->private;
4082 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4084 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4085 seq_printf(m, "total=%lu", total_nr);
4086 for_each_node_state(nid, N_HIGH_MEMORY) {
4087 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4088 seq_printf(m, " N%d=%lu", nid, node_nr);
4090 seq_putc(m, '\n');
4092 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4093 seq_printf(m, "file=%lu", file_nr);
4094 for_each_node_state(nid, N_HIGH_MEMORY) {
4095 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4096 LRU_ALL_FILE);
4097 seq_printf(m, " N%d=%lu", nid, node_nr);
4099 seq_putc(m, '\n');
4101 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4102 seq_printf(m, "anon=%lu", anon_nr);
4103 for_each_node_state(nid, N_HIGH_MEMORY) {
4104 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4105 LRU_ALL_ANON);
4106 seq_printf(m, " N%d=%lu", nid, node_nr);
4108 seq_putc(m, '\n');
4110 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4111 seq_printf(m, "unevictable=%lu", unevictable_nr);
4112 for_each_node_state(nid, N_HIGH_MEMORY) {
4113 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4114 BIT(LRU_UNEVICTABLE));
4115 seq_printf(m, " N%d=%lu", nid, node_nr);
4117 seq_putc(m, '\n');
4118 return 0;
4120 #endif /* CONFIG_NUMA */
4122 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4123 struct cgroup_map_cb *cb)
4125 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4126 struct mcs_total_stat mystat;
4127 int i;
4129 memset(&mystat, 0, sizeof(mystat));
4130 mem_cgroup_get_local_stat(mem_cont, &mystat);
4133 for (i = 0; i < NR_MCS_STAT; i++) {
4134 if (i == MCS_SWAP && !do_swap_account)
4135 continue;
4136 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4139 /* Hierarchical information */
4141 unsigned long long limit, memsw_limit;
4142 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4143 cb->fill(cb, "hierarchical_memory_limit", limit);
4144 if (do_swap_account)
4145 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4148 memset(&mystat, 0, sizeof(mystat));
4149 mem_cgroup_get_total_stat(mem_cont, &mystat);
4150 for (i = 0; i < NR_MCS_STAT; i++) {
4151 if (i == MCS_SWAP && !do_swap_account)
4152 continue;
4153 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4156 #ifdef CONFIG_DEBUG_VM
4158 int nid, zid;
4159 struct mem_cgroup_per_zone *mz;
4160 unsigned long recent_rotated[2] = {0, 0};
4161 unsigned long recent_scanned[2] = {0, 0};
4163 for_each_online_node(nid)
4164 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4165 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4167 recent_rotated[0] +=
4168 mz->reclaim_stat.recent_rotated[0];
4169 recent_rotated[1] +=
4170 mz->reclaim_stat.recent_rotated[1];
4171 recent_scanned[0] +=
4172 mz->reclaim_stat.recent_scanned[0];
4173 recent_scanned[1] +=
4174 mz->reclaim_stat.recent_scanned[1];
4176 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4177 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4178 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4179 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4181 #endif
4183 return 0;
4186 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4190 return mem_cgroup_swappiness(memcg);
4193 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4194 u64 val)
4196 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4197 struct mem_cgroup *parent;
4199 if (val > 100)
4200 return -EINVAL;
4202 if (cgrp->parent == NULL)
4203 return -EINVAL;
4205 parent = mem_cgroup_from_cont(cgrp->parent);
4207 cgroup_lock();
4209 /* If under hierarchy, only empty-root can set this value */
4210 if ((parent->use_hierarchy) ||
4211 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4212 cgroup_unlock();
4213 return -EINVAL;
4216 memcg->swappiness = val;
4218 cgroup_unlock();
4220 return 0;
4223 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4225 struct mem_cgroup_threshold_ary *t;
4226 u64 usage;
4227 int i;
4229 rcu_read_lock();
4230 if (!swap)
4231 t = rcu_dereference(memcg->thresholds.primary);
4232 else
4233 t = rcu_dereference(memcg->memsw_thresholds.primary);
4235 if (!t)
4236 goto unlock;
4238 usage = mem_cgroup_usage(memcg, swap);
4241 * current_threshold points to threshold just below usage.
4242 * If it's not true, a threshold was crossed after last
4243 * call of __mem_cgroup_threshold().
4245 i = t->current_threshold;
4248 * Iterate backward over array of thresholds starting from
4249 * current_threshold and check if a threshold is crossed.
4250 * If none of thresholds below usage is crossed, we read
4251 * only one element of the array here.
4253 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4254 eventfd_signal(t->entries[i].eventfd, 1);
4256 /* i = current_threshold + 1 */
4257 i++;
4260 * Iterate forward over array of thresholds starting from
4261 * current_threshold+1 and check if a threshold is crossed.
4262 * If none of thresholds above usage is crossed, we read
4263 * only one element of the array here.
4265 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4266 eventfd_signal(t->entries[i].eventfd, 1);
4268 /* Update current_threshold */
4269 t->current_threshold = i - 1;
4270 unlock:
4271 rcu_read_unlock();
4274 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4276 while (memcg) {
4277 __mem_cgroup_threshold(memcg, false);
4278 if (do_swap_account)
4279 __mem_cgroup_threshold(memcg, true);
4281 memcg = parent_mem_cgroup(memcg);
4285 static int compare_thresholds(const void *a, const void *b)
4287 const struct mem_cgroup_threshold *_a = a;
4288 const struct mem_cgroup_threshold *_b = b;
4290 return _a->threshold - _b->threshold;
4293 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4295 struct mem_cgroup_eventfd_list *ev;
4297 list_for_each_entry(ev, &memcg->oom_notify, list)
4298 eventfd_signal(ev->eventfd, 1);
4299 return 0;
4302 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4304 struct mem_cgroup *iter;
4306 for_each_mem_cgroup_tree(iter, memcg)
4307 mem_cgroup_oom_notify_cb(iter);
4310 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4311 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4313 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4314 struct mem_cgroup_thresholds *thresholds;
4315 struct mem_cgroup_threshold_ary *new;
4316 int type = MEMFILE_TYPE(cft->private);
4317 u64 threshold, usage;
4318 int i, size, ret;
4320 ret = res_counter_memparse_write_strategy(args, &threshold);
4321 if (ret)
4322 return ret;
4324 mutex_lock(&memcg->thresholds_lock);
4326 if (type == _MEM)
4327 thresholds = &memcg->thresholds;
4328 else if (type == _MEMSWAP)
4329 thresholds = &memcg->memsw_thresholds;
4330 else
4331 BUG();
4333 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4335 /* Check if a threshold crossed before adding a new one */
4336 if (thresholds->primary)
4337 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4339 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4341 /* Allocate memory for new array of thresholds */
4342 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4343 GFP_KERNEL);
4344 if (!new) {
4345 ret = -ENOMEM;
4346 goto unlock;
4348 new->size = size;
4350 /* Copy thresholds (if any) to new array */
4351 if (thresholds->primary) {
4352 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4353 sizeof(struct mem_cgroup_threshold));
4356 /* Add new threshold */
4357 new->entries[size - 1].eventfd = eventfd;
4358 new->entries[size - 1].threshold = threshold;
4360 /* Sort thresholds. Registering of new threshold isn't time-critical */
4361 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4362 compare_thresholds, NULL);
4364 /* Find current threshold */
4365 new->current_threshold = -1;
4366 for (i = 0; i < size; i++) {
4367 if (new->entries[i].threshold < usage) {
4369 * new->current_threshold will not be used until
4370 * rcu_assign_pointer(), so it's safe to increment
4371 * it here.
4373 ++new->current_threshold;
4377 /* Free old spare buffer and save old primary buffer as spare */
4378 kfree(thresholds->spare);
4379 thresholds->spare = thresholds->primary;
4381 rcu_assign_pointer(thresholds->primary, new);
4383 /* To be sure that nobody uses thresholds */
4384 synchronize_rcu();
4386 unlock:
4387 mutex_unlock(&memcg->thresholds_lock);
4389 return ret;
4392 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4393 struct cftype *cft, struct eventfd_ctx *eventfd)
4395 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4396 struct mem_cgroup_thresholds *thresholds;
4397 struct mem_cgroup_threshold_ary *new;
4398 int type = MEMFILE_TYPE(cft->private);
4399 u64 usage;
4400 int i, j, size;
4402 mutex_lock(&memcg->thresholds_lock);
4403 if (type == _MEM)
4404 thresholds = &memcg->thresholds;
4405 else if (type == _MEMSWAP)
4406 thresholds = &memcg->memsw_thresholds;
4407 else
4408 BUG();
4411 * Something went wrong if we trying to unregister a threshold
4412 * if we don't have thresholds
4414 BUG_ON(!thresholds);
4416 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4418 /* Check if a threshold crossed before removing */
4419 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4421 /* Calculate new number of threshold */
4422 size = 0;
4423 for (i = 0; i < thresholds->primary->size; i++) {
4424 if (thresholds->primary->entries[i].eventfd != eventfd)
4425 size++;
4428 new = thresholds->spare;
4430 /* Set thresholds array to NULL if we don't have thresholds */
4431 if (!size) {
4432 kfree(new);
4433 new = NULL;
4434 goto swap_buffers;
4437 new->size = size;
4439 /* Copy thresholds and find current threshold */
4440 new->current_threshold = -1;
4441 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4442 if (thresholds->primary->entries[i].eventfd == eventfd)
4443 continue;
4445 new->entries[j] = thresholds->primary->entries[i];
4446 if (new->entries[j].threshold < usage) {
4448 * new->current_threshold will not be used
4449 * until rcu_assign_pointer(), so it's safe to increment
4450 * it here.
4452 ++new->current_threshold;
4454 j++;
4457 swap_buffers:
4458 /* Swap primary and spare array */
4459 thresholds->spare = thresholds->primary;
4460 rcu_assign_pointer(thresholds->primary, new);
4462 /* To be sure that nobody uses thresholds */
4463 synchronize_rcu();
4465 mutex_unlock(&memcg->thresholds_lock);
4468 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4469 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4472 struct mem_cgroup_eventfd_list *event;
4473 int type = MEMFILE_TYPE(cft->private);
4475 BUG_ON(type != _OOM_TYPE);
4476 event = kmalloc(sizeof(*event), GFP_KERNEL);
4477 if (!event)
4478 return -ENOMEM;
4480 spin_lock(&memcg_oom_lock);
4482 event->eventfd = eventfd;
4483 list_add(&event->list, &memcg->oom_notify);
4485 /* already in OOM ? */
4486 if (atomic_read(&memcg->under_oom))
4487 eventfd_signal(eventfd, 1);
4488 spin_unlock(&memcg_oom_lock);
4490 return 0;
4493 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4494 struct cftype *cft, struct eventfd_ctx *eventfd)
4496 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 struct mem_cgroup_eventfd_list *ev, *tmp;
4498 int type = MEMFILE_TYPE(cft->private);
4500 BUG_ON(type != _OOM_TYPE);
4502 spin_lock(&memcg_oom_lock);
4504 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4505 if (ev->eventfd == eventfd) {
4506 list_del(&ev->list);
4507 kfree(ev);
4511 spin_unlock(&memcg_oom_lock);
4514 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4515 struct cftype *cft, struct cgroup_map_cb *cb)
4517 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4519 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4521 if (atomic_read(&memcg->under_oom))
4522 cb->fill(cb, "under_oom", 1);
4523 else
4524 cb->fill(cb, "under_oom", 0);
4525 return 0;
4528 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4529 struct cftype *cft, u64 val)
4531 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4532 struct mem_cgroup *parent;
4534 /* cannot set to root cgroup and only 0 and 1 are allowed */
4535 if (!cgrp->parent || !((val == 0) || (val == 1)))
4536 return -EINVAL;
4538 parent = mem_cgroup_from_cont(cgrp->parent);
4540 cgroup_lock();
4541 /* oom-kill-disable is a flag for subhierarchy. */
4542 if ((parent->use_hierarchy) ||
4543 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4544 cgroup_unlock();
4545 return -EINVAL;
4547 memcg->oom_kill_disable = val;
4548 if (!val)
4549 memcg_oom_recover(memcg);
4550 cgroup_unlock();
4551 return 0;
4554 #ifdef CONFIG_NUMA
4555 static const struct file_operations mem_control_numa_stat_file_operations = {
4556 .read = seq_read,
4557 .llseek = seq_lseek,
4558 .release = single_release,
4561 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4563 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4565 file->f_op = &mem_control_numa_stat_file_operations;
4566 return single_open(file, mem_control_numa_stat_show, cont);
4568 #endif /* CONFIG_NUMA */
4570 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4571 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4574 * Part of this would be better living in a separate allocation
4575 * function, leaving us with just the cgroup tree population work.
4576 * We, however, depend on state such as network's proto_list that
4577 * is only initialized after cgroup creation. I found the less
4578 * cumbersome way to deal with it to defer it all to populate time
4580 return mem_cgroup_sockets_init(cont, ss);
4583 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4584 struct cgroup *cont)
4586 mem_cgroup_sockets_destroy(cont, ss);
4588 #else
4589 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4591 return 0;
4594 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4595 struct cgroup *cont)
4598 #endif
4600 static struct cftype mem_cgroup_files[] = {
4602 .name = "usage_in_bytes",
4603 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4604 .read_u64 = mem_cgroup_read,
4605 .register_event = mem_cgroup_usage_register_event,
4606 .unregister_event = mem_cgroup_usage_unregister_event,
4609 .name = "max_usage_in_bytes",
4610 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4611 .trigger = mem_cgroup_reset,
4612 .read_u64 = mem_cgroup_read,
4615 .name = "limit_in_bytes",
4616 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4617 .write_string = mem_cgroup_write,
4618 .read_u64 = mem_cgroup_read,
4621 .name = "soft_limit_in_bytes",
4622 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4623 .write_string = mem_cgroup_write,
4624 .read_u64 = mem_cgroup_read,
4627 .name = "failcnt",
4628 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4629 .trigger = mem_cgroup_reset,
4630 .read_u64 = mem_cgroup_read,
4633 .name = "stat",
4634 .read_map = mem_control_stat_show,
4637 .name = "force_empty",
4638 .trigger = mem_cgroup_force_empty_write,
4641 .name = "use_hierarchy",
4642 .write_u64 = mem_cgroup_hierarchy_write,
4643 .read_u64 = mem_cgroup_hierarchy_read,
4646 .name = "swappiness",
4647 .read_u64 = mem_cgroup_swappiness_read,
4648 .write_u64 = mem_cgroup_swappiness_write,
4651 .name = "move_charge_at_immigrate",
4652 .read_u64 = mem_cgroup_move_charge_read,
4653 .write_u64 = mem_cgroup_move_charge_write,
4656 .name = "oom_control",
4657 .read_map = mem_cgroup_oom_control_read,
4658 .write_u64 = mem_cgroup_oom_control_write,
4659 .register_event = mem_cgroup_oom_register_event,
4660 .unregister_event = mem_cgroup_oom_unregister_event,
4661 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4663 #ifdef CONFIG_NUMA
4665 .name = "numa_stat",
4666 .open = mem_control_numa_stat_open,
4667 .mode = S_IRUGO,
4669 #endif
4672 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4673 static struct cftype memsw_cgroup_files[] = {
4675 .name = "memsw.usage_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4677 .read_u64 = mem_cgroup_read,
4678 .register_event = mem_cgroup_usage_register_event,
4679 .unregister_event = mem_cgroup_usage_unregister_event,
4682 .name = "memsw.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4684 .trigger = mem_cgroup_reset,
4685 .read_u64 = mem_cgroup_read,
4688 .name = "memsw.limit_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4690 .write_string = mem_cgroup_write,
4691 .read_u64 = mem_cgroup_read,
4694 .name = "memsw.failcnt",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4696 .trigger = mem_cgroup_reset,
4697 .read_u64 = mem_cgroup_read,
4701 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4703 if (!do_swap_account)
4704 return 0;
4705 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4706 ARRAY_SIZE(memsw_cgroup_files));
4708 #else
4709 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4711 return 0;
4713 #endif
4715 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4717 struct mem_cgroup_per_node *pn;
4718 struct mem_cgroup_per_zone *mz;
4719 enum lru_list l;
4720 int zone, tmp = node;
4722 * This routine is called against possible nodes.
4723 * But it's BUG to call kmalloc() against offline node.
4725 * TODO: this routine can waste much memory for nodes which will
4726 * never be onlined. It's better to use memory hotplug callback
4727 * function.
4729 if (!node_state(node, N_NORMAL_MEMORY))
4730 tmp = -1;
4731 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4732 if (!pn)
4733 return 1;
4735 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4736 mz = &pn->zoneinfo[zone];
4737 for_each_lru(l)
4738 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4739 mz->usage_in_excess = 0;
4740 mz->on_tree = false;
4741 mz->mem = memcg;
4743 memcg->info.nodeinfo[node] = pn;
4744 return 0;
4747 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4749 kfree(memcg->info.nodeinfo[node]);
4752 static struct mem_cgroup *mem_cgroup_alloc(void)
4754 struct mem_cgroup *mem;
4755 int size = sizeof(struct mem_cgroup);
4757 /* Can be very big if MAX_NUMNODES is very big */
4758 if (size < PAGE_SIZE)
4759 mem = kzalloc(size, GFP_KERNEL);
4760 else
4761 mem = vzalloc(size);
4763 if (!mem)
4764 return NULL;
4766 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4767 if (!mem->stat)
4768 goto out_free;
4769 spin_lock_init(&mem->pcp_counter_lock);
4770 return mem;
4772 out_free:
4773 if (size < PAGE_SIZE)
4774 kfree(mem);
4775 else
4776 vfree(mem);
4777 return NULL;
4781 * At destroying mem_cgroup, references from swap_cgroup can remain.
4782 * (scanning all at force_empty is too costly...)
4784 * Instead of clearing all references at force_empty, we remember
4785 * the number of reference from swap_cgroup and free mem_cgroup when
4786 * it goes down to 0.
4788 * Removal of cgroup itself succeeds regardless of refs from swap.
4791 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4793 int node;
4795 mem_cgroup_remove_from_trees(memcg);
4796 free_css_id(&mem_cgroup_subsys, &memcg->css);
4798 for_each_node(node)
4799 free_mem_cgroup_per_zone_info(memcg, node);
4801 free_percpu(memcg->stat);
4802 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4803 kfree(memcg);
4804 else
4805 vfree(memcg);
4808 static void mem_cgroup_get(struct mem_cgroup *memcg)
4810 atomic_inc(&memcg->refcnt);
4813 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4815 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4816 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4817 __mem_cgroup_free(memcg);
4818 if (parent)
4819 mem_cgroup_put(parent);
4823 static void mem_cgroup_put(struct mem_cgroup *memcg)
4825 __mem_cgroup_put(memcg, 1);
4829 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4831 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4833 if (!memcg->res.parent)
4834 return NULL;
4835 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4837 EXPORT_SYMBOL(parent_mem_cgroup);
4839 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4840 static void __init enable_swap_cgroup(void)
4842 if (!mem_cgroup_disabled() && really_do_swap_account)
4843 do_swap_account = 1;
4845 #else
4846 static void __init enable_swap_cgroup(void)
4849 #endif
4851 static int mem_cgroup_soft_limit_tree_init(void)
4853 struct mem_cgroup_tree_per_node *rtpn;
4854 struct mem_cgroup_tree_per_zone *rtpz;
4855 int tmp, node, zone;
4857 for_each_node(node) {
4858 tmp = node;
4859 if (!node_state(node, N_NORMAL_MEMORY))
4860 tmp = -1;
4861 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4862 if (!rtpn)
4863 goto err_cleanup;
4865 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4867 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4868 rtpz = &rtpn->rb_tree_per_zone[zone];
4869 rtpz->rb_root = RB_ROOT;
4870 spin_lock_init(&rtpz->lock);
4873 return 0;
4875 err_cleanup:
4876 for_each_node(node) {
4877 if (!soft_limit_tree.rb_tree_per_node[node])
4878 break;
4879 kfree(soft_limit_tree.rb_tree_per_node[node]);
4880 soft_limit_tree.rb_tree_per_node[node] = NULL;
4882 return 1;
4886 static struct cgroup_subsys_state * __ref
4887 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4889 struct mem_cgroup *memcg, *parent;
4890 long error = -ENOMEM;
4891 int node;
4893 memcg = mem_cgroup_alloc();
4894 if (!memcg)
4895 return ERR_PTR(error);
4897 for_each_node(node)
4898 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4899 goto free_out;
4901 /* root ? */
4902 if (cont->parent == NULL) {
4903 int cpu;
4904 enable_swap_cgroup();
4905 parent = NULL;
4906 if (mem_cgroup_soft_limit_tree_init())
4907 goto free_out;
4908 root_mem_cgroup = memcg;
4909 for_each_possible_cpu(cpu) {
4910 struct memcg_stock_pcp *stock =
4911 &per_cpu(memcg_stock, cpu);
4912 INIT_WORK(&stock->work, drain_local_stock);
4914 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4915 } else {
4916 parent = mem_cgroup_from_cont(cont->parent);
4917 memcg->use_hierarchy = parent->use_hierarchy;
4918 memcg->oom_kill_disable = parent->oom_kill_disable;
4921 if (parent && parent->use_hierarchy) {
4922 res_counter_init(&memcg->res, &parent->res);
4923 res_counter_init(&memcg->memsw, &parent->memsw);
4925 * We increment refcnt of the parent to ensure that we can
4926 * safely access it on res_counter_charge/uncharge.
4927 * This refcnt will be decremented when freeing this
4928 * mem_cgroup(see mem_cgroup_put).
4930 mem_cgroup_get(parent);
4931 } else {
4932 res_counter_init(&memcg->res, NULL);
4933 res_counter_init(&memcg->memsw, NULL);
4935 memcg->last_scanned_node = MAX_NUMNODES;
4936 INIT_LIST_HEAD(&memcg->oom_notify);
4938 if (parent)
4939 memcg->swappiness = mem_cgroup_swappiness(parent);
4940 atomic_set(&memcg->refcnt, 1);
4941 memcg->move_charge_at_immigrate = 0;
4942 mutex_init(&memcg->thresholds_lock);
4943 return &memcg->css;
4944 free_out:
4945 __mem_cgroup_free(memcg);
4946 return ERR_PTR(error);
4949 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4950 struct cgroup *cont)
4952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4954 return mem_cgroup_force_empty(memcg, false);
4957 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4958 struct cgroup *cont)
4960 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962 kmem_cgroup_destroy(ss, cont);
4964 mem_cgroup_put(memcg);
4967 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4968 struct cgroup *cont)
4970 int ret;
4972 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4973 ARRAY_SIZE(mem_cgroup_files));
4975 if (!ret)
4976 ret = register_memsw_files(cont, ss);
4978 if (!ret)
4979 ret = register_kmem_files(cont, ss);
4981 return ret;
4984 #ifdef CONFIG_MMU
4985 /* Handlers for move charge at task migration. */
4986 #define PRECHARGE_COUNT_AT_ONCE 256
4987 static int mem_cgroup_do_precharge(unsigned long count)
4989 int ret = 0;
4990 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4991 struct mem_cgroup *memcg = mc.to;
4993 if (mem_cgroup_is_root(memcg)) {
4994 mc.precharge += count;
4995 /* we don't need css_get for root */
4996 return ret;
4998 /* try to charge at once */
4999 if (count > 1) {
5000 struct res_counter *dummy;
5002 * "memcg" cannot be under rmdir() because we've already checked
5003 * by cgroup_lock_live_cgroup() that it is not removed and we
5004 * are still under the same cgroup_mutex. So we can postpone
5005 * css_get().
5007 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5008 goto one_by_one;
5009 if (do_swap_account && res_counter_charge(&memcg->memsw,
5010 PAGE_SIZE * count, &dummy)) {
5011 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5012 goto one_by_one;
5014 mc.precharge += count;
5015 return ret;
5017 one_by_one:
5018 /* fall back to one by one charge */
5019 while (count--) {
5020 if (signal_pending(current)) {
5021 ret = -EINTR;
5022 break;
5024 if (!batch_count--) {
5025 batch_count = PRECHARGE_COUNT_AT_ONCE;
5026 cond_resched();
5028 ret = __mem_cgroup_try_charge(NULL,
5029 GFP_KERNEL, 1, &memcg, false);
5030 if (ret)
5031 /* mem_cgroup_clear_mc() will do uncharge later */
5032 return ret;
5033 mc.precharge++;
5035 return ret;
5039 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5040 * @vma: the vma the pte to be checked belongs
5041 * @addr: the address corresponding to the pte to be checked
5042 * @ptent: the pte to be checked
5043 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5045 * Returns
5046 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5047 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5048 * move charge. if @target is not NULL, the page is stored in target->page
5049 * with extra refcnt got(Callers should handle it).
5050 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5051 * target for charge migration. if @target is not NULL, the entry is stored
5052 * in target->ent.
5054 * Called with pte lock held.
5056 union mc_target {
5057 struct page *page;
5058 swp_entry_t ent;
5061 enum mc_target_type {
5062 MC_TARGET_NONE, /* not used */
5063 MC_TARGET_PAGE,
5064 MC_TARGET_SWAP,
5067 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5068 unsigned long addr, pte_t ptent)
5070 struct page *page = vm_normal_page(vma, addr, ptent);
5072 if (!page || !page_mapped(page))
5073 return NULL;
5074 if (PageAnon(page)) {
5075 /* we don't move shared anon */
5076 if (!move_anon() || page_mapcount(page) > 2)
5077 return NULL;
5078 } else if (!move_file())
5079 /* we ignore mapcount for file pages */
5080 return NULL;
5081 if (!get_page_unless_zero(page))
5082 return NULL;
5084 return page;
5087 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5088 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5090 int usage_count;
5091 struct page *page = NULL;
5092 swp_entry_t ent = pte_to_swp_entry(ptent);
5094 if (!move_anon() || non_swap_entry(ent))
5095 return NULL;
5096 usage_count = mem_cgroup_count_swap_user(ent, &page);
5097 if (usage_count > 1) { /* we don't move shared anon */
5098 if (page)
5099 put_page(page);
5100 return NULL;
5102 if (do_swap_account)
5103 entry->val = ent.val;
5105 return page;
5108 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5109 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5111 struct page *page = NULL;
5112 struct inode *inode;
5113 struct address_space *mapping;
5114 pgoff_t pgoff;
5116 if (!vma->vm_file) /* anonymous vma */
5117 return NULL;
5118 if (!move_file())
5119 return NULL;
5121 inode = vma->vm_file->f_path.dentry->d_inode;
5122 mapping = vma->vm_file->f_mapping;
5123 if (pte_none(ptent))
5124 pgoff = linear_page_index(vma, addr);
5125 else /* pte_file(ptent) is true */
5126 pgoff = pte_to_pgoff(ptent);
5128 /* page is moved even if it's not RSS of this task(page-faulted). */
5129 page = find_get_page(mapping, pgoff);
5131 #ifdef CONFIG_SWAP
5132 /* shmem/tmpfs may report page out on swap: account for that too. */
5133 if (radix_tree_exceptional_entry(page)) {
5134 swp_entry_t swap = radix_to_swp_entry(page);
5135 if (do_swap_account)
5136 *entry = swap;
5137 page = find_get_page(&swapper_space, swap.val);
5139 #endif
5140 return page;
5143 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5144 unsigned long addr, pte_t ptent, union mc_target *target)
5146 struct page *page = NULL;
5147 struct page_cgroup *pc;
5148 int ret = 0;
5149 swp_entry_t ent = { .val = 0 };
5151 if (pte_present(ptent))
5152 page = mc_handle_present_pte(vma, addr, ptent);
5153 else if (is_swap_pte(ptent))
5154 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5155 else if (pte_none(ptent) || pte_file(ptent))
5156 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5158 if (!page && !ent.val)
5159 return 0;
5160 if (page) {
5161 pc = lookup_page_cgroup(page);
5163 * Do only loose check w/o page_cgroup lock.
5164 * mem_cgroup_move_account() checks the pc is valid or not under
5165 * the lock.
5167 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5168 ret = MC_TARGET_PAGE;
5169 if (target)
5170 target->page = page;
5172 if (!ret || !target)
5173 put_page(page);
5175 /* There is a swap entry and a page doesn't exist or isn't charged */
5176 if (ent.val && !ret &&
5177 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5178 ret = MC_TARGET_SWAP;
5179 if (target)
5180 target->ent = ent;
5182 return ret;
5185 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5186 unsigned long addr, unsigned long end,
5187 struct mm_walk *walk)
5189 struct vm_area_struct *vma = walk->private;
5190 pte_t *pte;
5191 spinlock_t *ptl;
5193 split_huge_page_pmd(walk->mm, pmd);
5195 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5196 for (; addr != end; pte++, addr += PAGE_SIZE)
5197 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5198 mc.precharge++; /* increment precharge temporarily */
5199 pte_unmap_unlock(pte - 1, ptl);
5200 cond_resched();
5202 return 0;
5205 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5207 unsigned long precharge;
5208 struct vm_area_struct *vma;
5210 down_read(&mm->mmap_sem);
5211 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5212 struct mm_walk mem_cgroup_count_precharge_walk = {
5213 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5214 .mm = mm,
5215 .private = vma,
5217 if (is_vm_hugetlb_page(vma))
5218 continue;
5219 walk_page_range(vma->vm_start, vma->vm_end,
5220 &mem_cgroup_count_precharge_walk);
5222 up_read(&mm->mmap_sem);
5224 precharge = mc.precharge;
5225 mc.precharge = 0;
5227 return precharge;
5230 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5232 unsigned long precharge = mem_cgroup_count_precharge(mm);
5234 VM_BUG_ON(mc.moving_task);
5235 mc.moving_task = current;
5236 return mem_cgroup_do_precharge(precharge);
5239 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5240 static void __mem_cgroup_clear_mc(void)
5242 struct mem_cgroup *from = mc.from;
5243 struct mem_cgroup *to = mc.to;
5245 /* we must uncharge all the leftover precharges from mc.to */
5246 if (mc.precharge) {
5247 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5248 mc.precharge = 0;
5251 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5252 * we must uncharge here.
5254 if (mc.moved_charge) {
5255 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5256 mc.moved_charge = 0;
5258 /* we must fixup refcnts and charges */
5259 if (mc.moved_swap) {
5260 /* uncharge swap account from the old cgroup */
5261 if (!mem_cgroup_is_root(mc.from))
5262 res_counter_uncharge(&mc.from->memsw,
5263 PAGE_SIZE * mc.moved_swap);
5264 __mem_cgroup_put(mc.from, mc.moved_swap);
5266 if (!mem_cgroup_is_root(mc.to)) {
5268 * we charged both to->res and to->memsw, so we should
5269 * uncharge to->res.
5271 res_counter_uncharge(&mc.to->res,
5272 PAGE_SIZE * mc.moved_swap);
5274 /* we've already done mem_cgroup_get(mc.to) */
5275 mc.moved_swap = 0;
5277 memcg_oom_recover(from);
5278 memcg_oom_recover(to);
5279 wake_up_all(&mc.waitq);
5282 static void mem_cgroup_clear_mc(void)
5284 struct mem_cgroup *from = mc.from;
5287 * we must clear moving_task before waking up waiters at the end of
5288 * task migration.
5290 mc.moving_task = NULL;
5291 __mem_cgroup_clear_mc();
5292 spin_lock(&mc.lock);
5293 mc.from = NULL;
5294 mc.to = NULL;
5295 spin_unlock(&mc.lock);
5296 mem_cgroup_end_move(from);
5299 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5300 struct cgroup *cgroup,
5301 struct cgroup_taskset *tset)
5303 struct task_struct *p = cgroup_taskset_first(tset);
5304 int ret = 0;
5305 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5307 if (memcg->move_charge_at_immigrate) {
5308 struct mm_struct *mm;
5309 struct mem_cgroup *from = mem_cgroup_from_task(p);
5311 VM_BUG_ON(from == memcg);
5313 mm = get_task_mm(p);
5314 if (!mm)
5315 return 0;
5316 /* We move charges only when we move a owner of the mm */
5317 if (mm->owner == p) {
5318 VM_BUG_ON(mc.from);
5319 VM_BUG_ON(mc.to);
5320 VM_BUG_ON(mc.precharge);
5321 VM_BUG_ON(mc.moved_charge);
5322 VM_BUG_ON(mc.moved_swap);
5323 mem_cgroup_start_move(from);
5324 spin_lock(&mc.lock);
5325 mc.from = from;
5326 mc.to = memcg;
5327 spin_unlock(&mc.lock);
5328 /* We set mc.moving_task later */
5330 ret = mem_cgroup_precharge_mc(mm);
5331 if (ret)
5332 mem_cgroup_clear_mc();
5334 mmput(mm);
5336 return ret;
5339 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5340 struct cgroup *cgroup,
5341 struct cgroup_taskset *tset)
5343 mem_cgroup_clear_mc();
5346 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5347 unsigned long addr, unsigned long end,
5348 struct mm_walk *walk)
5350 int ret = 0;
5351 struct vm_area_struct *vma = walk->private;
5352 pte_t *pte;
5353 spinlock_t *ptl;
5355 split_huge_page_pmd(walk->mm, pmd);
5356 retry:
5357 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5358 for (; addr != end; addr += PAGE_SIZE) {
5359 pte_t ptent = *(pte++);
5360 union mc_target target;
5361 int type;
5362 struct page *page;
5363 struct page_cgroup *pc;
5364 swp_entry_t ent;
5366 if (!mc.precharge)
5367 break;
5369 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5370 switch (type) {
5371 case MC_TARGET_PAGE:
5372 page = target.page;
5373 if (isolate_lru_page(page))
5374 goto put;
5375 pc = lookup_page_cgroup(page);
5376 if (!mem_cgroup_move_account(page, 1, pc,
5377 mc.from, mc.to, false)) {
5378 mc.precharge--;
5379 /* we uncharge from mc.from later. */
5380 mc.moved_charge++;
5382 putback_lru_page(page);
5383 put: /* is_target_pte_for_mc() gets the page */
5384 put_page(page);
5385 break;
5386 case MC_TARGET_SWAP:
5387 ent = target.ent;
5388 if (!mem_cgroup_move_swap_account(ent,
5389 mc.from, mc.to, false)) {
5390 mc.precharge--;
5391 /* we fixup refcnts and charges later. */
5392 mc.moved_swap++;
5394 break;
5395 default:
5396 break;
5399 pte_unmap_unlock(pte - 1, ptl);
5400 cond_resched();
5402 if (addr != end) {
5404 * We have consumed all precharges we got in can_attach().
5405 * We try charge one by one, but don't do any additional
5406 * charges to mc.to if we have failed in charge once in attach()
5407 * phase.
5409 ret = mem_cgroup_do_precharge(1);
5410 if (!ret)
5411 goto retry;
5414 return ret;
5417 static void mem_cgroup_move_charge(struct mm_struct *mm)
5419 struct vm_area_struct *vma;
5421 lru_add_drain_all();
5422 retry:
5423 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5425 * Someone who are holding the mmap_sem might be waiting in
5426 * waitq. So we cancel all extra charges, wake up all waiters,
5427 * and retry. Because we cancel precharges, we might not be able
5428 * to move enough charges, but moving charge is a best-effort
5429 * feature anyway, so it wouldn't be a big problem.
5431 __mem_cgroup_clear_mc();
5432 cond_resched();
5433 goto retry;
5435 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5436 int ret;
5437 struct mm_walk mem_cgroup_move_charge_walk = {
5438 .pmd_entry = mem_cgroup_move_charge_pte_range,
5439 .mm = mm,
5440 .private = vma,
5442 if (is_vm_hugetlb_page(vma))
5443 continue;
5444 ret = walk_page_range(vma->vm_start, vma->vm_end,
5445 &mem_cgroup_move_charge_walk);
5446 if (ret)
5448 * means we have consumed all precharges and failed in
5449 * doing additional charge. Just abandon here.
5451 break;
5453 up_read(&mm->mmap_sem);
5456 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5457 struct cgroup *cont,
5458 struct cgroup_taskset *tset)
5460 struct task_struct *p = cgroup_taskset_first(tset);
5461 struct mm_struct *mm = get_task_mm(p);
5463 if (mm) {
5464 if (mc.to)
5465 mem_cgroup_move_charge(mm);
5466 put_swap_token(mm);
5467 mmput(mm);
5469 if (mc.to)
5470 mem_cgroup_clear_mc();
5472 #else /* !CONFIG_MMU */
5473 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5474 struct cgroup *cgroup,
5475 struct cgroup_taskset *tset)
5477 return 0;
5479 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5480 struct cgroup *cgroup,
5481 struct cgroup_taskset *tset)
5484 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5485 struct cgroup *cont,
5486 struct cgroup_taskset *tset)
5489 #endif
5491 struct cgroup_subsys mem_cgroup_subsys = {
5492 .name = "memory",
5493 .subsys_id = mem_cgroup_subsys_id,
5494 .create = mem_cgroup_create,
5495 .pre_destroy = mem_cgroup_pre_destroy,
5496 .destroy = mem_cgroup_destroy,
5497 .populate = mem_cgroup_populate,
5498 .can_attach = mem_cgroup_can_attach,
5499 .cancel_attach = mem_cgroup_cancel_attach,
5500 .attach = mem_cgroup_move_task,
5501 .early_init = 0,
5502 .use_id = 1,
5505 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5506 static int __init enable_swap_account(char *s)
5508 /* consider enabled if no parameter or 1 is given */
5509 if (!strcmp(s, "1"))
5510 really_do_swap_account = 1;
5511 else if (!strcmp(s, "0"))
5512 really_do_swap_account = 0;
5513 return 1;
5515 __setup("swapaccount=", enable_swap_account);
5517 #endif