Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / drivers / rapidio / rio.c
blob0dcaa660cba1cf6969adfc9980c3ee305424509a
1 /*
2 * RapidIO interconnect services
3 * (RapidIO Interconnect Specification, http://www.rapidio.org)
5 * Copyright 2005 MontaVista Software, Inc.
6 * Matt Porter <mporter@kernel.crashing.org>
8 * Copyright 2009 - 2013 Integrated Device Technology, Inc.
9 * Alex Bounine <alexandre.bounine@idt.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
17 #include <linux/types.h>
18 #include <linux/kernel.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/rio.h>
23 #include <linux/rio_drv.h>
24 #include <linux/rio_ids.h>
25 #include <linux/rio_regs.h>
26 #include <linux/module.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
31 #include "rio.h"
34 * struct rio_pwrite - RIO portwrite event
35 * @node: Node in list of doorbell events
36 * @pwcback: Doorbell event callback
37 * @context: Handler specific context to pass on event
39 struct rio_pwrite {
40 struct list_head node;
42 int (*pwcback)(struct rio_mport *mport, void *context,
43 union rio_pw_msg *msg, int step);
44 void *context;
47 MODULE_DESCRIPTION("RapidIO Subsystem Core");
48 MODULE_AUTHOR("Matt Porter <mporter@kernel.crashing.org>");
49 MODULE_AUTHOR("Alexandre Bounine <alexandre.bounine@idt.com>");
50 MODULE_LICENSE("GPL");
52 static int hdid[RIO_MAX_MPORTS];
53 static int ids_num;
54 module_param_array(hdid, int, &ids_num, 0);
55 MODULE_PARM_DESC(hdid,
56 "Destination ID assignment to local RapidIO controllers");
58 static LIST_HEAD(rio_devices);
59 static LIST_HEAD(rio_nets);
60 static DEFINE_SPINLOCK(rio_global_list_lock);
62 static LIST_HEAD(rio_mports);
63 static LIST_HEAD(rio_scans);
64 static DEFINE_MUTEX(rio_mport_list_lock);
65 static unsigned char next_portid;
66 static DEFINE_SPINLOCK(rio_mmap_lock);
68 /**
69 * rio_local_get_device_id - Get the base/extended device id for a port
70 * @port: RIO master port from which to get the deviceid
72 * Reads the base/extended device id from the local device
73 * implementing the master port. Returns the 8/16-bit device
74 * id.
76 u16 rio_local_get_device_id(struct rio_mport *port)
78 u32 result;
80 rio_local_read_config_32(port, RIO_DID_CSR, &result);
82 return (RIO_GET_DID(port->sys_size, result));
85 /**
86 * rio_query_mport - Query mport device attributes
87 * @port: mport device to query
88 * @mport_attr: mport attributes data structure
90 * Returns attributes of specified mport through the
91 * pointer to attributes data structure.
93 int rio_query_mport(struct rio_mport *port,
94 struct rio_mport_attr *mport_attr)
96 if (!port->ops->query_mport)
97 return -ENODATA;
98 return port->ops->query_mport(port, mport_attr);
100 EXPORT_SYMBOL(rio_query_mport);
103 * rio_alloc_net- Allocate and initialize a new RIO network data structure
104 * @mport: Master port associated with the RIO network
106 * Allocates a RIO network structure, initializes per-network
107 * list heads, and adds the associated master port to the
108 * network list of associated master ports. Returns a
109 * RIO network pointer on success or %NULL on failure.
111 struct rio_net *rio_alloc_net(struct rio_mport *mport)
113 struct rio_net *net;
115 net = kzalloc(sizeof(struct rio_net), GFP_KERNEL);
116 if (net) {
117 INIT_LIST_HEAD(&net->node);
118 INIT_LIST_HEAD(&net->devices);
119 INIT_LIST_HEAD(&net->switches);
120 INIT_LIST_HEAD(&net->mports);
121 mport->net = net;
123 return net;
125 EXPORT_SYMBOL_GPL(rio_alloc_net);
127 int rio_add_net(struct rio_net *net)
129 int err;
131 err = device_register(&net->dev);
132 if (err)
133 return err;
134 spin_lock(&rio_global_list_lock);
135 list_add_tail(&net->node, &rio_nets);
136 spin_unlock(&rio_global_list_lock);
138 return 0;
140 EXPORT_SYMBOL_GPL(rio_add_net);
142 void rio_free_net(struct rio_net *net)
144 spin_lock(&rio_global_list_lock);
145 if (!list_empty(&net->node))
146 list_del(&net->node);
147 spin_unlock(&rio_global_list_lock);
148 if (net->release)
149 net->release(net);
150 device_unregister(&net->dev);
152 EXPORT_SYMBOL_GPL(rio_free_net);
155 * rio_local_set_device_id - Set the base/extended device id for a port
156 * @port: RIO master port
157 * @did: Device ID value to be written
159 * Writes the base/extended device id from a device.
161 void rio_local_set_device_id(struct rio_mport *port, u16 did)
163 rio_local_write_config_32(port, RIO_DID_CSR,
164 RIO_SET_DID(port->sys_size, did));
166 EXPORT_SYMBOL_GPL(rio_local_set_device_id);
169 * rio_add_device- Adds a RIO device to the device model
170 * @rdev: RIO device
172 * Adds the RIO device to the global device list and adds the RIO
173 * device to the RIO device list. Creates the generic sysfs nodes
174 * for an RIO device.
176 int rio_add_device(struct rio_dev *rdev)
178 int err;
180 atomic_set(&rdev->state, RIO_DEVICE_RUNNING);
181 err = device_register(&rdev->dev);
182 if (err)
183 return err;
185 spin_lock(&rio_global_list_lock);
186 list_add_tail(&rdev->global_list, &rio_devices);
187 if (rdev->net) {
188 list_add_tail(&rdev->net_list, &rdev->net->devices);
189 if (rdev->pef & RIO_PEF_SWITCH)
190 list_add_tail(&rdev->rswitch->node,
191 &rdev->net->switches);
193 spin_unlock(&rio_global_list_lock);
195 rio_create_sysfs_dev_files(rdev);
197 return 0;
199 EXPORT_SYMBOL_GPL(rio_add_device);
202 * rio_del_device - removes a RIO device from the device model
203 * @rdev: RIO device
204 * @state: device state to set during removal process
206 * Removes the RIO device to the kernel device list and subsystem's device list.
207 * Clears sysfs entries for the removed device.
209 void rio_del_device(struct rio_dev *rdev, enum rio_device_state state)
211 pr_debug("RIO: %s: removing %s\n", __func__, rio_name(rdev));
212 atomic_set(&rdev->state, state);
213 spin_lock(&rio_global_list_lock);
214 list_del(&rdev->global_list);
215 if (rdev->net) {
216 list_del(&rdev->net_list);
217 if (rdev->pef & RIO_PEF_SWITCH) {
218 list_del(&rdev->rswitch->node);
219 kfree(rdev->rswitch->route_table);
222 spin_unlock(&rio_global_list_lock);
223 rio_remove_sysfs_dev_files(rdev);
224 device_unregister(&rdev->dev);
226 EXPORT_SYMBOL_GPL(rio_del_device);
229 * rio_request_inb_mbox - request inbound mailbox service
230 * @mport: RIO master port from which to allocate the mailbox resource
231 * @dev_id: Device specific pointer to pass on event
232 * @mbox: Mailbox number to claim
233 * @entries: Number of entries in inbound mailbox queue
234 * @minb: Callback to execute when inbound message is received
236 * Requests ownership of an inbound mailbox resource and binds
237 * a callback function to the resource. Returns %0 on success.
239 int rio_request_inb_mbox(struct rio_mport *mport,
240 void *dev_id,
241 int mbox,
242 int entries,
243 void (*minb) (struct rio_mport * mport, void *dev_id, int mbox,
244 int slot))
246 int rc = -ENOSYS;
247 struct resource *res;
249 if (mport->ops->open_inb_mbox == NULL)
250 goto out;
252 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
254 if (res) {
255 rio_init_mbox_res(res, mbox, mbox);
257 /* Make sure this mailbox isn't in use */
258 if ((rc =
259 request_resource(&mport->riores[RIO_INB_MBOX_RESOURCE],
260 res)) < 0) {
261 kfree(res);
262 goto out;
265 mport->inb_msg[mbox].res = res;
267 /* Hook the inbound message callback */
268 mport->inb_msg[mbox].mcback = minb;
270 rc = mport->ops->open_inb_mbox(mport, dev_id, mbox, entries);
271 } else
272 rc = -ENOMEM;
274 out:
275 return rc;
279 * rio_release_inb_mbox - release inbound mailbox message service
280 * @mport: RIO master port from which to release the mailbox resource
281 * @mbox: Mailbox number to release
283 * Releases ownership of an inbound mailbox resource. Returns 0
284 * if the request has been satisfied.
286 int rio_release_inb_mbox(struct rio_mport *mport, int mbox)
288 if (mport->ops->close_inb_mbox) {
289 mport->ops->close_inb_mbox(mport, mbox);
291 /* Release the mailbox resource */
292 return release_resource(mport->inb_msg[mbox].res);
293 } else
294 return -ENOSYS;
298 * rio_request_outb_mbox - request outbound mailbox service
299 * @mport: RIO master port from which to allocate the mailbox resource
300 * @dev_id: Device specific pointer to pass on event
301 * @mbox: Mailbox number to claim
302 * @entries: Number of entries in outbound mailbox queue
303 * @moutb: Callback to execute when outbound message is sent
305 * Requests ownership of an outbound mailbox resource and binds
306 * a callback function to the resource. Returns 0 on success.
308 int rio_request_outb_mbox(struct rio_mport *mport,
309 void *dev_id,
310 int mbox,
311 int entries,
312 void (*moutb) (struct rio_mport * mport, void *dev_id, int mbox, int slot))
314 int rc = -ENOSYS;
315 struct resource *res;
317 if (mport->ops->open_outb_mbox == NULL)
318 goto out;
320 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
322 if (res) {
323 rio_init_mbox_res(res, mbox, mbox);
325 /* Make sure this outbound mailbox isn't in use */
326 if ((rc =
327 request_resource(&mport->riores[RIO_OUTB_MBOX_RESOURCE],
328 res)) < 0) {
329 kfree(res);
330 goto out;
333 mport->outb_msg[mbox].res = res;
335 /* Hook the inbound message callback */
336 mport->outb_msg[mbox].mcback = moutb;
338 rc = mport->ops->open_outb_mbox(mport, dev_id, mbox, entries);
339 } else
340 rc = -ENOMEM;
342 out:
343 return rc;
347 * rio_release_outb_mbox - release outbound mailbox message service
348 * @mport: RIO master port from which to release the mailbox resource
349 * @mbox: Mailbox number to release
351 * Releases ownership of an inbound mailbox resource. Returns 0
352 * if the request has been satisfied.
354 int rio_release_outb_mbox(struct rio_mport *mport, int mbox)
356 if (mport->ops->close_outb_mbox) {
357 mport->ops->close_outb_mbox(mport, mbox);
359 /* Release the mailbox resource */
360 return release_resource(mport->outb_msg[mbox].res);
361 } else
362 return -ENOSYS;
366 * rio_setup_inb_dbell - bind inbound doorbell callback
367 * @mport: RIO master port to bind the doorbell callback
368 * @dev_id: Device specific pointer to pass on event
369 * @res: Doorbell message resource
370 * @dinb: Callback to execute when doorbell is received
372 * Adds a doorbell resource/callback pair into a port's
373 * doorbell event list. Returns 0 if the request has been
374 * satisfied.
376 static int
377 rio_setup_inb_dbell(struct rio_mport *mport, void *dev_id, struct resource *res,
378 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src, u16 dst,
379 u16 info))
381 int rc = 0;
382 struct rio_dbell *dbell;
384 if (!(dbell = kmalloc(sizeof(struct rio_dbell), GFP_KERNEL))) {
385 rc = -ENOMEM;
386 goto out;
389 dbell->res = res;
390 dbell->dinb = dinb;
391 dbell->dev_id = dev_id;
393 mutex_lock(&mport->lock);
394 list_add_tail(&dbell->node, &mport->dbells);
395 mutex_unlock(&mport->lock);
397 out:
398 return rc;
402 * rio_request_inb_dbell - request inbound doorbell message service
403 * @mport: RIO master port from which to allocate the doorbell resource
404 * @dev_id: Device specific pointer to pass on event
405 * @start: Doorbell info range start
406 * @end: Doorbell info range end
407 * @dinb: Callback to execute when doorbell is received
409 * Requests ownership of an inbound doorbell resource and binds
410 * a callback function to the resource. Returns 0 if the request
411 * has been satisfied.
413 int rio_request_inb_dbell(struct rio_mport *mport,
414 void *dev_id,
415 u16 start,
416 u16 end,
417 void (*dinb) (struct rio_mport * mport, void *dev_id, u16 src,
418 u16 dst, u16 info))
420 int rc = 0;
422 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
424 if (res) {
425 rio_init_dbell_res(res, start, end);
427 /* Make sure these doorbells aren't in use */
428 if ((rc =
429 request_resource(&mport->riores[RIO_DOORBELL_RESOURCE],
430 res)) < 0) {
431 kfree(res);
432 goto out;
435 /* Hook the doorbell callback */
436 rc = rio_setup_inb_dbell(mport, dev_id, res, dinb);
437 } else
438 rc = -ENOMEM;
440 out:
441 return rc;
445 * rio_release_inb_dbell - release inbound doorbell message service
446 * @mport: RIO master port from which to release the doorbell resource
447 * @start: Doorbell info range start
448 * @end: Doorbell info range end
450 * Releases ownership of an inbound doorbell resource and removes
451 * callback from the doorbell event list. Returns 0 if the request
452 * has been satisfied.
454 int rio_release_inb_dbell(struct rio_mport *mport, u16 start, u16 end)
456 int rc = 0, found = 0;
457 struct rio_dbell *dbell;
459 mutex_lock(&mport->lock);
460 list_for_each_entry(dbell, &mport->dbells, node) {
461 if ((dbell->res->start == start) && (dbell->res->end == end)) {
462 list_del(&dbell->node);
463 found = 1;
464 break;
467 mutex_unlock(&mport->lock);
469 /* If we can't find an exact match, fail */
470 if (!found) {
471 rc = -EINVAL;
472 goto out;
475 /* Release the doorbell resource */
476 rc = release_resource(dbell->res);
478 /* Free the doorbell event */
479 kfree(dbell);
481 out:
482 return rc;
486 * rio_request_outb_dbell - request outbound doorbell message range
487 * @rdev: RIO device from which to allocate the doorbell resource
488 * @start: Doorbell message range start
489 * @end: Doorbell message range end
491 * Requests ownership of a doorbell message range. Returns a resource
492 * if the request has been satisfied or %NULL on failure.
494 struct resource *rio_request_outb_dbell(struct rio_dev *rdev, u16 start,
495 u16 end)
497 struct resource *res = kzalloc(sizeof(struct resource), GFP_KERNEL);
499 if (res) {
500 rio_init_dbell_res(res, start, end);
502 /* Make sure these doorbells aren't in use */
503 if (request_resource(&rdev->riores[RIO_DOORBELL_RESOURCE], res)
504 < 0) {
505 kfree(res);
506 res = NULL;
510 return res;
514 * rio_release_outb_dbell - release outbound doorbell message range
515 * @rdev: RIO device from which to release the doorbell resource
516 * @res: Doorbell resource to be freed
518 * Releases ownership of a doorbell message range. Returns 0 if the
519 * request has been satisfied.
521 int rio_release_outb_dbell(struct rio_dev *rdev, struct resource *res)
523 int rc = release_resource(res);
525 kfree(res);
527 return rc;
531 * rio_add_mport_pw_handler - add port-write message handler into the list
532 * of mport specific pw handlers
533 * @mport: RIO master port to bind the portwrite callback
534 * @context: Handler specific context to pass on event
535 * @pwcback: Callback to execute when portwrite is received
537 * Returns 0 if the request has been satisfied.
539 int rio_add_mport_pw_handler(struct rio_mport *mport, void *context,
540 int (*pwcback)(struct rio_mport *mport,
541 void *context, union rio_pw_msg *msg, int step))
543 int rc = 0;
544 struct rio_pwrite *pwrite;
546 pwrite = kzalloc(sizeof(struct rio_pwrite), GFP_KERNEL);
547 if (!pwrite) {
548 rc = -ENOMEM;
549 goto out;
552 pwrite->pwcback = pwcback;
553 pwrite->context = context;
554 mutex_lock(&mport->lock);
555 list_add_tail(&pwrite->node, &mport->pwrites);
556 mutex_unlock(&mport->lock);
557 out:
558 return rc;
560 EXPORT_SYMBOL_GPL(rio_add_mport_pw_handler);
563 * rio_del_mport_pw_handler - remove port-write message handler from the list
564 * of mport specific pw handlers
565 * @mport: RIO master port to bind the portwrite callback
566 * @context: Registered handler specific context to pass on event
567 * @pwcback: Registered callback function
569 * Returns 0 if the request has been satisfied.
571 int rio_del_mport_pw_handler(struct rio_mport *mport, void *context,
572 int (*pwcback)(struct rio_mport *mport,
573 void *context, union rio_pw_msg *msg, int step))
575 int rc = -EINVAL;
576 struct rio_pwrite *pwrite;
578 mutex_lock(&mport->lock);
579 list_for_each_entry(pwrite, &mport->pwrites, node) {
580 if (pwrite->pwcback == pwcback && pwrite->context == context) {
581 list_del(&pwrite->node);
582 kfree(pwrite);
583 rc = 0;
584 break;
587 mutex_unlock(&mport->lock);
589 return rc;
591 EXPORT_SYMBOL_GPL(rio_del_mport_pw_handler);
594 * rio_request_inb_pwrite - request inbound port-write message service for
595 * specific RapidIO device
596 * @rdev: RIO device to which register inbound port-write callback routine
597 * @pwcback: Callback routine to execute when port-write is received
599 * Binds a port-write callback function to the RapidIO device.
600 * Returns 0 if the request has been satisfied.
602 int rio_request_inb_pwrite(struct rio_dev *rdev,
603 int (*pwcback)(struct rio_dev *rdev, union rio_pw_msg *msg, int step))
605 int rc = 0;
607 spin_lock(&rio_global_list_lock);
608 if (rdev->pwcback != NULL)
609 rc = -ENOMEM;
610 else
611 rdev->pwcback = pwcback;
613 spin_unlock(&rio_global_list_lock);
614 return rc;
616 EXPORT_SYMBOL_GPL(rio_request_inb_pwrite);
619 * rio_release_inb_pwrite - release inbound port-write message service
620 * associated with specific RapidIO device
621 * @rdev: RIO device which registered for inbound port-write callback
623 * Removes callback from the rio_dev structure. Returns 0 if the request
624 * has been satisfied.
626 int rio_release_inb_pwrite(struct rio_dev *rdev)
628 int rc = -ENOMEM;
630 spin_lock(&rio_global_list_lock);
631 if (rdev->pwcback) {
632 rdev->pwcback = NULL;
633 rc = 0;
636 spin_unlock(&rio_global_list_lock);
637 return rc;
639 EXPORT_SYMBOL_GPL(rio_release_inb_pwrite);
642 * rio_pw_enable - Enables/disables port-write handling by a master port
643 * @mport: Master port associated with port-write handling
644 * @enable: 1=enable, 0=disable
646 void rio_pw_enable(struct rio_mport *mport, int enable)
648 if (mport->ops->pwenable) {
649 mutex_lock(&mport->lock);
651 if ((enable && ++mport->pwe_refcnt == 1) ||
652 (!enable && mport->pwe_refcnt && --mport->pwe_refcnt == 0))
653 mport->ops->pwenable(mport, enable);
654 mutex_unlock(&mport->lock);
657 EXPORT_SYMBOL_GPL(rio_pw_enable);
660 * rio_map_inb_region -- Map inbound memory region.
661 * @mport: Master port.
662 * @local: physical address of memory region to be mapped
663 * @rbase: RIO base address assigned to this window
664 * @size: Size of the memory region
665 * @rflags: Flags for mapping.
667 * Return: 0 -- Success.
669 * This function will create the mapping from RIO space to local memory.
671 int rio_map_inb_region(struct rio_mport *mport, dma_addr_t local,
672 u64 rbase, u32 size, u32 rflags)
674 int rc = 0;
675 unsigned long flags;
677 if (!mport->ops->map_inb)
678 return -1;
679 spin_lock_irqsave(&rio_mmap_lock, flags);
680 rc = mport->ops->map_inb(mport, local, rbase, size, rflags);
681 spin_unlock_irqrestore(&rio_mmap_lock, flags);
682 return rc;
684 EXPORT_SYMBOL_GPL(rio_map_inb_region);
687 * rio_unmap_inb_region -- Unmap the inbound memory region
688 * @mport: Master port
689 * @lstart: physical address of memory region to be unmapped
691 void rio_unmap_inb_region(struct rio_mport *mport, dma_addr_t lstart)
693 unsigned long flags;
694 if (!mport->ops->unmap_inb)
695 return;
696 spin_lock_irqsave(&rio_mmap_lock, flags);
697 mport->ops->unmap_inb(mport, lstart);
698 spin_unlock_irqrestore(&rio_mmap_lock, flags);
700 EXPORT_SYMBOL_GPL(rio_unmap_inb_region);
703 * rio_map_outb_region -- Map outbound memory region.
704 * @mport: Master port.
705 * @destid: destination id window points to
706 * @rbase: RIO base address window translates to
707 * @size: Size of the memory region
708 * @rflags: Flags for mapping.
709 * @local: physical address of memory region mapped
711 * Return: 0 -- Success.
713 * This function will create the mapping from RIO space to local memory.
715 int rio_map_outb_region(struct rio_mport *mport, u16 destid, u64 rbase,
716 u32 size, u32 rflags, dma_addr_t *local)
718 int rc = 0;
719 unsigned long flags;
721 if (!mport->ops->map_outb)
722 return -ENODEV;
724 spin_lock_irqsave(&rio_mmap_lock, flags);
725 rc = mport->ops->map_outb(mport, destid, rbase, size,
726 rflags, local);
727 spin_unlock_irqrestore(&rio_mmap_lock, flags);
729 return rc;
731 EXPORT_SYMBOL_GPL(rio_map_outb_region);
734 * rio_unmap_inb_region -- Unmap the inbound memory region
735 * @mport: Master port
736 * @destid: destination id mapping points to
737 * @rstart: RIO base address window translates to
739 void rio_unmap_outb_region(struct rio_mport *mport, u16 destid, u64 rstart)
741 unsigned long flags;
743 if (!mport->ops->unmap_outb)
744 return;
746 spin_lock_irqsave(&rio_mmap_lock, flags);
747 mport->ops->unmap_outb(mport, destid, rstart);
748 spin_unlock_irqrestore(&rio_mmap_lock, flags);
750 EXPORT_SYMBOL_GPL(rio_unmap_outb_region);
753 * rio_mport_get_physefb - Helper function that returns register offset
754 * for Physical Layer Extended Features Block.
755 * @port: Master port to issue transaction
756 * @local: Indicate a local master port or remote device access
757 * @destid: Destination ID of the device
758 * @hopcount: Number of switch hops to the device
761 rio_mport_get_physefb(struct rio_mport *port, int local,
762 u16 destid, u8 hopcount)
764 u32 ext_ftr_ptr;
765 u32 ftr_header;
767 ext_ftr_ptr = rio_mport_get_efb(port, local, destid, hopcount, 0);
769 while (ext_ftr_ptr) {
770 if (local)
771 rio_local_read_config_32(port, ext_ftr_ptr,
772 &ftr_header);
773 else
774 rio_mport_read_config_32(port, destid, hopcount,
775 ext_ftr_ptr, &ftr_header);
777 ftr_header = RIO_GET_BLOCK_ID(ftr_header);
778 switch (ftr_header) {
780 case RIO_EFB_SER_EP_ID_V13P:
781 case RIO_EFB_SER_EP_REC_ID_V13P:
782 case RIO_EFB_SER_EP_FREE_ID_V13P:
783 case RIO_EFB_SER_EP_ID:
784 case RIO_EFB_SER_EP_REC_ID:
785 case RIO_EFB_SER_EP_FREE_ID:
786 case RIO_EFB_SER_EP_FREC_ID:
788 return ext_ftr_ptr;
790 default:
791 break;
794 ext_ftr_ptr = rio_mport_get_efb(port, local, destid,
795 hopcount, ext_ftr_ptr);
798 return ext_ftr_ptr;
800 EXPORT_SYMBOL_GPL(rio_mport_get_physefb);
803 * rio_get_comptag - Begin or continue searching for a RIO device by component tag
804 * @comp_tag: RIO component tag to match
805 * @from: Previous RIO device found in search, or %NULL for new search
807 * Iterates through the list of known RIO devices. If a RIO device is
808 * found with a matching @comp_tag, a pointer to its device
809 * structure is returned. Otherwise, %NULL is returned. A new search
810 * is initiated by passing %NULL to the @from argument. Otherwise, if
811 * @from is not %NULL, searches continue from next device on the global
812 * list.
814 struct rio_dev *rio_get_comptag(u32 comp_tag, struct rio_dev *from)
816 struct list_head *n;
817 struct rio_dev *rdev;
819 spin_lock(&rio_global_list_lock);
820 n = from ? from->global_list.next : rio_devices.next;
822 while (n && (n != &rio_devices)) {
823 rdev = rio_dev_g(n);
824 if (rdev->comp_tag == comp_tag)
825 goto exit;
826 n = n->next;
828 rdev = NULL;
829 exit:
830 spin_unlock(&rio_global_list_lock);
831 return rdev;
833 EXPORT_SYMBOL_GPL(rio_get_comptag);
836 * rio_set_port_lockout - Sets/clears LOCKOUT bit (RIO EM 1.3) for a switch port.
837 * @rdev: Pointer to RIO device control structure
838 * @pnum: Switch port number to set LOCKOUT bit
839 * @lock: Operation : set (=1) or clear (=0)
841 int rio_set_port_lockout(struct rio_dev *rdev, u32 pnum, int lock)
843 u32 regval;
845 rio_read_config_32(rdev,
846 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
847 &regval);
848 if (lock)
849 regval |= RIO_PORT_N_CTL_LOCKOUT;
850 else
851 regval &= ~RIO_PORT_N_CTL_LOCKOUT;
853 rio_write_config_32(rdev,
854 rdev->phys_efptr + RIO_PORT_N_CTL_CSR(pnum),
855 regval);
856 return 0;
858 EXPORT_SYMBOL_GPL(rio_set_port_lockout);
861 * rio_enable_rx_tx_port - enable input receiver and output transmitter of
862 * given port
863 * @port: Master port associated with the RIO network
864 * @local: local=1 select local port otherwise a far device is reached
865 * @destid: Destination ID of the device to check host bit
866 * @hopcount: Number of hops to reach the target
867 * @port_num: Port (-number on switch) to enable on a far end device
869 * Returns 0 or 1 from on General Control Command and Status Register
870 * (EXT_PTR+0x3C)
872 int rio_enable_rx_tx_port(struct rio_mport *port,
873 int local, u16 destid,
874 u8 hopcount, u8 port_num)
876 #ifdef CONFIG_RAPIDIO_ENABLE_RX_TX_PORTS
877 u32 regval;
878 u32 ext_ftr_ptr;
881 * enable rx input tx output port
883 pr_debug("rio_enable_rx_tx_port(local = %d, destid = %d, hopcount = "
884 "%d, port_num = %d)\n", local, destid, hopcount, port_num);
886 ext_ftr_ptr = rio_mport_get_physefb(port, local, destid, hopcount);
888 if (local) {
889 rio_local_read_config_32(port, ext_ftr_ptr +
890 RIO_PORT_N_CTL_CSR(0),
891 &regval);
892 } else {
893 if (rio_mport_read_config_32(port, destid, hopcount,
894 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), &regval) < 0)
895 return -EIO;
898 if (regval & RIO_PORT_N_CTL_P_TYP_SER) {
899 /* serial */
900 regval = regval | RIO_PORT_N_CTL_EN_RX_SER
901 | RIO_PORT_N_CTL_EN_TX_SER;
902 } else {
903 /* parallel */
904 regval = regval | RIO_PORT_N_CTL_EN_RX_PAR
905 | RIO_PORT_N_CTL_EN_TX_PAR;
908 if (local) {
909 rio_local_write_config_32(port, ext_ftr_ptr +
910 RIO_PORT_N_CTL_CSR(0), regval);
911 } else {
912 if (rio_mport_write_config_32(port, destid, hopcount,
913 ext_ftr_ptr + RIO_PORT_N_CTL_CSR(port_num), regval) < 0)
914 return -EIO;
916 #endif
917 return 0;
919 EXPORT_SYMBOL_GPL(rio_enable_rx_tx_port);
923 * rio_chk_dev_route - Validate route to the specified device.
924 * @rdev: RIO device failed to respond
925 * @nrdev: Last active device on the route to rdev
926 * @npnum: nrdev's port number on the route to rdev
928 * Follows a route to the specified RIO device to determine the last available
929 * device (and corresponding RIO port) on the route.
931 static int
932 rio_chk_dev_route(struct rio_dev *rdev, struct rio_dev **nrdev, int *npnum)
934 u32 result;
935 int p_port, rc = -EIO;
936 struct rio_dev *prev = NULL;
938 /* Find switch with failed RIO link */
939 while (rdev->prev && (rdev->prev->pef & RIO_PEF_SWITCH)) {
940 if (!rio_read_config_32(rdev->prev, RIO_DEV_ID_CAR, &result)) {
941 prev = rdev->prev;
942 break;
944 rdev = rdev->prev;
947 if (prev == NULL)
948 goto err_out;
950 p_port = prev->rswitch->route_table[rdev->destid];
952 if (p_port != RIO_INVALID_ROUTE) {
953 pr_debug("RIO: link failed on [%s]-P%d\n",
954 rio_name(prev), p_port);
955 *nrdev = prev;
956 *npnum = p_port;
957 rc = 0;
958 } else
959 pr_debug("RIO: failed to trace route to %s\n", rio_name(rdev));
960 err_out:
961 return rc;
965 * rio_mport_chk_dev_access - Validate access to the specified device.
966 * @mport: Master port to send transactions
967 * @destid: Device destination ID in network
968 * @hopcount: Number of hops into the network
971 rio_mport_chk_dev_access(struct rio_mport *mport, u16 destid, u8 hopcount)
973 int i = 0;
974 u32 tmp;
976 while (rio_mport_read_config_32(mport, destid, hopcount,
977 RIO_DEV_ID_CAR, &tmp)) {
978 i++;
979 if (i == RIO_MAX_CHK_RETRY)
980 return -EIO;
981 mdelay(1);
984 return 0;
986 EXPORT_SYMBOL_GPL(rio_mport_chk_dev_access);
989 * rio_chk_dev_access - Validate access to the specified device.
990 * @rdev: Pointer to RIO device control structure
992 static int rio_chk_dev_access(struct rio_dev *rdev)
994 return rio_mport_chk_dev_access(rdev->net->hport,
995 rdev->destid, rdev->hopcount);
999 * rio_get_input_status - Sends a Link-Request/Input-Status control symbol and
1000 * returns link-response (if requested).
1001 * @rdev: RIO devive to issue Input-status command
1002 * @pnum: Device port number to issue the command
1003 * @lnkresp: Response from a link partner
1005 static int
1006 rio_get_input_status(struct rio_dev *rdev, int pnum, u32 *lnkresp)
1008 u32 regval;
1009 int checkcount;
1011 if (lnkresp) {
1012 /* Read from link maintenance response register
1013 * to clear valid bit */
1014 rio_read_config_32(rdev,
1015 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1016 &regval);
1017 udelay(50);
1020 /* Issue Input-status command */
1021 rio_write_config_32(rdev,
1022 rdev->phys_efptr + RIO_PORT_N_MNT_REQ_CSR(pnum),
1023 RIO_MNT_REQ_CMD_IS);
1025 /* Exit if the response is not expected */
1026 if (lnkresp == NULL)
1027 return 0;
1029 checkcount = 3;
1030 while (checkcount--) {
1031 udelay(50);
1032 rio_read_config_32(rdev,
1033 rdev->phys_efptr + RIO_PORT_N_MNT_RSP_CSR(pnum),
1034 &regval);
1035 if (regval & RIO_PORT_N_MNT_RSP_RVAL) {
1036 *lnkresp = regval;
1037 return 0;
1041 return -EIO;
1045 * rio_clr_err_stopped - Clears port Error-stopped states.
1046 * @rdev: Pointer to RIO device control structure
1047 * @pnum: Switch port number to clear errors
1048 * @err_status: port error status (if 0 reads register from device)
1050 static int rio_clr_err_stopped(struct rio_dev *rdev, u32 pnum, u32 err_status)
1052 struct rio_dev *nextdev = rdev->rswitch->nextdev[pnum];
1053 u32 regval;
1054 u32 far_ackid, far_linkstat, near_ackid;
1056 if (err_status == 0)
1057 rio_read_config_32(rdev,
1058 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1059 &err_status);
1061 if (err_status & RIO_PORT_N_ERR_STS_PW_OUT_ES) {
1062 pr_debug("RIO_EM: servicing Output Error-Stopped state\n");
1064 * Send a Link-Request/Input-Status control symbol
1066 if (rio_get_input_status(rdev, pnum, &regval)) {
1067 pr_debug("RIO_EM: Input-status response timeout\n");
1068 goto rd_err;
1071 pr_debug("RIO_EM: SP%d Input-status response=0x%08x\n",
1072 pnum, regval);
1073 far_ackid = (regval & RIO_PORT_N_MNT_RSP_ASTAT) >> 5;
1074 far_linkstat = regval & RIO_PORT_N_MNT_RSP_LSTAT;
1075 rio_read_config_32(rdev,
1076 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1077 &regval);
1078 pr_debug("RIO_EM: SP%d_ACK_STS_CSR=0x%08x\n", pnum, regval);
1079 near_ackid = (regval & RIO_PORT_N_ACK_INBOUND) >> 24;
1080 pr_debug("RIO_EM: SP%d far_ackID=0x%02x far_linkstat=0x%02x" \
1081 " near_ackID=0x%02x\n",
1082 pnum, far_ackid, far_linkstat, near_ackid);
1085 * If required, synchronize ackIDs of near and
1086 * far sides.
1088 if ((far_ackid != ((regval & RIO_PORT_N_ACK_OUTSTAND) >> 8)) ||
1089 (far_ackid != (regval & RIO_PORT_N_ACK_OUTBOUND))) {
1090 /* Align near outstanding/outbound ackIDs with
1091 * far inbound.
1093 rio_write_config_32(rdev,
1094 rdev->phys_efptr + RIO_PORT_N_ACK_STS_CSR(pnum),
1095 (near_ackid << 24) |
1096 (far_ackid << 8) | far_ackid);
1097 /* Align far outstanding/outbound ackIDs with
1098 * near inbound.
1100 far_ackid++;
1101 if (nextdev)
1102 rio_write_config_32(nextdev,
1103 nextdev->phys_efptr +
1104 RIO_PORT_N_ACK_STS_CSR(RIO_GET_PORT_NUM(nextdev->swpinfo)),
1105 (far_ackid << 24) |
1106 (near_ackid << 8) | near_ackid);
1107 else
1108 pr_debug("RIO_EM: Invalid nextdev pointer (NULL)\n");
1110 rd_err:
1111 rio_read_config_32(rdev,
1112 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1113 &err_status);
1114 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1117 if ((err_status & RIO_PORT_N_ERR_STS_PW_INP_ES) && nextdev) {
1118 pr_debug("RIO_EM: servicing Input Error-Stopped state\n");
1119 rio_get_input_status(nextdev,
1120 RIO_GET_PORT_NUM(nextdev->swpinfo), NULL);
1121 udelay(50);
1123 rio_read_config_32(rdev,
1124 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(pnum),
1125 &err_status);
1126 pr_debug("RIO_EM: SP%d_ERR_STS_CSR=0x%08x\n", pnum, err_status);
1129 return (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1130 RIO_PORT_N_ERR_STS_PW_INP_ES)) ? 1 : 0;
1134 * rio_inb_pwrite_handler - inbound port-write message handler
1135 * @mport: mport device associated with port-write
1136 * @pw_msg: pointer to inbound port-write message
1138 * Processes an inbound port-write message. Returns 0 if the request
1139 * has been satisfied.
1141 int rio_inb_pwrite_handler(struct rio_mport *mport, union rio_pw_msg *pw_msg)
1143 struct rio_dev *rdev;
1144 u32 err_status, em_perrdet, em_ltlerrdet;
1145 int rc, portnum;
1146 struct rio_pwrite *pwrite;
1148 #ifdef DEBUG_PW
1150 u32 i;
1152 pr_debug("%s: PW to mport_%d:\n", __func__, mport->id);
1153 for (i = 0; i < RIO_PW_MSG_SIZE / sizeof(u32); i = i + 4) {
1154 pr_debug("0x%02x: %08x %08x %08x %08x\n",
1155 i * 4, pw_msg->raw[i], pw_msg->raw[i + 1],
1156 pw_msg->raw[i + 2], pw_msg->raw[i + 3]);
1159 #endif
1161 rdev = rio_get_comptag((pw_msg->em.comptag & RIO_CTAG_UDEVID), NULL);
1162 if (rdev) {
1163 pr_debug("RIO: Port-Write message from %s\n", rio_name(rdev));
1164 } else {
1165 pr_debug("RIO: %s No matching device for CTag 0x%08x\n",
1166 __func__, pw_msg->em.comptag);
1169 /* Call a device-specific handler (if it is registered for the device).
1170 * This may be the service for endpoints that send device-specific
1171 * port-write messages. End-point messages expected to be handled
1172 * completely by EP specific device driver.
1173 * For switches rc==0 signals that no standard processing required.
1175 if (rdev && rdev->pwcback) {
1176 rc = rdev->pwcback(rdev, pw_msg, 0);
1177 if (rc == 0)
1178 return 0;
1181 mutex_lock(&mport->lock);
1182 list_for_each_entry(pwrite, &mport->pwrites, node)
1183 pwrite->pwcback(mport, pwrite->context, pw_msg, 0);
1184 mutex_unlock(&mport->lock);
1186 if (!rdev)
1187 return 0;
1190 * FIXME: The code below stays as it was before for now until we decide
1191 * how to do default PW handling in combination with per-mport callbacks
1194 portnum = pw_msg->em.is_port & 0xFF;
1196 /* Check if device and route to it are functional:
1197 * Sometimes devices may send PW message(s) just before being
1198 * powered down (or link being lost).
1200 if (rio_chk_dev_access(rdev)) {
1201 pr_debug("RIO: device access failed - get link partner\n");
1202 /* Scan route to the device and identify failed link.
1203 * This will replace device and port reported in PW message.
1204 * PW message should not be used after this point.
1206 if (rio_chk_dev_route(rdev, &rdev, &portnum)) {
1207 pr_err("RIO: Route trace for %s failed\n",
1208 rio_name(rdev));
1209 return -EIO;
1211 pw_msg = NULL;
1214 /* For End-point devices processing stops here */
1215 if (!(rdev->pef & RIO_PEF_SWITCH))
1216 return 0;
1218 if (rdev->phys_efptr == 0) {
1219 pr_err("RIO_PW: Bad switch initialization for %s\n",
1220 rio_name(rdev));
1221 return 0;
1225 * Process the port-write notification from switch
1227 if (rdev->rswitch->ops && rdev->rswitch->ops->em_handle)
1228 rdev->rswitch->ops->em_handle(rdev, portnum);
1230 rio_read_config_32(rdev,
1231 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1232 &err_status);
1233 pr_debug("RIO_PW: SP%d_ERR_STS_CSR=0x%08x\n", portnum, err_status);
1235 if (err_status & RIO_PORT_N_ERR_STS_PORT_OK) {
1237 if (!(rdev->rswitch->port_ok & (1 << portnum))) {
1238 rdev->rswitch->port_ok |= (1 << portnum);
1239 rio_set_port_lockout(rdev, portnum, 0);
1240 /* Schedule Insertion Service */
1241 pr_debug("RIO_PW: Device Insertion on [%s]-P%d\n",
1242 rio_name(rdev), portnum);
1245 /* Clear error-stopped states (if reported).
1246 * Depending on the link partner state, two attempts
1247 * may be needed for successful recovery.
1249 if (err_status & (RIO_PORT_N_ERR_STS_PW_OUT_ES |
1250 RIO_PORT_N_ERR_STS_PW_INP_ES)) {
1251 if (rio_clr_err_stopped(rdev, portnum, err_status))
1252 rio_clr_err_stopped(rdev, portnum, 0);
1254 } else { /* if (err_status & RIO_PORT_N_ERR_STS_PORT_UNINIT) */
1256 if (rdev->rswitch->port_ok & (1 << portnum)) {
1257 rdev->rswitch->port_ok &= ~(1 << portnum);
1258 rio_set_port_lockout(rdev, portnum, 1);
1260 rio_write_config_32(rdev,
1261 rdev->phys_efptr +
1262 RIO_PORT_N_ACK_STS_CSR(portnum),
1263 RIO_PORT_N_ACK_CLEAR);
1265 /* Schedule Extraction Service */
1266 pr_debug("RIO_PW: Device Extraction on [%s]-P%d\n",
1267 rio_name(rdev), portnum);
1271 rio_read_config_32(rdev,
1272 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), &em_perrdet);
1273 if (em_perrdet) {
1274 pr_debug("RIO_PW: RIO_EM_P%d_ERR_DETECT=0x%08x\n",
1275 portnum, em_perrdet);
1276 /* Clear EM Port N Error Detect CSR */
1277 rio_write_config_32(rdev,
1278 rdev->em_efptr + RIO_EM_PN_ERR_DETECT(portnum), 0);
1281 rio_read_config_32(rdev,
1282 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, &em_ltlerrdet);
1283 if (em_ltlerrdet) {
1284 pr_debug("RIO_PW: RIO_EM_LTL_ERR_DETECT=0x%08x\n",
1285 em_ltlerrdet);
1286 /* Clear EM L/T Layer Error Detect CSR */
1287 rio_write_config_32(rdev,
1288 rdev->em_efptr + RIO_EM_LTL_ERR_DETECT, 0);
1291 /* Clear remaining error bits and Port-Write Pending bit */
1292 rio_write_config_32(rdev,
1293 rdev->phys_efptr + RIO_PORT_N_ERR_STS_CSR(portnum),
1294 err_status);
1296 return 0;
1298 EXPORT_SYMBOL_GPL(rio_inb_pwrite_handler);
1301 * rio_mport_get_efb - get pointer to next extended features block
1302 * @port: Master port to issue transaction
1303 * @local: Indicate a local master port or remote device access
1304 * @destid: Destination ID of the device
1305 * @hopcount: Number of switch hops to the device
1306 * @from: Offset of current Extended Feature block header (if 0 starts
1307 * from ExtFeaturePtr)
1310 rio_mport_get_efb(struct rio_mport *port, int local, u16 destid,
1311 u8 hopcount, u32 from)
1313 u32 reg_val;
1315 if (from == 0) {
1316 if (local)
1317 rio_local_read_config_32(port, RIO_ASM_INFO_CAR,
1318 &reg_val);
1319 else
1320 rio_mport_read_config_32(port, destid, hopcount,
1321 RIO_ASM_INFO_CAR, &reg_val);
1322 return reg_val & RIO_EXT_FTR_PTR_MASK;
1323 } else {
1324 if (local)
1325 rio_local_read_config_32(port, from, &reg_val);
1326 else
1327 rio_mport_read_config_32(port, destid, hopcount,
1328 from, &reg_val);
1329 return RIO_GET_BLOCK_ID(reg_val);
1332 EXPORT_SYMBOL_GPL(rio_mport_get_efb);
1335 * rio_mport_get_feature - query for devices' extended features
1336 * @port: Master port to issue transaction
1337 * @local: Indicate a local master port or remote device access
1338 * @destid: Destination ID of the device
1339 * @hopcount: Number of switch hops to the device
1340 * @ftr: Extended feature code
1342 * Tell if a device supports a given RapidIO capability.
1343 * Returns the offset of the requested extended feature
1344 * block within the device's RIO configuration space or
1345 * 0 in case the device does not support it. Possible
1346 * values for @ftr:
1348 * %RIO_EFB_PAR_EP_ID LP/LVDS EP Devices
1350 * %RIO_EFB_PAR_EP_REC_ID LP/LVDS EP Recovery Devices
1352 * %RIO_EFB_PAR_EP_FREE_ID LP/LVDS EP Free Devices
1354 * %RIO_EFB_SER_EP_ID LP/Serial EP Devices
1356 * %RIO_EFB_SER_EP_REC_ID LP/Serial EP Recovery Devices
1358 * %RIO_EFB_SER_EP_FREE_ID LP/Serial EP Free Devices
1361 rio_mport_get_feature(struct rio_mport * port, int local, u16 destid,
1362 u8 hopcount, int ftr)
1364 u32 asm_info, ext_ftr_ptr, ftr_header;
1366 if (local)
1367 rio_local_read_config_32(port, RIO_ASM_INFO_CAR, &asm_info);
1368 else
1369 rio_mport_read_config_32(port, destid, hopcount,
1370 RIO_ASM_INFO_CAR, &asm_info);
1372 ext_ftr_ptr = asm_info & RIO_EXT_FTR_PTR_MASK;
1374 while (ext_ftr_ptr) {
1375 if (local)
1376 rio_local_read_config_32(port, ext_ftr_ptr,
1377 &ftr_header);
1378 else
1379 rio_mport_read_config_32(port, destid, hopcount,
1380 ext_ftr_ptr, &ftr_header);
1381 if (RIO_GET_BLOCK_ID(ftr_header) == ftr)
1382 return ext_ftr_ptr;
1383 if (!(ext_ftr_ptr = RIO_GET_BLOCK_PTR(ftr_header)))
1384 break;
1387 return 0;
1389 EXPORT_SYMBOL_GPL(rio_mport_get_feature);
1392 * rio_get_asm - Begin or continue searching for a RIO device by vid/did/asm_vid/asm_did
1393 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1394 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1395 * @asm_vid: RIO asm_vid to match or %RIO_ANY_ID to match all asm_vids
1396 * @asm_did: RIO asm_did to match or %RIO_ANY_ID to match all asm_dids
1397 * @from: Previous RIO device found in search, or %NULL for new search
1399 * Iterates through the list of known RIO devices. If a RIO device is
1400 * found with a matching @vid, @did, @asm_vid, @asm_did, the reference
1401 * count to the device is incrememted and a pointer to its device
1402 * structure is returned. Otherwise, %NULL is returned. A new search
1403 * is initiated by passing %NULL to the @from argument. Otherwise, if
1404 * @from is not %NULL, searches continue from next device on the global
1405 * list. The reference count for @from is always decremented if it is
1406 * not %NULL.
1408 struct rio_dev *rio_get_asm(u16 vid, u16 did,
1409 u16 asm_vid, u16 asm_did, struct rio_dev *from)
1411 struct list_head *n;
1412 struct rio_dev *rdev;
1414 WARN_ON(in_interrupt());
1415 spin_lock(&rio_global_list_lock);
1416 n = from ? from->global_list.next : rio_devices.next;
1418 while (n && (n != &rio_devices)) {
1419 rdev = rio_dev_g(n);
1420 if ((vid == RIO_ANY_ID || rdev->vid == vid) &&
1421 (did == RIO_ANY_ID || rdev->did == did) &&
1422 (asm_vid == RIO_ANY_ID || rdev->asm_vid == asm_vid) &&
1423 (asm_did == RIO_ANY_ID || rdev->asm_did == asm_did))
1424 goto exit;
1425 n = n->next;
1427 rdev = NULL;
1428 exit:
1429 rio_dev_put(from);
1430 rdev = rio_dev_get(rdev);
1431 spin_unlock(&rio_global_list_lock);
1432 return rdev;
1436 * rio_get_device - Begin or continue searching for a RIO device by vid/did
1437 * @vid: RIO vid to match or %RIO_ANY_ID to match all vids
1438 * @did: RIO did to match or %RIO_ANY_ID to match all dids
1439 * @from: Previous RIO device found in search, or %NULL for new search
1441 * Iterates through the list of known RIO devices. If a RIO device is
1442 * found with a matching @vid and @did, the reference count to the
1443 * device is incrememted and a pointer to its device structure is returned.
1444 * Otherwise, %NULL is returned. A new search is initiated by passing %NULL
1445 * to the @from argument. Otherwise, if @from is not %NULL, searches
1446 * continue from next device on the global list. The reference count for
1447 * @from is always decremented if it is not %NULL.
1449 struct rio_dev *rio_get_device(u16 vid, u16 did, struct rio_dev *from)
1451 return rio_get_asm(vid, did, RIO_ANY_ID, RIO_ANY_ID, from);
1455 * rio_std_route_add_entry - Add switch route table entry using standard
1456 * registers defined in RIO specification rev.1.3
1457 * @mport: Master port to issue transaction
1458 * @destid: Destination ID of the device
1459 * @hopcount: Number of switch hops to the device
1460 * @table: routing table ID (global or port-specific)
1461 * @route_destid: destID entry in the RT
1462 * @route_port: destination port for specified destID
1464 static int
1465 rio_std_route_add_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1466 u16 table, u16 route_destid, u8 route_port)
1468 if (table == RIO_GLOBAL_TABLE) {
1469 rio_mport_write_config_32(mport, destid, hopcount,
1470 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1471 (u32)route_destid);
1472 rio_mport_write_config_32(mport, destid, hopcount,
1473 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1474 (u32)route_port);
1477 udelay(10);
1478 return 0;
1482 * rio_std_route_get_entry - Read switch route table entry (port number)
1483 * associated with specified destID using standard registers defined in RIO
1484 * specification rev.1.3
1485 * @mport: Master port to issue transaction
1486 * @destid: Destination ID of the device
1487 * @hopcount: Number of switch hops to the device
1488 * @table: routing table ID (global or port-specific)
1489 * @route_destid: destID entry in the RT
1490 * @route_port: returned destination port for specified destID
1492 static int
1493 rio_std_route_get_entry(struct rio_mport *mport, u16 destid, u8 hopcount,
1494 u16 table, u16 route_destid, u8 *route_port)
1496 u32 result;
1498 if (table == RIO_GLOBAL_TABLE) {
1499 rio_mport_write_config_32(mport, destid, hopcount,
1500 RIO_STD_RTE_CONF_DESTID_SEL_CSR, route_destid);
1501 rio_mport_read_config_32(mport, destid, hopcount,
1502 RIO_STD_RTE_CONF_PORT_SEL_CSR, &result);
1504 *route_port = (u8)result;
1507 return 0;
1511 * rio_std_route_clr_table - Clear swotch route table using standard registers
1512 * defined in RIO specification rev.1.3.
1513 * @mport: Master port to issue transaction
1514 * @destid: Destination ID of the device
1515 * @hopcount: Number of switch hops to the device
1516 * @table: routing table ID (global or port-specific)
1518 static int
1519 rio_std_route_clr_table(struct rio_mport *mport, u16 destid, u8 hopcount,
1520 u16 table)
1522 u32 max_destid = 0xff;
1523 u32 i, pef, id_inc = 1, ext_cfg = 0;
1524 u32 port_sel = RIO_INVALID_ROUTE;
1526 if (table == RIO_GLOBAL_TABLE) {
1527 rio_mport_read_config_32(mport, destid, hopcount,
1528 RIO_PEF_CAR, &pef);
1530 if (mport->sys_size) {
1531 rio_mport_read_config_32(mport, destid, hopcount,
1532 RIO_SWITCH_RT_LIMIT,
1533 &max_destid);
1534 max_destid &= RIO_RT_MAX_DESTID;
1537 if (pef & RIO_PEF_EXT_RT) {
1538 ext_cfg = 0x80000000;
1539 id_inc = 4;
1540 port_sel = (RIO_INVALID_ROUTE << 24) |
1541 (RIO_INVALID_ROUTE << 16) |
1542 (RIO_INVALID_ROUTE << 8) |
1543 RIO_INVALID_ROUTE;
1546 for (i = 0; i <= max_destid;) {
1547 rio_mport_write_config_32(mport, destid, hopcount,
1548 RIO_STD_RTE_CONF_DESTID_SEL_CSR,
1549 ext_cfg | i);
1550 rio_mport_write_config_32(mport, destid, hopcount,
1551 RIO_STD_RTE_CONF_PORT_SEL_CSR,
1552 port_sel);
1553 i += id_inc;
1557 udelay(10);
1558 return 0;
1562 * rio_lock_device - Acquires host device lock for specified device
1563 * @port: Master port to send transaction
1564 * @destid: Destination ID for device/switch
1565 * @hopcount: Hopcount to reach switch
1566 * @wait_ms: Max wait time in msec (0 = no timeout)
1568 * Attepts to acquire host device lock for specified device
1569 * Returns 0 if device lock acquired or EINVAL if timeout expires.
1571 int rio_lock_device(struct rio_mport *port, u16 destid,
1572 u8 hopcount, int wait_ms)
1574 u32 result;
1575 int tcnt = 0;
1577 /* Attempt to acquire device lock */
1578 rio_mport_write_config_32(port, destid, hopcount,
1579 RIO_HOST_DID_LOCK_CSR, port->host_deviceid);
1580 rio_mport_read_config_32(port, destid, hopcount,
1581 RIO_HOST_DID_LOCK_CSR, &result);
1583 while (result != port->host_deviceid) {
1584 if (wait_ms != 0 && tcnt == wait_ms) {
1585 pr_debug("RIO: timeout when locking device %x:%x\n",
1586 destid, hopcount);
1587 return -EINVAL;
1590 /* Delay a bit */
1591 mdelay(1);
1592 tcnt++;
1593 /* Try to acquire device lock again */
1594 rio_mport_write_config_32(port, destid,
1595 hopcount,
1596 RIO_HOST_DID_LOCK_CSR,
1597 port->host_deviceid);
1598 rio_mport_read_config_32(port, destid,
1599 hopcount,
1600 RIO_HOST_DID_LOCK_CSR, &result);
1603 return 0;
1605 EXPORT_SYMBOL_GPL(rio_lock_device);
1608 * rio_unlock_device - Releases host device lock for specified device
1609 * @port: Master port to send transaction
1610 * @destid: Destination ID for device/switch
1611 * @hopcount: Hopcount to reach switch
1613 * Returns 0 if device lock released or EINVAL if fails.
1615 int rio_unlock_device(struct rio_mport *port, u16 destid, u8 hopcount)
1617 u32 result;
1619 /* Release device lock */
1620 rio_mport_write_config_32(port, destid,
1621 hopcount,
1622 RIO_HOST_DID_LOCK_CSR,
1623 port->host_deviceid);
1624 rio_mport_read_config_32(port, destid, hopcount,
1625 RIO_HOST_DID_LOCK_CSR, &result);
1626 if ((result & 0xffff) != 0xffff) {
1627 pr_debug("RIO: badness when releasing device lock %x:%x\n",
1628 destid, hopcount);
1629 return -EINVAL;
1632 return 0;
1634 EXPORT_SYMBOL_GPL(rio_unlock_device);
1637 * rio_route_add_entry- Add a route entry to a switch routing table
1638 * @rdev: RIO device
1639 * @table: Routing table ID
1640 * @route_destid: Destination ID to be routed
1641 * @route_port: Port number to be routed
1642 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1644 * If available calls the switch specific add_entry() method to add a route
1645 * entry into a switch routing table. Otherwise uses standard RT update method
1646 * as defined by RapidIO specification. A specific routing table can be selected
1647 * using the @table argument if a switch has per port routing tables or
1648 * the standard (or global) table may be used by passing
1649 * %RIO_GLOBAL_TABLE in @table.
1651 * Returns %0 on success or %-EINVAL on failure.
1653 int rio_route_add_entry(struct rio_dev *rdev,
1654 u16 table, u16 route_destid, u8 route_port, int lock)
1656 int rc = -EINVAL;
1657 struct rio_switch_ops *ops = rdev->rswitch->ops;
1659 if (lock) {
1660 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1661 rdev->hopcount, 1000);
1662 if (rc)
1663 return rc;
1666 spin_lock(&rdev->rswitch->lock);
1668 if (ops == NULL || ops->add_entry == NULL) {
1669 rc = rio_std_route_add_entry(rdev->net->hport, rdev->destid,
1670 rdev->hopcount, table,
1671 route_destid, route_port);
1672 } else if (try_module_get(ops->owner)) {
1673 rc = ops->add_entry(rdev->net->hport, rdev->destid,
1674 rdev->hopcount, table, route_destid,
1675 route_port);
1676 module_put(ops->owner);
1679 spin_unlock(&rdev->rswitch->lock);
1681 if (lock)
1682 rio_unlock_device(rdev->net->hport, rdev->destid,
1683 rdev->hopcount);
1685 return rc;
1687 EXPORT_SYMBOL_GPL(rio_route_add_entry);
1690 * rio_route_get_entry- Read an entry from a switch routing table
1691 * @rdev: RIO device
1692 * @table: Routing table ID
1693 * @route_destid: Destination ID to be routed
1694 * @route_port: Pointer to read port number into
1695 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1697 * If available calls the switch specific get_entry() method to fetch a route
1698 * entry from a switch routing table. Otherwise uses standard RT read method
1699 * as defined by RapidIO specification. A specific routing table can be selected
1700 * using the @table argument if a switch has per port routing tables or
1701 * the standard (or global) table may be used by passing
1702 * %RIO_GLOBAL_TABLE in @table.
1704 * Returns %0 on success or %-EINVAL on failure.
1706 int rio_route_get_entry(struct rio_dev *rdev, u16 table,
1707 u16 route_destid, u8 *route_port, int lock)
1709 int rc = -EINVAL;
1710 struct rio_switch_ops *ops = rdev->rswitch->ops;
1712 if (lock) {
1713 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1714 rdev->hopcount, 1000);
1715 if (rc)
1716 return rc;
1719 spin_lock(&rdev->rswitch->lock);
1721 if (ops == NULL || ops->get_entry == NULL) {
1722 rc = rio_std_route_get_entry(rdev->net->hport, rdev->destid,
1723 rdev->hopcount, table,
1724 route_destid, route_port);
1725 } else if (try_module_get(ops->owner)) {
1726 rc = ops->get_entry(rdev->net->hport, rdev->destid,
1727 rdev->hopcount, table, route_destid,
1728 route_port);
1729 module_put(ops->owner);
1732 spin_unlock(&rdev->rswitch->lock);
1734 if (lock)
1735 rio_unlock_device(rdev->net->hport, rdev->destid,
1736 rdev->hopcount);
1737 return rc;
1739 EXPORT_SYMBOL_GPL(rio_route_get_entry);
1742 * rio_route_clr_table - Clear a switch routing table
1743 * @rdev: RIO device
1744 * @table: Routing table ID
1745 * @lock: apply a hardware lock on switch device flag (1=lock, 0=no_lock)
1747 * If available calls the switch specific clr_table() method to clear a switch
1748 * routing table. Otherwise uses standard RT write method as defined by RapidIO
1749 * specification. A specific routing table can be selected using the @table
1750 * argument if a switch has per port routing tables or the standard (or global)
1751 * table may be used by passing %RIO_GLOBAL_TABLE in @table.
1753 * Returns %0 on success or %-EINVAL on failure.
1755 int rio_route_clr_table(struct rio_dev *rdev, u16 table, int lock)
1757 int rc = -EINVAL;
1758 struct rio_switch_ops *ops = rdev->rswitch->ops;
1760 if (lock) {
1761 rc = rio_lock_device(rdev->net->hport, rdev->destid,
1762 rdev->hopcount, 1000);
1763 if (rc)
1764 return rc;
1767 spin_lock(&rdev->rswitch->lock);
1769 if (ops == NULL || ops->clr_table == NULL) {
1770 rc = rio_std_route_clr_table(rdev->net->hport, rdev->destid,
1771 rdev->hopcount, table);
1772 } else if (try_module_get(ops->owner)) {
1773 rc = ops->clr_table(rdev->net->hport, rdev->destid,
1774 rdev->hopcount, table);
1776 module_put(ops->owner);
1779 spin_unlock(&rdev->rswitch->lock);
1781 if (lock)
1782 rio_unlock_device(rdev->net->hport, rdev->destid,
1783 rdev->hopcount);
1785 return rc;
1787 EXPORT_SYMBOL_GPL(rio_route_clr_table);
1789 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1791 static bool rio_chan_filter(struct dma_chan *chan, void *arg)
1793 struct rio_mport *mport = arg;
1795 /* Check that DMA device belongs to the right MPORT */
1796 return mport == container_of(chan->device, struct rio_mport, dma);
1800 * rio_request_mport_dma - request RapidIO capable DMA channel associated
1801 * with specified local RapidIO mport device.
1802 * @mport: RIO mport to perform DMA data transfers
1804 * Returns pointer to allocated DMA channel or NULL if failed.
1806 struct dma_chan *rio_request_mport_dma(struct rio_mport *mport)
1808 dma_cap_mask_t mask;
1810 dma_cap_zero(mask);
1811 dma_cap_set(DMA_SLAVE, mask);
1812 return dma_request_channel(mask, rio_chan_filter, mport);
1814 EXPORT_SYMBOL_GPL(rio_request_mport_dma);
1817 * rio_request_dma - request RapidIO capable DMA channel that supports
1818 * specified target RapidIO device.
1819 * @rdev: RIO device associated with DMA transfer
1821 * Returns pointer to allocated DMA channel or NULL if failed.
1823 struct dma_chan *rio_request_dma(struct rio_dev *rdev)
1825 return rio_request_mport_dma(rdev->net->hport);
1827 EXPORT_SYMBOL_GPL(rio_request_dma);
1830 * rio_release_dma - release specified DMA channel
1831 * @dchan: DMA channel to release
1833 void rio_release_dma(struct dma_chan *dchan)
1835 dma_release_channel(dchan);
1837 EXPORT_SYMBOL_GPL(rio_release_dma);
1840 * rio_dma_prep_xfer - RapidIO specific wrapper
1841 * for device_prep_slave_sg callback defined by DMAENGINE.
1842 * @dchan: DMA channel to configure
1843 * @destid: target RapidIO device destination ID
1844 * @data: RIO specific data descriptor
1845 * @direction: DMA data transfer direction (TO or FROM the device)
1846 * @flags: dmaengine defined flags
1848 * Initializes RapidIO capable DMA channel for the specified data transfer.
1849 * Uses DMA channel private extension to pass information related to remote
1850 * target RIO device.
1851 * Returns pointer to DMA transaction descriptor or NULL if failed.
1853 struct dma_async_tx_descriptor *rio_dma_prep_xfer(struct dma_chan *dchan,
1854 u16 destid, struct rio_dma_data *data,
1855 enum dma_transfer_direction direction, unsigned long flags)
1857 struct rio_dma_ext rio_ext;
1859 if (dchan->device->device_prep_slave_sg == NULL) {
1860 pr_err("%s: prep_rio_sg == NULL\n", __func__);
1861 return NULL;
1864 rio_ext.destid = destid;
1865 rio_ext.rio_addr_u = data->rio_addr_u;
1866 rio_ext.rio_addr = data->rio_addr;
1867 rio_ext.wr_type = data->wr_type;
1869 return dmaengine_prep_rio_sg(dchan, data->sg, data->sg_len,
1870 direction, flags, &rio_ext);
1872 EXPORT_SYMBOL_GPL(rio_dma_prep_xfer);
1875 * rio_dma_prep_slave_sg - RapidIO specific wrapper
1876 * for device_prep_slave_sg callback defined by DMAENGINE.
1877 * @rdev: RIO device control structure
1878 * @dchan: DMA channel to configure
1879 * @data: RIO specific data descriptor
1880 * @direction: DMA data transfer direction (TO or FROM the device)
1881 * @flags: dmaengine defined flags
1883 * Initializes RapidIO capable DMA channel for the specified data transfer.
1884 * Uses DMA channel private extension to pass information related to remote
1885 * target RIO device.
1886 * Returns pointer to DMA transaction descriptor or NULL if failed.
1888 struct dma_async_tx_descriptor *rio_dma_prep_slave_sg(struct rio_dev *rdev,
1889 struct dma_chan *dchan, struct rio_dma_data *data,
1890 enum dma_transfer_direction direction, unsigned long flags)
1892 return rio_dma_prep_xfer(dchan, rdev->destid, data, direction, flags);
1894 EXPORT_SYMBOL_GPL(rio_dma_prep_slave_sg);
1896 #endif /* CONFIG_RAPIDIO_DMA_ENGINE */
1899 * rio_find_mport - find RIO mport by its ID
1900 * @mport_id: number (ID) of mport device
1902 * Given a RIO mport number, the desired mport is located
1903 * in the global list of mports. If the mport is found, a pointer to its
1904 * data structure is returned. If no mport is found, %NULL is returned.
1906 struct rio_mport *rio_find_mport(int mport_id)
1908 struct rio_mport *port;
1910 mutex_lock(&rio_mport_list_lock);
1911 list_for_each_entry(port, &rio_mports, node) {
1912 if (port->id == mport_id)
1913 goto found;
1915 port = NULL;
1916 found:
1917 mutex_unlock(&rio_mport_list_lock);
1919 return port;
1923 * rio_register_scan - enumeration/discovery method registration interface
1924 * @mport_id: mport device ID for which fabric scan routine has to be set
1925 * (RIO_MPORT_ANY = set for all available mports)
1926 * @scan_ops: enumeration/discovery operations structure
1928 * Registers enumeration/discovery operations with RapidIO subsystem and
1929 * attaches it to the specified mport device (or all available mports
1930 * if RIO_MPORT_ANY is specified).
1932 * Returns error if the mport already has an enumerator attached to it.
1933 * In case of RIO_MPORT_ANY skips mports with valid scan routines (no error).
1935 int rio_register_scan(int mport_id, struct rio_scan *scan_ops)
1937 struct rio_mport *port;
1938 struct rio_scan_node *scan;
1939 int rc = 0;
1941 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
1943 if ((mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS) ||
1944 !scan_ops)
1945 return -EINVAL;
1947 mutex_lock(&rio_mport_list_lock);
1950 * Check if there is another enumerator already registered for
1951 * the same mport ID (including RIO_MPORT_ANY). Multiple enumerators
1952 * for the same mport ID are not supported.
1954 list_for_each_entry(scan, &rio_scans, node) {
1955 if (scan->mport_id == mport_id) {
1956 rc = -EBUSY;
1957 goto err_out;
1962 * Allocate and initialize new scan registration node.
1964 scan = kzalloc(sizeof(*scan), GFP_KERNEL);
1965 if (!scan) {
1966 rc = -ENOMEM;
1967 goto err_out;
1970 scan->mport_id = mport_id;
1971 scan->ops = scan_ops;
1974 * Traverse the list of registered mports to attach this new scan.
1976 * The new scan with matching mport ID overrides any previously attached
1977 * scan assuming that old scan (if any) is the default one (based on the
1978 * enumerator registration check above).
1979 * If the new scan is the global one, it will be attached only to mports
1980 * that do not have their own individual operations already attached.
1982 list_for_each_entry(port, &rio_mports, node) {
1983 if (port->id == mport_id) {
1984 port->nscan = scan_ops;
1985 break;
1986 } else if (mport_id == RIO_MPORT_ANY && !port->nscan)
1987 port->nscan = scan_ops;
1990 list_add_tail(&scan->node, &rio_scans);
1992 err_out:
1993 mutex_unlock(&rio_mport_list_lock);
1995 return rc;
1997 EXPORT_SYMBOL_GPL(rio_register_scan);
2000 * rio_unregister_scan - removes enumeration/discovery method from mport
2001 * @mport_id: mport device ID for which fabric scan routine has to be
2002 * unregistered (RIO_MPORT_ANY = apply to all mports that use
2003 * the specified scan_ops)
2004 * @scan_ops: enumeration/discovery operations structure
2006 * Removes enumeration or discovery method assigned to the specified mport
2007 * device. If RIO_MPORT_ANY is specified, removes the specified operations from
2008 * all mports that have them attached.
2010 int rio_unregister_scan(int mport_id, struct rio_scan *scan_ops)
2012 struct rio_mport *port;
2013 struct rio_scan_node *scan;
2015 pr_debug("RIO: %s for mport_id=%d\n", __func__, mport_id);
2017 if (mport_id != RIO_MPORT_ANY && mport_id >= RIO_MAX_MPORTS)
2018 return -EINVAL;
2020 mutex_lock(&rio_mport_list_lock);
2022 list_for_each_entry(port, &rio_mports, node)
2023 if (port->id == mport_id ||
2024 (mport_id == RIO_MPORT_ANY && port->nscan == scan_ops))
2025 port->nscan = NULL;
2027 list_for_each_entry(scan, &rio_scans, node) {
2028 if (scan->mport_id == mport_id) {
2029 list_del(&scan->node);
2030 kfree(scan);
2031 break;
2035 mutex_unlock(&rio_mport_list_lock);
2037 return 0;
2039 EXPORT_SYMBOL_GPL(rio_unregister_scan);
2042 * rio_mport_scan - execute enumeration/discovery on the specified mport
2043 * @mport_id: number (ID) of mport device
2045 int rio_mport_scan(int mport_id)
2047 struct rio_mport *port = NULL;
2048 int rc;
2050 mutex_lock(&rio_mport_list_lock);
2051 list_for_each_entry(port, &rio_mports, node) {
2052 if (port->id == mport_id)
2053 goto found;
2055 mutex_unlock(&rio_mport_list_lock);
2056 return -ENODEV;
2057 found:
2058 if (!port->nscan) {
2059 mutex_unlock(&rio_mport_list_lock);
2060 return -EINVAL;
2063 if (!try_module_get(port->nscan->owner)) {
2064 mutex_unlock(&rio_mport_list_lock);
2065 return -ENODEV;
2068 mutex_unlock(&rio_mport_list_lock);
2070 if (port->host_deviceid >= 0)
2071 rc = port->nscan->enumerate(port, 0);
2072 else
2073 rc = port->nscan->discover(port, RIO_SCAN_ENUM_NO_WAIT);
2075 module_put(port->nscan->owner);
2076 return rc;
2079 static void rio_fixup_device(struct rio_dev *dev)
2083 static int rio_init(void)
2085 struct rio_dev *dev = NULL;
2087 while ((dev = rio_get_device(RIO_ANY_ID, RIO_ANY_ID, dev)) != NULL) {
2088 rio_fixup_device(dev);
2090 return 0;
2093 static struct workqueue_struct *rio_wq;
2095 struct rio_disc_work {
2096 struct work_struct work;
2097 struct rio_mport *mport;
2100 static void disc_work_handler(struct work_struct *_work)
2102 struct rio_disc_work *work;
2104 work = container_of(_work, struct rio_disc_work, work);
2105 pr_debug("RIO: discovery work for mport %d %s\n",
2106 work->mport->id, work->mport->name);
2107 if (try_module_get(work->mport->nscan->owner)) {
2108 work->mport->nscan->discover(work->mport, 0);
2109 module_put(work->mport->nscan->owner);
2113 int rio_init_mports(void)
2115 struct rio_mport *port;
2116 struct rio_disc_work *work;
2117 int n = 0;
2119 if (!next_portid)
2120 return -ENODEV;
2123 * First, run enumerations and check if we need to perform discovery
2124 * on any of the registered mports.
2126 mutex_lock(&rio_mport_list_lock);
2127 list_for_each_entry(port, &rio_mports, node) {
2128 if (port->host_deviceid >= 0) {
2129 if (port->nscan && try_module_get(port->nscan->owner)) {
2130 port->nscan->enumerate(port, 0);
2131 module_put(port->nscan->owner);
2133 } else
2134 n++;
2136 mutex_unlock(&rio_mport_list_lock);
2138 if (!n)
2139 goto no_disc;
2142 * If we have mports that require discovery schedule a discovery work
2143 * for each of them. If the code below fails to allocate needed
2144 * resources, exit without error to keep results of enumeration
2145 * process (if any).
2146 * TODO: Implement restart of discovery process for all or
2147 * individual discovering mports.
2149 rio_wq = alloc_workqueue("riodisc", 0, 0);
2150 if (!rio_wq) {
2151 pr_err("RIO: unable allocate rio_wq\n");
2152 goto no_disc;
2155 work = kcalloc(n, sizeof *work, GFP_KERNEL);
2156 if (!work) {
2157 pr_err("RIO: no memory for work struct\n");
2158 destroy_workqueue(rio_wq);
2159 goto no_disc;
2162 n = 0;
2163 mutex_lock(&rio_mport_list_lock);
2164 list_for_each_entry(port, &rio_mports, node) {
2165 if (port->host_deviceid < 0 && port->nscan) {
2166 work[n].mport = port;
2167 INIT_WORK(&work[n].work, disc_work_handler);
2168 queue_work(rio_wq, &work[n].work);
2169 n++;
2173 flush_workqueue(rio_wq);
2174 mutex_unlock(&rio_mport_list_lock);
2175 pr_debug("RIO: destroy discovery workqueue\n");
2176 destroy_workqueue(rio_wq);
2177 kfree(work);
2179 no_disc:
2180 rio_init();
2182 return 0;
2185 static int rio_get_hdid(int index)
2187 if (ids_num == 0 || ids_num <= index || index >= RIO_MAX_MPORTS)
2188 return -1;
2190 return hdid[index];
2193 int rio_mport_initialize(struct rio_mport *mport)
2195 if (next_portid >= RIO_MAX_MPORTS) {
2196 pr_err("RIO: reached specified max number of mports\n");
2197 return -ENODEV;
2200 atomic_set(&mport->state, RIO_DEVICE_INITIALIZING);
2201 mport->id = next_portid++;
2202 mport->host_deviceid = rio_get_hdid(mport->id);
2203 mport->nscan = NULL;
2204 mutex_init(&mport->lock);
2205 mport->pwe_refcnt = 0;
2206 INIT_LIST_HEAD(&mport->pwrites);
2208 return 0;
2210 EXPORT_SYMBOL_GPL(rio_mport_initialize);
2212 int rio_register_mport(struct rio_mport *port)
2214 struct rio_scan_node *scan = NULL;
2215 int res = 0;
2217 mutex_lock(&rio_mport_list_lock);
2220 * Check if there are any registered enumeration/discovery operations
2221 * that have to be attached to the added mport.
2223 list_for_each_entry(scan, &rio_scans, node) {
2224 if (port->id == scan->mport_id ||
2225 scan->mport_id == RIO_MPORT_ANY) {
2226 port->nscan = scan->ops;
2227 if (port->id == scan->mport_id)
2228 break;
2232 list_add_tail(&port->node, &rio_mports);
2233 mutex_unlock(&rio_mport_list_lock);
2235 dev_set_name(&port->dev, "rapidio%d", port->id);
2236 port->dev.class = &rio_mport_class;
2237 atomic_set(&port->state, RIO_DEVICE_RUNNING);
2239 res = device_register(&port->dev);
2240 if (res)
2241 dev_err(&port->dev, "RIO: mport%d registration failed ERR=%d\n",
2242 port->id, res);
2243 else
2244 dev_dbg(&port->dev, "RIO: registered mport%d\n", port->id);
2246 return res;
2248 EXPORT_SYMBOL_GPL(rio_register_mport);
2250 static int rio_mport_cleanup_callback(struct device *dev, void *data)
2252 struct rio_dev *rdev = to_rio_dev(dev);
2254 if (dev->bus == &rio_bus_type)
2255 rio_del_device(rdev, RIO_DEVICE_SHUTDOWN);
2256 return 0;
2259 static int rio_net_remove_children(struct rio_net *net)
2262 * Unregister all RapidIO devices residing on this net (this will
2263 * invoke notification of registered subsystem interfaces as well).
2265 device_for_each_child(&net->dev, NULL, rio_mport_cleanup_callback);
2266 return 0;
2269 int rio_unregister_mport(struct rio_mport *port)
2271 pr_debug("RIO: %s %s id=%d\n", __func__, port->name, port->id);
2273 /* Transition mport to the SHUTDOWN state */
2274 if (atomic_cmpxchg(&port->state,
2275 RIO_DEVICE_RUNNING,
2276 RIO_DEVICE_SHUTDOWN) != RIO_DEVICE_RUNNING) {
2277 pr_err("RIO: %s unexpected state transition for mport %s\n",
2278 __func__, port->name);
2281 if (port->net && port->net->hport == port) {
2282 rio_net_remove_children(port->net);
2283 rio_free_net(port->net);
2287 * Unregister all RapidIO devices attached to this mport (this will
2288 * invoke notification of registered subsystem interfaces as well).
2290 mutex_lock(&rio_mport_list_lock);
2291 list_del(&port->node);
2292 mutex_unlock(&rio_mport_list_lock);
2293 device_unregister(&port->dev);
2295 return 0;
2297 EXPORT_SYMBOL_GPL(rio_unregister_mport);
2299 EXPORT_SYMBOL_GPL(rio_local_get_device_id);
2300 EXPORT_SYMBOL_GPL(rio_get_device);
2301 EXPORT_SYMBOL_GPL(rio_get_asm);
2302 EXPORT_SYMBOL_GPL(rio_request_inb_dbell);
2303 EXPORT_SYMBOL_GPL(rio_release_inb_dbell);
2304 EXPORT_SYMBOL_GPL(rio_request_outb_dbell);
2305 EXPORT_SYMBOL_GPL(rio_release_outb_dbell);
2306 EXPORT_SYMBOL_GPL(rio_request_inb_mbox);
2307 EXPORT_SYMBOL_GPL(rio_release_inb_mbox);
2308 EXPORT_SYMBOL_GPL(rio_request_outb_mbox);
2309 EXPORT_SYMBOL_GPL(rio_release_outb_mbox);
2310 EXPORT_SYMBOL_GPL(rio_init_mports);