2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
37 #include "transaction.h"
38 #include "btrfs_inode.h"
40 #include "ordered-data.h"
41 #include "compression.h"
42 #include "extent_io.h"
43 #include "extent_map.h"
45 struct compressed_bio
{
46 /* number of bios pending for this compressed extent */
47 atomic_t pending_bios
;
49 /* the pages with the compressed data on them */
50 struct page
**compressed_pages
;
52 /* inode that owns this data */
55 /* starting offset in the inode for our pages */
58 /* number of bytes in the inode we're working on */
61 /* number of bytes on disk */
62 unsigned long compressed_len
;
64 /* the compression algorithm for this bio */
67 /* number of compressed pages in the array */
68 unsigned long nr_pages
;
74 /* for reads, this is the bio we are copying the data into */
78 * the start of a variable length array of checksums only
84 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
85 u64 disk_start
, struct bio_vec
*bvec
,
86 int vcnt
, size_t srclen
);
88 static inline int compressed_bio_size(struct btrfs_root
*root
,
89 unsigned long disk_size
)
91 u16 csum_size
= btrfs_super_csum_size(root
->fs_info
->super_copy
);
93 return sizeof(struct compressed_bio
) +
94 (DIV_ROUND_UP(disk_size
, root
->sectorsize
)) * csum_size
;
97 static struct bio
*compressed_bio_alloc(struct block_device
*bdev
,
98 u64 first_byte
, gfp_t gfp_flags
)
100 return btrfs_bio_alloc(bdev
, first_byte
>> 9, BIO_MAX_PAGES
, gfp_flags
);
103 static int check_compressed_csum(struct inode
*inode
,
104 struct compressed_bio
*cb
,
112 u32
*cb_sum
= &cb
->sums
;
114 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
117 for (i
= 0; i
< cb
->nr_pages
; i
++) {
118 page
= cb
->compressed_pages
[i
];
121 kaddr
= kmap_atomic(page
);
122 csum
= btrfs_csum_data(kaddr
, csum
, PAGE_SIZE
);
123 btrfs_csum_final(csum
, (char *)&csum
);
124 kunmap_atomic(kaddr
);
126 if (csum
!= *cb_sum
) {
127 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
128 "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
129 btrfs_ino(inode
), disk_start
, csum
, *cb_sum
,
142 /* when we finish reading compressed pages from the disk, we
143 * decompress them and then run the bio end_io routines on the
144 * decompressed pages (in the inode address space).
146 * This allows the checksumming and other IO error handling routines
149 * The compressed pages are freed here, and it must be run
152 static void end_compressed_bio_read(struct bio
*bio
)
154 struct compressed_bio
*cb
= bio
->bi_private
;
163 /* if there are more bios still pending for this compressed
166 if (!atomic_dec_and_test(&cb
->pending_bios
))
170 ret
= check_compressed_csum(inode
, cb
,
171 (u64
)bio
->bi_iter
.bi_sector
<< 9);
175 /* ok, we're the last bio for this extent, lets start
178 ret
= btrfs_decompress_biovec(cb
->compress_type
,
179 cb
->compressed_pages
,
181 cb
->orig_bio
->bi_io_vec
,
182 cb
->orig_bio
->bi_vcnt
,
188 /* release the compressed pages */
190 for (index
= 0; index
< cb
->nr_pages
; index
++) {
191 page
= cb
->compressed_pages
[index
];
192 page
->mapping
= NULL
;
196 /* do io completion on the original bio */
198 bio_io_error(cb
->orig_bio
);
201 struct bio_vec
*bvec
;
204 * we have verified the checksum already, set page
205 * checked so the end_io handlers know about it
207 bio_for_each_segment_all(bvec
, cb
->orig_bio
, i
)
208 SetPageChecked(bvec
->bv_page
);
210 bio_endio(cb
->orig_bio
);
213 /* finally free the cb struct */
214 kfree(cb
->compressed_pages
);
221 * Clear the writeback bits on all of the file
222 * pages for a compressed write
224 static noinline
void end_compressed_writeback(struct inode
*inode
,
225 const struct compressed_bio
*cb
)
227 unsigned long index
= cb
->start
>> PAGE_SHIFT
;
228 unsigned long end_index
= (cb
->start
+ cb
->len
- 1) >> PAGE_SHIFT
;
229 struct page
*pages
[16];
230 unsigned long nr_pages
= end_index
- index
+ 1;
235 mapping_set_error(inode
->i_mapping
, -EIO
);
237 while (nr_pages
> 0) {
238 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
240 nr_pages
, ARRAY_SIZE(pages
)), pages
);
246 for (i
= 0; i
< ret
; i
++) {
248 SetPageError(pages
[i
]);
249 end_page_writeback(pages
[i
]);
255 /* the inode may be gone now */
259 * do the cleanup once all the compressed pages hit the disk.
260 * This will clear writeback on the file pages and free the compressed
263 * This also calls the writeback end hooks for the file pages so that
264 * metadata and checksums can be updated in the file.
266 static void end_compressed_bio_write(struct bio
*bio
)
268 struct extent_io_tree
*tree
;
269 struct compressed_bio
*cb
= bio
->bi_private
;
277 /* if there are more bios still pending for this compressed
280 if (!atomic_dec_and_test(&cb
->pending_bios
))
283 /* ok, we're the last bio for this extent, step one is to
284 * call back into the FS and do all the end_io operations
287 tree
= &BTRFS_I(inode
)->io_tree
;
288 cb
->compressed_pages
[0]->mapping
= cb
->inode
->i_mapping
;
289 tree
->ops
->writepage_end_io_hook(cb
->compressed_pages
[0],
291 cb
->start
+ cb
->len
- 1,
293 bio
->bi_error
? 0 : 1);
294 cb
->compressed_pages
[0]->mapping
= NULL
;
296 end_compressed_writeback(inode
, cb
);
297 /* note, our inode could be gone now */
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
304 for (index
= 0; index
< cb
->nr_pages
; index
++) {
305 page
= cb
->compressed_pages
[index
];
306 page
->mapping
= NULL
;
310 /* finally free the cb struct */
311 kfree(cb
->compressed_pages
);
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
323 * This also checksums the file bytes and gets things ready for
326 int btrfs_submit_compressed_write(struct inode
*inode
, u64 start
,
327 unsigned long len
, u64 disk_start
,
328 unsigned long compressed_len
,
329 struct page
**compressed_pages
,
330 unsigned long nr_pages
)
332 struct bio
*bio
= NULL
;
333 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
334 struct compressed_bio
*cb
;
335 unsigned long bytes_left
;
336 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
339 u64 first_byte
= disk_start
;
340 struct block_device
*bdev
;
342 int skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
344 WARN_ON(start
& ((u64
)PAGE_SIZE
- 1));
345 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
348 atomic_set(&cb
->pending_bios
, 0);
354 cb
->compressed_pages
= compressed_pages
;
355 cb
->compressed_len
= compressed_len
;
357 cb
->nr_pages
= nr_pages
;
359 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
361 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
366 bio
->bi_private
= cb
;
367 bio
->bi_end_io
= end_compressed_bio_write
;
368 atomic_inc(&cb
->pending_bios
);
370 /* create and submit bios for the compressed pages */
371 bytes_left
= compressed_len
;
372 for (pg_index
= 0; pg_index
< cb
->nr_pages
; pg_index
++) {
373 page
= compressed_pages
[pg_index
];
374 page
->mapping
= inode
->i_mapping
;
375 if (bio
->bi_iter
.bi_size
)
376 ret
= io_tree
->ops
->merge_bio_hook(WRITE
, page
, 0,
382 page
->mapping
= NULL
;
383 if (ret
|| bio_add_page(bio
, page
, PAGE_SIZE
, 0) <
388 * inc the count before we submit the bio so
389 * we know the end IO handler won't happen before
390 * we inc the count. Otherwise, the cb might get
391 * freed before we're done setting it up
393 atomic_inc(&cb
->pending_bios
);
394 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
395 BTRFS_WQ_ENDIO_DATA
);
396 BUG_ON(ret
); /* -ENOMEM */
399 ret
= btrfs_csum_one_bio(root
, inode
, bio
,
401 BUG_ON(ret
); /* -ENOMEM */
404 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
405 BUG_ON(ret
); /* -ENOMEM */
409 bio
= compressed_bio_alloc(bdev
, first_byte
, GFP_NOFS
);
411 bio
->bi_private
= cb
;
412 bio
->bi_end_io
= end_compressed_bio_write
;
413 bio_add_page(bio
, page
, PAGE_SIZE
, 0);
415 if (bytes_left
< PAGE_SIZE
) {
416 btrfs_info(BTRFS_I(inode
)->root
->fs_info
,
417 "bytes left %lu compress len %lu nr %lu",
418 bytes_left
, cb
->compressed_len
, cb
->nr_pages
);
420 bytes_left
-= PAGE_SIZE
;
421 first_byte
+= PAGE_SIZE
;
426 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
427 BUG_ON(ret
); /* -ENOMEM */
430 ret
= btrfs_csum_one_bio(root
, inode
, bio
, start
, 1);
431 BUG_ON(ret
); /* -ENOMEM */
434 ret
= btrfs_map_bio(root
, WRITE
, bio
, 0, 1);
435 BUG_ON(ret
); /* -ENOMEM */
441 static noinline
int add_ra_bio_pages(struct inode
*inode
,
443 struct compressed_bio
*cb
)
445 unsigned long end_index
;
446 unsigned long pg_index
;
448 u64 isize
= i_size_read(inode
);
451 unsigned long nr_pages
= 0;
452 struct extent_map
*em
;
453 struct address_space
*mapping
= inode
->i_mapping
;
454 struct extent_map_tree
*em_tree
;
455 struct extent_io_tree
*tree
;
459 page
= cb
->orig_bio
->bi_io_vec
[cb
->orig_bio
->bi_vcnt
- 1].bv_page
;
460 last_offset
= (page_offset(page
) + PAGE_SIZE
);
461 em_tree
= &BTRFS_I(inode
)->extent_tree
;
462 tree
= &BTRFS_I(inode
)->io_tree
;
467 end_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
469 while (last_offset
< compressed_end
) {
470 pg_index
= last_offset
>> PAGE_SHIFT
;
472 if (pg_index
> end_index
)
476 page
= radix_tree_lookup(&mapping
->page_tree
, pg_index
);
478 if (page
&& !radix_tree_exceptional_entry(page
)) {
485 page
= __page_cache_alloc(mapping_gfp_constraint(mapping
,
490 if (add_to_page_cache_lru(page
, mapping
, pg_index
, GFP_NOFS
)) {
495 end
= last_offset
+ PAGE_SIZE
- 1;
497 * at this point, we have a locked page in the page cache
498 * for these bytes in the file. But, we have to make
499 * sure they map to this compressed extent on disk.
501 set_page_extent_mapped(page
);
502 lock_extent(tree
, last_offset
, end
);
503 read_lock(&em_tree
->lock
);
504 em
= lookup_extent_mapping(em_tree
, last_offset
,
506 read_unlock(&em_tree
->lock
);
508 if (!em
|| last_offset
< em
->start
||
509 (last_offset
+ PAGE_SIZE
> extent_map_end(em
)) ||
510 (em
->block_start
>> 9) != cb
->orig_bio
->bi_iter
.bi_sector
) {
512 unlock_extent(tree
, last_offset
, end
);
519 if (page
->index
== end_index
) {
521 size_t zero_offset
= isize
& (PAGE_SIZE
- 1);
525 zeros
= PAGE_SIZE
- zero_offset
;
526 userpage
= kmap_atomic(page
);
527 memset(userpage
+ zero_offset
, 0, zeros
);
528 flush_dcache_page(page
);
529 kunmap_atomic(userpage
);
533 ret
= bio_add_page(cb
->orig_bio
, page
,
536 if (ret
== PAGE_SIZE
) {
540 unlock_extent(tree
, last_offset
, end
);
546 last_offset
+= PAGE_SIZE
;
552 * for a compressed read, the bio we get passed has all the inode pages
553 * in it. We don't actually do IO on those pages but allocate new ones
554 * to hold the compressed pages on disk.
556 * bio->bi_iter.bi_sector points to the compressed extent on disk
557 * bio->bi_io_vec points to all of the inode pages
558 * bio->bi_vcnt is a count of pages
560 * After the compressed pages are read, we copy the bytes into the
561 * bio we were passed and then call the bio end_io calls
563 int btrfs_submit_compressed_read(struct inode
*inode
, struct bio
*bio
,
564 int mirror_num
, unsigned long bio_flags
)
566 struct extent_io_tree
*tree
;
567 struct extent_map_tree
*em_tree
;
568 struct compressed_bio
*cb
;
569 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
570 unsigned long uncompressed_len
= bio
->bi_vcnt
* PAGE_SIZE
;
571 unsigned long compressed_len
;
572 unsigned long nr_pages
;
573 unsigned long pg_index
;
575 struct block_device
*bdev
;
576 struct bio
*comp_bio
;
577 u64 cur_disk_byte
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
580 struct extent_map
*em
;
585 tree
= &BTRFS_I(inode
)->io_tree
;
586 em_tree
= &BTRFS_I(inode
)->extent_tree
;
588 /* we need the actual starting offset of this extent in the file */
589 read_lock(&em_tree
->lock
);
590 em
= lookup_extent_mapping(em_tree
,
591 page_offset(bio
->bi_io_vec
->bv_page
),
593 read_unlock(&em_tree
->lock
);
597 compressed_len
= em
->block_len
;
598 cb
= kmalloc(compressed_bio_size(root
, compressed_len
), GFP_NOFS
);
602 atomic_set(&cb
->pending_bios
, 0);
605 cb
->mirror_num
= mirror_num
;
608 cb
->start
= em
->orig_start
;
610 em_start
= em
->start
;
615 cb
->len
= uncompressed_len
;
616 cb
->compressed_len
= compressed_len
;
617 cb
->compress_type
= extent_compress_type(bio_flags
);
620 nr_pages
= DIV_ROUND_UP(compressed_len
, PAGE_SIZE
);
621 cb
->compressed_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
623 if (!cb
->compressed_pages
)
626 bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
628 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
629 cb
->compressed_pages
[pg_index
] = alloc_page(GFP_NOFS
|
631 if (!cb
->compressed_pages
[pg_index
]) {
632 faili
= pg_index
- 1;
637 faili
= nr_pages
- 1;
638 cb
->nr_pages
= nr_pages
;
640 add_ra_bio_pages(inode
, em_start
+ em_len
, cb
);
642 /* include any pages we added in add_ra-bio_pages */
643 uncompressed_len
= bio
->bi_vcnt
* PAGE_SIZE
;
644 cb
->len
= uncompressed_len
;
646 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
, GFP_NOFS
);
649 comp_bio
->bi_private
= cb
;
650 comp_bio
->bi_end_io
= end_compressed_bio_read
;
651 atomic_inc(&cb
->pending_bios
);
653 for (pg_index
= 0; pg_index
< nr_pages
; pg_index
++) {
654 page
= cb
->compressed_pages
[pg_index
];
655 page
->mapping
= inode
->i_mapping
;
656 page
->index
= em_start
>> PAGE_SHIFT
;
658 if (comp_bio
->bi_iter
.bi_size
)
659 ret
= tree
->ops
->merge_bio_hook(READ
, page
, 0,
665 page
->mapping
= NULL
;
666 if (ret
|| bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0) <
670 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
,
671 BTRFS_WQ_ENDIO_DATA
);
672 BUG_ON(ret
); /* -ENOMEM */
675 * inc the count before we submit the bio so
676 * we know the end IO handler won't happen before
677 * we inc the count. Otherwise, the cb might get
678 * freed before we're done setting it up
680 atomic_inc(&cb
->pending_bios
);
682 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
683 ret
= btrfs_lookup_bio_sums(root
, inode
,
685 BUG_ON(ret
); /* -ENOMEM */
687 sums
+= DIV_ROUND_UP(comp_bio
->bi_iter
.bi_size
,
690 ret
= btrfs_map_bio(root
, READ
, comp_bio
,
699 comp_bio
= compressed_bio_alloc(bdev
, cur_disk_byte
,
702 comp_bio
->bi_private
= cb
;
703 comp_bio
->bi_end_io
= end_compressed_bio_read
;
705 bio_add_page(comp_bio
, page
, PAGE_SIZE
, 0);
707 cur_disk_byte
+= PAGE_SIZE
;
711 ret
= btrfs_bio_wq_end_io(root
->fs_info
, comp_bio
,
712 BTRFS_WQ_ENDIO_DATA
);
713 BUG_ON(ret
); /* -ENOMEM */
715 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)) {
716 ret
= btrfs_lookup_bio_sums(root
, inode
, comp_bio
, sums
);
717 BUG_ON(ret
); /* -ENOMEM */
720 ret
= btrfs_map_bio(root
, READ
, comp_bio
, mirror_num
, 0);
731 __free_page(cb
->compressed_pages
[faili
]);
735 kfree(cb
->compressed_pages
);
744 struct list_head idle_ws
;
746 /* Number of free workspaces */
748 /* Total number of allocated workspaces */
750 /* Waiters for a free workspace */
751 wait_queue_head_t ws_wait
;
752 } btrfs_comp_ws
[BTRFS_COMPRESS_TYPES
];
754 static const struct btrfs_compress_op
* const btrfs_compress_op
[] = {
755 &btrfs_zlib_compress
,
759 void __init
btrfs_init_compress(void)
763 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
764 struct list_head
*workspace
;
766 INIT_LIST_HEAD(&btrfs_comp_ws
[i
].idle_ws
);
767 spin_lock_init(&btrfs_comp_ws
[i
].ws_lock
);
768 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 0);
769 init_waitqueue_head(&btrfs_comp_ws
[i
].ws_wait
);
772 * Preallocate one workspace for each compression type so
773 * we can guarantee forward progress in the worst case
775 workspace
= btrfs_compress_op
[i
]->alloc_workspace();
776 if (IS_ERR(workspace
)) {
778 "BTRFS: cannot preallocate compression workspace, will try later");
780 atomic_set(&btrfs_comp_ws
[i
].total_ws
, 1);
781 btrfs_comp_ws
[i
].free_ws
= 1;
782 list_add(workspace
, &btrfs_comp_ws
[i
].idle_ws
);
788 * This finds an available workspace or allocates a new one.
789 * If it's not possible to allocate a new one, waits until there's one.
790 * Preallocation makes a forward progress guarantees and we do not return
793 static struct list_head
*find_workspace(int type
)
795 struct list_head
*workspace
;
796 int cpus
= num_online_cpus();
799 struct list_head
*idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
800 spinlock_t
*ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
801 atomic_t
*total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
802 wait_queue_head_t
*ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
803 int *free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
806 if (!list_empty(idle_ws
)) {
807 workspace
= idle_ws
->next
;
810 spin_unlock(ws_lock
);
814 if (atomic_read(total_ws
) > cpus
) {
817 spin_unlock(ws_lock
);
818 prepare_to_wait(ws_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
819 if (atomic_read(total_ws
) > cpus
&& !*free_ws
)
821 finish_wait(ws_wait
, &wait
);
824 atomic_inc(total_ws
);
825 spin_unlock(ws_lock
);
827 workspace
= btrfs_compress_op
[idx
]->alloc_workspace();
828 if (IS_ERR(workspace
)) {
829 atomic_dec(total_ws
);
833 * Do not return the error but go back to waiting. There's a
834 * workspace preallocated for each type and the compression
835 * time is bounded so we get to a workspace eventually. This
836 * makes our caller's life easier.
838 * To prevent silent and low-probability deadlocks (when the
839 * initial preallocation fails), check if there are any
842 if (atomic_read(total_ws
) == 0) {
843 static DEFINE_RATELIMIT_STATE(_rs
,
844 /* once per minute */ 60 * HZ
,
847 if (__ratelimit(&_rs
)) {
849 "no compression workspaces, low memory, retrying");
858 * put a workspace struct back on the list or free it if we have enough
859 * idle ones sitting around
861 static void free_workspace(int type
, struct list_head
*workspace
)
864 struct list_head
*idle_ws
= &btrfs_comp_ws
[idx
].idle_ws
;
865 spinlock_t
*ws_lock
= &btrfs_comp_ws
[idx
].ws_lock
;
866 atomic_t
*total_ws
= &btrfs_comp_ws
[idx
].total_ws
;
867 wait_queue_head_t
*ws_wait
= &btrfs_comp_ws
[idx
].ws_wait
;
868 int *free_ws
= &btrfs_comp_ws
[idx
].free_ws
;
871 if (*free_ws
< num_online_cpus()) {
872 list_add(workspace
, idle_ws
);
874 spin_unlock(ws_lock
);
877 spin_unlock(ws_lock
);
879 btrfs_compress_op
[idx
]->free_workspace(workspace
);
880 atomic_dec(total_ws
);
883 * Make sure counter is updated before we wake up waiters.
886 if (waitqueue_active(ws_wait
))
891 * cleanup function for module exit
893 static void free_workspaces(void)
895 struct list_head
*workspace
;
898 for (i
= 0; i
< BTRFS_COMPRESS_TYPES
; i
++) {
899 while (!list_empty(&btrfs_comp_ws
[i
].idle_ws
)) {
900 workspace
= btrfs_comp_ws
[i
].idle_ws
.next
;
902 btrfs_compress_op
[i
]->free_workspace(workspace
);
903 atomic_dec(&btrfs_comp_ws
[i
].total_ws
);
909 * given an address space and start/len, compress the bytes.
911 * pages are allocated to hold the compressed result and stored
914 * out_pages is used to return the number of pages allocated. There
915 * may be pages allocated even if we return an error
917 * total_in is used to return the number of bytes actually read. It
918 * may be smaller then len if we had to exit early because we
919 * ran out of room in the pages array or because we cross the
922 * total_out is used to return the total number of compressed bytes
924 * max_out tells us the max number of bytes that we're allowed to
927 int btrfs_compress_pages(int type
, struct address_space
*mapping
,
928 u64 start
, unsigned long len
,
930 unsigned long nr_dest_pages
,
931 unsigned long *out_pages
,
932 unsigned long *total_in
,
933 unsigned long *total_out
,
934 unsigned long max_out
)
936 struct list_head
*workspace
;
939 workspace
= find_workspace(type
);
941 ret
= btrfs_compress_op
[type
-1]->compress_pages(workspace
, mapping
,
943 nr_dest_pages
, out_pages
,
946 free_workspace(type
, workspace
);
951 * pages_in is an array of pages with compressed data.
953 * disk_start is the starting logical offset of this array in the file
955 * bvec is a bio_vec of pages from the file that we want to decompress into
957 * vcnt is the count of pages in the biovec
959 * srclen is the number of bytes in pages_in
961 * The basic idea is that we have a bio that was created by readpages.
962 * The pages in the bio are for the uncompressed data, and they may not
963 * be contiguous. They all correspond to the range of bytes covered by
964 * the compressed extent.
966 static int btrfs_decompress_biovec(int type
, struct page
**pages_in
,
967 u64 disk_start
, struct bio_vec
*bvec
,
968 int vcnt
, size_t srclen
)
970 struct list_head
*workspace
;
973 workspace
= find_workspace(type
);
975 ret
= btrfs_compress_op
[type
-1]->decompress_biovec(workspace
, pages_in
,
978 free_workspace(type
, workspace
);
983 * a less complex decompression routine. Our compressed data fits in a
984 * single page, and we want to read a single page out of it.
985 * start_byte tells us the offset into the compressed data we're interested in
987 int btrfs_decompress(int type
, unsigned char *data_in
, struct page
*dest_page
,
988 unsigned long start_byte
, size_t srclen
, size_t destlen
)
990 struct list_head
*workspace
;
993 workspace
= find_workspace(type
);
995 ret
= btrfs_compress_op
[type
-1]->decompress(workspace
, data_in
,
996 dest_page
, start_byte
,
999 free_workspace(type
, workspace
);
1003 void btrfs_exit_compress(void)
1009 * Copy uncompressed data from working buffer to pages.
1011 * buf_start is the byte offset we're of the start of our workspace buffer.
1013 * total_out is the last byte of the buffer
1015 int btrfs_decompress_buf2page(char *buf
, unsigned long buf_start
,
1016 unsigned long total_out
, u64 disk_start
,
1017 struct bio_vec
*bvec
, int vcnt
,
1018 unsigned long *pg_index
,
1019 unsigned long *pg_offset
)
1021 unsigned long buf_offset
;
1022 unsigned long current_buf_start
;
1023 unsigned long start_byte
;
1024 unsigned long working_bytes
= total_out
- buf_start
;
1025 unsigned long bytes
;
1027 struct page
*page_out
= bvec
[*pg_index
].bv_page
;
1030 * start byte is the first byte of the page we're currently
1031 * copying into relative to the start of the compressed data.
1033 start_byte
= page_offset(page_out
) - disk_start
;
1035 /* we haven't yet hit data corresponding to this page */
1036 if (total_out
<= start_byte
)
1040 * the start of the data we care about is offset into
1041 * the middle of our working buffer
1043 if (total_out
> start_byte
&& buf_start
< start_byte
) {
1044 buf_offset
= start_byte
- buf_start
;
1045 working_bytes
-= buf_offset
;
1049 current_buf_start
= buf_start
;
1051 /* copy bytes from the working buffer into the pages */
1052 while (working_bytes
> 0) {
1053 bytes
= min(PAGE_SIZE
- *pg_offset
,
1054 PAGE_SIZE
- buf_offset
);
1055 bytes
= min(bytes
, working_bytes
);
1056 kaddr
= kmap_atomic(page_out
);
1057 memcpy(kaddr
+ *pg_offset
, buf
+ buf_offset
, bytes
);
1058 kunmap_atomic(kaddr
);
1059 flush_dcache_page(page_out
);
1061 *pg_offset
+= bytes
;
1062 buf_offset
+= bytes
;
1063 working_bytes
-= bytes
;
1064 current_buf_start
+= bytes
;
1066 /* check if we need to pick another page */
1067 if (*pg_offset
== PAGE_SIZE
) {
1069 if (*pg_index
>= vcnt
)
1072 page_out
= bvec
[*pg_index
].bv_page
;
1074 start_byte
= page_offset(page_out
) - disk_start
;
1077 * make sure our new page is covered by this
1080 if (total_out
<= start_byte
)
1084 * the next page in the biovec might not be adjacent
1085 * to the last page, but it might still be found
1086 * inside this working buffer. bump our offset pointer
1088 if (total_out
> start_byte
&&
1089 current_buf_start
< start_byte
) {
1090 buf_offset
= start_byte
- buf_start
;
1091 working_bytes
= total_out
- start_byte
;
1092 current_buf_start
= buf_start
+ buf_offset
;
1101 * When uncompressing data, we need to make sure and zero any parts of
1102 * the biovec that were not filled in by the decompression code. pg_index
1103 * and pg_offset indicate the last page and the last offset of that page
1104 * that have been filled in. This will zero everything remaining in the
1107 void btrfs_clear_biovec_end(struct bio_vec
*bvec
, int vcnt
,
1108 unsigned long pg_index
,
1109 unsigned long pg_offset
)
1111 while (pg_index
< vcnt
) {
1112 struct page
*page
= bvec
[pg_index
].bv_page
;
1113 unsigned long off
= bvec
[pg_index
].bv_offset
;
1114 unsigned long len
= bvec
[pg_index
].bv_len
;
1116 if (pg_offset
< off
)
1118 if (pg_offset
< off
+ len
) {
1119 unsigned long bytes
= off
+ len
- pg_offset
;
1122 kaddr
= kmap_atomic(page
);
1123 memset(kaddr
+ pg_offset
, 0, bytes
);
1124 kunmap_atomic(kaddr
);