2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly
;
57 static unsigned int i_hash_shift __read_mostly
;
58 static struct hlist_head
*inode_hashtable __read_mostly
;
59 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
145 inode
->i_opflags
|= IOP_XATTR
;
146 i_uid_write(inode
, 0);
147 i_gid_write(inode
, 0);
148 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
153 inode
->i_generation
= 0;
154 inode
->i_pipe
= NULL
;
155 inode
->i_bdev
= NULL
;
156 inode
->i_cdev
= NULL
;
157 inode
->i_link
= NULL
;
158 inode
->i_dir_seq
= 0;
160 inode
->dirtied_when
= 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode
->i_wb_frn_winner
= 0;
164 inode
->i_wb_frn_avg_time
= 0;
165 inode
->i_wb_frn_history
= 0;
168 if (security_inode_alloc(inode
))
170 spin_lock_init(&inode
->i_lock
);
171 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
173 init_rwsem(&inode
->i_rwsem
);
174 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
176 atomic_set(&inode
->i_dio_count
, 0);
178 mapping
->a_ops
= &empty_aops
;
179 mapping
->host
= inode
;
182 atomic_set(&mapping
->i_mmap_writable
, 0);
183 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
184 mapping
->private_data
= NULL
;
185 mapping
->writeback_index
= 0;
186 inode
->i_private
= NULL
;
187 inode
->i_mapping
= mapping
;
188 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
193 #ifdef CONFIG_FSNOTIFY
194 inode
->i_fsnotify_mask
= 0;
196 inode
->i_flctx
= NULL
;
197 this_cpu_inc(nr_inodes
);
203 EXPORT_SYMBOL(inode_init_always
);
205 static struct inode
*alloc_inode(struct super_block
*sb
)
209 if (sb
->s_op
->alloc_inode
)
210 inode
= sb
->s_op
->alloc_inode(sb
);
212 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
217 if (unlikely(inode_init_always(sb
, inode
))) {
218 if (inode
->i_sb
->s_op
->destroy_inode
)
219 inode
->i_sb
->s_op
->destroy_inode(inode
);
221 kmem_cache_free(inode_cachep
, inode
);
228 void free_inode_nonrcu(struct inode
*inode
)
230 kmem_cache_free(inode_cachep
, inode
);
232 EXPORT_SYMBOL(free_inode_nonrcu
);
234 void __destroy_inode(struct inode
*inode
)
236 BUG_ON(inode_has_buffers(inode
));
237 inode_detach_wb(inode
);
238 security_inode_free(inode
);
239 fsnotify_inode_delete(inode
);
240 locks_free_lock_context(inode
);
241 if (!inode
->i_nlink
) {
242 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
243 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
248 posix_acl_release(inode
->i_acl
);
249 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
250 posix_acl_release(inode
->i_default_acl
);
252 this_cpu_dec(nr_inodes
);
254 EXPORT_SYMBOL(__destroy_inode
);
256 static void i_callback(struct rcu_head
*head
)
258 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
259 kmem_cache_free(inode_cachep
, inode
);
262 static void destroy_inode(struct inode
*inode
)
264 BUG_ON(!list_empty(&inode
->i_lru
));
265 __destroy_inode(inode
);
266 if (inode
->i_sb
->s_op
->destroy_inode
)
267 inode
->i_sb
->s_op
->destroy_inode(inode
);
269 call_rcu(&inode
->i_rcu
, i_callback
);
273 * drop_nlink - directly drop an inode's link count
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
283 void drop_nlink(struct inode
*inode
)
285 WARN_ON(inode
->i_nlink
== 0);
288 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
290 EXPORT_SYMBOL(drop_nlink
);
293 * clear_nlink - directly zero an inode's link count
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
300 void clear_nlink(struct inode
*inode
)
302 if (inode
->i_nlink
) {
303 inode
->__i_nlink
= 0;
304 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
307 EXPORT_SYMBOL(clear_nlink
);
310 * set_nlink - directly set an inode's link count
312 * @nlink: new nlink (should be non-zero)
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
317 void set_nlink(struct inode
*inode
, unsigned int nlink
)
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode
->i_nlink
== 0)
324 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
326 inode
->__i_nlink
= nlink
;
329 EXPORT_SYMBOL(set_nlink
);
332 * inc_nlink - directly increment an inode's link count
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
339 void inc_nlink(struct inode
*inode
)
341 if (unlikely(inode
->i_nlink
== 0)) {
342 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
343 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
348 EXPORT_SYMBOL(inc_nlink
);
350 static void __address_space_init_once(struct address_space
*mapping
)
352 INIT_RADIX_TREE(&mapping
->i_pages
, GFP_ATOMIC
| __GFP_ACCOUNT
);
353 init_rwsem(&mapping
->i_mmap_rwsem
);
354 INIT_LIST_HEAD(&mapping
->private_list
);
355 spin_lock_init(&mapping
->private_lock
);
356 mapping
->i_mmap
= RB_ROOT_CACHED
;
359 void address_space_init_once(struct address_space
*mapping
)
361 memset(mapping
, 0, sizeof(*mapping
));
362 __address_space_init_once(mapping
);
364 EXPORT_SYMBOL(address_space_init_once
);
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
371 void inode_init_once(struct inode
*inode
)
373 memset(inode
, 0, sizeof(*inode
));
374 INIT_HLIST_NODE(&inode
->i_hash
);
375 INIT_LIST_HEAD(&inode
->i_devices
);
376 INIT_LIST_HEAD(&inode
->i_io_list
);
377 INIT_LIST_HEAD(&inode
->i_wb_list
);
378 INIT_LIST_HEAD(&inode
->i_lru
);
379 __address_space_init_once(&inode
->i_data
);
380 i_size_ordered_init(inode
);
382 EXPORT_SYMBOL(inode_init_once
);
384 static void init_once(void *foo
)
386 struct inode
*inode
= (struct inode
*) foo
;
388 inode_init_once(inode
);
392 * inode->i_lock must be held
394 void __iget(struct inode
*inode
)
396 atomic_inc(&inode
->i_count
);
400 * get additional reference to inode; caller must already hold one.
402 void ihold(struct inode
*inode
)
404 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
406 EXPORT_SYMBOL(ihold
);
408 static void inode_lru_list_add(struct inode
*inode
)
410 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
411 this_cpu_inc(nr_unused
);
413 inode
->i_state
|= I_REFERENCED
;
417 * Add inode to LRU if needed (inode is unused and clean).
419 * Needs inode->i_lock held.
421 void inode_add_lru(struct inode
*inode
)
423 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
424 I_FREEING
| I_WILL_FREE
)) &&
425 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
426 inode_lru_list_add(inode
);
430 static void inode_lru_list_del(struct inode
*inode
)
433 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
434 this_cpu_dec(nr_unused
);
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
441 void inode_sb_list_add(struct inode
*inode
)
443 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
444 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
445 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
447 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
449 static inline void inode_sb_list_del(struct inode
*inode
)
451 if (!list_empty(&inode
->i_sb_list
)) {
452 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
453 list_del_init(&inode
->i_sb_list
);
454 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
458 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
462 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
464 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
465 return tmp
& i_hash_mask
;
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
474 * Add an inode to the inode hash for this superblock.
476 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
478 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
480 spin_lock(&inode_hash_lock
);
481 spin_lock(&inode
->i_lock
);
482 hlist_add_head(&inode
->i_hash
, b
);
483 spin_unlock(&inode
->i_lock
);
484 spin_unlock(&inode_hash_lock
);
486 EXPORT_SYMBOL(__insert_inode_hash
);
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
492 * Remove an inode from the superblock.
494 void __remove_inode_hash(struct inode
*inode
)
496 spin_lock(&inode_hash_lock
);
497 spin_lock(&inode
->i_lock
);
498 hlist_del_init(&inode
->i_hash
);
499 spin_unlock(&inode
->i_lock
);
500 spin_unlock(&inode_hash_lock
);
502 EXPORT_SYMBOL(__remove_inode_hash
);
504 void clear_inode(struct inode
*inode
)
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
511 xa_lock_irq(&inode
->i_data
.i_pages
);
512 BUG_ON(inode
->i_data
.nrpages
);
513 BUG_ON(inode
->i_data
.nrexceptional
);
514 xa_unlock_irq(&inode
->i_data
.i_pages
);
515 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
516 BUG_ON(!(inode
->i_state
& I_FREEING
));
517 BUG_ON(inode
->i_state
& I_CLEAR
);
518 BUG_ON(!list_empty(&inode
->i_wb_list
));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode
->i_state
= I_FREEING
| I_CLEAR
;
522 EXPORT_SYMBOL(clear_inode
);
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
537 static void evict(struct inode
*inode
)
539 const struct super_operations
*op
= inode
->i_sb
->s_op
;
541 BUG_ON(!(inode
->i_state
& I_FREEING
));
542 BUG_ON(!list_empty(&inode
->i_lru
));
544 if (!list_empty(&inode
->i_io_list
))
545 inode_io_list_del(inode
);
547 inode_sb_list_del(inode
);
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
555 inode_wait_for_writeback(inode
);
557 if (op
->evict_inode
) {
558 op
->evict_inode(inode
);
560 truncate_inode_pages_final(&inode
->i_data
);
563 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
565 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
568 remove_inode_hash(inode
);
570 spin_lock(&inode
->i_lock
);
571 wake_up_bit(&inode
->i_state
, __I_NEW
);
572 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
573 spin_unlock(&inode
->i_lock
);
575 destroy_inode(inode
);
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
585 static void dispose_list(struct list_head
*head
)
587 while (!list_empty(head
)) {
590 inode
= list_first_entry(head
, struct inode
, i_lru
);
591 list_del_init(&inode
->i_lru
);
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
607 void evict_inodes(struct super_block
*sb
)
609 struct inode
*inode
, *next
;
613 spin_lock(&sb
->s_inode_list_lock
);
614 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
615 if (atomic_read(&inode
->i_count
))
618 spin_lock(&inode
->i_lock
);
619 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
620 spin_unlock(&inode
->i_lock
);
624 inode
->i_state
|= I_FREEING
;
625 inode_lru_list_del(inode
);
626 spin_unlock(&inode
->i_lock
);
627 list_add(&inode
->i_lru
, &dispose
);
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
634 if (need_resched()) {
635 spin_unlock(&sb
->s_inode_list_lock
);
637 dispose_list(&dispose
);
641 spin_unlock(&sb
->s_inode_list_lock
);
643 dispose_list(&dispose
);
645 EXPORT_SYMBOL_GPL(evict_inodes
);
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
657 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
660 struct inode
*inode
, *next
;
663 spin_lock(&sb
->s_inode_list_lock
);
664 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
665 spin_lock(&inode
->i_lock
);
666 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
667 spin_unlock(&inode
->i_lock
);
670 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
671 spin_unlock(&inode
->i_lock
);
675 if (atomic_read(&inode
->i_count
)) {
676 spin_unlock(&inode
->i_lock
);
681 inode
->i_state
|= I_FREEING
;
682 inode_lru_list_del(inode
);
683 spin_unlock(&inode
->i_lock
);
684 list_add(&inode
->i_lru
, &dispose
);
686 spin_unlock(&sb
->s_inode_list_lock
);
688 dispose_list(&dispose
);
694 * Isolate the inode from the LRU in preparation for freeing it.
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
708 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
709 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
711 struct list_head
*freeable
= arg
;
712 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
718 if (!spin_trylock(&inode
->i_lock
))
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
725 if (atomic_read(&inode
->i_count
) ||
726 (inode
->i_state
& ~I_REFERENCED
)) {
727 list_lru_isolate(lru
, &inode
->i_lru
);
728 spin_unlock(&inode
->i_lock
);
729 this_cpu_dec(nr_unused
);
733 /* recently referenced inodes get one more pass */
734 if (inode
->i_state
& I_REFERENCED
) {
735 inode
->i_state
&= ~I_REFERENCED
;
736 spin_unlock(&inode
->i_lock
);
740 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
742 spin_unlock(&inode
->i_lock
);
743 spin_unlock(lru_lock
);
744 if (remove_inode_buffers(inode
)) {
746 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
747 if (current_is_kswapd())
748 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
750 __count_vm_events(PGINODESTEAL
, reap
);
751 if (current
->reclaim_state
)
752 current
->reclaim_state
->reclaimed_slab
+= reap
;
759 WARN_ON(inode
->i_state
& I_NEW
);
760 inode
->i_state
|= I_FREEING
;
761 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
762 spin_unlock(&inode
->i_lock
);
764 this_cpu_dec(nr_unused
);
769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770 * This is called from the superblock shrinker function with a number of inodes
771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772 * then are freed outside inode_lock by dispose_list().
774 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
779 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
780 inode_lru_isolate
, &freeable
);
781 dispose_list(&freeable
);
785 static void __wait_on_freeing_inode(struct inode
*inode
);
787 * Called with the inode lock held.
789 static struct inode
*find_inode(struct super_block
*sb
,
790 struct hlist_head
*head
,
791 int (*test
)(struct inode
*, void *),
794 struct inode
*inode
= NULL
;
797 hlist_for_each_entry(inode
, head
, i_hash
) {
798 if (inode
->i_sb
!= sb
)
800 if (!test(inode
, data
))
802 spin_lock(&inode
->i_lock
);
803 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
804 __wait_on_freeing_inode(inode
);
808 spin_unlock(&inode
->i_lock
);
815 * find_inode_fast is the fast path version of find_inode, see the comment at
816 * iget_locked for details.
818 static struct inode
*find_inode_fast(struct super_block
*sb
,
819 struct hlist_head
*head
, unsigned long ino
)
821 struct inode
*inode
= NULL
;
824 hlist_for_each_entry(inode
, head
, i_hash
) {
825 if (inode
->i_ino
!= ino
)
827 if (inode
->i_sb
!= sb
)
829 spin_lock(&inode
->i_lock
);
830 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
831 __wait_on_freeing_inode(inode
);
835 spin_unlock(&inode
->i_lock
);
842 * Each cpu owns a range of LAST_INO_BATCH numbers.
843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
844 * to renew the exhausted range.
846 * This does not significantly increase overflow rate because every CPU can
847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
850 * overflow rate by 2x, which does not seem too significant.
852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
853 * error if st_ino won't fit in target struct field. Use 32bit counter
854 * here to attempt to avoid that.
856 #define LAST_INO_BATCH 1024
857 static DEFINE_PER_CPU(unsigned int, last_ino
);
859 unsigned int get_next_ino(void)
861 unsigned int *p
= &get_cpu_var(last_ino
);
862 unsigned int res
= *p
;
865 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
866 static atomic_t shared_last_ino
;
867 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
869 res
= next
- LAST_INO_BATCH
;
874 /* get_next_ino should not provide a 0 inode number */
878 put_cpu_var(last_ino
);
881 EXPORT_SYMBOL(get_next_ino
);
884 * new_inode_pseudo - obtain an inode
887 * Allocates a new inode for given superblock.
888 * Inode wont be chained in superblock s_inodes list
890 * - fs can't be unmount
891 * - quotas, fsnotify, writeback can't work
893 struct inode
*new_inode_pseudo(struct super_block
*sb
)
895 struct inode
*inode
= alloc_inode(sb
);
898 spin_lock(&inode
->i_lock
);
900 spin_unlock(&inode
->i_lock
);
901 INIT_LIST_HEAD(&inode
->i_sb_list
);
907 * new_inode - obtain an inode
910 * Allocates a new inode for given superblock. The default gfp_mask
911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
912 * If HIGHMEM pages are unsuitable or it is known that pages allocated
913 * for the page cache are not reclaimable or migratable,
914 * mapping_set_gfp_mask() must be called with suitable flags on the
915 * newly created inode's mapping
918 struct inode
*new_inode(struct super_block
*sb
)
922 spin_lock_prefetch(&sb
->s_inode_list_lock
);
924 inode
= new_inode_pseudo(sb
);
926 inode_sb_list_add(inode
);
929 EXPORT_SYMBOL(new_inode
);
931 #ifdef CONFIG_DEBUG_LOCK_ALLOC
932 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
934 if (S_ISDIR(inode
->i_mode
)) {
935 struct file_system_type
*type
= inode
->i_sb
->s_type
;
937 /* Set new key only if filesystem hasn't already changed it */
938 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
940 * ensure nobody is actually holding i_mutex
942 // mutex_destroy(&inode->i_mutex);
943 init_rwsem(&inode
->i_rwsem
);
944 lockdep_set_class(&inode
->i_rwsem
,
945 &type
->i_mutex_dir_key
);
949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
953 * unlock_new_inode - clear the I_NEW state and wake up any waiters
954 * @inode: new inode to unlock
956 * Called when the inode is fully initialised to clear the new state of the
957 * inode and wake up anyone waiting for the inode to finish initialisation.
959 void unlock_new_inode(struct inode
*inode
)
961 lockdep_annotate_inode_mutex_key(inode
);
962 spin_lock(&inode
->i_lock
);
963 WARN_ON(!(inode
->i_state
& I_NEW
));
964 inode
->i_state
&= ~I_NEW
;
966 wake_up_bit(&inode
->i_state
, __I_NEW
);
967 spin_unlock(&inode
->i_lock
);
969 EXPORT_SYMBOL(unlock_new_inode
);
972 * lock_two_nondirectories - take two i_mutexes on non-directory objects
974 * Lock any non-NULL argument that is not a directory.
975 * Zero, one or two objects may be locked by this function.
977 * @inode1: first inode to lock
978 * @inode2: second inode to lock
980 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
983 swap(inode1
, inode2
);
985 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
987 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
988 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
990 EXPORT_SYMBOL(lock_two_nondirectories
);
993 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
994 * @inode1: first inode to unlock
995 * @inode2: second inode to unlock
997 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
999 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1000 inode_unlock(inode1
);
1001 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1002 inode_unlock(inode2
);
1004 EXPORT_SYMBOL(unlock_two_nondirectories
);
1007 * inode_insert5 - obtain an inode from a mounted file system
1008 * @inode: pre-allocated inode to use for insert to cache
1009 * @hashval: hash value (usually inode number) to get
1010 * @test: callback used for comparisons between inodes
1011 * @set: callback used to initialize a new struct inode
1012 * @data: opaque data pointer to pass to @test and @set
1014 * Search for the inode specified by @hashval and @data in the inode cache,
1015 * and if present it is return it with an increased reference count. This is
1016 * a variant of iget5_locked() for callers that don't want to fail on memory
1017 * allocation of inode.
1019 * If the inode is not in cache, insert the pre-allocated inode to cache and
1020 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1021 * to fill it in before unlocking it via unlock_new_inode().
1023 * Note both @test and @set are called with the inode_hash_lock held, so can't
1026 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1027 int (*test
)(struct inode
*, void *),
1028 int (*set
)(struct inode
*, void *), void *data
)
1030 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1034 spin_lock(&inode_hash_lock
);
1035 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1036 if (unlikely(old
)) {
1038 * Uhhuh, somebody else created the same inode under us.
1039 * Use the old inode instead of the preallocated one.
1041 spin_unlock(&inode_hash_lock
);
1043 if (unlikely(inode_unhashed(old
))) {
1050 if (set
&& unlikely(set(inode
, data
))) {
1056 * Return the locked inode with I_NEW set, the
1057 * caller is responsible for filling in the contents
1059 spin_lock(&inode
->i_lock
);
1060 inode
->i_state
|= I_NEW
;
1061 hlist_add_head(&inode
->i_hash
, head
);
1062 spin_unlock(&inode
->i_lock
);
1064 spin_unlock(&inode_hash_lock
);
1068 EXPORT_SYMBOL(inode_insert5
);
1071 * iget5_locked - obtain an inode from a mounted file system
1072 * @sb: super block of file system
1073 * @hashval: hash value (usually inode number) to get
1074 * @test: callback used for comparisons between inodes
1075 * @set: callback used to initialize a new struct inode
1076 * @data: opaque data pointer to pass to @test and @set
1078 * Search for the inode specified by @hashval and @data in the inode cache,
1079 * and if present it is return it with an increased reference count. This is
1080 * a generalized version of iget_locked() for file systems where the inode
1081 * number is not sufficient for unique identification of an inode.
1083 * If the inode is not in cache, allocate a new inode and return it locked,
1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1085 * before unlocking it via unlock_new_inode().
1087 * Note both @test and @set are called with the inode_hash_lock held, so can't
1090 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1091 int (*test
)(struct inode
*, void *),
1092 int (*set
)(struct inode
*, void *), void *data
)
1094 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1097 struct inode
*new = new_inode(sb
);
1100 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1101 if (unlikely(inode
!= new))
1107 EXPORT_SYMBOL(iget5_locked
);
1110 * iget_locked - obtain an inode from a mounted file system
1111 * @sb: super block of file system
1112 * @ino: inode number to get
1114 * Search for the inode specified by @ino in the inode cache and if present
1115 * return it with an increased reference count. This is for file systems
1116 * where the inode number is sufficient for unique identification of an inode.
1118 * If the inode is not in cache, allocate a new inode and return it locked,
1119 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1120 * before unlocking it via unlock_new_inode().
1122 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1124 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1125 struct inode
*inode
;
1127 spin_lock(&inode_hash_lock
);
1128 inode
= find_inode_fast(sb
, head
, ino
);
1129 spin_unlock(&inode_hash_lock
);
1131 wait_on_inode(inode
);
1132 if (unlikely(inode_unhashed(inode
))) {
1139 inode
= alloc_inode(sb
);
1143 spin_lock(&inode_hash_lock
);
1144 /* We released the lock, so.. */
1145 old
= find_inode_fast(sb
, head
, ino
);
1148 spin_lock(&inode
->i_lock
);
1149 inode
->i_state
= I_NEW
;
1150 hlist_add_head(&inode
->i_hash
, head
);
1151 spin_unlock(&inode
->i_lock
);
1152 inode_sb_list_add(inode
);
1153 spin_unlock(&inode_hash_lock
);
1155 /* Return the locked inode with I_NEW set, the
1156 * caller is responsible for filling in the contents
1162 * Uhhuh, somebody else created the same inode under
1163 * us. Use the old inode instead of the one we just
1166 spin_unlock(&inode_hash_lock
);
1167 destroy_inode(inode
);
1169 wait_on_inode(inode
);
1170 if (unlikely(inode_unhashed(inode
))) {
1177 EXPORT_SYMBOL(iget_locked
);
1180 * search the inode cache for a matching inode number.
1181 * If we find one, then the inode number we are trying to
1182 * allocate is not unique and so we should not use it.
1184 * Returns 1 if the inode number is unique, 0 if it is not.
1186 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1188 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1189 struct inode
*inode
;
1191 spin_lock(&inode_hash_lock
);
1192 hlist_for_each_entry(inode
, b
, i_hash
) {
1193 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1194 spin_unlock(&inode_hash_lock
);
1198 spin_unlock(&inode_hash_lock
);
1204 * iunique - get a unique inode number
1206 * @max_reserved: highest reserved inode number
1208 * Obtain an inode number that is unique on the system for a given
1209 * superblock. This is used by file systems that have no natural
1210 * permanent inode numbering system. An inode number is returned that
1211 * is higher than the reserved limit but unique.
1214 * With a large number of inodes live on the file system this function
1215 * currently becomes quite slow.
1217 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1220 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1221 * error if st_ino won't fit in target struct field. Use 32bit counter
1222 * here to attempt to avoid that.
1224 static DEFINE_SPINLOCK(iunique_lock
);
1225 static unsigned int counter
;
1228 spin_lock(&iunique_lock
);
1230 if (counter
<= max_reserved
)
1231 counter
= max_reserved
+ 1;
1233 } while (!test_inode_iunique(sb
, res
));
1234 spin_unlock(&iunique_lock
);
1238 EXPORT_SYMBOL(iunique
);
1240 struct inode
*igrab(struct inode
*inode
)
1242 spin_lock(&inode
->i_lock
);
1243 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1245 spin_unlock(&inode
->i_lock
);
1247 spin_unlock(&inode
->i_lock
);
1249 * Handle the case where s_op->clear_inode is not been
1250 * called yet, and somebody is calling igrab
1251 * while the inode is getting freed.
1257 EXPORT_SYMBOL(igrab
);
1260 * ilookup5_nowait - search for an inode in the inode cache
1261 * @sb: super block of file system to search
1262 * @hashval: hash value (usually inode number) to search for
1263 * @test: callback used for comparisons between inodes
1264 * @data: opaque data pointer to pass to @test
1266 * Search for the inode specified by @hashval and @data in the inode cache.
1267 * If the inode is in the cache, the inode is returned with an incremented
1270 * Note: I_NEW is not waited upon so you have to be very careful what you do
1271 * with the returned inode. You probably should be using ilookup5() instead.
1273 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1275 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1276 int (*test
)(struct inode
*, void *), void *data
)
1278 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1279 struct inode
*inode
;
1281 spin_lock(&inode_hash_lock
);
1282 inode
= find_inode(sb
, head
, test
, data
);
1283 spin_unlock(&inode_hash_lock
);
1287 EXPORT_SYMBOL(ilookup5_nowait
);
1290 * ilookup5 - search for an inode in the inode cache
1291 * @sb: super block of file system to search
1292 * @hashval: hash value (usually inode number) to search for
1293 * @test: callback used for comparisons between inodes
1294 * @data: opaque data pointer to pass to @test
1296 * Search for the inode specified by @hashval and @data in the inode cache,
1297 * and if the inode is in the cache, return the inode with an incremented
1298 * reference count. Waits on I_NEW before returning the inode.
1299 * returned with an incremented reference count.
1301 * This is a generalized version of ilookup() for file systems where the
1302 * inode number is not sufficient for unique identification of an inode.
1304 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1306 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1307 int (*test
)(struct inode
*, void *), void *data
)
1309 struct inode
*inode
;
1311 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1313 wait_on_inode(inode
);
1314 if (unlikely(inode_unhashed(inode
))) {
1321 EXPORT_SYMBOL(ilookup5
);
1324 * ilookup - search for an inode in the inode cache
1325 * @sb: super block of file system to search
1326 * @ino: inode number to search for
1328 * Search for the inode @ino in the inode cache, and if the inode is in the
1329 * cache, the inode is returned with an incremented reference count.
1331 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1333 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1334 struct inode
*inode
;
1336 spin_lock(&inode_hash_lock
);
1337 inode
= find_inode_fast(sb
, head
, ino
);
1338 spin_unlock(&inode_hash_lock
);
1341 wait_on_inode(inode
);
1342 if (unlikely(inode_unhashed(inode
))) {
1349 EXPORT_SYMBOL(ilookup
);
1352 * find_inode_nowait - find an inode in the inode cache
1353 * @sb: super block of file system to search
1354 * @hashval: hash value (usually inode number) to search for
1355 * @match: callback used for comparisons between inodes
1356 * @data: opaque data pointer to pass to @match
1358 * Search for the inode specified by @hashval and @data in the inode
1359 * cache, where the helper function @match will return 0 if the inode
1360 * does not match, 1 if the inode does match, and -1 if the search
1361 * should be stopped. The @match function must be responsible for
1362 * taking the i_lock spin_lock and checking i_state for an inode being
1363 * freed or being initialized, and incrementing the reference count
1364 * before returning 1. It also must not sleep, since it is called with
1365 * the inode_hash_lock spinlock held.
1367 * This is a even more generalized version of ilookup5() when the
1368 * function must never block --- find_inode() can block in
1369 * __wait_on_freeing_inode() --- or when the caller can not increment
1370 * the reference count because the resulting iput() might cause an
1371 * inode eviction. The tradeoff is that the @match funtion must be
1372 * very carefully implemented.
1374 struct inode
*find_inode_nowait(struct super_block
*sb
,
1375 unsigned long hashval
,
1376 int (*match
)(struct inode
*, unsigned long,
1380 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1381 struct inode
*inode
, *ret_inode
= NULL
;
1384 spin_lock(&inode_hash_lock
);
1385 hlist_for_each_entry(inode
, head
, i_hash
) {
1386 if (inode
->i_sb
!= sb
)
1388 mval
= match(inode
, hashval
, data
);
1396 spin_unlock(&inode_hash_lock
);
1399 EXPORT_SYMBOL(find_inode_nowait
);
1401 int insert_inode_locked(struct inode
*inode
)
1403 struct super_block
*sb
= inode
->i_sb
;
1404 ino_t ino
= inode
->i_ino
;
1405 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1408 struct inode
*old
= NULL
;
1409 spin_lock(&inode_hash_lock
);
1410 hlist_for_each_entry(old
, head
, i_hash
) {
1411 if (old
->i_ino
!= ino
)
1413 if (old
->i_sb
!= sb
)
1415 spin_lock(&old
->i_lock
);
1416 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1417 spin_unlock(&old
->i_lock
);
1423 spin_lock(&inode
->i_lock
);
1424 inode
->i_state
|= I_NEW
;
1425 hlist_add_head(&inode
->i_hash
, head
);
1426 spin_unlock(&inode
->i_lock
);
1427 spin_unlock(&inode_hash_lock
);
1431 spin_unlock(&old
->i_lock
);
1432 spin_unlock(&inode_hash_lock
);
1434 if (unlikely(!inode_unhashed(old
))) {
1441 EXPORT_SYMBOL(insert_inode_locked
);
1443 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1444 int (*test
)(struct inode
*, void *), void *data
)
1446 struct inode
*old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1454 EXPORT_SYMBOL(insert_inode_locked4
);
1457 int generic_delete_inode(struct inode
*inode
)
1461 EXPORT_SYMBOL(generic_delete_inode
);
1464 * Called when we're dropping the last reference
1467 * Call the FS "drop_inode()" function, defaulting to
1468 * the legacy UNIX filesystem behaviour. If it tells
1469 * us to evict inode, do so. Otherwise, retain inode
1470 * in cache if fs is alive, sync and evict if fs is
1473 static void iput_final(struct inode
*inode
)
1475 struct super_block
*sb
= inode
->i_sb
;
1476 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1479 WARN_ON(inode
->i_state
& I_NEW
);
1482 drop
= op
->drop_inode(inode
);
1484 drop
= generic_drop_inode(inode
);
1486 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1487 inode_add_lru(inode
);
1488 spin_unlock(&inode
->i_lock
);
1493 inode
->i_state
|= I_WILL_FREE
;
1494 spin_unlock(&inode
->i_lock
);
1495 write_inode_now(inode
, 1);
1496 spin_lock(&inode
->i_lock
);
1497 WARN_ON(inode
->i_state
& I_NEW
);
1498 inode
->i_state
&= ~I_WILL_FREE
;
1501 inode
->i_state
|= I_FREEING
;
1502 if (!list_empty(&inode
->i_lru
))
1503 inode_lru_list_del(inode
);
1504 spin_unlock(&inode
->i_lock
);
1510 * iput - put an inode
1511 * @inode: inode to put
1513 * Puts an inode, dropping its usage count. If the inode use count hits
1514 * zero, the inode is then freed and may also be destroyed.
1516 * Consequently, iput() can sleep.
1518 void iput(struct inode
*inode
)
1522 BUG_ON(inode
->i_state
& I_CLEAR
);
1524 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1525 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1526 atomic_inc(&inode
->i_count
);
1527 spin_unlock(&inode
->i_lock
);
1528 trace_writeback_lazytime_iput(inode
);
1529 mark_inode_dirty_sync(inode
);
1535 EXPORT_SYMBOL(iput
);
1538 * bmap - find a block number in a file
1539 * @inode: inode of file
1540 * @block: block to find
1542 * Returns the block number on the device holding the inode that
1543 * is the disk block number for the block of the file requested.
1544 * That is, asked for block 4 of inode 1 the function will return the
1545 * disk block relative to the disk start that holds that block of the
1548 sector_t
bmap(struct inode
*inode
, sector_t block
)
1551 if (inode
->i_mapping
->a_ops
->bmap
)
1552 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1555 EXPORT_SYMBOL(bmap
);
1558 * Update times in overlayed inode from underlying real inode
1560 static void update_ovl_inode_times(struct dentry
*dentry
, struct inode
*inode
,
1563 struct dentry
*upperdentry
;
1566 * Nothing to do if in rcu or if non-overlayfs
1568 if (rcu
|| likely(!(dentry
->d_flags
& DCACHE_OP_REAL
)))
1571 upperdentry
= d_real(dentry
, NULL
, 0, D_REAL_UPPER
);
1574 * If file is on lower then we can't update atime, so no worries about
1575 * stale mtime/ctime.
1578 struct inode
*realinode
= d_inode(upperdentry
);
1580 if ((!timespec64_equal(&inode
->i_mtime
, &realinode
->i_mtime
) ||
1581 !timespec64_equal(&inode
->i_ctime
, &realinode
->i_ctime
))) {
1582 inode
->i_mtime
= realinode
->i_mtime
;
1583 inode
->i_ctime
= realinode
->i_ctime
;
1589 * With relative atime, only update atime if the previous atime is
1590 * earlier than either the ctime or mtime or if at least a day has
1591 * passed since the last atime update.
1593 static int relatime_need_update(const struct path
*path
, struct inode
*inode
,
1594 struct timespec now
, bool rcu
)
1597 if (!(path
->mnt
->mnt_flags
& MNT_RELATIME
))
1600 update_ovl_inode_times(path
->dentry
, inode
, rcu
);
1602 * Is mtime younger than atime? If yes, update atime:
1604 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1607 * Is ctime younger than atime? If yes, update atime:
1609 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1613 * Is the previous atime value older than a day? If yes,
1616 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1619 * Good, we can skip the atime update:
1624 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1626 int iflags
= I_DIRTY_TIME
;
1629 if (flags
& S_ATIME
)
1630 inode
->i_atime
= *time
;
1631 if (flags
& S_VERSION
)
1632 dirty
= inode_maybe_inc_iversion(inode
, false);
1633 if (flags
& S_CTIME
)
1634 inode
->i_ctime
= *time
;
1635 if (flags
& S_MTIME
)
1636 inode
->i_mtime
= *time
;
1637 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1638 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1642 iflags
|= I_DIRTY_SYNC
;
1643 __mark_inode_dirty(inode
, iflags
);
1646 EXPORT_SYMBOL(generic_update_time
);
1649 * This does the actual work of updating an inodes time or version. Must have
1650 * had called mnt_want_write() before calling this.
1652 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1654 int (*update_time
)(struct inode
*, struct timespec64
*, int);
1656 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1657 generic_update_time
;
1659 return update_time(inode
, time
, flags
);
1663 * touch_atime - update the access time
1664 * @path: the &struct path to update
1665 * @inode: inode to update
1667 * Update the accessed time on an inode and mark it for writeback.
1668 * This function automatically handles read only file systems and media,
1669 * as well as the "noatime" flag and inode specific "noatime" markers.
1671 bool __atime_needs_update(const struct path
*path
, struct inode
*inode
,
1674 struct vfsmount
*mnt
= path
->mnt
;
1675 struct timespec64 now
;
1677 if (inode
->i_flags
& S_NOATIME
)
1680 /* Atime updates will likely cause i_uid and i_gid to be written
1681 * back improprely if their true value is unknown to the vfs.
1683 if (HAS_UNMAPPED_ID(inode
))
1686 if (IS_NOATIME(inode
))
1688 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1691 if (mnt
->mnt_flags
& MNT_NOATIME
)
1693 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1696 now
= current_time(inode
);
1698 if (!relatime_need_update(path
, inode
, timespec64_to_timespec(now
), rcu
))
1701 if (timespec64_equal(&inode
->i_atime
, &now
))
1707 void touch_atime(const struct path
*path
)
1709 struct vfsmount
*mnt
= path
->mnt
;
1710 struct inode
*inode
= d_inode(path
->dentry
);
1711 struct timespec64 now
;
1713 if (!__atime_needs_update(path
, inode
, false))
1716 if (!sb_start_write_trylock(inode
->i_sb
))
1719 if (__mnt_want_write(mnt
) != 0)
1722 * File systems can error out when updating inodes if they need to
1723 * allocate new space to modify an inode (such is the case for
1724 * Btrfs), but since we touch atime while walking down the path we
1725 * really don't care if we failed to update the atime of the file,
1726 * so just ignore the return value.
1727 * We may also fail on filesystems that have the ability to make parts
1728 * of the fs read only, e.g. subvolumes in Btrfs.
1730 now
= current_time(inode
);
1731 update_time(inode
, &now
, S_ATIME
);
1732 __mnt_drop_write(mnt
);
1734 sb_end_write(inode
->i_sb
);
1736 EXPORT_SYMBOL(touch_atime
);
1739 * The logic we want is
1741 * if suid or (sgid and xgrp)
1744 int should_remove_suid(struct dentry
*dentry
)
1746 umode_t mode
= d_inode(dentry
)->i_mode
;
1749 /* suid always must be killed */
1750 if (unlikely(mode
& S_ISUID
))
1751 kill
= ATTR_KILL_SUID
;
1754 * sgid without any exec bits is just a mandatory locking mark; leave
1755 * it alone. If some exec bits are set, it's a real sgid; kill it.
1757 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1758 kill
|= ATTR_KILL_SGID
;
1760 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1765 EXPORT_SYMBOL(should_remove_suid
);
1768 * Return mask of changes for notify_change() that need to be done as a
1769 * response to write or truncate. Return 0 if nothing has to be changed.
1770 * Negative value on error (change should be denied).
1772 int dentry_needs_remove_privs(struct dentry
*dentry
)
1774 struct inode
*inode
= d_inode(dentry
);
1778 if (IS_NOSEC(inode
))
1781 mask
= should_remove_suid(dentry
);
1782 ret
= security_inode_need_killpriv(dentry
);
1786 mask
|= ATTR_KILL_PRIV
;
1790 static int __remove_privs(struct dentry
*dentry
, int kill
)
1792 struct iattr newattrs
;
1794 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1796 * Note we call this on write, so notify_change will not
1797 * encounter any conflicting delegations:
1799 return notify_change(dentry
, &newattrs
, NULL
);
1803 * Remove special file priviledges (suid, capabilities) when file is written
1806 int file_remove_privs(struct file
*file
)
1808 struct dentry
*dentry
= file_dentry(file
);
1809 struct inode
*inode
= file_inode(file
);
1813 /* Fast path for nothing security related */
1814 if (IS_NOSEC(inode
))
1817 kill
= dentry_needs_remove_privs(dentry
);
1821 error
= __remove_privs(dentry
, kill
);
1823 inode_has_no_xattr(inode
);
1827 EXPORT_SYMBOL(file_remove_privs
);
1830 * file_update_time - update mtime and ctime time
1831 * @file: file accessed
1833 * Update the mtime and ctime members of an inode and mark the inode
1834 * for writeback. Note that this function is meant exclusively for
1835 * usage in the file write path of filesystems, and filesystems may
1836 * choose to explicitly ignore update via this function with the
1837 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1838 * timestamps are handled by the server. This can return an error for
1839 * file systems who need to allocate space in order to update an inode.
1842 int file_update_time(struct file
*file
)
1844 struct inode
*inode
= file_inode(file
);
1845 struct timespec64 now
;
1849 /* First try to exhaust all avenues to not sync */
1850 if (IS_NOCMTIME(inode
))
1853 now
= current_time(inode
);
1854 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1857 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1860 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1861 sync_it
|= S_VERSION
;
1866 /* Finally allowed to write? Takes lock. */
1867 if (__mnt_want_write_file(file
))
1870 ret
= update_time(inode
, &now
, sync_it
);
1871 __mnt_drop_write_file(file
);
1875 EXPORT_SYMBOL(file_update_time
);
1877 int inode_needs_sync(struct inode
*inode
)
1881 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1885 EXPORT_SYMBOL(inode_needs_sync
);
1888 * If we try to find an inode in the inode hash while it is being
1889 * deleted, we have to wait until the filesystem completes its
1890 * deletion before reporting that it isn't found. This function waits
1891 * until the deletion _might_ have completed. Callers are responsible
1892 * to recheck inode state.
1894 * It doesn't matter if I_NEW is not set initially, a call to
1895 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1898 static void __wait_on_freeing_inode(struct inode
*inode
)
1900 wait_queue_head_t
*wq
;
1901 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1902 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1903 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1904 spin_unlock(&inode
->i_lock
);
1905 spin_unlock(&inode_hash_lock
);
1907 finish_wait(wq
, &wait
.wq_entry
);
1908 spin_lock(&inode_hash_lock
);
1911 static __initdata
unsigned long ihash_entries
;
1912 static int __init
set_ihash_entries(char *str
)
1916 ihash_entries
= simple_strtoul(str
, &str
, 0);
1919 __setup("ihash_entries=", set_ihash_entries
);
1922 * Initialize the waitqueues and inode hash table.
1924 void __init
inode_init_early(void)
1926 /* If hashes are distributed across NUMA nodes, defer
1927 * hash allocation until vmalloc space is available.
1933 alloc_large_system_hash("Inode-cache",
1934 sizeof(struct hlist_head
),
1937 HASH_EARLY
| HASH_ZERO
,
1944 void __init
inode_init(void)
1946 /* inode slab cache */
1947 inode_cachep
= kmem_cache_create("inode_cache",
1948 sizeof(struct inode
),
1950 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1951 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1954 /* Hash may have been set up in inode_init_early */
1959 alloc_large_system_hash("Inode-cache",
1960 sizeof(struct hlist_head
),
1970 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1972 inode
->i_mode
= mode
;
1973 if (S_ISCHR(mode
)) {
1974 inode
->i_fop
= &def_chr_fops
;
1975 inode
->i_rdev
= rdev
;
1976 } else if (S_ISBLK(mode
)) {
1977 inode
->i_fop
= &def_blk_fops
;
1978 inode
->i_rdev
= rdev
;
1979 } else if (S_ISFIFO(mode
))
1980 inode
->i_fop
= &pipefifo_fops
;
1981 else if (S_ISSOCK(mode
))
1982 ; /* leave it no_open_fops */
1984 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1985 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1988 EXPORT_SYMBOL(init_special_inode
);
1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1993 * @dir: Directory inode
1994 * @mode: mode of the new inode
1996 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1999 inode
->i_uid
= current_fsuid();
2000 if (dir
&& dir
->i_mode
& S_ISGID
) {
2001 inode
->i_gid
= dir
->i_gid
;
2003 /* Directories are special, and always inherit S_ISGID */
2006 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2007 !in_group_p(inode
->i_gid
) &&
2008 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2011 inode
->i_gid
= current_fsgid();
2012 inode
->i_mode
= mode
;
2014 EXPORT_SYMBOL(inode_init_owner
);
2017 * inode_owner_or_capable - check current task permissions to inode
2018 * @inode: inode being checked
2020 * Return true if current either has CAP_FOWNER in a namespace with the
2021 * inode owner uid mapped, or owns the file.
2023 bool inode_owner_or_capable(const struct inode
*inode
)
2025 struct user_namespace
*ns
;
2027 if (uid_eq(current_fsuid(), inode
->i_uid
))
2030 ns
= current_user_ns();
2031 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2035 EXPORT_SYMBOL(inode_owner_or_capable
);
2038 * Direct i/o helper functions
2040 static void __inode_dio_wait(struct inode
*inode
)
2042 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2043 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2046 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2047 if (atomic_read(&inode
->i_dio_count
))
2049 } while (atomic_read(&inode
->i_dio_count
));
2050 finish_wait(wq
, &q
.wq_entry
);
2054 * inode_dio_wait - wait for outstanding DIO requests to finish
2055 * @inode: inode to wait for
2057 * Waits for all pending direct I/O requests to finish so that we can
2058 * proceed with a truncate or equivalent operation.
2060 * Must be called under a lock that serializes taking new references
2061 * to i_dio_count, usually by inode->i_mutex.
2063 void inode_dio_wait(struct inode
*inode
)
2065 if (atomic_read(&inode
->i_dio_count
))
2066 __inode_dio_wait(inode
);
2068 EXPORT_SYMBOL(inode_dio_wait
);
2071 * inode_set_flags - atomically set some inode flags
2073 * Note: the caller should be holding i_mutex, or else be sure that
2074 * they have exclusive access to the inode structure (i.e., while the
2075 * inode is being instantiated). The reason for the cmpxchg() loop
2076 * --- which wouldn't be necessary if all code paths which modify
2077 * i_flags actually followed this rule, is that there is at least one
2078 * code path which doesn't today so we use cmpxchg() out of an abundance
2081 * In the long run, i_mutex is overkill, and we should probably look
2082 * at using the i_lock spinlock to protect i_flags, and then make sure
2083 * it is so documented in include/linux/fs.h and that all code follows
2084 * the locking convention!!
2086 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2089 unsigned int old_flags
, new_flags
;
2091 WARN_ON_ONCE(flags
& ~mask
);
2093 old_flags
= READ_ONCE(inode
->i_flags
);
2094 new_flags
= (old_flags
& ~mask
) | flags
;
2095 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2096 new_flags
) != old_flags
));
2098 EXPORT_SYMBOL(inode_set_flags
);
2100 void inode_nohighmem(struct inode
*inode
)
2102 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2104 EXPORT_SYMBOL(inode_nohighmem
);
2107 * timespec64_trunc - Truncate timespec64 to a granularity
2109 * @gran: Granularity in ns.
2111 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2112 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2114 struct timespec64
timespec64_trunc(struct timespec64 t
, unsigned gran
)
2116 /* Avoid division in the common cases 1 ns and 1 s. */
2119 } else if (gran
== NSEC_PER_SEC
) {
2121 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
2122 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2124 WARN(1, "illegal file time granularity: %u", gran
);
2128 EXPORT_SYMBOL(timespec64_trunc
);
2131 * current_time - Return FS time
2134 * Return the current time truncated to the time granularity supported by
2137 * Note that inode and inode->sb cannot be NULL.
2138 * Otherwise, the function warns and returns time without truncation.
2140 struct timespec64
current_time(struct inode
*inode
)
2142 struct timespec64 now
= current_kernel_time64();
2144 if (unlikely(!inode
->i_sb
)) {
2145 WARN(1, "current_time() called with uninitialized super_block in the inode");
2149 return timespec64_trunc(now
, inode
->i_sb
->s_time_gran
);
2151 EXPORT_SYMBOL(current_time
);