btrfs: Remove fs_info from btrfs_insert_delayed_dir_index
[linux/fpc-iii.git] / fs / inode.c
blob8c86c809ca17b30e003913e169626aa42df2e908
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
39 * Lock ordering:
41 * inode->i_sb->s_inode_list_lock
42 * inode->i_lock
43 * Inode LRU list locks
45 * bdi->wb.list_lock
46 * inode->i_lock
48 * inode_hash_lock
49 * inode->i_sb->s_inode_list_lock
50 * inode->i_lock
52 * iunique_lock
53 * inode_hash_lock
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops = {
67 EXPORT_SYMBOL(empty_aops);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 static struct kmem_cache *inode_cachep __read_mostly;
79 static long get_nr_inodes(void)
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
88 static inline long get_nr_inodes_unused(void)
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
105 * Handle nr_inode sysctl
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 #endif
117 static int no_open(struct inode *inode, struct file *file)
119 return -ENXIO;
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block *sb, struct inode *inode)
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166 #endif
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 atomic_set(&inode->i_dio_count, 0);
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 mapping->wb_err = 0;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195 #endif
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
199 return 0;
200 out:
201 return -ENOMEM;
203 EXPORT_SYMBOL(inode_init_always);
205 static struct inode *alloc_inode(struct super_block *sb)
207 struct inode *inode;
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214 if (!inode)
215 return NULL;
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
225 return inode;
228 void free_inode_nonrcu(struct inode *inode)
230 kmem_cache_free(inode_cachep, inode);
232 EXPORT_SYMBOL(free_inode_nonrcu);
234 void __destroy_inode(struct inode *inode)
236 BUG_ON(inode_has_buffers(inode));
237 inode_detach_wb(inode);
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 posix_acl_release(inode->i_default_acl);
251 #endif
252 this_cpu_dec(nr_inodes);
254 EXPORT_SYMBOL(__destroy_inode);
256 static void i_callback(struct rcu_head *head)
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
262 static void destroy_inode(struct inode *inode)
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
283 void drop_nlink(struct inode *inode)
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
290 EXPORT_SYMBOL(drop_nlink);
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
300 void clear_nlink(struct inode *inode)
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
307 EXPORT_SYMBOL(clear_nlink);
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
317 void set_nlink(struct inode *inode, unsigned int nlink)
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
326 inode->__i_nlink = nlink;
329 EXPORT_SYMBOL(set_nlink);
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
339 void inc_nlink(struct inode *inode)
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
346 inode->__i_nlink++;
348 EXPORT_SYMBOL(inc_nlink);
350 static void __address_space_init_once(struct address_space *mapping)
352 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT_CACHED;
359 void address_space_init_once(struct address_space *mapping)
361 memset(mapping, 0, sizeof(*mapping));
362 __address_space_init_once(mapping);
364 EXPORT_SYMBOL(address_space_init_once);
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
371 void inode_init_once(struct inode *inode)
373 memset(inode, 0, sizeof(*inode));
374 INIT_HLIST_NODE(&inode->i_hash);
375 INIT_LIST_HEAD(&inode->i_devices);
376 INIT_LIST_HEAD(&inode->i_io_list);
377 INIT_LIST_HEAD(&inode->i_wb_list);
378 INIT_LIST_HEAD(&inode->i_lru);
379 __address_space_init_once(&inode->i_data);
380 i_size_ordered_init(inode);
382 EXPORT_SYMBOL(inode_init_once);
384 static void init_once(void *foo)
386 struct inode *inode = (struct inode *) foo;
388 inode_init_once(inode);
392 * inode->i_lock must be held
394 void __iget(struct inode *inode)
396 atomic_inc(&inode->i_count);
400 * get additional reference to inode; caller must already hold one.
402 void ihold(struct inode *inode)
404 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
406 EXPORT_SYMBOL(ihold);
408 static void inode_lru_list_add(struct inode *inode)
410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 this_cpu_inc(nr_unused);
412 else
413 inode->i_state |= I_REFERENCED;
417 * Add inode to LRU if needed (inode is unused and clean).
419 * Needs inode->i_lock held.
421 void inode_add_lru(struct inode *inode)
423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 I_FREEING | I_WILL_FREE)) &&
425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 inode_lru_list_add(inode);
430 static void inode_lru_list_del(struct inode *inode)
433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 this_cpu_dec(nr_unused);
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
441 void inode_sb_list_add(struct inode *inode)
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
449 static inline void inode_sb_list_del(struct inode *inode)
451 if (!list_empty(&inode->i_sb_list)) {
452 spin_lock(&inode->i_sb->s_inode_list_lock);
453 list_del_init(&inode->i_sb_list);
454 spin_unlock(&inode->i_sb->s_inode_list_lock);
458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
460 unsigned long tmp;
462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 L1_CACHE_BYTES;
464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 return tmp & i_hash_mask;
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
472 * inode_hashtable.
474 * Add an inode to the inode hash for this superblock.
476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
480 spin_lock(&inode_hash_lock);
481 spin_lock(&inode->i_lock);
482 hlist_add_head(&inode->i_hash, b);
483 spin_unlock(&inode->i_lock);
484 spin_unlock(&inode_hash_lock);
486 EXPORT_SYMBOL(__insert_inode_hash);
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
492 * Remove an inode from the superblock.
494 void __remove_inode_hash(struct inode *inode)
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_del_init(&inode->i_hash);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
502 EXPORT_SYMBOL(__remove_inode_hash);
504 void clear_inode(struct inode *inode)
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
511 xa_lock_irq(&inode->i_data.i_pages);
512 BUG_ON(inode->i_data.nrpages);
513 BUG_ON(inode->i_data.nrexceptional);
514 xa_unlock_irq(&inode->i_data.i_pages);
515 BUG_ON(!list_empty(&inode->i_data.private_list));
516 BUG_ON(!(inode->i_state & I_FREEING));
517 BUG_ON(inode->i_state & I_CLEAR);
518 BUG_ON(!list_empty(&inode->i_wb_list));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode->i_state = I_FREEING | I_CLEAR;
522 EXPORT_SYMBOL(clear_inode);
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
537 static void evict(struct inode *inode)
539 const struct super_operations *op = inode->i_sb->s_op;
541 BUG_ON(!(inode->i_state & I_FREEING));
542 BUG_ON(!list_empty(&inode->i_lru));
544 if (!list_empty(&inode->i_io_list))
545 inode_io_list_del(inode);
547 inode_sb_list_del(inode);
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
555 inode_wait_for_writeback(inode);
557 if (op->evict_inode) {
558 op->evict_inode(inode);
559 } else {
560 truncate_inode_pages_final(&inode->i_data);
561 clear_inode(inode);
563 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 bd_forget(inode);
565 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 cd_forget(inode);
568 remove_inode_hash(inode);
570 spin_lock(&inode->i_lock);
571 wake_up_bit(&inode->i_state, __I_NEW);
572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 spin_unlock(&inode->i_lock);
575 destroy_inode(inode);
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
585 static void dispose_list(struct list_head *head)
587 while (!list_empty(head)) {
588 struct inode *inode;
590 inode = list_first_entry(head, struct inode, i_lru);
591 list_del_init(&inode->i_lru);
593 evict(inode);
594 cond_resched();
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
607 void evict_inodes(struct super_block *sb)
609 struct inode *inode, *next;
610 LIST_HEAD(dispose);
612 again:
613 spin_lock(&sb->s_inode_list_lock);
614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 if (atomic_read(&inode->i_count))
616 continue;
618 spin_lock(&inode->i_lock);
619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 spin_unlock(&inode->i_lock);
621 continue;
624 inode->i_state |= I_FREEING;
625 inode_lru_list_del(inode);
626 spin_unlock(&inode->i_lock);
627 list_add(&inode->i_lru, &dispose);
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
634 if (need_resched()) {
635 spin_unlock(&sb->s_inode_list_lock);
636 cond_resched();
637 dispose_list(&dispose);
638 goto again;
641 spin_unlock(&sb->s_inode_list_lock);
643 dispose_list(&dispose);
645 EXPORT_SYMBOL_GPL(evict_inodes);
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655 * them as busy.
657 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
659 int busy = 0;
660 struct inode *inode, *next;
661 LIST_HEAD(dispose);
663 spin_lock(&sb->s_inode_list_lock);
664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 spin_lock(&inode->i_lock);
666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 spin_unlock(&inode->i_lock);
668 continue;
670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 spin_unlock(&inode->i_lock);
672 busy = 1;
673 continue;
675 if (atomic_read(&inode->i_count)) {
676 spin_unlock(&inode->i_lock);
677 busy = 1;
678 continue;
681 inode->i_state |= I_FREEING;
682 inode_lru_list_del(inode);
683 spin_unlock(&inode->i_lock);
684 list_add(&inode->i_lru, &dispose);
686 spin_unlock(&sb->s_inode_list_lock);
688 dispose_list(&dispose);
690 return busy;
694 * Isolate the inode from the LRU in preparation for freeing it.
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
708 static enum lru_status inode_lru_isolate(struct list_head *item,
709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
711 struct list_head *freeable = arg;
712 struct inode *inode = container_of(item, struct inode, i_lru);
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
718 if (!spin_trylock(&inode->i_lock))
719 return LRU_SKIP;
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
725 if (atomic_read(&inode->i_count) ||
726 (inode->i_state & ~I_REFERENCED)) {
727 list_lru_isolate(lru, &inode->i_lru);
728 spin_unlock(&inode->i_lock);
729 this_cpu_dec(nr_unused);
730 return LRU_REMOVED;
733 /* recently referenced inodes get one more pass */
734 if (inode->i_state & I_REFERENCED) {
735 inode->i_state &= ~I_REFERENCED;
736 spin_unlock(&inode->i_lock);
737 return LRU_ROTATE;
740 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
741 __iget(inode);
742 spin_unlock(&inode->i_lock);
743 spin_unlock(lru_lock);
744 if (remove_inode_buffers(inode)) {
745 unsigned long reap;
746 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
747 if (current_is_kswapd())
748 __count_vm_events(KSWAPD_INODESTEAL, reap);
749 else
750 __count_vm_events(PGINODESTEAL, reap);
751 if (current->reclaim_state)
752 current->reclaim_state->reclaimed_slab += reap;
754 iput(inode);
755 spin_lock(lru_lock);
756 return LRU_RETRY;
759 WARN_ON(inode->i_state & I_NEW);
760 inode->i_state |= I_FREEING;
761 list_lru_isolate_move(lru, &inode->i_lru, freeable);
762 spin_unlock(&inode->i_lock);
764 this_cpu_dec(nr_unused);
765 return LRU_REMOVED;
769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770 * This is called from the superblock shrinker function with a number of inodes
771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772 * then are freed outside inode_lock by dispose_list().
774 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
776 LIST_HEAD(freeable);
777 long freed;
779 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
780 inode_lru_isolate, &freeable);
781 dispose_list(&freeable);
782 return freed;
785 static void __wait_on_freeing_inode(struct inode *inode);
787 * Called with the inode lock held.
789 static struct inode *find_inode(struct super_block *sb,
790 struct hlist_head *head,
791 int (*test)(struct inode *, void *),
792 void *data)
794 struct inode *inode = NULL;
796 repeat:
797 hlist_for_each_entry(inode, head, i_hash) {
798 if (inode->i_sb != sb)
799 continue;
800 if (!test(inode, data))
801 continue;
802 spin_lock(&inode->i_lock);
803 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
804 __wait_on_freeing_inode(inode);
805 goto repeat;
807 __iget(inode);
808 spin_unlock(&inode->i_lock);
809 return inode;
811 return NULL;
815 * find_inode_fast is the fast path version of find_inode, see the comment at
816 * iget_locked for details.
818 static struct inode *find_inode_fast(struct super_block *sb,
819 struct hlist_head *head, unsigned long ino)
821 struct inode *inode = NULL;
823 repeat:
824 hlist_for_each_entry(inode, head, i_hash) {
825 if (inode->i_ino != ino)
826 continue;
827 if (inode->i_sb != sb)
828 continue;
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
834 __iget(inode);
835 spin_unlock(&inode->i_lock);
836 return inode;
838 return NULL;
842 * Each cpu owns a range of LAST_INO_BATCH numbers.
843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844 * to renew the exhausted range.
846 * This does not significantly increase overflow rate because every CPU can
847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850 * overflow rate by 2x, which does not seem too significant.
852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853 * error if st_ino won't fit in target struct field. Use 32bit counter
854 * here to attempt to avoid that.
856 #define LAST_INO_BATCH 1024
857 static DEFINE_PER_CPU(unsigned int, last_ino);
859 unsigned int get_next_ino(void)
861 unsigned int *p = &get_cpu_var(last_ino);
862 unsigned int res = *p;
864 #ifdef CONFIG_SMP
865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
866 static atomic_t shared_last_ino;
867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
869 res = next - LAST_INO_BATCH;
871 #endif
873 res++;
874 /* get_next_ino should not provide a 0 inode number */
875 if (unlikely(!res))
876 res++;
877 *p = res;
878 put_cpu_var(last_ino);
879 return res;
881 EXPORT_SYMBOL(get_next_ino);
884 * new_inode_pseudo - obtain an inode
885 * @sb: superblock
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
889 * This means :
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
893 struct inode *new_inode_pseudo(struct super_block *sb)
895 struct inode *inode = alloc_inode(sb);
897 if (inode) {
898 spin_lock(&inode->i_lock);
899 inode->i_state = 0;
900 spin_unlock(&inode->i_lock);
901 INIT_LIST_HEAD(&inode->i_sb_list);
903 return inode;
907 * new_inode - obtain an inode
908 * @sb: superblock
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
918 struct inode *new_inode(struct super_block *sb)
920 struct inode *inode;
922 spin_lock_prefetch(&sb->s_inode_list_lock);
924 inode = new_inode_pseudo(sb);
925 if (inode)
926 inode_sb_list_add(inode);
927 return inode;
929 EXPORT_SYMBOL(new_inode);
931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
932 void lockdep_annotate_inode_mutex_key(struct inode *inode)
934 if (S_ISDIR(inode->i_mode)) {
935 struct file_system_type *type = inode->i_sb->s_type;
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
940 * ensure nobody is actually holding i_mutex
942 // mutex_destroy(&inode->i_mutex);
943 init_rwsem(&inode->i_rwsem);
944 lockdep_set_class(&inode->i_rwsem,
945 &type->i_mutex_dir_key);
949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
950 #endif
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
959 void unlock_new_inode(struct inode *inode)
961 lockdep_annotate_inode_mutex_key(inode);
962 spin_lock(&inode->i_lock);
963 WARN_ON(!(inode->i_state & I_NEW));
964 inode->i_state &= ~I_NEW;
965 smp_mb();
966 wake_up_bit(&inode->i_state, __I_NEW);
967 spin_unlock(&inode->i_lock);
969 EXPORT_SYMBOL(unlock_new_inode);
972 * lock_two_nondirectories - take two i_mutexes on non-directory objects
974 * Lock any non-NULL argument that is not a directory.
975 * Zero, one or two objects may be locked by this function.
977 * @inode1: first inode to lock
978 * @inode2: second inode to lock
980 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
982 if (inode1 > inode2)
983 swap(inode1, inode2);
985 if (inode1 && !S_ISDIR(inode1->i_mode))
986 inode_lock(inode1);
987 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
988 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
990 EXPORT_SYMBOL(lock_two_nondirectories);
993 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
994 * @inode1: first inode to unlock
995 * @inode2: second inode to unlock
997 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
999 if (inode1 && !S_ISDIR(inode1->i_mode))
1000 inode_unlock(inode1);
1001 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1002 inode_unlock(inode2);
1004 EXPORT_SYMBOL(unlock_two_nondirectories);
1007 * inode_insert5 - obtain an inode from a mounted file system
1008 * @inode: pre-allocated inode to use for insert to cache
1009 * @hashval: hash value (usually inode number) to get
1010 * @test: callback used for comparisons between inodes
1011 * @set: callback used to initialize a new struct inode
1012 * @data: opaque data pointer to pass to @test and @set
1014 * Search for the inode specified by @hashval and @data in the inode cache,
1015 * and if present it is return it with an increased reference count. This is
1016 * a variant of iget5_locked() for callers that don't want to fail on memory
1017 * allocation of inode.
1019 * If the inode is not in cache, insert the pre-allocated inode to cache and
1020 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1021 * to fill it in before unlocking it via unlock_new_inode().
1023 * Note both @test and @set are called with the inode_hash_lock held, so can't
1024 * sleep.
1026 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1027 int (*test)(struct inode *, void *),
1028 int (*set)(struct inode *, void *), void *data)
1030 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1031 struct inode *old;
1033 again:
1034 spin_lock(&inode_hash_lock);
1035 old = find_inode(inode->i_sb, head, test, data);
1036 if (unlikely(old)) {
1038 * Uhhuh, somebody else created the same inode under us.
1039 * Use the old inode instead of the preallocated one.
1041 spin_unlock(&inode_hash_lock);
1042 wait_on_inode(old);
1043 if (unlikely(inode_unhashed(old))) {
1044 iput(old);
1045 goto again;
1047 return old;
1050 if (set && unlikely(set(inode, data))) {
1051 inode = NULL;
1052 goto unlock;
1056 * Return the locked inode with I_NEW set, the
1057 * caller is responsible for filling in the contents
1059 spin_lock(&inode->i_lock);
1060 inode->i_state |= I_NEW;
1061 hlist_add_head(&inode->i_hash, head);
1062 spin_unlock(&inode->i_lock);
1063 unlock:
1064 spin_unlock(&inode_hash_lock);
1066 return inode;
1068 EXPORT_SYMBOL(inode_insert5);
1071 * iget5_locked - obtain an inode from a mounted file system
1072 * @sb: super block of file system
1073 * @hashval: hash value (usually inode number) to get
1074 * @test: callback used for comparisons between inodes
1075 * @set: callback used to initialize a new struct inode
1076 * @data: opaque data pointer to pass to @test and @set
1078 * Search for the inode specified by @hashval and @data in the inode cache,
1079 * and if present it is return it with an increased reference count. This is
1080 * a generalized version of iget_locked() for file systems where the inode
1081 * number is not sufficient for unique identification of an inode.
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1087 * Note both @test and @set are called with the inode_hash_lock held, so can't
1088 * sleep.
1090 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1091 int (*test)(struct inode *, void *),
1092 int (*set)(struct inode *, void *), void *data)
1094 struct inode *inode = ilookup5(sb, hashval, test, data);
1096 if (!inode) {
1097 struct inode *new = new_inode(sb);
1099 if (new) {
1100 inode = inode_insert5(new, hashval, test, set, data);
1101 if (unlikely(inode != new))
1102 iput(new);
1105 return inode;
1107 EXPORT_SYMBOL(iget5_locked);
1110 * iget_locked - obtain an inode from a mounted file system
1111 * @sb: super block of file system
1112 * @ino: inode number to get
1114 * Search for the inode specified by @ino in the inode cache and if present
1115 * return it with an increased reference count. This is for file systems
1116 * where the inode number is sufficient for unique identification of an inode.
1118 * If the inode is not in cache, allocate a new inode and return it locked,
1119 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1120 * before unlocking it via unlock_new_inode().
1122 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1124 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1125 struct inode *inode;
1126 again:
1127 spin_lock(&inode_hash_lock);
1128 inode = find_inode_fast(sb, head, ino);
1129 spin_unlock(&inode_hash_lock);
1130 if (inode) {
1131 wait_on_inode(inode);
1132 if (unlikely(inode_unhashed(inode))) {
1133 iput(inode);
1134 goto again;
1136 return inode;
1139 inode = alloc_inode(sb);
1140 if (inode) {
1141 struct inode *old;
1143 spin_lock(&inode_hash_lock);
1144 /* We released the lock, so.. */
1145 old = find_inode_fast(sb, head, ino);
1146 if (!old) {
1147 inode->i_ino = ino;
1148 spin_lock(&inode->i_lock);
1149 inode->i_state = I_NEW;
1150 hlist_add_head(&inode->i_hash, head);
1151 spin_unlock(&inode->i_lock);
1152 inode_sb_list_add(inode);
1153 spin_unlock(&inode_hash_lock);
1155 /* Return the locked inode with I_NEW set, the
1156 * caller is responsible for filling in the contents
1158 return inode;
1162 * Uhhuh, somebody else created the same inode under
1163 * us. Use the old inode instead of the one we just
1164 * allocated.
1166 spin_unlock(&inode_hash_lock);
1167 destroy_inode(inode);
1168 inode = old;
1169 wait_on_inode(inode);
1170 if (unlikely(inode_unhashed(inode))) {
1171 iput(inode);
1172 goto again;
1175 return inode;
1177 EXPORT_SYMBOL(iget_locked);
1180 * search the inode cache for a matching inode number.
1181 * If we find one, then the inode number we are trying to
1182 * allocate is not unique and so we should not use it.
1184 * Returns 1 if the inode number is unique, 0 if it is not.
1186 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1188 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1189 struct inode *inode;
1191 spin_lock(&inode_hash_lock);
1192 hlist_for_each_entry(inode, b, i_hash) {
1193 if (inode->i_ino == ino && inode->i_sb == sb) {
1194 spin_unlock(&inode_hash_lock);
1195 return 0;
1198 spin_unlock(&inode_hash_lock);
1200 return 1;
1204 * iunique - get a unique inode number
1205 * @sb: superblock
1206 * @max_reserved: highest reserved inode number
1208 * Obtain an inode number that is unique on the system for a given
1209 * superblock. This is used by file systems that have no natural
1210 * permanent inode numbering system. An inode number is returned that
1211 * is higher than the reserved limit but unique.
1213 * BUGS:
1214 * With a large number of inodes live on the file system this function
1215 * currently becomes quite slow.
1217 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1220 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1221 * error if st_ino won't fit in target struct field. Use 32bit counter
1222 * here to attempt to avoid that.
1224 static DEFINE_SPINLOCK(iunique_lock);
1225 static unsigned int counter;
1226 ino_t res;
1228 spin_lock(&iunique_lock);
1229 do {
1230 if (counter <= max_reserved)
1231 counter = max_reserved + 1;
1232 res = counter++;
1233 } while (!test_inode_iunique(sb, res));
1234 spin_unlock(&iunique_lock);
1236 return res;
1238 EXPORT_SYMBOL(iunique);
1240 struct inode *igrab(struct inode *inode)
1242 spin_lock(&inode->i_lock);
1243 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1244 __iget(inode);
1245 spin_unlock(&inode->i_lock);
1246 } else {
1247 spin_unlock(&inode->i_lock);
1249 * Handle the case where s_op->clear_inode is not been
1250 * called yet, and somebody is calling igrab
1251 * while the inode is getting freed.
1253 inode = NULL;
1255 return inode;
1257 EXPORT_SYMBOL(igrab);
1260 * ilookup5_nowait - search for an inode in the inode cache
1261 * @sb: super block of file system to search
1262 * @hashval: hash value (usually inode number) to search for
1263 * @test: callback used for comparisons between inodes
1264 * @data: opaque data pointer to pass to @test
1266 * Search for the inode specified by @hashval and @data in the inode cache.
1267 * If the inode is in the cache, the inode is returned with an incremented
1268 * reference count.
1270 * Note: I_NEW is not waited upon so you have to be very careful what you do
1271 * with the returned inode. You probably should be using ilookup5() instead.
1273 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1275 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1276 int (*test)(struct inode *, void *), void *data)
1278 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1279 struct inode *inode;
1281 spin_lock(&inode_hash_lock);
1282 inode = find_inode(sb, head, test, data);
1283 spin_unlock(&inode_hash_lock);
1285 return inode;
1287 EXPORT_SYMBOL(ilookup5_nowait);
1290 * ilookup5 - search for an inode in the inode cache
1291 * @sb: super block of file system to search
1292 * @hashval: hash value (usually inode number) to search for
1293 * @test: callback used for comparisons between inodes
1294 * @data: opaque data pointer to pass to @test
1296 * Search for the inode specified by @hashval and @data in the inode cache,
1297 * and if the inode is in the cache, return the inode with an incremented
1298 * reference count. Waits on I_NEW before returning the inode.
1299 * returned with an incremented reference count.
1301 * This is a generalized version of ilookup() for file systems where the
1302 * inode number is not sufficient for unique identification of an inode.
1304 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1306 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1307 int (*test)(struct inode *, void *), void *data)
1309 struct inode *inode;
1310 again:
1311 inode = ilookup5_nowait(sb, hashval, test, data);
1312 if (inode) {
1313 wait_on_inode(inode);
1314 if (unlikely(inode_unhashed(inode))) {
1315 iput(inode);
1316 goto again;
1319 return inode;
1321 EXPORT_SYMBOL(ilookup5);
1324 * ilookup - search for an inode in the inode cache
1325 * @sb: super block of file system to search
1326 * @ino: inode number to search for
1328 * Search for the inode @ino in the inode cache, and if the inode is in the
1329 * cache, the inode is returned with an incremented reference count.
1331 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1333 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1334 struct inode *inode;
1335 again:
1336 spin_lock(&inode_hash_lock);
1337 inode = find_inode_fast(sb, head, ino);
1338 spin_unlock(&inode_hash_lock);
1340 if (inode) {
1341 wait_on_inode(inode);
1342 if (unlikely(inode_unhashed(inode))) {
1343 iput(inode);
1344 goto again;
1347 return inode;
1349 EXPORT_SYMBOL(ilookup);
1352 * find_inode_nowait - find an inode in the inode cache
1353 * @sb: super block of file system to search
1354 * @hashval: hash value (usually inode number) to search for
1355 * @match: callback used for comparisons between inodes
1356 * @data: opaque data pointer to pass to @match
1358 * Search for the inode specified by @hashval and @data in the inode
1359 * cache, where the helper function @match will return 0 if the inode
1360 * does not match, 1 if the inode does match, and -1 if the search
1361 * should be stopped. The @match function must be responsible for
1362 * taking the i_lock spin_lock and checking i_state for an inode being
1363 * freed or being initialized, and incrementing the reference count
1364 * before returning 1. It also must not sleep, since it is called with
1365 * the inode_hash_lock spinlock held.
1367 * This is a even more generalized version of ilookup5() when the
1368 * function must never block --- find_inode() can block in
1369 * __wait_on_freeing_inode() --- or when the caller can not increment
1370 * the reference count because the resulting iput() might cause an
1371 * inode eviction. The tradeoff is that the @match funtion must be
1372 * very carefully implemented.
1374 struct inode *find_inode_nowait(struct super_block *sb,
1375 unsigned long hashval,
1376 int (*match)(struct inode *, unsigned long,
1377 void *),
1378 void *data)
1380 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1381 struct inode *inode, *ret_inode = NULL;
1382 int mval;
1384 spin_lock(&inode_hash_lock);
1385 hlist_for_each_entry(inode, head, i_hash) {
1386 if (inode->i_sb != sb)
1387 continue;
1388 mval = match(inode, hashval, data);
1389 if (mval == 0)
1390 continue;
1391 if (mval == 1)
1392 ret_inode = inode;
1393 goto out;
1395 out:
1396 spin_unlock(&inode_hash_lock);
1397 return ret_inode;
1399 EXPORT_SYMBOL(find_inode_nowait);
1401 int insert_inode_locked(struct inode *inode)
1403 struct super_block *sb = inode->i_sb;
1404 ino_t ino = inode->i_ino;
1405 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1407 while (1) {
1408 struct inode *old = NULL;
1409 spin_lock(&inode_hash_lock);
1410 hlist_for_each_entry(old, head, i_hash) {
1411 if (old->i_ino != ino)
1412 continue;
1413 if (old->i_sb != sb)
1414 continue;
1415 spin_lock(&old->i_lock);
1416 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1417 spin_unlock(&old->i_lock);
1418 continue;
1420 break;
1422 if (likely(!old)) {
1423 spin_lock(&inode->i_lock);
1424 inode->i_state |= I_NEW;
1425 hlist_add_head(&inode->i_hash, head);
1426 spin_unlock(&inode->i_lock);
1427 spin_unlock(&inode_hash_lock);
1428 return 0;
1430 __iget(old);
1431 spin_unlock(&old->i_lock);
1432 spin_unlock(&inode_hash_lock);
1433 wait_on_inode(old);
1434 if (unlikely(!inode_unhashed(old))) {
1435 iput(old);
1436 return -EBUSY;
1438 iput(old);
1441 EXPORT_SYMBOL(insert_inode_locked);
1443 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1444 int (*test)(struct inode *, void *), void *data)
1446 struct inode *old = inode_insert5(inode, hashval, test, NULL, data);
1448 if (old != inode) {
1449 iput(old);
1450 return -EBUSY;
1452 return 0;
1454 EXPORT_SYMBOL(insert_inode_locked4);
1457 int generic_delete_inode(struct inode *inode)
1459 return 1;
1461 EXPORT_SYMBOL(generic_delete_inode);
1464 * Called when we're dropping the last reference
1465 * to an inode.
1467 * Call the FS "drop_inode()" function, defaulting to
1468 * the legacy UNIX filesystem behaviour. If it tells
1469 * us to evict inode, do so. Otherwise, retain inode
1470 * in cache if fs is alive, sync and evict if fs is
1471 * shutting down.
1473 static void iput_final(struct inode *inode)
1475 struct super_block *sb = inode->i_sb;
1476 const struct super_operations *op = inode->i_sb->s_op;
1477 int drop;
1479 WARN_ON(inode->i_state & I_NEW);
1481 if (op->drop_inode)
1482 drop = op->drop_inode(inode);
1483 else
1484 drop = generic_drop_inode(inode);
1486 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1487 inode_add_lru(inode);
1488 spin_unlock(&inode->i_lock);
1489 return;
1492 if (!drop) {
1493 inode->i_state |= I_WILL_FREE;
1494 spin_unlock(&inode->i_lock);
1495 write_inode_now(inode, 1);
1496 spin_lock(&inode->i_lock);
1497 WARN_ON(inode->i_state & I_NEW);
1498 inode->i_state &= ~I_WILL_FREE;
1501 inode->i_state |= I_FREEING;
1502 if (!list_empty(&inode->i_lru))
1503 inode_lru_list_del(inode);
1504 spin_unlock(&inode->i_lock);
1506 evict(inode);
1510 * iput - put an inode
1511 * @inode: inode to put
1513 * Puts an inode, dropping its usage count. If the inode use count hits
1514 * zero, the inode is then freed and may also be destroyed.
1516 * Consequently, iput() can sleep.
1518 void iput(struct inode *inode)
1520 if (!inode)
1521 return;
1522 BUG_ON(inode->i_state & I_CLEAR);
1523 retry:
1524 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1525 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1526 atomic_inc(&inode->i_count);
1527 spin_unlock(&inode->i_lock);
1528 trace_writeback_lazytime_iput(inode);
1529 mark_inode_dirty_sync(inode);
1530 goto retry;
1532 iput_final(inode);
1535 EXPORT_SYMBOL(iput);
1538 * bmap - find a block number in a file
1539 * @inode: inode of file
1540 * @block: block to find
1542 * Returns the block number on the device holding the inode that
1543 * is the disk block number for the block of the file requested.
1544 * That is, asked for block 4 of inode 1 the function will return the
1545 * disk block relative to the disk start that holds that block of the
1546 * file.
1548 sector_t bmap(struct inode *inode, sector_t block)
1550 sector_t res = 0;
1551 if (inode->i_mapping->a_ops->bmap)
1552 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1553 return res;
1555 EXPORT_SYMBOL(bmap);
1558 * Update times in overlayed inode from underlying real inode
1560 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1561 bool rcu)
1563 struct dentry *upperdentry;
1566 * Nothing to do if in rcu or if non-overlayfs
1568 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1569 return;
1571 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1574 * If file is on lower then we can't update atime, so no worries about
1575 * stale mtime/ctime.
1577 if (upperdentry) {
1578 struct inode *realinode = d_inode(upperdentry);
1580 if ((!timespec64_equal(&inode->i_mtime, &realinode->i_mtime) ||
1581 !timespec64_equal(&inode->i_ctime, &realinode->i_ctime))) {
1582 inode->i_mtime = realinode->i_mtime;
1583 inode->i_ctime = realinode->i_ctime;
1589 * With relative atime, only update atime if the previous atime is
1590 * earlier than either the ctime or mtime or if at least a day has
1591 * passed since the last atime update.
1593 static int relatime_need_update(const struct path *path, struct inode *inode,
1594 struct timespec now, bool rcu)
1597 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1598 return 1;
1600 update_ovl_inode_times(path->dentry, inode, rcu);
1602 * Is mtime younger than atime? If yes, update atime:
1604 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1605 return 1;
1607 * Is ctime younger than atime? If yes, update atime:
1609 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1610 return 1;
1613 * Is the previous atime value older than a day? If yes,
1614 * update atime:
1616 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1617 return 1;
1619 * Good, we can skip the atime update:
1621 return 0;
1624 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1626 int iflags = I_DIRTY_TIME;
1627 bool dirty = false;
1629 if (flags & S_ATIME)
1630 inode->i_atime = *time;
1631 if (flags & S_VERSION)
1632 dirty = inode_maybe_inc_iversion(inode, false);
1633 if (flags & S_CTIME)
1634 inode->i_ctime = *time;
1635 if (flags & S_MTIME)
1636 inode->i_mtime = *time;
1637 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1638 !(inode->i_sb->s_flags & SB_LAZYTIME))
1639 dirty = true;
1641 if (dirty)
1642 iflags |= I_DIRTY_SYNC;
1643 __mark_inode_dirty(inode, iflags);
1644 return 0;
1646 EXPORT_SYMBOL(generic_update_time);
1649 * This does the actual work of updating an inodes time or version. Must have
1650 * had called mnt_want_write() before calling this.
1652 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1654 int (*update_time)(struct inode *, struct timespec64 *, int);
1656 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1657 generic_update_time;
1659 return update_time(inode, time, flags);
1663 * touch_atime - update the access time
1664 * @path: the &struct path to update
1665 * @inode: inode to update
1667 * Update the accessed time on an inode and mark it for writeback.
1668 * This function automatically handles read only file systems and media,
1669 * as well as the "noatime" flag and inode specific "noatime" markers.
1671 bool __atime_needs_update(const struct path *path, struct inode *inode,
1672 bool rcu)
1674 struct vfsmount *mnt = path->mnt;
1675 struct timespec64 now;
1677 if (inode->i_flags & S_NOATIME)
1678 return false;
1680 /* Atime updates will likely cause i_uid and i_gid to be written
1681 * back improprely if their true value is unknown to the vfs.
1683 if (HAS_UNMAPPED_ID(inode))
1684 return false;
1686 if (IS_NOATIME(inode))
1687 return false;
1688 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1689 return false;
1691 if (mnt->mnt_flags & MNT_NOATIME)
1692 return false;
1693 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1694 return false;
1696 now = current_time(inode);
1698 if (!relatime_need_update(path, inode, timespec64_to_timespec(now), rcu))
1699 return false;
1701 if (timespec64_equal(&inode->i_atime, &now))
1702 return false;
1704 return true;
1707 void touch_atime(const struct path *path)
1709 struct vfsmount *mnt = path->mnt;
1710 struct inode *inode = d_inode(path->dentry);
1711 struct timespec64 now;
1713 if (!__atime_needs_update(path, inode, false))
1714 return;
1716 if (!sb_start_write_trylock(inode->i_sb))
1717 return;
1719 if (__mnt_want_write(mnt) != 0)
1720 goto skip_update;
1722 * File systems can error out when updating inodes if they need to
1723 * allocate new space to modify an inode (such is the case for
1724 * Btrfs), but since we touch atime while walking down the path we
1725 * really don't care if we failed to update the atime of the file,
1726 * so just ignore the return value.
1727 * We may also fail on filesystems that have the ability to make parts
1728 * of the fs read only, e.g. subvolumes in Btrfs.
1730 now = current_time(inode);
1731 update_time(inode, &now, S_ATIME);
1732 __mnt_drop_write(mnt);
1733 skip_update:
1734 sb_end_write(inode->i_sb);
1736 EXPORT_SYMBOL(touch_atime);
1739 * The logic we want is
1741 * if suid or (sgid and xgrp)
1742 * remove privs
1744 int should_remove_suid(struct dentry *dentry)
1746 umode_t mode = d_inode(dentry)->i_mode;
1747 int kill = 0;
1749 /* suid always must be killed */
1750 if (unlikely(mode & S_ISUID))
1751 kill = ATTR_KILL_SUID;
1754 * sgid without any exec bits is just a mandatory locking mark; leave
1755 * it alone. If some exec bits are set, it's a real sgid; kill it.
1757 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1758 kill |= ATTR_KILL_SGID;
1760 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1761 return kill;
1763 return 0;
1765 EXPORT_SYMBOL(should_remove_suid);
1768 * Return mask of changes for notify_change() that need to be done as a
1769 * response to write or truncate. Return 0 if nothing has to be changed.
1770 * Negative value on error (change should be denied).
1772 int dentry_needs_remove_privs(struct dentry *dentry)
1774 struct inode *inode = d_inode(dentry);
1775 int mask = 0;
1776 int ret;
1778 if (IS_NOSEC(inode))
1779 return 0;
1781 mask = should_remove_suid(dentry);
1782 ret = security_inode_need_killpriv(dentry);
1783 if (ret < 0)
1784 return ret;
1785 if (ret)
1786 mask |= ATTR_KILL_PRIV;
1787 return mask;
1790 static int __remove_privs(struct dentry *dentry, int kill)
1792 struct iattr newattrs;
1794 newattrs.ia_valid = ATTR_FORCE | kill;
1796 * Note we call this on write, so notify_change will not
1797 * encounter any conflicting delegations:
1799 return notify_change(dentry, &newattrs, NULL);
1803 * Remove special file priviledges (suid, capabilities) when file is written
1804 * to or truncated.
1806 int file_remove_privs(struct file *file)
1808 struct dentry *dentry = file_dentry(file);
1809 struct inode *inode = file_inode(file);
1810 int kill;
1811 int error = 0;
1813 /* Fast path for nothing security related */
1814 if (IS_NOSEC(inode))
1815 return 0;
1817 kill = dentry_needs_remove_privs(dentry);
1818 if (kill < 0)
1819 return kill;
1820 if (kill)
1821 error = __remove_privs(dentry, kill);
1822 if (!error)
1823 inode_has_no_xattr(inode);
1825 return error;
1827 EXPORT_SYMBOL(file_remove_privs);
1830 * file_update_time - update mtime and ctime time
1831 * @file: file accessed
1833 * Update the mtime and ctime members of an inode and mark the inode
1834 * for writeback. Note that this function is meant exclusively for
1835 * usage in the file write path of filesystems, and filesystems may
1836 * choose to explicitly ignore update via this function with the
1837 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1838 * timestamps are handled by the server. This can return an error for
1839 * file systems who need to allocate space in order to update an inode.
1842 int file_update_time(struct file *file)
1844 struct inode *inode = file_inode(file);
1845 struct timespec64 now;
1846 int sync_it = 0;
1847 int ret;
1849 /* First try to exhaust all avenues to not sync */
1850 if (IS_NOCMTIME(inode))
1851 return 0;
1853 now = current_time(inode);
1854 if (!timespec64_equal(&inode->i_mtime, &now))
1855 sync_it = S_MTIME;
1857 if (!timespec64_equal(&inode->i_ctime, &now))
1858 sync_it |= S_CTIME;
1860 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1861 sync_it |= S_VERSION;
1863 if (!sync_it)
1864 return 0;
1866 /* Finally allowed to write? Takes lock. */
1867 if (__mnt_want_write_file(file))
1868 return 0;
1870 ret = update_time(inode, &now, sync_it);
1871 __mnt_drop_write_file(file);
1873 return ret;
1875 EXPORT_SYMBOL(file_update_time);
1877 int inode_needs_sync(struct inode *inode)
1879 if (IS_SYNC(inode))
1880 return 1;
1881 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1882 return 1;
1883 return 0;
1885 EXPORT_SYMBOL(inode_needs_sync);
1888 * If we try to find an inode in the inode hash while it is being
1889 * deleted, we have to wait until the filesystem completes its
1890 * deletion before reporting that it isn't found. This function waits
1891 * until the deletion _might_ have completed. Callers are responsible
1892 * to recheck inode state.
1894 * It doesn't matter if I_NEW is not set initially, a call to
1895 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1896 * will DTRT.
1898 static void __wait_on_freeing_inode(struct inode *inode)
1900 wait_queue_head_t *wq;
1901 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1902 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1903 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1904 spin_unlock(&inode->i_lock);
1905 spin_unlock(&inode_hash_lock);
1906 schedule();
1907 finish_wait(wq, &wait.wq_entry);
1908 spin_lock(&inode_hash_lock);
1911 static __initdata unsigned long ihash_entries;
1912 static int __init set_ihash_entries(char *str)
1914 if (!str)
1915 return 0;
1916 ihash_entries = simple_strtoul(str, &str, 0);
1917 return 1;
1919 __setup("ihash_entries=", set_ihash_entries);
1922 * Initialize the waitqueues and inode hash table.
1924 void __init inode_init_early(void)
1926 /* If hashes are distributed across NUMA nodes, defer
1927 * hash allocation until vmalloc space is available.
1929 if (hashdist)
1930 return;
1932 inode_hashtable =
1933 alloc_large_system_hash("Inode-cache",
1934 sizeof(struct hlist_head),
1935 ihash_entries,
1937 HASH_EARLY | HASH_ZERO,
1938 &i_hash_shift,
1939 &i_hash_mask,
1944 void __init inode_init(void)
1946 /* inode slab cache */
1947 inode_cachep = kmem_cache_create("inode_cache",
1948 sizeof(struct inode),
1950 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952 init_once);
1954 /* Hash may have been set up in inode_init_early */
1955 if (!hashdist)
1956 return;
1958 inode_hashtable =
1959 alloc_large_system_hash("Inode-cache",
1960 sizeof(struct hlist_head),
1961 ihash_entries,
1963 HASH_ZERO,
1964 &i_hash_shift,
1965 &i_hash_mask,
1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1972 inode->i_mode = mode;
1973 if (S_ISCHR(mode)) {
1974 inode->i_fop = &def_chr_fops;
1975 inode->i_rdev = rdev;
1976 } else if (S_ISBLK(mode)) {
1977 inode->i_fop = &def_blk_fops;
1978 inode->i_rdev = rdev;
1979 } else if (S_ISFIFO(mode))
1980 inode->i_fop = &pipefifo_fops;
1981 else if (S_ISSOCK(mode))
1982 ; /* leave it no_open_fops */
1983 else
1984 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1985 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1986 inode->i_ino);
1988 EXPORT_SYMBOL(init_special_inode);
1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1992 * @inode: New inode
1993 * @dir: Directory inode
1994 * @mode: mode of the new inode
1996 void inode_init_owner(struct inode *inode, const struct inode *dir,
1997 umode_t mode)
1999 inode->i_uid = current_fsuid();
2000 if (dir && dir->i_mode & S_ISGID) {
2001 inode->i_gid = dir->i_gid;
2003 /* Directories are special, and always inherit S_ISGID */
2004 if (S_ISDIR(mode))
2005 mode |= S_ISGID;
2006 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2007 !in_group_p(inode->i_gid) &&
2008 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2009 mode &= ~S_ISGID;
2010 } else
2011 inode->i_gid = current_fsgid();
2012 inode->i_mode = mode;
2014 EXPORT_SYMBOL(inode_init_owner);
2017 * inode_owner_or_capable - check current task permissions to inode
2018 * @inode: inode being checked
2020 * Return true if current either has CAP_FOWNER in a namespace with the
2021 * inode owner uid mapped, or owns the file.
2023 bool inode_owner_or_capable(const struct inode *inode)
2025 struct user_namespace *ns;
2027 if (uid_eq(current_fsuid(), inode->i_uid))
2028 return true;
2030 ns = current_user_ns();
2031 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2032 return true;
2033 return false;
2035 EXPORT_SYMBOL(inode_owner_or_capable);
2038 * Direct i/o helper functions
2040 static void __inode_dio_wait(struct inode *inode)
2042 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2043 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2045 do {
2046 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2047 if (atomic_read(&inode->i_dio_count))
2048 schedule();
2049 } while (atomic_read(&inode->i_dio_count));
2050 finish_wait(wq, &q.wq_entry);
2054 * inode_dio_wait - wait for outstanding DIO requests to finish
2055 * @inode: inode to wait for
2057 * Waits for all pending direct I/O requests to finish so that we can
2058 * proceed with a truncate or equivalent operation.
2060 * Must be called under a lock that serializes taking new references
2061 * to i_dio_count, usually by inode->i_mutex.
2063 void inode_dio_wait(struct inode *inode)
2065 if (atomic_read(&inode->i_dio_count))
2066 __inode_dio_wait(inode);
2068 EXPORT_SYMBOL(inode_dio_wait);
2071 * inode_set_flags - atomically set some inode flags
2073 * Note: the caller should be holding i_mutex, or else be sure that
2074 * they have exclusive access to the inode structure (i.e., while the
2075 * inode is being instantiated). The reason for the cmpxchg() loop
2076 * --- which wouldn't be necessary if all code paths which modify
2077 * i_flags actually followed this rule, is that there is at least one
2078 * code path which doesn't today so we use cmpxchg() out of an abundance
2079 * of caution.
2081 * In the long run, i_mutex is overkill, and we should probably look
2082 * at using the i_lock spinlock to protect i_flags, and then make sure
2083 * it is so documented in include/linux/fs.h and that all code follows
2084 * the locking convention!!
2086 void inode_set_flags(struct inode *inode, unsigned int flags,
2087 unsigned int mask)
2089 unsigned int old_flags, new_flags;
2091 WARN_ON_ONCE(flags & ~mask);
2092 do {
2093 old_flags = READ_ONCE(inode->i_flags);
2094 new_flags = (old_flags & ~mask) | flags;
2095 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2096 new_flags) != old_flags));
2098 EXPORT_SYMBOL(inode_set_flags);
2100 void inode_nohighmem(struct inode *inode)
2102 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2104 EXPORT_SYMBOL(inode_nohighmem);
2107 * timespec64_trunc - Truncate timespec64 to a granularity
2108 * @t: Timespec64
2109 * @gran: Granularity in ns.
2111 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2112 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2114 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2116 /* Avoid division in the common cases 1 ns and 1 s. */
2117 if (gran == 1) {
2118 /* nothing */
2119 } else if (gran == NSEC_PER_SEC) {
2120 t.tv_nsec = 0;
2121 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2122 t.tv_nsec -= t.tv_nsec % gran;
2123 } else {
2124 WARN(1, "illegal file time granularity: %u", gran);
2126 return t;
2128 EXPORT_SYMBOL(timespec64_trunc);
2131 * current_time - Return FS time
2132 * @inode: inode.
2134 * Return the current time truncated to the time granularity supported by
2135 * the fs.
2137 * Note that inode and inode->sb cannot be NULL.
2138 * Otherwise, the function warns and returns time without truncation.
2140 struct timespec64 current_time(struct inode *inode)
2142 struct timespec64 now = current_kernel_time64();
2144 if (unlikely(!inode->i_sb)) {
2145 WARN(1, "current_time() called with uninitialized super_block in the inode");
2146 return now;
2149 return timespec64_trunc(now, inode->i_sb->s_time_gran);
2151 EXPORT_SYMBOL(current_time);