2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
41 #undef SCRAMBLE_DELAYED_REFS
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 CHUNK_ALLOC_NO_FORCE
= 0,
59 CHUNK_ALLOC_LIMITED
= 1,
60 CHUNK_ALLOC_FORCE
= 2,
64 * Control how reservations are dealt with.
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
75 RESERVE_ALLOC_NO_ACCOUNT
= 2,
78 static int update_block_group(struct btrfs_trans_handle
*trans
,
79 struct btrfs_root
*root
, u64 bytenr
,
80 u64 num_bytes
, int alloc
);
81 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
82 struct btrfs_root
*root
,
83 struct btrfs_delayed_ref_node
*node
, u64 parent
,
84 u64 root_objectid
, u64 owner_objectid
,
85 u64 owner_offset
, int refs_to_drop
,
86 struct btrfs_delayed_extent_op
*extra_op
);
87 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
88 struct extent_buffer
*leaf
,
89 struct btrfs_extent_item
*ei
);
90 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
91 struct btrfs_root
*root
,
92 u64 parent
, u64 root_objectid
,
93 u64 flags
, u64 owner
, u64 offset
,
94 struct btrfs_key
*ins
, int ref_mod
);
95 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
96 struct btrfs_root
*root
,
97 u64 parent
, u64 root_objectid
,
98 u64 flags
, struct btrfs_disk_key
*key
,
99 int level
, struct btrfs_key
*ins
);
100 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*extent_root
, u64 flags
,
103 static int find_next_key(struct btrfs_path
*path
, int level
,
104 struct btrfs_key
*key
);
105 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
106 int dump_block_groups
);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
108 u64 num_bytes
, int reserve
,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
112 int btrfs_pin_extent(struct btrfs_root
*root
,
113 u64 bytenr
, u64 num_bytes
, int reserved
);
116 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
119 return cache
->cached
== BTRFS_CACHE_FINISHED
||
120 cache
->cached
== BTRFS_CACHE_ERROR
;
123 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
125 return (cache
->flags
& bits
) == bits
;
128 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
130 atomic_inc(&cache
->count
);
133 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
135 if (atomic_dec_and_test(&cache
->count
)) {
136 WARN_ON(cache
->pinned
> 0);
137 WARN_ON(cache
->reserved
> 0);
138 kfree(cache
->free_space_ctl
);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
148 struct btrfs_block_group_cache
*block_group
)
151 struct rb_node
*parent
= NULL
;
152 struct btrfs_block_group_cache
*cache
;
154 spin_lock(&info
->block_group_cache_lock
);
155 p
= &info
->block_group_cache_tree
.rb_node
;
159 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
161 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
163 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
166 spin_unlock(&info
->block_group_cache_lock
);
171 rb_link_node(&block_group
->cache_node
, parent
, p
);
172 rb_insert_color(&block_group
->cache_node
,
173 &info
->block_group_cache_tree
);
175 if (info
->first_logical_byte
> block_group
->key
.objectid
)
176 info
->first_logical_byte
= block_group
->key
.objectid
;
178 spin_unlock(&info
->block_group_cache_lock
);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache
*
188 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
191 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
195 spin_lock(&info
->block_group_cache_lock
);
196 n
= info
->block_group_cache_tree
.rb_node
;
199 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
201 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
202 start
= cache
->key
.objectid
;
204 if (bytenr
< start
) {
205 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
208 } else if (bytenr
> start
) {
209 if (contains
&& bytenr
<= end
) {
220 btrfs_get_block_group(ret
);
221 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
222 info
->first_logical_byte
= ret
->key
.objectid
;
224 spin_unlock(&info
->block_group_cache_lock
);
229 static int add_excluded_extent(struct btrfs_root
*root
,
230 u64 start
, u64 num_bytes
)
232 u64 end
= start
+ num_bytes
- 1;
233 set_extent_bits(&root
->fs_info
->freed_extents
[0],
234 start
, end
, EXTENT_UPTODATE
);
235 set_extent_bits(&root
->fs_info
->freed_extents
[1],
236 start
, end
, EXTENT_UPTODATE
);
240 static void free_excluded_extents(struct btrfs_root
*root
,
241 struct btrfs_block_group_cache
*cache
)
245 start
= cache
->key
.objectid
;
246 end
= start
+ cache
->key
.offset
- 1;
248 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
249 start
, end
, EXTENT_UPTODATE
);
250 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
251 start
, end
, EXTENT_UPTODATE
);
254 static int exclude_super_stripes(struct btrfs_root
*root
,
255 struct btrfs_block_group_cache
*cache
)
262 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
263 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
264 cache
->bytes_super
+= stripe_len
;
265 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
271 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
272 bytenr
= btrfs_sb_offset(i
);
273 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
274 cache
->key
.objectid
, bytenr
,
275 0, &logical
, &nr
, &stripe_len
);
282 if (logical
[nr
] > cache
->key
.objectid
+
286 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
290 if (start
< cache
->key
.objectid
) {
291 start
= cache
->key
.objectid
;
292 len
= (logical
[nr
] + stripe_len
) - start
;
294 len
= min_t(u64
, stripe_len
,
295 cache
->key
.objectid
+
296 cache
->key
.offset
- start
);
299 cache
->bytes_super
+= len
;
300 ret
= add_excluded_extent(root
, start
, len
);
312 static struct btrfs_caching_control
*
313 get_caching_control(struct btrfs_block_group_cache
*cache
)
315 struct btrfs_caching_control
*ctl
;
317 spin_lock(&cache
->lock
);
318 if (!cache
->caching_ctl
) {
319 spin_unlock(&cache
->lock
);
323 ctl
= cache
->caching_ctl
;
324 atomic_inc(&ctl
->count
);
325 spin_unlock(&cache
->lock
);
329 static void put_caching_control(struct btrfs_caching_control
*ctl
)
331 if (atomic_dec_and_test(&ctl
->count
))
335 #ifdef CONFIG_BTRFS_DEBUG
336 static void fragment_free_space(struct btrfs_root
*root
,
337 struct btrfs_block_group_cache
*block_group
)
339 u64 start
= block_group
->key
.objectid
;
340 u64 len
= block_group
->key
.offset
;
341 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
342 root
->nodesize
: root
->sectorsize
;
343 u64 step
= chunk
<< 1;
345 while (len
> chunk
) {
346 btrfs_remove_free_space(block_group
, start
, chunk
);
357 * this is only called by cache_block_group, since we could have freed extents
358 * we need to check the pinned_extents for any extents that can't be used yet
359 * since their free space will be released as soon as the transaction commits.
361 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
362 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
364 u64 extent_start
, extent_end
, size
, total_added
= 0;
367 while (start
< end
) {
368 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
369 &extent_start
, &extent_end
,
370 EXTENT_DIRTY
| EXTENT_UPTODATE
,
375 if (extent_start
<= start
) {
376 start
= extent_end
+ 1;
377 } else if (extent_start
> start
&& extent_start
< end
) {
378 size
= extent_start
- start
;
380 ret
= btrfs_add_free_space(block_group
, start
,
382 BUG_ON(ret
); /* -ENOMEM or logic error */
383 start
= extent_end
+ 1;
392 ret
= btrfs_add_free_space(block_group
, start
, size
);
393 BUG_ON(ret
); /* -ENOMEM or logic error */
399 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
401 struct btrfs_block_group_cache
*block_group
;
402 struct btrfs_fs_info
*fs_info
;
403 struct btrfs_root
*extent_root
;
404 struct btrfs_path
*path
;
405 struct extent_buffer
*leaf
;
406 struct btrfs_key key
;
413 block_group
= caching_ctl
->block_group
;
414 fs_info
= block_group
->fs_info
;
415 extent_root
= fs_info
->extent_root
;
417 path
= btrfs_alloc_path();
421 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
423 #ifdef CONFIG_BTRFS_DEBUG
425 * If we're fragmenting we don't want to make anybody think we can
426 * allocate from this block group until we've had a chance to fragment
429 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
433 * We don't want to deadlock with somebody trying to allocate a new
434 * extent for the extent root while also trying to search the extent
435 * root to add free space. So we skip locking and search the commit
436 * root, since its read-only
438 path
->skip_locking
= 1;
439 path
->search_commit_root
= 1;
440 path
->reada
= READA_FORWARD
;
444 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
447 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
451 leaf
= path
->nodes
[0];
452 nritems
= btrfs_header_nritems(leaf
);
455 if (btrfs_fs_closing(fs_info
) > 1) {
460 if (path
->slots
[0] < nritems
) {
461 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
463 ret
= find_next_key(path
, 0, &key
);
467 if (need_resched() ||
468 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
470 caching_ctl
->progress
= last
;
471 btrfs_release_path(path
);
472 up_read(&fs_info
->commit_root_sem
);
473 mutex_unlock(&caching_ctl
->mutex
);
475 mutex_lock(&caching_ctl
->mutex
);
476 down_read(&fs_info
->commit_root_sem
);
480 ret
= btrfs_next_leaf(extent_root
, path
);
485 leaf
= path
->nodes
[0];
486 nritems
= btrfs_header_nritems(leaf
);
490 if (key
.objectid
< last
) {
493 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
496 caching_ctl
->progress
= last
;
497 btrfs_release_path(path
);
501 if (key
.objectid
< block_group
->key
.objectid
) {
506 if (key
.objectid
>= block_group
->key
.objectid
+
507 block_group
->key
.offset
)
510 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
511 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
512 total_found
+= add_new_free_space(block_group
,
515 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
516 last
= key
.objectid
+
517 fs_info
->tree_root
->nodesize
;
519 last
= key
.objectid
+ key
.offset
;
521 if (total_found
> CACHING_CTL_WAKE_UP
) {
524 wake_up(&caching_ctl
->wait
);
531 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
532 block_group
->key
.objectid
+
533 block_group
->key
.offset
);
534 caching_ctl
->progress
= (u64
)-1;
537 btrfs_free_path(path
);
541 static noinline
void caching_thread(struct btrfs_work
*work
)
543 struct btrfs_block_group_cache
*block_group
;
544 struct btrfs_fs_info
*fs_info
;
545 struct btrfs_caching_control
*caching_ctl
;
546 struct btrfs_root
*extent_root
;
549 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
550 block_group
= caching_ctl
->block_group
;
551 fs_info
= block_group
->fs_info
;
552 extent_root
= fs_info
->extent_root
;
554 mutex_lock(&caching_ctl
->mutex
);
555 down_read(&fs_info
->commit_root_sem
);
557 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
558 ret
= load_free_space_tree(caching_ctl
);
560 ret
= load_extent_tree_free(caching_ctl
);
562 spin_lock(&block_group
->lock
);
563 block_group
->caching_ctl
= NULL
;
564 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
565 spin_unlock(&block_group
->lock
);
567 #ifdef CONFIG_BTRFS_DEBUG
568 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
571 spin_lock(&block_group
->space_info
->lock
);
572 spin_lock(&block_group
->lock
);
573 bytes_used
= block_group
->key
.offset
-
574 btrfs_block_group_used(&block_group
->item
);
575 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
576 spin_unlock(&block_group
->lock
);
577 spin_unlock(&block_group
->space_info
->lock
);
578 fragment_free_space(extent_root
, block_group
);
582 caching_ctl
->progress
= (u64
)-1;
584 up_read(&fs_info
->commit_root_sem
);
585 free_excluded_extents(fs_info
->extent_root
, block_group
);
586 mutex_unlock(&caching_ctl
->mutex
);
588 wake_up(&caching_ctl
->wait
);
590 put_caching_control(caching_ctl
);
591 btrfs_put_block_group(block_group
);
594 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
598 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
599 struct btrfs_caching_control
*caching_ctl
;
602 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
606 INIT_LIST_HEAD(&caching_ctl
->list
);
607 mutex_init(&caching_ctl
->mutex
);
608 init_waitqueue_head(&caching_ctl
->wait
);
609 caching_ctl
->block_group
= cache
;
610 caching_ctl
->progress
= cache
->key
.objectid
;
611 atomic_set(&caching_ctl
->count
, 1);
612 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
613 caching_thread
, NULL
, NULL
);
615 spin_lock(&cache
->lock
);
617 * This should be a rare occasion, but this could happen I think in the
618 * case where one thread starts to load the space cache info, and then
619 * some other thread starts a transaction commit which tries to do an
620 * allocation while the other thread is still loading the space cache
621 * info. The previous loop should have kept us from choosing this block
622 * group, but if we've moved to the state where we will wait on caching
623 * block groups we need to first check if we're doing a fast load here,
624 * so we can wait for it to finish, otherwise we could end up allocating
625 * from a block group who's cache gets evicted for one reason or
628 while (cache
->cached
== BTRFS_CACHE_FAST
) {
629 struct btrfs_caching_control
*ctl
;
631 ctl
= cache
->caching_ctl
;
632 atomic_inc(&ctl
->count
);
633 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
634 spin_unlock(&cache
->lock
);
638 finish_wait(&ctl
->wait
, &wait
);
639 put_caching_control(ctl
);
640 spin_lock(&cache
->lock
);
643 if (cache
->cached
!= BTRFS_CACHE_NO
) {
644 spin_unlock(&cache
->lock
);
648 WARN_ON(cache
->caching_ctl
);
649 cache
->caching_ctl
= caching_ctl
;
650 cache
->cached
= BTRFS_CACHE_FAST
;
651 spin_unlock(&cache
->lock
);
653 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
654 mutex_lock(&caching_ctl
->mutex
);
655 ret
= load_free_space_cache(fs_info
, cache
);
657 spin_lock(&cache
->lock
);
659 cache
->caching_ctl
= NULL
;
660 cache
->cached
= BTRFS_CACHE_FINISHED
;
661 cache
->last_byte_to_unpin
= (u64
)-1;
662 caching_ctl
->progress
= (u64
)-1;
664 if (load_cache_only
) {
665 cache
->caching_ctl
= NULL
;
666 cache
->cached
= BTRFS_CACHE_NO
;
668 cache
->cached
= BTRFS_CACHE_STARTED
;
669 cache
->has_caching_ctl
= 1;
672 spin_unlock(&cache
->lock
);
673 #ifdef CONFIG_BTRFS_DEBUG
675 btrfs_should_fragment_free_space(fs_info
->extent_root
,
679 spin_lock(&cache
->space_info
->lock
);
680 spin_lock(&cache
->lock
);
681 bytes_used
= cache
->key
.offset
-
682 btrfs_block_group_used(&cache
->item
);
683 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
684 spin_unlock(&cache
->lock
);
685 spin_unlock(&cache
->space_info
->lock
);
686 fragment_free_space(fs_info
->extent_root
, cache
);
689 mutex_unlock(&caching_ctl
->mutex
);
691 wake_up(&caching_ctl
->wait
);
693 put_caching_control(caching_ctl
);
694 free_excluded_extents(fs_info
->extent_root
, cache
);
699 * We're either using the free space tree or no caching at all.
700 * Set cached to the appropriate value and wakeup any waiters.
702 spin_lock(&cache
->lock
);
703 if (load_cache_only
) {
704 cache
->caching_ctl
= NULL
;
705 cache
->cached
= BTRFS_CACHE_NO
;
707 cache
->cached
= BTRFS_CACHE_STARTED
;
708 cache
->has_caching_ctl
= 1;
710 spin_unlock(&cache
->lock
);
711 wake_up(&caching_ctl
->wait
);
714 if (load_cache_only
) {
715 put_caching_control(caching_ctl
);
719 down_write(&fs_info
->commit_root_sem
);
720 atomic_inc(&caching_ctl
->count
);
721 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
722 up_write(&fs_info
->commit_root_sem
);
724 btrfs_get_block_group(cache
);
726 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
732 * return the block group that starts at or after bytenr
734 static struct btrfs_block_group_cache
*
735 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
737 struct btrfs_block_group_cache
*cache
;
739 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
745 * return the block group that contains the given bytenr
747 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
748 struct btrfs_fs_info
*info
,
751 struct btrfs_block_group_cache
*cache
;
753 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
758 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
761 struct list_head
*head
= &info
->space_info
;
762 struct btrfs_space_info
*found
;
764 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
767 list_for_each_entry_rcu(found
, head
, list
) {
768 if (found
->flags
& flags
) {
778 * after adding space to the filesystem, we need to clear the full flags
779 * on all the space infos.
781 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
783 struct list_head
*head
= &info
->space_info
;
784 struct btrfs_space_info
*found
;
787 list_for_each_entry_rcu(found
, head
, list
)
792 /* simple helper to search for an existing data extent at a given offset */
793 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
796 struct btrfs_key key
;
797 struct btrfs_path
*path
;
799 path
= btrfs_alloc_path();
803 key
.objectid
= start
;
805 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
806 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
808 btrfs_free_path(path
);
813 * helper function to lookup reference count and flags of a tree block.
815 * the head node for delayed ref is used to store the sum of all the
816 * reference count modifications queued up in the rbtree. the head
817 * node may also store the extent flags to set. This way you can check
818 * to see what the reference count and extent flags would be if all of
819 * the delayed refs are not processed.
821 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
822 struct btrfs_root
*root
, u64 bytenr
,
823 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
825 struct btrfs_delayed_ref_head
*head
;
826 struct btrfs_delayed_ref_root
*delayed_refs
;
827 struct btrfs_path
*path
;
828 struct btrfs_extent_item
*ei
;
829 struct extent_buffer
*leaf
;
830 struct btrfs_key key
;
837 * If we don't have skinny metadata, don't bother doing anything
840 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
841 offset
= root
->nodesize
;
845 path
= btrfs_alloc_path();
850 path
->skip_locking
= 1;
851 path
->search_commit_root
= 1;
855 key
.objectid
= bytenr
;
858 key
.type
= BTRFS_METADATA_ITEM_KEY
;
860 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
862 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
867 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
868 if (path
->slots
[0]) {
870 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
872 if (key
.objectid
== bytenr
&&
873 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
874 key
.offset
== root
->nodesize
)
880 leaf
= path
->nodes
[0];
881 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
882 if (item_size
>= sizeof(*ei
)) {
883 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
884 struct btrfs_extent_item
);
885 num_refs
= btrfs_extent_refs(leaf
, ei
);
886 extent_flags
= btrfs_extent_flags(leaf
, ei
);
888 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
889 struct btrfs_extent_item_v0
*ei0
;
890 BUG_ON(item_size
!= sizeof(*ei0
));
891 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
892 struct btrfs_extent_item_v0
);
893 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
894 /* FIXME: this isn't correct for data */
895 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
900 BUG_ON(num_refs
== 0);
910 delayed_refs
= &trans
->transaction
->delayed_refs
;
911 spin_lock(&delayed_refs
->lock
);
912 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
914 if (!mutex_trylock(&head
->mutex
)) {
915 atomic_inc(&head
->node
.refs
);
916 spin_unlock(&delayed_refs
->lock
);
918 btrfs_release_path(path
);
921 * Mutex was contended, block until it's released and try
924 mutex_lock(&head
->mutex
);
925 mutex_unlock(&head
->mutex
);
926 btrfs_put_delayed_ref(&head
->node
);
929 spin_lock(&head
->lock
);
930 if (head
->extent_op
&& head
->extent_op
->update_flags
)
931 extent_flags
|= head
->extent_op
->flags_to_set
;
933 BUG_ON(num_refs
== 0);
935 num_refs
+= head
->node
.ref_mod
;
936 spin_unlock(&head
->lock
);
937 mutex_unlock(&head
->mutex
);
939 spin_unlock(&delayed_refs
->lock
);
941 WARN_ON(num_refs
== 0);
945 *flags
= extent_flags
;
947 btrfs_free_path(path
);
952 * Back reference rules. Back refs have three main goals:
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
983 * When a tree block is COWed through a tree, there are four cases:
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1003 * Back Reference Key composing:
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1010 * File extents can be referenced by:
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
1013 * - different files inside a single subvolume
1014 * - different offsets inside a file (bookend extents in file.c)
1016 * The extent ref structure for the implicit back refs has fields for:
1018 * - Objectid of the subvolume root
1019 * - objectid of the file holding the reference
1020 * - original offset in the file
1021 * - how many bookend extents
1023 * The key offset for the implicit back refs is hash of the first
1026 * The extent ref structure for the full back refs has field for:
1028 * - number of pointers in the tree leaf
1030 * The key offset for the implicit back refs is the first byte of
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
1036 * (root_key.objectid, inode objectid, offset in file, 1)
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 * Btree extents can be referenced by:
1045 * - Different subvolumes
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
1057 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1058 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1059 struct btrfs_root
*root
,
1060 struct btrfs_path
*path
,
1061 u64 owner
, u32 extra_size
)
1063 struct btrfs_extent_item
*item
;
1064 struct btrfs_extent_item_v0
*ei0
;
1065 struct btrfs_extent_ref_v0
*ref0
;
1066 struct btrfs_tree_block_info
*bi
;
1067 struct extent_buffer
*leaf
;
1068 struct btrfs_key key
;
1069 struct btrfs_key found_key
;
1070 u32 new_size
= sizeof(*item
);
1074 leaf
= path
->nodes
[0];
1075 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1077 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1078 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1079 struct btrfs_extent_item_v0
);
1080 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1082 if (owner
== (u64
)-1) {
1084 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1085 ret
= btrfs_next_leaf(root
, path
);
1088 BUG_ON(ret
> 0); /* Corruption */
1089 leaf
= path
->nodes
[0];
1091 btrfs_item_key_to_cpu(leaf
, &found_key
,
1093 BUG_ON(key
.objectid
!= found_key
.objectid
);
1094 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1098 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1099 struct btrfs_extent_ref_v0
);
1100 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1104 btrfs_release_path(path
);
1106 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1107 new_size
+= sizeof(*bi
);
1109 new_size
-= sizeof(*ei0
);
1110 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1111 new_size
+ extra_size
, 1);
1114 BUG_ON(ret
); /* Corruption */
1116 btrfs_extend_item(root
, path
, new_size
);
1118 leaf
= path
->nodes
[0];
1119 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1120 btrfs_set_extent_refs(leaf
, item
, refs
);
1121 /* FIXME: get real generation */
1122 btrfs_set_extent_generation(leaf
, item
, 0);
1123 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1124 btrfs_set_extent_flags(leaf
, item
,
1125 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1126 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1127 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1128 /* FIXME: get first key of the block */
1129 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1130 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1132 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1134 btrfs_mark_buffer_dirty(leaf
);
1139 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1141 u32 high_crc
= ~(u32
)0;
1142 u32 low_crc
= ~(u32
)0;
1145 lenum
= cpu_to_le64(root_objectid
);
1146 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1147 lenum
= cpu_to_le64(owner
);
1148 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1149 lenum
= cpu_to_le64(offset
);
1150 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1152 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1155 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1156 struct btrfs_extent_data_ref
*ref
)
1158 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1159 btrfs_extent_data_ref_objectid(leaf
, ref
),
1160 btrfs_extent_data_ref_offset(leaf
, ref
));
1163 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1164 struct btrfs_extent_data_ref
*ref
,
1165 u64 root_objectid
, u64 owner
, u64 offset
)
1167 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1168 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1169 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1174 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1175 struct btrfs_root
*root
,
1176 struct btrfs_path
*path
,
1177 u64 bytenr
, u64 parent
,
1179 u64 owner
, u64 offset
)
1181 struct btrfs_key key
;
1182 struct btrfs_extent_data_ref
*ref
;
1183 struct extent_buffer
*leaf
;
1189 key
.objectid
= bytenr
;
1191 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1192 key
.offset
= parent
;
1194 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1195 key
.offset
= hash_extent_data_ref(root_objectid
,
1200 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1209 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1210 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1211 btrfs_release_path(path
);
1212 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1223 leaf
= path
->nodes
[0];
1224 nritems
= btrfs_header_nritems(leaf
);
1226 if (path
->slots
[0] >= nritems
) {
1227 ret
= btrfs_next_leaf(root
, path
);
1233 leaf
= path
->nodes
[0];
1234 nritems
= btrfs_header_nritems(leaf
);
1238 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1239 if (key
.objectid
!= bytenr
||
1240 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1243 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1244 struct btrfs_extent_data_ref
);
1246 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1249 btrfs_release_path(path
);
1261 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1262 struct btrfs_root
*root
,
1263 struct btrfs_path
*path
,
1264 u64 bytenr
, u64 parent
,
1265 u64 root_objectid
, u64 owner
,
1266 u64 offset
, int refs_to_add
)
1268 struct btrfs_key key
;
1269 struct extent_buffer
*leaf
;
1274 key
.objectid
= bytenr
;
1276 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1277 key
.offset
= parent
;
1278 size
= sizeof(struct btrfs_shared_data_ref
);
1280 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1281 key
.offset
= hash_extent_data_ref(root_objectid
,
1283 size
= sizeof(struct btrfs_extent_data_ref
);
1286 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1287 if (ret
&& ret
!= -EEXIST
)
1290 leaf
= path
->nodes
[0];
1292 struct btrfs_shared_data_ref
*ref
;
1293 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1294 struct btrfs_shared_data_ref
);
1296 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1298 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1299 num_refs
+= refs_to_add
;
1300 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1303 struct btrfs_extent_data_ref
*ref
;
1304 while (ret
== -EEXIST
) {
1305 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1306 struct btrfs_extent_data_ref
);
1307 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1310 btrfs_release_path(path
);
1312 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1314 if (ret
&& ret
!= -EEXIST
)
1317 leaf
= path
->nodes
[0];
1319 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1320 struct btrfs_extent_data_ref
);
1322 btrfs_set_extent_data_ref_root(leaf
, ref
,
1324 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1325 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1326 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1328 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1329 num_refs
+= refs_to_add
;
1330 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1333 btrfs_mark_buffer_dirty(leaf
);
1336 btrfs_release_path(path
);
1340 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1341 struct btrfs_root
*root
,
1342 struct btrfs_path
*path
,
1343 int refs_to_drop
, int *last_ref
)
1345 struct btrfs_key key
;
1346 struct btrfs_extent_data_ref
*ref1
= NULL
;
1347 struct btrfs_shared_data_ref
*ref2
= NULL
;
1348 struct extent_buffer
*leaf
;
1352 leaf
= path
->nodes
[0];
1353 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1355 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1356 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1357 struct btrfs_extent_data_ref
);
1358 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1359 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1360 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1361 struct btrfs_shared_data_ref
);
1362 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1363 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1364 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1365 struct btrfs_extent_ref_v0
*ref0
;
1366 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1367 struct btrfs_extent_ref_v0
);
1368 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1374 BUG_ON(num_refs
< refs_to_drop
);
1375 num_refs
-= refs_to_drop
;
1377 if (num_refs
== 0) {
1378 ret
= btrfs_del_item(trans
, root
, path
);
1381 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1382 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1383 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1384 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1385 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1387 struct btrfs_extent_ref_v0
*ref0
;
1388 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1389 struct btrfs_extent_ref_v0
);
1390 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1393 btrfs_mark_buffer_dirty(leaf
);
1398 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1399 struct btrfs_extent_inline_ref
*iref
)
1401 struct btrfs_key key
;
1402 struct extent_buffer
*leaf
;
1403 struct btrfs_extent_data_ref
*ref1
;
1404 struct btrfs_shared_data_ref
*ref2
;
1407 leaf
= path
->nodes
[0];
1408 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1410 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1411 BTRFS_EXTENT_DATA_REF_KEY
) {
1412 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1413 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1415 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1416 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1418 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1419 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1420 struct btrfs_extent_data_ref
);
1421 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1422 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1423 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1424 struct btrfs_shared_data_ref
);
1425 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1426 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1427 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1428 struct btrfs_extent_ref_v0
*ref0
;
1429 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1430 struct btrfs_extent_ref_v0
);
1431 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1439 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1440 struct btrfs_root
*root
,
1441 struct btrfs_path
*path
,
1442 u64 bytenr
, u64 parent
,
1445 struct btrfs_key key
;
1448 key
.objectid
= bytenr
;
1450 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1451 key
.offset
= parent
;
1453 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1454 key
.offset
= root_objectid
;
1457 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1460 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1461 if (ret
== -ENOENT
&& parent
) {
1462 btrfs_release_path(path
);
1463 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1464 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1472 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1473 struct btrfs_root
*root
,
1474 struct btrfs_path
*path
,
1475 u64 bytenr
, u64 parent
,
1478 struct btrfs_key key
;
1481 key
.objectid
= bytenr
;
1483 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1484 key
.offset
= parent
;
1486 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1487 key
.offset
= root_objectid
;
1490 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1491 btrfs_release_path(path
);
1495 static inline int extent_ref_type(u64 parent
, u64 owner
)
1498 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1500 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1502 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1505 type
= BTRFS_SHARED_DATA_REF_KEY
;
1507 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1512 static int find_next_key(struct btrfs_path
*path
, int level
,
1513 struct btrfs_key
*key
)
1516 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1517 if (!path
->nodes
[level
])
1519 if (path
->slots
[level
] + 1 >=
1520 btrfs_header_nritems(path
->nodes
[level
]))
1523 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1524 path
->slots
[level
] + 1);
1526 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1527 path
->slots
[level
] + 1);
1534 * look for inline back ref. if back ref is found, *ref_ret is set
1535 * to the address of inline back ref, and 0 is returned.
1537 * if back ref isn't found, *ref_ret is set to the address where it
1538 * should be inserted, and -ENOENT is returned.
1540 * if insert is true and there are too many inline back refs, the path
1541 * points to the extent item, and -EAGAIN is returned.
1543 * NOTE: inline back refs are ordered in the same way that back ref
1544 * items in the tree are ordered.
1546 static noinline_for_stack
1547 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1548 struct btrfs_root
*root
,
1549 struct btrfs_path
*path
,
1550 struct btrfs_extent_inline_ref
**ref_ret
,
1551 u64 bytenr
, u64 num_bytes
,
1552 u64 parent
, u64 root_objectid
,
1553 u64 owner
, u64 offset
, int insert
)
1555 struct btrfs_key key
;
1556 struct extent_buffer
*leaf
;
1557 struct btrfs_extent_item
*ei
;
1558 struct btrfs_extent_inline_ref
*iref
;
1568 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1571 key
.objectid
= bytenr
;
1572 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1573 key
.offset
= num_bytes
;
1575 want
= extent_ref_type(parent
, owner
);
1577 extra_size
= btrfs_extent_inline_ref_size(want
);
1578 path
->keep_locks
= 1;
1583 * Owner is our parent level, so we can just add one to get the level
1584 * for the block we are interested in.
1586 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1587 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1592 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1599 * We may be a newly converted file system which still has the old fat
1600 * extent entries for metadata, so try and see if we have one of those.
1602 if (ret
> 0 && skinny_metadata
) {
1603 skinny_metadata
= false;
1604 if (path
->slots
[0]) {
1606 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1608 if (key
.objectid
== bytenr
&&
1609 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1610 key
.offset
== num_bytes
)
1614 key
.objectid
= bytenr
;
1615 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1616 key
.offset
= num_bytes
;
1617 btrfs_release_path(path
);
1622 if (ret
&& !insert
) {
1625 } else if (WARN_ON(ret
)) {
1630 leaf
= path
->nodes
[0];
1631 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1632 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1633 if (item_size
< sizeof(*ei
)) {
1638 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1644 leaf
= path
->nodes
[0];
1645 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1648 BUG_ON(item_size
< sizeof(*ei
));
1650 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1651 flags
= btrfs_extent_flags(leaf
, ei
);
1653 ptr
= (unsigned long)(ei
+ 1);
1654 end
= (unsigned long)ei
+ item_size
;
1656 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1657 ptr
+= sizeof(struct btrfs_tree_block_info
);
1667 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1668 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1672 ptr
+= btrfs_extent_inline_ref_size(type
);
1676 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1677 struct btrfs_extent_data_ref
*dref
;
1678 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1679 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1684 if (hash_extent_data_ref_item(leaf
, dref
) <
1685 hash_extent_data_ref(root_objectid
, owner
, offset
))
1689 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1691 if (parent
== ref_offset
) {
1695 if (ref_offset
< parent
)
1698 if (root_objectid
== ref_offset
) {
1702 if (ref_offset
< root_objectid
)
1706 ptr
+= btrfs_extent_inline_ref_size(type
);
1708 if (err
== -ENOENT
&& insert
) {
1709 if (item_size
+ extra_size
>=
1710 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1715 * To add new inline back ref, we have to make sure
1716 * there is no corresponding back ref item.
1717 * For simplicity, we just do not add new inline back
1718 * ref if there is any kind of item for this block
1720 if (find_next_key(path
, 0, &key
) == 0 &&
1721 key
.objectid
== bytenr
&&
1722 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1727 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1730 path
->keep_locks
= 0;
1731 btrfs_unlock_up_safe(path
, 1);
1737 * helper to add new inline back ref
1739 static noinline_for_stack
1740 void setup_inline_extent_backref(struct btrfs_root
*root
,
1741 struct btrfs_path
*path
,
1742 struct btrfs_extent_inline_ref
*iref
,
1743 u64 parent
, u64 root_objectid
,
1744 u64 owner
, u64 offset
, int refs_to_add
,
1745 struct btrfs_delayed_extent_op
*extent_op
)
1747 struct extent_buffer
*leaf
;
1748 struct btrfs_extent_item
*ei
;
1751 unsigned long item_offset
;
1756 leaf
= path
->nodes
[0];
1757 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1758 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1760 type
= extent_ref_type(parent
, owner
);
1761 size
= btrfs_extent_inline_ref_size(type
);
1763 btrfs_extend_item(root
, path
, size
);
1765 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1766 refs
= btrfs_extent_refs(leaf
, ei
);
1767 refs
+= refs_to_add
;
1768 btrfs_set_extent_refs(leaf
, ei
, refs
);
1770 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1772 ptr
= (unsigned long)ei
+ item_offset
;
1773 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1774 if (ptr
< end
- size
)
1775 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1778 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1779 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1780 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1781 struct btrfs_extent_data_ref
*dref
;
1782 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1783 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1784 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1785 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1786 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1787 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1788 struct btrfs_shared_data_ref
*sref
;
1789 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1790 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1791 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1792 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1793 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1795 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1797 btrfs_mark_buffer_dirty(leaf
);
1800 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1801 struct btrfs_root
*root
,
1802 struct btrfs_path
*path
,
1803 struct btrfs_extent_inline_ref
**ref_ret
,
1804 u64 bytenr
, u64 num_bytes
, u64 parent
,
1805 u64 root_objectid
, u64 owner
, u64 offset
)
1809 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1810 bytenr
, num_bytes
, parent
,
1811 root_objectid
, owner
, offset
, 0);
1815 btrfs_release_path(path
);
1818 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1819 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1822 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1823 root_objectid
, owner
, offset
);
1829 * helper to update/remove inline back ref
1831 static noinline_for_stack
1832 void update_inline_extent_backref(struct btrfs_root
*root
,
1833 struct btrfs_path
*path
,
1834 struct btrfs_extent_inline_ref
*iref
,
1836 struct btrfs_delayed_extent_op
*extent_op
,
1839 struct extent_buffer
*leaf
;
1840 struct btrfs_extent_item
*ei
;
1841 struct btrfs_extent_data_ref
*dref
= NULL
;
1842 struct btrfs_shared_data_ref
*sref
= NULL
;
1850 leaf
= path
->nodes
[0];
1851 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1852 refs
= btrfs_extent_refs(leaf
, ei
);
1853 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1854 refs
+= refs_to_mod
;
1855 btrfs_set_extent_refs(leaf
, ei
, refs
);
1857 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1859 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1861 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1862 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1863 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1864 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1865 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1866 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1869 BUG_ON(refs_to_mod
!= -1);
1872 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1873 refs
+= refs_to_mod
;
1876 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1877 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1879 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1882 size
= btrfs_extent_inline_ref_size(type
);
1883 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1884 ptr
= (unsigned long)iref
;
1885 end
= (unsigned long)ei
+ item_size
;
1886 if (ptr
+ size
< end
)
1887 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1890 btrfs_truncate_item(root
, path
, item_size
, 1);
1892 btrfs_mark_buffer_dirty(leaf
);
1895 static noinline_for_stack
1896 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1897 struct btrfs_root
*root
,
1898 struct btrfs_path
*path
,
1899 u64 bytenr
, u64 num_bytes
, u64 parent
,
1900 u64 root_objectid
, u64 owner
,
1901 u64 offset
, int refs_to_add
,
1902 struct btrfs_delayed_extent_op
*extent_op
)
1904 struct btrfs_extent_inline_ref
*iref
;
1907 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1908 bytenr
, num_bytes
, parent
,
1909 root_objectid
, owner
, offset
, 1);
1911 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1912 update_inline_extent_backref(root
, path
, iref
,
1913 refs_to_add
, extent_op
, NULL
);
1914 } else if (ret
== -ENOENT
) {
1915 setup_inline_extent_backref(root
, path
, iref
, parent
,
1916 root_objectid
, owner
, offset
,
1917 refs_to_add
, extent_op
);
1923 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1924 struct btrfs_root
*root
,
1925 struct btrfs_path
*path
,
1926 u64 bytenr
, u64 parent
, u64 root_objectid
,
1927 u64 owner
, u64 offset
, int refs_to_add
)
1930 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1931 BUG_ON(refs_to_add
!= 1);
1932 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1933 parent
, root_objectid
);
1935 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1936 parent
, root_objectid
,
1937 owner
, offset
, refs_to_add
);
1942 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1943 struct btrfs_root
*root
,
1944 struct btrfs_path
*path
,
1945 struct btrfs_extent_inline_ref
*iref
,
1946 int refs_to_drop
, int is_data
, int *last_ref
)
1950 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1952 update_inline_extent_backref(root
, path
, iref
,
1953 -refs_to_drop
, NULL
, last_ref
);
1954 } else if (is_data
) {
1955 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1959 ret
= btrfs_del_item(trans
, root
, path
);
1964 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1965 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1966 u64
*discarded_bytes
)
1969 u64 bytes_left
, end
;
1970 u64 aligned_start
= ALIGN(start
, 1 << 9);
1972 if (WARN_ON(start
!= aligned_start
)) {
1973 len
-= aligned_start
- start
;
1974 len
= round_down(len
, 1 << 9);
1975 start
= aligned_start
;
1978 *discarded_bytes
= 0;
1986 /* Skip any superblocks on this device. */
1987 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1988 u64 sb_start
= btrfs_sb_offset(j
);
1989 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1990 u64 size
= sb_start
- start
;
1992 if (!in_range(sb_start
, start
, bytes_left
) &&
1993 !in_range(sb_end
, start
, bytes_left
) &&
1994 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1998 * Superblock spans beginning of range. Adjust start and
2001 if (sb_start
<= start
) {
2002 start
+= sb_end
- start
;
2007 bytes_left
= end
- start
;
2012 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
2015 *discarded_bytes
+= size
;
2016 else if (ret
!= -EOPNOTSUPP
)
2025 bytes_left
= end
- start
;
2029 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2032 *discarded_bytes
+= bytes_left
;
2037 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2038 u64 num_bytes
, u64
*actual_bytes
)
2041 u64 discarded_bytes
= 0;
2042 struct btrfs_bio
*bbio
= NULL
;
2045 /* Tell the block device(s) that the sectors can be discarded */
2046 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
2047 bytenr
, &num_bytes
, &bbio
, 0);
2048 /* Error condition is -ENOMEM */
2050 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2054 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2056 if (!stripe
->dev
->can_discard
)
2059 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2064 discarded_bytes
+= bytes
;
2065 else if (ret
!= -EOPNOTSUPP
)
2066 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2069 * Just in case we get back EOPNOTSUPP for some reason,
2070 * just ignore the return value so we don't screw up
2071 * people calling discard_extent.
2075 btrfs_put_bbio(bbio
);
2079 *actual_bytes
= discarded_bytes
;
2082 if (ret
== -EOPNOTSUPP
)
2087 /* Can return -ENOMEM */
2088 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2089 struct btrfs_root
*root
,
2090 u64 bytenr
, u64 num_bytes
, u64 parent
,
2091 u64 root_objectid
, u64 owner
, u64 offset
)
2094 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2096 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2097 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2099 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2100 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2102 parent
, root_objectid
, (int)owner
,
2103 BTRFS_ADD_DELAYED_REF
, NULL
);
2105 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2106 num_bytes
, parent
, root_objectid
,
2108 BTRFS_ADD_DELAYED_REF
, NULL
);
2113 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2114 struct btrfs_root
*root
,
2115 struct btrfs_delayed_ref_node
*node
,
2116 u64 parent
, u64 root_objectid
,
2117 u64 owner
, u64 offset
, int refs_to_add
,
2118 struct btrfs_delayed_extent_op
*extent_op
)
2120 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2121 struct btrfs_path
*path
;
2122 struct extent_buffer
*leaf
;
2123 struct btrfs_extent_item
*item
;
2124 struct btrfs_key key
;
2125 u64 bytenr
= node
->bytenr
;
2126 u64 num_bytes
= node
->num_bytes
;
2130 path
= btrfs_alloc_path();
2134 path
->reada
= READA_FORWARD
;
2135 path
->leave_spinning
= 1;
2136 /* this will setup the path even if it fails to insert the back ref */
2137 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2138 bytenr
, num_bytes
, parent
,
2139 root_objectid
, owner
, offset
,
2140 refs_to_add
, extent_op
);
2141 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2145 * Ok we had -EAGAIN which means we didn't have space to insert and
2146 * inline extent ref, so just update the reference count and add a
2149 leaf
= path
->nodes
[0];
2150 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2151 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2152 refs
= btrfs_extent_refs(leaf
, item
);
2153 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2155 __run_delayed_extent_op(extent_op
, leaf
, item
);
2157 btrfs_mark_buffer_dirty(leaf
);
2158 btrfs_release_path(path
);
2160 path
->reada
= READA_FORWARD
;
2161 path
->leave_spinning
= 1;
2162 /* now insert the actual backref */
2163 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2164 path
, bytenr
, parent
, root_objectid
,
2165 owner
, offset
, refs_to_add
);
2167 btrfs_abort_transaction(trans
, root
, ret
);
2169 btrfs_free_path(path
);
2173 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2174 struct btrfs_root
*root
,
2175 struct btrfs_delayed_ref_node
*node
,
2176 struct btrfs_delayed_extent_op
*extent_op
,
2177 int insert_reserved
)
2180 struct btrfs_delayed_data_ref
*ref
;
2181 struct btrfs_key ins
;
2186 ins
.objectid
= node
->bytenr
;
2187 ins
.offset
= node
->num_bytes
;
2188 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2190 ref
= btrfs_delayed_node_to_data_ref(node
);
2191 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2193 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2194 parent
= ref
->parent
;
2195 ref_root
= ref
->root
;
2197 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2199 flags
|= extent_op
->flags_to_set
;
2200 ret
= alloc_reserved_file_extent(trans
, root
,
2201 parent
, ref_root
, flags
,
2202 ref
->objectid
, ref
->offset
,
2203 &ins
, node
->ref_mod
);
2204 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2205 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2206 ref_root
, ref
->objectid
,
2207 ref
->offset
, node
->ref_mod
,
2209 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2210 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2211 ref_root
, ref
->objectid
,
2212 ref
->offset
, node
->ref_mod
,
2220 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2221 struct extent_buffer
*leaf
,
2222 struct btrfs_extent_item
*ei
)
2224 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2225 if (extent_op
->update_flags
) {
2226 flags
|= extent_op
->flags_to_set
;
2227 btrfs_set_extent_flags(leaf
, ei
, flags
);
2230 if (extent_op
->update_key
) {
2231 struct btrfs_tree_block_info
*bi
;
2232 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2233 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2234 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2238 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2239 struct btrfs_root
*root
,
2240 struct btrfs_delayed_ref_node
*node
,
2241 struct btrfs_delayed_extent_op
*extent_op
)
2243 struct btrfs_key key
;
2244 struct btrfs_path
*path
;
2245 struct btrfs_extent_item
*ei
;
2246 struct extent_buffer
*leaf
;
2250 int metadata
= !extent_op
->is_data
;
2255 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2258 path
= btrfs_alloc_path();
2262 key
.objectid
= node
->bytenr
;
2265 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2266 key
.offset
= extent_op
->level
;
2268 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2269 key
.offset
= node
->num_bytes
;
2273 path
->reada
= READA_FORWARD
;
2274 path
->leave_spinning
= 1;
2275 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2283 if (path
->slots
[0] > 0) {
2285 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2287 if (key
.objectid
== node
->bytenr
&&
2288 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2289 key
.offset
== node
->num_bytes
)
2293 btrfs_release_path(path
);
2296 key
.objectid
= node
->bytenr
;
2297 key
.offset
= node
->num_bytes
;
2298 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2307 leaf
= path
->nodes
[0];
2308 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2310 if (item_size
< sizeof(*ei
)) {
2311 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2317 leaf
= path
->nodes
[0];
2318 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2321 BUG_ON(item_size
< sizeof(*ei
));
2322 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2323 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2325 btrfs_mark_buffer_dirty(leaf
);
2327 btrfs_free_path(path
);
2331 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2332 struct btrfs_root
*root
,
2333 struct btrfs_delayed_ref_node
*node
,
2334 struct btrfs_delayed_extent_op
*extent_op
,
2335 int insert_reserved
)
2338 struct btrfs_delayed_tree_ref
*ref
;
2339 struct btrfs_key ins
;
2342 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2345 ref
= btrfs_delayed_node_to_tree_ref(node
);
2346 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2348 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2349 parent
= ref
->parent
;
2350 ref_root
= ref
->root
;
2352 ins
.objectid
= node
->bytenr
;
2353 if (skinny_metadata
) {
2354 ins
.offset
= ref
->level
;
2355 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2357 ins
.offset
= node
->num_bytes
;
2358 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2361 BUG_ON(node
->ref_mod
!= 1);
2362 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2363 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2364 ret
= alloc_reserved_tree_block(trans
, root
,
2366 extent_op
->flags_to_set
,
2369 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2370 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2374 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2375 ret
= __btrfs_free_extent(trans
, root
, node
,
2377 ref
->level
, 0, 1, extent_op
);
2384 /* helper function to actually process a single delayed ref entry */
2385 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2386 struct btrfs_root
*root
,
2387 struct btrfs_delayed_ref_node
*node
,
2388 struct btrfs_delayed_extent_op
*extent_op
,
2389 int insert_reserved
)
2393 if (trans
->aborted
) {
2394 if (insert_reserved
)
2395 btrfs_pin_extent(root
, node
->bytenr
,
2396 node
->num_bytes
, 1);
2400 if (btrfs_delayed_ref_is_head(node
)) {
2401 struct btrfs_delayed_ref_head
*head
;
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2409 head
= btrfs_delayed_node_to_head(node
);
2410 trace_run_delayed_ref_head(node
, head
, node
->action
);
2412 if (insert_reserved
) {
2413 btrfs_pin_extent(root
, node
->bytenr
,
2414 node
->num_bytes
, 1);
2415 if (head
->is_data
) {
2416 ret
= btrfs_del_csums(trans
, root
,
2422 /* Also free its reserved qgroup space */
2423 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2424 head
->qgroup_ref_root
,
2425 head
->qgroup_reserved
);
2429 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2430 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2431 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2433 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2434 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2435 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2442 static inline struct btrfs_delayed_ref_node
*
2443 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2445 struct btrfs_delayed_ref_node
*ref
;
2447 if (list_empty(&head
->ref_list
))
2451 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2452 * This is to prevent a ref count from going down to zero, which deletes
2453 * the extent item from the extent tree, when there still are references
2454 * to add, which would fail because they would not find the extent item.
2456 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2457 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2461 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2466 * Returns 0 on success or if called with an already aborted transaction.
2467 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2469 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2470 struct btrfs_root
*root
,
2473 struct btrfs_delayed_ref_root
*delayed_refs
;
2474 struct btrfs_delayed_ref_node
*ref
;
2475 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2476 struct btrfs_delayed_extent_op
*extent_op
;
2477 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2478 ktime_t start
= ktime_get();
2480 unsigned long count
= 0;
2481 unsigned long actual_count
= 0;
2482 int must_insert_reserved
= 0;
2484 delayed_refs
= &trans
->transaction
->delayed_refs
;
2490 spin_lock(&delayed_refs
->lock
);
2491 locked_ref
= btrfs_select_ref_head(trans
);
2493 spin_unlock(&delayed_refs
->lock
);
2497 /* grab the lock that says we are going to process
2498 * all the refs for this head */
2499 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2500 spin_unlock(&delayed_refs
->lock
);
2502 * we may have dropped the spin lock to get the head
2503 * mutex lock, and that might have given someone else
2504 * time to free the head. If that's true, it has been
2505 * removed from our list and we can move on.
2507 if (ret
== -EAGAIN
) {
2515 * We need to try and merge add/drops of the same ref since we
2516 * can run into issues with relocate dropping the implicit ref
2517 * and then it being added back again before the drop can
2518 * finish. If we merged anything we need to re-loop so we can
2520 * Or we can get node references of the same type that weren't
2521 * merged when created due to bumps in the tree mod seq, and
2522 * we need to merge them to prevent adding an inline extent
2523 * backref before dropping it (triggering a BUG_ON at
2524 * insert_inline_extent_backref()).
2526 spin_lock(&locked_ref
->lock
);
2527 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2531 * locked_ref is the head node, so we have to go one
2532 * node back for any delayed ref updates
2534 ref
= select_delayed_ref(locked_ref
);
2536 if (ref
&& ref
->seq
&&
2537 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2538 spin_unlock(&locked_ref
->lock
);
2539 btrfs_delayed_ref_unlock(locked_ref
);
2540 spin_lock(&delayed_refs
->lock
);
2541 locked_ref
->processing
= 0;
2542 delayed_refs
->num_heads_ready
++;
2543 spin_unlock(&delayed_refs
->lock
);
2551 * record the must insert reserved flag before we
2552 * drop the spin lock.
2554 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2555 locked_ref
->must_insert_reserved
= 0;
2557 extent_op
= locked_ref
->extent_op
;
2558 locked_ref
->extent_op
= NULL
;
2563 /* All delayed refs have been processed, Go ahead
2564 * and send the head node to run_one_delayed_ref,
2565 * so that any accounting fixes can happen
2567 ref
= &locked_ref
->node
;
2569 if (extent_op
&& must_insert_reserved
) {
2570 btrfs_free_delayed_extent_op(extent_op
);
2575 spin_unlock(&locked_ref
->lock
);
2576 ret
= run_delayed_extent_op(trans
, root
,
2578 btrfs_free_delayed_extent_op(extent_op
);
2582 * Need to reset must_insert_reserved if
2583 * there was an error so the abort stuff
2584 * can cleanup the reserved space
2587 if (must_insert_reserved
)
2588 locked_ref
->must_insert_reserved
= 1;
2589 locked_ref
->processing
= 0;
2590 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2591 btrfs_delayed_ref_unlock(locked_ref
);
2598 * Need to drop our head ref lock and re-acquire the
2599 * delayed ref lock and then re-check to make sure
2602 spin_unlock(&locked_ref
->lock
);
2603 spin_lock(&delayed_refs
->lock
);
2604 spin_lock(&locked_ref
->lock
);
2605 if (!list_empty(&locked_ref
->ref_list
) ||
2606 locked_ref
->extent_op
) {
2607 spin_unlock(&locked_ref
->lock
);
2608 spin_unlock(&delayed_refs
->lock
);
2612 delayed_refs
->num_heads
--;
2613 rb_erase(&locked_ref
->href_node
,
2614 &delayed_refs
->href_root
);
2615 spin_unlock(&delayed_refs
->lock
);
2619 list_del(&ref
->list
);
2621 atomic_dec(&delayed_refs
->num_entries
);
2623 if (!btrfs_delayed_ref_is_head(ref
)) {
2625 * when we play the delayed ref, also correct the
2628 switch (ref
->action
) {
2629 case BTRFS_ADD_DELAYED_REF
:
2630 case BTRFS_ADD_DELAYED_EXTENT
:
2631 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2633 case BTRFS_DROP_DELAYED_REF
:
2634 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2640 spin_unlock(&locked_ref
->lock
);
2642 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2643 must_insert_reserved
);
2645 btrfs_free_delayed_extent_op(extent_op
);
2647 locked_ref
->processing
= 0;
2648 btrfs_delayed_ref_unlock(locked_ref
);
2649 btrfs_put_delayed_ref(ref
);
2650 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2655 * If this node is a head, that means all the refs in this head
2656 * have been dealt with, and we will pick the next head to deal
2657 * with, so we must unlock the head and drop it from the cluster
2658 * list before we release it.
2660 if (btrfs_delayed_ref_is_head(ref
)) {
2661 if (locked_ref
->is_data
&&
2662 locked_ref
->total_ref_mod
< 0) {
2663 spin_lock(&delayed_refs
->lock
);
2664 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2665 spin_unlock(&delayed_refs
->lock
);
2667 btrfs_delayed_ref_unlock(locked_ref
);
2670 btrfs_put_delayed_ref(ref
);
2676 * We don't want to include ref heads since we can have empty ref heads
2677 * and those will drastically skew our runtime down since we just do
2678 * accounting, no actual extent tree updates.
2680 if (actual_count
> 0) {
2681 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2685 * We weigh the current average higher than our current runtime
2686 * to avoid large swings in the average.
2688 spin_lock(&delayed_refs
->lock
);
2689 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2690 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2691 spin_unlock(&delayed_refs
->lock
);
2696 #ifdef SCRAMBLE_DELAYED_REFS
2698 * Normally delayed refs get processed in ascending bytenr order. This
2699 * correlates in most cases to the order added. To expose dependencies on this
2700 * order, we start to process the tree in the middle instead of the beginning
2702 static u64
find_middle(struct rb_root
*root
)
2704 struct rb_node
*n
= root
->rb_node
;
2705 struct btrfs_delayed_ref_node
*entry
;
2708 u64 first
= 0, last
= 0;
2712 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2713 first
= entry
->bytenr
;
2717 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2718 last
= entry
->bytenr
;
2723 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2724 WARN_ON(!entry
->in_tree
);
2726 middle
= entry
->bytenr
;
2739 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2743 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2744 sizeof(struct btrfs_extent_inline_ref
));
2745 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2746 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2749 * We don't ever fill up leaves all the way so multiply by 2 just to be
2750 * closer to what we're really going to want to use.
2752 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2756 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2757 * would require to store the csums for that many bytes.
2759 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2762 u64 num_csums_per_leaf
;
2765 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
2766 num_csums_per_leaf
= div64_u64(csum_size
,
2767 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2768 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2769 num_csums
+= num_csums_per_leaf
- 1;
2770 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2774 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2775 struct btrfs_root
*root
)
2777 struct btrfs_block_rsv
*global_rsv
;
2778 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2779 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2780 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2781 u64 num_bytes
, num_dirty_bgs_bytes
;
2784 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2785 num_heads
= heads_to_leaves(root
, num_heads
);
2787 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2789 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2790 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2792 global_rsv
= &root
->fs_info
->global_block_rsv
;
2795 * If we can't allocate any more chunks lets make sure we have _lots_ of
2796 * wiggle room since running delayed refs can create more delayed refs.
2798 if (global_rsv
->space_info
->full
) {
2799 num_dirty_bgs_bytes
<<= 1;
2803 spin_lock(&global_rsv
->lock
);
2804 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2806 spin_unlock(&global_rsv
->lock
);
2810 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2811 struct btrfs_root
*root
)
2813 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2815 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2820 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2821 val
= num_entries
* avg_runtime
;
2822 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2824 if (val
>= NSEC_PER_SEC
/ 2)
2827 return btrfs_check_space_for_delayed_refs(trans
, root
);
2830 struct async_delayed_refs
{
2831 struct btrfs_root
*root
;
2835 struct completion wait
;
2836 struct btrfs_work work
;
2839 static void delayed_ref_async_start(struct btrfs_work
*work
)
2841 struct async_delayed_refs
*async
;
2842 struct btrfs_trans_handle
*trans
;
2845 async
= container_of(work
, struct async_delayed_refs
, work
);
2847 trans
= btrfs_join_transaction(async
->root
);
2848 if (IS_ERR(trans
)) {
2849 async
->error
= PTR_ERR(trans
);
2854 * trans->sync means that when we call end_transaction, we won't
2855 * wait on delayed refs
2858 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2862 ret
= btrfs_end_transaction(trans
, async
->root
);
2863 if (ret
&& !async
->error
)
2867 complete(&async
->wait
);
2872 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2873 unsigned long count
, int wait
)
2875 struct async_delayed_refs
*async
;
2878 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2882 async
->root
= root
->fs_info
->tree_root
;
2883 async
->count
= count
;
2889 init_completion(&async
->wait
);
2891 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2892 delayed_ref_async_start
, NULL
, NULL
);
2894 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2897 wait_for_completion(&async
->wait
);
2906 * this starts processing the delayed reference count updates and
2907 * extent insertions we have queued up so far. count can be
2908 * 0, which means to process everything in the tree at the start
2909 * of the run (but not newly added entries), or it can be some target
2910 * number you'd like to process.
2912 * Returns 0 on success or if called with an aborted transaction
2913 * Returns <0 on error and aborts the transaction
2915 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2916 struct btrfs_root
*root
, unsigned long count
)
2918 struct rb_node
*node
;
2919 struct btrfs_delayed_ref_root
*delayed_refs
;
2920 struct btrfs_delayed_ref_head
*head
;
2922 int run_all
= count
== (unsigned long)-1;
2923 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2925 /* We'll clean this up in btrfs_cleanup_transaction */
2929 if (root
->fs_info
->creating_free_space_tree
)
2932 if (root
== root
->fs_info
->extent_root
)
2933 root
= root
->fs_info
->tree_root
;
2935 delayed_refs
= &trans
->transaction
->delayed_refs
;
2937 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2940 #ifdef SCRAMBLE_DELAYED_REFS
2941 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2943 trans
->can_flush_pending_bgs
= false;
2944 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2946 btrfs_abort_transaction(trans
, root
, ret
);
2951 if (!list_empty(&trans
->new_bgs
))
2952 btrfs_create_pending_block_groups(trans
, root
);
2954 spin_lock(&delayed_refs
->lock
);
2955 node
= rb_first(&delayed_refs
->href_root
);
2957 spin_unlock(&delayed_refs
->lock
);
2960 count
= (unsigned long)-1;
2963 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2965 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2966 struct btrfs_delayed_ref_node
*ref
;
2969 atomic_inc(&ref
->refs
);
2971 spin_unlock(&delayed_refs
->lock
);
2973 * Mutex was contended, block until it's
2974 * released and try again
2976 mutex_lock(&head
->mutex
);
2977 mutex_unlock(&head
->mutex
);
2979 btrfs_put_delayed_ref(ref
);
2985 node
= rb_next(node
);
2987 spin_unlock(&delayed_refs
->lock
);
2992 assert_qgroups_uptodate(trans
);
2993 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
2997 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2998 struct btrfs_root
*root
,
2999 u64 bytenr
, u64 num_bytes
, u64 flags
,
3000 int level
, int is_data
)
3002 struct btrfs_delayed_extent_op
*extent_op
;
3005 extent_op
= btrfs_alloc_delayed_extent_op();
3009 extent_op
->flags_to_set
= flags
;
3010 extent_op
->update_flags
= true;
3011 extent_op
->update_key
= false;
3012 extent_op
->is_data
= is_data
? true : false;
3013 extent_op
->level
= level
;
3015 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3016 num_bytes
, extent_op
);
3018 btrfs_free_delayed_extent_op(extent_op
);
3022 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3023 struct btrfs_root
*root
,
3024 struct btrfs_path
*path
,
3025 u64 objectid
, u64 offset
, u64 bytenr
)
3027 struct btrfs_delayed_ref_head
*head
;
3028 struct btrfs_delayed_ref_node
*ref
;
3029 struct btrfs_delayed_data_ref
*data_ref
;
3030 struct btrfs_delayed_ref_root
*delayed_refs
;
3033 delayed_refs
= &trans
->transaction
->delayed_refs
;
3034 spin_lock(&delayed_refs
->lock
);
3035 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3037 spin_unlock(&delayed_refs
->lock
);
3041 if (!mutex_trylock(&head
->mutex
)) {
3042 atomic_inc(&head
->node
.refs
);
3043 spin_unlock(&delayed_refs
->lock
);
3045 btrfs_release_path(path
);
3048 * Mutex was contended, block until it's released and let
3051 mutex_lock(&head
->mutex
);
3052 mutex_unlock(&head
->mutex
);
3053 btrfs_put_delayed_ref(&head
->node
);
3056 spin_unlock(&delayed_refs
->lock
);
3058 spin_lock(&head
->lock
);
3059 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3060 /* If it's a shared ref we know a cross reference exists */
3061 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3066 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3069 * If our ref doesn't match the one we're currently looking at
3070 * then we have a cross reference.
3072 if (data_ref
->root
!= root
->root_key
.objectid
||
3073 data_ref
->objectid
!= objectid
||
3074 data_ref
->offset
!= offset
) {
3079 spin_unlock(&head
->lock
);
3080 mutex_unlock(&head
->mutex
);
3084 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3085 struct btrfs_root
*root
,
3086 struct btrfs_path
*path
,
3087 u64 objectid
, u64 offset
, u64 bytenr
)
3089 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3090 struct extent_buffer
*leaf
;
3091 struct btrfs_extent_data_ref
*ref
;
3092 struct btrfs_extent_inline_ref
*iref
;
3093 struct btrfs_extent_item
*ei
;
3094 struct btrfs_key key
;
3098 key
.objectid
= bytenr
;
3099 key
.offset
= (u64
)-1;
3100 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3102 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3105 BUG_ON(ret
== 0); /* Corruption */
3108 if (path
->slots
[0] == 0)
3112 leaf
= path
->nodes
[0];
3113 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3115 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3119 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3120 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3121 if (item_size
< sizeof(*ei
)) {
3122 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3126 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3128 if (item_size
!= sizeof(*ei
) +
3129 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3132 if (btrfs_extent_generation(leaf
, ei
) <=
3133 btrfs_root_last_snapshot(&root
->root_item
))
3136 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3137 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3138 BTRFS_EXTENT_DATA_REF_KEY
)
3141 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3142 if (btrfs_extent_refs(leaf
, ei
) !=
3143 btrfs_extent_data_ref_count(leaf
, ref
) ||
3144 btrfs_extent_data_ref_root(leaf
, ref
) !=
3145 root
->root_key
.objectid
||
3146 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3147 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3155 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3156 struct btrfs_root
*root
,
3157 u64 objectid
, u64 offset
, u64 bytenr
)
3159 struct btrfs_path
*path
;
3163 path
= btrfs_alloc_path();
3168 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3170 if (ret
&& ret
!= -ENOENT
)
3173 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3175 } while (ret2
== -EAGAIN
);
3177 if (ret2
&& ret2
!= -ENOENT
) {
3182 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3185 btrfs_free_path(path
);
3186 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3191 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3192 struct btrfs_root
*root
,
3193 struct extent_buffer
*buf
,
3194 int full_backref
, int inc
)
3201 struct btrfs_key key
;
3202 struct btrfs_file_extent_item
*fi
;
3206 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3207 u64
, u64
, u64
, u64
, u64
, u64
);
3210 if (btrfs_test_is_dummy_root(root
))
3213 ref_root
= btrfs_header_owner(buf
);
3214 nritems
= btrfs_header_nritems(buf
);
3215 level
= btrfs_header_level(buf
);
3217 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3221 process_func
= btrfs_inc_extent_ref
;
3223 process_func
= btrfs_free_extent
;
3226 parent
= buf
->start
;
3230 for (i
= 0; i
< nritems
; i
++) {
3232 btrfs_item_key_to_cpu(buf
, &key
, i
);
3233 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3235 fi
= btrfs_item_ptr(buf
, i
,
3236 struct btrfs_file_extent_item
);
3237 if (btrfs_file_extent_type(buf
, fi
) ==
3238 BTRFS_FILE_EXTENT_INLINE
)
3240 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3244 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3245 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3246 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3247 parent
, ref_root
, key
.objectid
,
3252 bytenr
= btrfs_node_blockptr(buf
, i
);
3253 num_bytes
= root
->nodesize
;
3254 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3255 parent
, ref_root
, level
- 1, 0);
3265 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3266 struct extent_buffer
*buf
, int full_backref
)
3268 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3271 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3272 struct extent_buffer
*buf
, int full_backref
)
3274 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3277 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3278 struct btrfs_root
*root
,
3279 struct btrfs_path
*path
,
3280 struct btrfs_block_group_cache
*cache
)
3283 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3285 struct extent_buffer
*leaf
;
3287 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3294 leaf
= path
->nodes
[0];
3295 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3296 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3297 btrfs_mark_buffer_dirty(leaf
);
3299 btrfs_release_path(path
);
3304 static struct btrfs_block_group_cache
*
3305 next_block_group(struct btrfs_root
*root
,
3306 struct btrfs_block_group_cache
*cache
)
3308 struct rb_node
*node
;
3310 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3312 /* If our block group was removed, we need a full search. */
3313 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3314 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3316 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3317 btrfs_put_block_group(cache
);
3318 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3322 node
= rb_next(&cache
->cache_node
);
3323 btrfs_put_block_group(cache
);
3325 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3327 btrfs_get_block_group(cache
);
3330 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3334 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3335 struct btrfs_trans_handle
*trans
,
3336 struct btrfs_path
*path
)
3338 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3339 struct inode
*inode
= NULL
;
3341 int dcs
= BTRFS_DC_ERROR
;
3347 * If this block group is smaller than 100 megs don't bother caching the
3350 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
3351 spin_lock(&block_group
->lock
);
3352 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3353 spin_unlock(&block_group
->lock
);
3360 inode
= lookup_free_space_inode(root
, block_group
, path
);
3361 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3362 ret
= PTR_ERR(inode
);
3363 btrfs_release_path(path
);
3367 if (IS_ERR(inode
)) {
3371 if (block_group
->ro
)
3374 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3380 /* We've already setup this transaction, go ahead and exit */
3381 if (block_group
->cache_generation
== trans
->transid
&&
3382 i_size_read(inode
)) {
3383 dcs
= BTRFS_DC_SETUP
;
3388 * We want to set the generation to 0, that way if anything goes wrong
3389 * from here on out we know not to trust this cache when we load up next
3392 BTRFS_I(inode
)->generation
= 0;
3393 ret
= btrfs_update_inode(trans
, root
, inode
);
3396 * So theoretically we could recover from this, simply set the
3397 * super cache generation to 0 so we know to invalidate the
3398 * cache, but then we'd have to keep track of the block groups
3399 * that fail this way so we know we _have_ to reset this cache
3400 * before the next commit or risk reading stale cache. So to
3401 * limit our exposure to horrible edge cases lets just abort the
3402 * transaction, this only happens in really bad situations
3405 btrfs_abort_transaction(trans
, root
, ret
);
3410 if (i_size_read(inode
) > 0) {
3411 ret
= btrfs_check_trunc_cache_free_space(root
,
3412 &root
->fs_info
->global_block_rsv
);
3416 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3421 spin_lock(&block_group
->lock
);
3422 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3423 !btrfs_test_opt(root
, SPACE_CACHE
)) {
3425 * don't bother trying to write stuff out _if_
3426 * a) we're not cached,
3427 * b) we're with nospace_cache mount option.
3429 dcs
= BTRFS_DC_WRITTEN
;
3430 spin_unlock(&block_group
->lock
);
3433 spin_unlock(&block_group
->lock
);
3436 * We hit an ENOSPC when setting up the cache in this transaction, just
3437 * skip doing the setup, we've already cleared the cache so we're safe.
3439 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3445 * Try to preallocate enough space based on how big the block group is.
3446 * Keep in mind this has to include any pinned space which could end up
3447 * taking up quite a bit since it's not folded into the other space
3450 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
3455 num_pages
*= PAGE_SIZE
;
3457 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3461 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3462 num_pages
, num_pages
,
3465 * Our cache requires contiguous chunks so that we don't modify a bunch
3466 * of metadata or split extents when writing the cache out, which means
3467 * we can enospc if we are heavily fragmented in addition to just normal
3468 * out of space conditions. So if we hit this just skip setting up any
3469 * other block groups for this transaction, maybe we'll unpin enough
3470 * space the next time around.
3473 dcs
= BTRFS_DC_SETUP
;
3474 else if (ret
== -ENOSPC
)
3475 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3476 btrfs_free_reserved_data_space(inode
, 0, num_pages
);
3481 btrfs_release_path(path
);
3483 spin_lock(&block_group
->lock
);
3484 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3485 block_group
->cache_generation
= trans
->transid
;
3486 block_group
->disk_cache_state
= dcs
;
3487 spin_unlock(&block_group
->lock
);
3492 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3493 struct btrfs_root
*root
)
3495 struct btrfs_block_group_cache
*cache
, *tmp
;
3496 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3497 struct btrfs_path
*path
;
3499 if (list_empty(&cur_trans
->dirty_bgs
) ||
3500 !btrfs_test_opt(root
, SPACE_CACHE
))
3503 path
= btrfs_alloc_path();
3507 /* Could add new block groups, use _safe just in case */
3508 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3510 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3511 cache_save_setup(cache
, trans
, path
);
3514 btrfs_free_path(path
);
3519 * transaction commit does final block group cache writeback during a
3520 * critical section where nothing is allowed to change the FS. This is
3521 * required in order for the cache to actually match the block group,
3522 * but can introduce a lot of latency into the commit.
3524 * So, btrfs_start_dirty_block_groups is here to kick off block group
3525 * cache IO. There's a chance we'll have to redo some of it if the
3526 * block group changes again during the commit, but it greatly reduces
3527 * the commit latency by getting rid of the easy block groups while
3528 * we're still allowing others to join the commit.
3530 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3531 struct btrfs_root
*root
)
3533 struct btrfs_block_group_cache
*cache
;
3534 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3537 struct btrfs_path
*path
= NULL
;
3539 struct list_head
*io
= &cur_trans
->io_bgs
;
3540 int num_started
= 0;
3543 spin_lock(&cur_trans
->dirty_bgs_lock
);
3544 if (list_empty(&cur_trans
->dirty_bgs
)) {
3545 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3548 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3549 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3553 * make sure all the block groups on our dirty list actually
3556 btrfs_create_pending_block_groups(trans
, root
);
3559 path
= btrfs_alloc_path();
3565 * cache_write_mutex is here only to save us from balance or automatic
3566 * removal of empty block groups deleting this block group while we are
3567 * writing out the cache
3569 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3570 while (!list_empty(&dirty
)) {
3571 cache
= list_first_entry(&dirty
,
3572 struct btrfs_block_group_cache
,
3575 * this can happen if something re-dirties a block
3576 * group that is already under IO. Just wait for it to
3577 * finish and then do it all again
3579 if (!list_empty(&cache
->io_list
)) {
3580 list_del_init(&cache
->io_list
);
3581 btrfs_wait_cache_io(root
, trans
, cache
,
3582 &cache
->io_ctl
, path
,
3583 cache
->key
.objectid
);
3584 btrfs_put_block_group(cache
);
3589 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3590 * if it should update the cache_state. Don't delete
3591 * until after we wait.
3593 * Since we're not running in the commit critical section
3594 * we need the dirty_bgs_lock to protect from update_block_group
3596 spin_lock(&cur_trans
->dirty_bgs_lock
);
3597 list_del_init(&cache
->dirty_list
);
3598 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3602 cache_save_setup(cache
, trans
, path
);
3604 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3605 cache
->io_ctl
.inode
= NULL
;
3606 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3607 if (ret
== 0 && cache
->io_ctl
.inode
) {
3612 * the cache_write_mutex is protecting
3615 list_add_tail(&cache
->io_list
, io
);
3618 * if we failed to write the cache, the
3619 * generation will be bad and life goes on
3625 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3627 * Our block group might still be attached to the list
3628 * of new block groups in the transaction handle of some
3629 * other task (struct btrfs_trans_handle->new_bgs). This
3630 * means its block group item isn't yet in the extent
3631 * tree. If this happens ignore the error, as we will
3632 * try again later in the critical section of the
3633 * transaction commit.
3635 if (ret
== -ENOENT
) {
3637 spin_lock(&cur_trans
->dirty_bgs_lock
);
3638 if (list_empty(&cache
->dirty_list
)) {
3639 list_add_tail(&cache
->dirty_list
,
3640 &cur_trans
->dirty_bgs
);
3641 btrfs_get_block_group(cache
);
3643 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3645 btrfs_abort_transaction(trans
, root
, ret
);
3649 /* if its not on the io list, we need to put the block group */
3651 btrfs_put_block_group(cache
);
3657 * Avoid blocking other tasks for too long. It might even save
3658 * us from writing caches for block groups that are going to be
3661 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3662 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3664 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3667 * go through delayed refs for all the stuff we've just kicked off
3668 * and then loop back (just once)
3670 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3671 if (!ret
&& loops
== 0) {
3673 spin_lock(&cur_trans
->dirty_bgs_lock
);
3674 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3676 * dirty_bgs_lock protects us from concurrent block group
3677 * deletes too (not just cache_write_mutex).
3679 if (!list_empty(&dirty
)) {
3680 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3683 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3686 btrfs_free_path(path
);
3690 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3691 struct btrfs_root
*root
)
3693 struct btrfs_block_group_cache
*cache
;
3694 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3697 struct btrfs_path
*path
;
3698 struct list_head
*io
= &cur_trans
->io_bgs
;
3699 int num_started
= 0;
3701 path
= btrfs_alloc_path();
3706 * Even though we are in the critical section of the transaction commit,
3707 * we can still have concurrent tasks adding elements to this
3708 * transaction's list of dirty block groups. These tasks correspond to
3709 * endio free space workers started when writeback finishes for a
3710 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3711 * allocate new block groups as a result of COWing nodes of the root
3712 * tree when updating the free space inode. The writeback for the space
3713 * caches is triggered by an earlier call to
3714 * btrfs_start_dirty_block_groups() and iterations of the following
3716 * Also we want to do the cache_save_setup first and then run the
3717 * delayed refs to make sure we have the best chance at doing this all
3720 spin_lock(&cur_trans
->dirty_bgs_lock
);
3721 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3722 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3723 struct btrfs_block_group_cache
,
3727 * this can happen if cache_save_setup re-dirties a block
3728 * group that is already under IO. Just wait for it to
3729 * finish and then do it all again
3731 if (!list_empty(&cache
->io_list
)) {
3732 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3733 list_del_init(&cache
->io_list
);
3734 btrfs_wait_cache_io(root
, trans
, cache
,
3735 &cache
->io_ctl
, path
,
3736 cache
->key
.objectid
);
3737 btrfs_put_block_group(cache
);
3738 spin_lock(&cur_trans
->dirty_bgs_lock
);
3742 * don't remove from the dirty list until after we've waited
3745 list_del_init(&cache
->dirty_list
);
3746 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3749 cache_save_setup(cache
, trans
, path
);
3752 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3754 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3755 cache
->io_ctl
.inode
= NULL
;
3756 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3757 if (ret
== 0 && cache
->io_ctl
.inode
) {
3760 list_add_tail(&cache
->io_list
, io
);
3763 * if we failed to write the cache, the
3764 * generation will be bad and life goes on
3770 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3772 * One of the free space endio workers might have
3773 * created a new block group while updating a free space
3774 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3775 * and hasn't released its transaction handle yet, in
3776 * which case the new block group is still attached to
3777 * its transaction handle and its creation has not
3778 * finished yet (no block group item in the extent tree
3779 * yet, etc). If this is the case, wait for all free
3780 * space endio workers to finish and retry. This is a
3781 * a very rare case so no need for a more efficient and
3784 if (ret
== -ENOENT
) {
3785 wait_event(cur_trans
->writer_wait
,
3786 atomic_read(&cur_trans
->num_writers
) == 1);
3787 ret
= write_one_cache_group(trans
, root
, path
,
3791 btrfs_abort_transaction(trans
, root
, ret
);
3794 /* if its not on the io list, we need to put the block group */
3796 btrfs_put_block_group(cache
);
3797 spin_lock(&cur_trans
->dirty_bgs_lock
);
3799 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3801 while (!list_empty(io
)) {
3802 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3804 list_del_init(&cache
->io_list
);
3805 btrfs_wait_cache_io(root
, trans
, cache
,
3806 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3807 btrfs_put_block_group(cache
);
3810 btrfs_free_path(path
);
3814 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3816 struct btrfs_block_group_cache
*block_group
;
3819 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3820 if (!block_group
|| block_group
->ro
)
3823 btrfs_put_block_group(block_group
);
3827 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3829 struct btrfs_block_group_cache
*bg
;
3832 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3836 spin_lock(&bg
->lock
);
3840 atomic_inc(&bg
->nocow_writers
);
3841 spin_unlock(&bg
->lock
);
3843 /* no put on block group, done by btrfs_dec_nocow_writers */
3845 btrfs_put_block_group(bg
);
3851 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
3853 struct btrfs_block_group_cache
*bg
;
3855 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
3857 if (atomic_dec_and_test(&bg
->nocow_writers
))
3858 wake_up_atomic_t(&bg
->nocow_writers
);
3860 * Once for our lookup and once for the lookup done by a previous call
3861 * to btrfs_inc_nocow_writers()
3863 btrfs_put_block_group(bg
);
3864 btrfs_put_block_group(bg
);
3867 static int btrfs_wait_nocow_writers_atomic_t(atomic_t
*a
)
3873 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
3875 wait_on_atomic_t(&bg
->nocow_writers
,
3876 btrfs_wait_nocow_writers_atomic_t
,
3877 TASK_UNINTERRUPTIBLE
);
3880 static const char *alloc_name(u64 flags
)
3883 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3885 case BTRFS_BLOCK_GROUP_METADATA
:
3887 case BTRFS_BLOCK_GROUP_DATA
:
3889 case BTRFS_BLOCK_GROUP_SYSTEM
:
3893 return "invalid-combination";
3897 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3898 u64 total_bytes
, u64 bytes_used
,
3899 struct btrfs_space_info
**space_info
)
3901 struct btrfs_space_info
*found
;
3906 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3907 BTRFS_BLOCK_GROUP_RAID10
))
3912 found
= __find_space_info(info
, flags
);
3914 spin_lock(&found
->lock
);
3915 found
->total_bytes
+= total_bytes
;
3916 found
->disk_total
+= total_bytes
* factor
;
3917 found
->bytes_used
+= bytes_used
;
3918 found
->disk_used
+= bytes_used
* factor
;
3919 if (total_bytes
> 0)
3921 spin_unlock(&found
->lock
);
3922 *space_info
= found
;
3925 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3929 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3935 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3936 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3937 init_rwsem(&found
->groups_sem
);
3938 spin_lock_init(&found
->lock
);
3939 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3940 found
->total_bytes
= total_bytes
;
3941 found
->disk_total
= total_bytes
* factor
;
3942 found
->bytes_used
= bytes_used
;
3943 found
->disk_used
= bytes_used
* factor
;
3944 found
->bytes_pinned
= 0;
3945 found
->bytes_reserved
= 0;
3946 found
->bytes_readonly
= 0;
3947 found
->bytes_may_use
= 0;
3949 found
->max_extent_size
= 0;
3950 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3951 found
->chunk_alloc
= 0;
3953 init_waitqueue_head(&found
->wait
);
3954 INIT_LIST_HEAD(&found
->ro_bgs
);
3956 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3957 info
->space_info_kobj
, "%s",
3958 alloc_name(found
->flags
));
3964 *space_info
= found
;
3965 list_add_rcu(&found
->list
, &info
->space_info
);
3966 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3967 info
->data_sinfo
= found
;
3972 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3974 u64 extra_flags
= chunk_to_extended(flags
) &
3975 BTRFS_EXTENDED_PROFILE_MASK
;
3977 write_seqlock(&fs_info
->profiles_lock
);
3978 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3979 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3980 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3981 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3982 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3983 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3984 write_sequnlock(&fs_info
->profiles_lock
);
3988 * returns target flags in extended format or 0 if restripe for this
3989 * chunk_type is not in progress
3991 * should be called with either volume_mutex or balance_lock held
3993 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3995 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4001 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
4002 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4003 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
4004 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
4005 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4006 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
4007 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
4008 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
4009 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
4016 * @flags: available profiles in extended format (see ctree.h)
4018 * Returns reduced profile in chunk format. If profile changing is in
4019 * progress (either running or paused) picks the target profile (if it's
4020 * already available), otherwise falls back to plain reducing.
4022 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
4024 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
4030 * see if restripe for this chunk_type is in progress, if so
4031 * try to reduce to the target profile
4033 spin_lock(&root
->fs_info
->balance_lock
);
4034 target
= get_restripe_target(root
->fs_info
, flags
);
4036 /* pick target profile only if it's already available */
4037 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
4038 spin_unlock(&root
->fs_info
->balance_lock
);
4039 return extended_to_chunk(target
);
4042 spin_unlock(&root
->fs_info
->balance_lock
);
4044 /* First, mask out the RAID levels which aren't possible */
4045 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
4046 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
4047 allowed
|= btrfs_raid_group
[raid_type
];
4051 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
4052 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
4053 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
4054 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
4055 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
4056 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
4057 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
4058 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
4059 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
4060 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
4062 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
4064 return extended_to_chunk(flags
| allowed
);
4067 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
4074 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
4076 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
4077 flags
|= root
->fs_info
->avail_data_alloc_bits
;
4078 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
4079 flags
|= root
->fs_info
->avail_system_alloc_bits
;
4080 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
4081 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
4082 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
4084 return btrfs_reduce_alloc_profile(root
, flags
);
4087 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
4093 flags
= BTRFS_BLOCK_GROUP_DATA
;
4094 else if (root
== root
->fs_info
->chunk_root
)
4095 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4097 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4099 ret
= get_alloc_profile(root
, flags
);
4103 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4105 struct btrfs_space_info
*data_sinfo
;
4106 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4107 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4110 int need_commit
= 2;
4111 int have_pinned_space
;
4113 /* make sure bytes are sectorsize aligned */
4114 bytes
= ALIGN(bytes
, root
->sectorsize
);
4116 if (btrfs_is_free_space_inode(inode
)) {
4118 ASSERT(current
->journal_info
);
4121 data_sinfo
= fs_info
->data_sinfo
;
4126 /* make sure we have enough space to handle the data first */
4127 spin_lock(&data_sinfo
->lock
);
4128 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4129 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4130 data_sinfo
->bytes_may_use
;
4132 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4133 struct btrfs_trans_handle
*trans
;
4136 * if we don't have enough free bytes in this space then we need
4137 * to alloc a new chunk.
4139 if (!data_sinfo
->full
) {
4142 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4143 spin_unlock(&data_sinfo
->lock
);
4145 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4147 * It is ugly that we don't call nolock join
4148 * transaction for the free space inode case here.
4149 * But it is safe because we only do the data space
4150 * reservation for the free space cache in the
4151 * transaction context, the common join transaction
4152 * just increase the counter of the current transaction
4153 * handler, doesn't try to acquire the trans_lock of
4156 trans
= btrfs_join_transaction(root
);
4158 return PTR_ERR(trans
);
4160 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4162 CHUNK_ALLOC_NO_FORCE
);
4163 btrfs_end_transaction(trans
, root
);
4168 have_pinned_space
= 1;
4174 data_sinfo
= fs_info
->data_sinfo
;
4180 * If we don't have enough pinned space to deal with this
4181 * allocation, and no removed chunk in current transaction,
4182 * don't bother committing the transaction.
4184 have_pinned_space
= percpu_counter_compare(
4185 &data_sinfo
->total_bytes_pinned
,
4186 used
+ bytes
- data_sinfo
->total_bytes
);
4187 spin_unlock(&data_sinfo
->lock
);
4189 /* commit the current transaction and try again */
4192 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4195 if (need_commit
> 0) {
4196 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4197 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
4200 trans
= btrfs_join_transaction(root
);
4202 return PTR_ERR(trans
);
4203 if (have_pinned_space
>= 0 ||
4204 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4205 &trans
->transaction
->flags
) ||
4207 ret
= btrfs_commit_transaction(trans
, root
);
4211 * The cleaner kthread might still be doing iput
4212 * operations. Wait for it to finish so that
4213 * more space is released.
4215 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4216 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4219 btrfs_end_transaction(trans
, root
);
4223 trace_btrfs_space_reservation(root
->fs_info
,
4224 "space_info:enospc",
4225 data_sinfo
->flags
, bytes
, 1);
4228 data_sinfo
->bytes_may_use
+= bytes
;
4229 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4230 data_sinfo
->flags
, bytes
, 1);
4231 spin_unlock(&data_sinfo
->lock
);
4237 * New check_data_free_space() with ability for precious data reservation
4238 * Will replace old btrfs_check_data_free_space(), but for patch split,
4239 * add a new function first and then replace it.
4241 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4243 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4246 /* align the range */
4247 len
= round_up(start
+ len
, root
->sectorsize
) -
4248 round_down(start
, root
->sectorsize
);
4249 start
= round_down(start
, root
->sectorsize
);
4251 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4256 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4258 * TODO: Find a good method to avoid reserve data space for NOCOW
4259 * range, but don't impact performance on quota disable case.
4261 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4266 * Called if we need to clear a data reservation for this inode
4267 * Normally in a error case.
4269 * This one will *NOT* use accurate qgroup reserved space API, just for case
4270 * which we can't sleep and is sure it won't affect qgroup reserved space.
4271 * Like clear_bit_hook().
4273 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4277 struct btrfs_space_info
*data_sinfo
;
4279 /* Make sure the range is aligned to sectorsize */
4280 len
= round_up(start
+ len
, root
->sectorsize
) -
4281 round_down(start
, root
->sectorsize
);
4282 start
= round_down(start
, root
->sectorsize
);
4284 data_sinfo
= root
->fs_info
->data_sinfo
;
4285 spin_lock(&data_sinfo
->lock
);
4286 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4287 data_sinfo
->bytes_may_use
= 0;
4289 data_sinfo
->bytes_may_use
-= len
;
4290 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4291 data_sinfo
->flags
, len
, 0);
4292 spin_unlock(&data_sinfo
->lock
);
4296 * Called if we need to clear a data reservation for this inode
4297 * Normally in a error case.
4299 * This one will handle the per-inode data rsv map for accurate reserved
4302 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4304 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4305 btrfs_qgroup_free_data(inode
, start
, len
);
4308 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4310 struct list_head
*head
= &info
->space_info
;
4311 struct btrfs_space_info
*found
;
4314 list_for_each_entry_rcu(found
, head
, list
) {
4315 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4316 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4321 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4323 return (global
->size
<< 1);
4326 static int should_alloc_chunk(struct btrfs_root
*root
,
4327 struct btrfs_space_info
*sinfo
, int force
)
4329 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4330 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4331 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4334 if (force
== CHUNK_ALLOC_FORCE
)
4338 * We need to take into account the global rsv because for all intents
4339 * and purposes it's used space. Don't worry about locking the
4340 * global_rsv, it doesn't change except when the transaction commits.
4342 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4343 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4346 * in limited mode, we want to have some free space up to
4347 * about 1% of the FS size.
4349 if (force
== CHUNK_ALLOC_LIMITED
) {
4350 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4351 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
4353 if (num_bytes
- num_allocated
< thresh
)
4357 if (num_allocated
+ SZ_2M
< div_factor(num_bytes
, 8))
4362 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4366 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4367 BTRFS_BLOCK_GROUP_RAID0
|
4368 BTRFS_BLOCK_GROUP_RAID5
|
4369 BTRFS_BLOCK_GROUP_RAID6
))
4370 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4371 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4374 num_dev
= 1; /* DUP or single */
4380 * If @is_allocation is true, reserve space in the system space info necessary
4381 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4384 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4385 struct btrfs_root
*root
,
4388 struct btrfs_space_info
*info
;
4395 * Needed because we can end up allocating a system chunk and for an
4396 * atomic and race free space reservation in the chunk block reserve.
4398 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4400 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4401 spin_lock(&info
->lock
);
4402 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4403 info
->bytes_reserved
- info
->bytes_readonly
-
4404 info
->bytes_may_use
;
4405 spin_unlock(&info
->lock
);
4407 num_devs
= get_profile_num_devs(root
, type
);
4409 /* num_devs device items to update and 1 chunk item to add or remove */
4410 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4411 btrfs_calc_trans_metadata_size(root
, 1);
4413 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
4414 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4415 left
, thresh
, type
);
4416 dump_space_info(info
, 0, 0);
4419 if (left
< thresh
) {
4422 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4424 * Ignore failure to create system chunk. We might end up not
4425 * needing it, as we might not need to COW all nodes/leafs from
4426 * the paths we visit in the chunk tree (they were already COWed
4427 * or created in the current transaction for example).
4429 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4433 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4434 &root
->fs_info
->chunk_block_rsv
,
4435 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4437 trans
->chunk_bytes_reserved
+= thresh
;
4441 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4442 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4444 struct btrfs_space_info
*space_info
;
4445 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4446 int wait_for_alloc
= 0;
4449 /* Don't re-enter if we're already allocating a chunk */
4450 if (trans
->allocating_chunk
)
4453 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4455 ret
= update_space_info(extent_root
->fs_info
, flags
,
4457 BUG_ON(ret
); /* -ENOMEM */
4459 BUG_ON(!space_info
); /* Logic error */
4462 spin_lock(&space_info
->lock
);
4463 if (force
< space_info
->force_alloc
)
4464 force
= space_info
->force_alloc
;
4465 if (space_info
->full
) {
4466 if (should_alloc_chunk(extent_root
, space_info
, force
))
4470 spin_unlock(&space_info
->lock
);
4474 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4475 spin_unlock(&space_info
->lock
);
4477 } else if (space_info
->chunk_alloc
) {
4480 space_info
->chunk_alloc
= 1;
4483 spin_unlock(&space_info
->lock
);
4485 mutex_lock(&fs_info
->chunk_mutex
);
4488 * The chunk_mutex is held throughout the entirety of a chunk
4489 * allocation, so once we've acquired the chunk_mutex we know that the
4490 * other guy is done and we need to recheck and see if we should
4493 if (wait_for_alloc
) {
4494 mutex_unlock(&fs_info
->chunk_mutex
);
4499 trans
->allocating_chunk
= true;
4502 * If we have mixed data/metadata chunks we want to make sure we keep
4503 * allocating mixed chunks instead of individual chunks.
4505 if (btrfs_mixed_space_info(space_info
))
4506 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4509 * if we're doing a data chunk, go ahead and make sure that
4510 * we keep a reasonable number of metadata chunks allocated in the
4513 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4514 fs_info
->data_chunk_allocations
++;
4515 if (!(fs_info
->data_chunk_allocations
%
4516 fs_info
->metadata_ratio
))
4517 force_metadata_allocation(fs_info
);
4521 * Check if we have enough space in SYSTEM chunk because we may need
4522 * to update devices.
4524 check_system_chunk(trans
, extent_root
, flags
);
4526 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4527 trans
->allocating_chunk
= false;
4529 spin_lock(&space_info
->lock
);
4530 if (ret
< 0 && ret
!= -ENOSPC
)
4533 space_info
->full
= 1;
4537 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4539 space_info
->chunk_alloc
= 0;
4540 spin_unlock(&space_info
->lock
);
4541 mutex_unlock(&fs_info
->chunk_mutex
);
4543 * When we allocate a new chunk we reserve space in the chunk block
4544 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4545 * add new nodes/leafs to it if we end up needing to do it when
4546 * inserting the chunk item and updating device items as part of the
4547 * second phase of chunk allocation, performed by
4548 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4549 * large number of new block groups to create in our transaction
4550 * handle's new_bgs list to avoid exhausting the chunk block reserve
4551 * in extreme cases - like having a single transaction create many new
4552 * block groups when starting to write out the free space caches of all
4553 * the block groups that were made dirty during the lifetime of the
4556 if (trans
->can_flush_pending_bgs
&&
4557 trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
) {
4558 btrfs_create_pending_block_groups(trans
, trans
->root
);
4559 btrfs_trans_release_chunk_metadata(trans
);
4564 static int can_overcommit(struct btrfs_root
*root
,
4565 struct btrfs_space_info
*space_info
, u64 bytes
,
4566 enum btrfs_reserve_flush_enum flush
)
4568 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4569 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4574 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4575 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4578 * We only want to allow over committing if we have lots of actual space
4579 * free, but if we don't have enough space to handle the global reserve
4580 * space then we could end up having a real enospc problem when trying
4581 * to allocate a chunk or some other such important allocation.
4583 spin_lock(&global_rsv
->lock
);
4584 space_size
= calc_global_rsv_need_space(global_rsv
);
4585 spin_unlock(&global_rsv
->lock
);
4586 if (used
+ space_size
>= space_info
->total_bytes
)
4589 used
+= space_info
->bytes_may_use
;
4591 spin_lock(&root
->fs_info
->free_chunk_lock
);
4592 avail
= root
->fs_info
->free_chunk_space
;
4593 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4596 * If we have dup, raid1 or raid10 then only half of the free
4597 * space is actually useable. For raid56, the space info used
4598 * doesn't include the parity drive, so we don't have to
4601 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4602 BTRFS_BLOCK_GROUP_RAID1
|
4603 BTRFS_BLOCK_GROUP_RAID10
))
4607 * If we aren't flushing all things, let us overcommit up to
4608 * 1/2th of the space. If we can flush, don't let us overcommit
4609 * too much, let it overcommit up to 1/8 of the space.
4611 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4616 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4621 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4622 unsigned long nr_pages
, int nr_items
)
4624 struct super_block
*sb
= root
->fs_info
->sb
;
4626 if (down_read_trylock(&sb
->s_umount
)) {
4627 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4628 up_read(&sb
->s_umount
);
4631 * We needn't worry the filesystem going from r/w to r/o though
4632 * we don't acquire ->s_umount mutex, because the filesystem
4633 * should guarantee the delalloc inodes list be empty after
4634 * the filesystem is readonly(all dirty pages are written to
4637 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4638 if (!current
->journal_info
)
4639 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
,
4644 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4649 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4650 nr
= (int)div64_u64(to_reclaim
, bytes
);
4656 #define EXTENT_SIZE_PER_ITEM SZ_256K
4659 * shrink metadata reservation for delalloc
4661 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4664 struct btrfs_block_rsv
*block_rsv
;
4665 struct btrfs_space_info
*space_info
;
4666 struct btrfs_trans_handle
*trans
;
4670 unsigned long nr_pages
;
4673 enum btrfs_reserve_flush_enum flush
;
4675 /* Calc the number of the pages we need flush for space reservation */
4676 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4677 to_reclaim
= (u64
)items
* EXTENT_SIZE_PER_ITEM
;
4679 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4680 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4681 space_info
= block_rsv
->space_info
;
4683 delalloc_bytes
= percpu_counter_sum_positive(
4684 &root
->fs_info
->delalloc_bytes
);
4685 if (delalloc_bytes
== 0) {
4689 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4695 while (delalloc_bytes
&& loops
< 3) {
4696 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4697 nr_pages
= max_reclaim
>> PAGE_SHIFT
;
4698 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4700 * We need to wait for the async pages to actually start before
4703 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4707 if (max_reclaim
<= nr_pages
)
4710 max_reclaim
-= nr_pages
;
4712 wait_event(root
->fs_info
->async_submit_wait
,
4713 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4717 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4719 flush
= BTRFS_RESERVE_NO_FLUSH
;
4720 spin_lock(&space_info
->lock
);
4721 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4722 spin_unlock(&space_info
->lock
);
4725 spin_unlock(&space_info
->lock
);
4728 if (wait_ordered
&& !trans
) {
4729 btrfs_wait_ordered_roots(root
->fs_info
, items
,
4732 time_left
= schedule_timeout_killable(1);
4736 delalloc_bytes
= percpu_counter_sum_positive(
4737 &root
->fs_info
->delalloc_bytes
);
4742 * maybe_commit_transaction - possibly commit the transaction if its ok to
4743 * @root - the root we're allocating for
4744 * @bytes - the number of bytes we want to reserve
4745 * @force - force the commit
4747 * This will check to make sure that committing the transaction will actually
4748 * get us somewhere and then commit the transaction if it does. Otherwise it
4749 * will return -ENOSPC.
4751 static int may_commit_transaction(struct btrfs_root
*root
,
4752 struct btrfs_space_info
*space_info
,
4753 u64 bytes
, int force
)
4755 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4756 struct btrfs_trans_handle
*trans
;
4758 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4765 /* See if there is enough pinned space to make this reservation */
4766 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4771 * See if there is some space in the delayed insertion reservation for
4774 if (space_info
!= delayed_rsv
->space_info
)
4777 spin_lock(&delayed_rsv
->lock
);
4778 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4779 bytes
- delayed_rsv
->size
) >= 0) {
4780 spin_unlock(&delayed_rsv
->lock
);
4783 spin_unlock(&delayed_rsv
->lock
);
4786 trans
= btrfs_join_transaction(root
);
4790 return btrfs_commit_transaction(trans
, root
);
4794 FLUSH_DELAYED_ITEMS_NR
= 1,
4795 FLUSH_DELAYED_ITEMS
= 2,
4797 FLUSH_DELALLOC_WAIT
= 4,
4802 static int flush_space(struct btrfs_root
*root
,
4803 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4804 u64 orig_bytes
, int state
)
4806 struct btrfs_trans_handle
*trans
;
4811 case FLUSH_DELAYED_ITEMS_NR
:
4812 case FLUSH_DELAYED_ITEMS
:
4813 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4814 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4818 trans
= btrfs_join_transaction(root
);
4819 if (IS_ERR(trans
)) {
4820 ret
= PTR_ERR(trans
);
4823 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4824 btrfs_end_transaction(trans
, root
);
4826 case FLUSH_DELALLOC
:
4827 case FLUSH_DELALLOC_WAIT
:
4828 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4829 state
== FLUSH_DELALLOC_WAIT
);
4832 trans
= btrfs_join_transaction(root
);
4833 if (IS_ERR(trans
)) {
4834 ret
= PTR_ERR(trans
);
4837 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4838 btrfs_get_alloc_profile(root
, 0),
4839 CHUNK_ALLOC_NO_FORCE
);
4840 btrfs_end_transaction(trans
, root
);
4845 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4856 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4857 struct btrfs_space_info
*space_info
)
4863 to_reclaim
= min_t(u64
, num_online_cpus() * SZ_1M
, SZ_16M
);
4864 spin_lock(&space_info
->lock
);
4865 if (can_overcommit(root
, space_info
, to_reclaim
,
4866 BTRFS_RESERVE_FLUSH_ALL
)) {
4871 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4872 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4873 space_info
->bytes_may_use
;
4874 if (can_overcommit(root
, space_info
, SZ_1M
, BTRFS_RESERVE_FLUSH_ALL
))
4875 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4877 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4879 if (used
> expected
)
4880 to_reclaim
= used
- expected
;
4883 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4884 space_info
->bytes_reserved
);
4886 spin_unlock(&space_info
->lock
);
4891 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4892 struct btrfs_fs_info
*fs_info
, u64 used
)
4894 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4896 /* If we're just plain full then async reclaim just slows us down. */
4897 if ((space_info
->bytes_used
+ space_info
->bytes_reserved
) >= thresh
)
4900 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
4901 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4904 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4905 struct btrfs_fs_info
*fs_info
,
4910 spin_lock(&space_info
->lock
);
4912 * We run out of space and have not got any free space via flush_space,
4913 * so don't bother doing async reclaim.
4915 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4916 spin_unlock(&space_info
->lock
);
4920 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4921 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4922 space_info
->bytes_may_use
;
4923 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4924 spin_unlock(&space_info
->lock
);
4927 spin_unlock(&space_info
->lock
);
4932 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4934 struct btrfs_fs_info
*fs_info
;
4935 struct btrfs_space_info
*space_info
;
4939 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4940 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4942 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4947 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4949 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4950 to_reclaim
, flush_state
);
4952 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4955 } while (flush_state
< COMMIT_TRANS
);
4958 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4960 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4964 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4965 * @root - the root we're allocating for
4966 * @block_rsv - the block_rsv we're allocating for
4967 * @orig_bytes - the number of bytes we want
4968 * @flush - whether or not we can flush to make our reservation
4970 * This will reserve orig_bytes number of bytes from the space info associated
4971 * with the block_rsv. If there is not enough space it will make an attempt to
4972 * flush out space to make room. It will do this by flushing delalloc if
4973 * possible or committing the transaction. If flush is 0 then no attempts to
4974 * regain reservations will be made and this will fail if there is not enough
4977 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4978 struct btrfs_block_rsv
*block_rsv
,
4980 enum btrfs_reserve_flush_enum flush
)
4982 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4984 u64 num_bytes
= orig_bytes
;
4985 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4987 bool flushing
= false;
4991 spin_lock(&space_info
->lock
);
4993 * We only want to wait if somebody other than us is flushing and we
4994 * are actually allowed to flush all things.
4996 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4997 space_info
->flush
) {
4998 spin_unlock(&space_info
->lock
);
5000 * If we have a trans handle we can't wait because the flusher
5001 * may have to commit the transaction, which would mean we would
5002 * deadlock since we are waiting for the flusher to finish, but
5003 * hold the current transaction open.
5005 if (current
->journal_info
)
5007 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
5008 /* Must have been killed, return */
5012 spin_lock(&space_info
->lock
);
5016 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
5017 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
5018 space_info
->bytes_may_use
;
5021 * The idea here is that we've not already over-reserved the block group
5022 * then we can go ahead and save our reservation first and then start
5023 * flushing if we need to. Otherwise if we've already overcommitted
5024 * lets start flushing stuff first and then come back and try to make
5027 if (used
<= space_info
->total_bytes
) {
5028 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
5029 space_info
->bytes_may_use
+= orig_bytes
;
5030 trace_btrfs_space_reservation(root
->fs_info
,
5031 "space_info", space_info
->flags
, orig_bytes
, 1);
5035 * Ok set num_bytes to orig_bytes since we aren't
5036 * overocmmitted, this way we only try and reclaim what
5039 num_bytes
= orig_bytes
;
5043 * Ok we're over committed, set num_bytes to the overcommitted
5044 * amount plus the amount of bytes that we need for this
5047 num_bytes
= used
- space_info
->total_bytes
+
5051 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
5052 space_info
->bytes_may_use
+= orig_bytes
;
5053 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
5054 space_info
->flags
, orig_bytes
,
5060 * Couldn't make our reservation, save our place so while we're trying
5061 * to reclaim space we can actually use it instead of somebody else
5062 * stealing it from us.
5064 * We make the other tasks wait for the flush only when we can flush
5067 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
5069 space_info
->flush
= 1;
5070 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
5073 * We will do the space reservation dance during log replay,
5074 * which means we won't have fs_info->fs_root set, so don't do
5075 * the async reclaim as we will panic.
5077 if (!root
->fs_info
->log_root_recovering
&&
5078 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
5079 !work_busy(&root
->fs_info
->async_reclaim_work
))
5080 queue_work(system_unbound_wq
,
5081 &root
->fs_info
->async_reclaim_work
);
5083 spin_unlock(&space_info
->lock
);
5085 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
5088 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
5093 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
5094 * would happen. So skip delalloc flush.
5096 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
5097 (flush_state
== FLUSH_DELALLOC
||
5098 flush_state
== FLUSH_DELALLOC_WAIT
))
5099 flush_state
= ALLOC_CHUNK
;
5103 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
5104 flush_state
< COMMIT_TRANS
)
5106 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
5107 flush_state
<= COMMIT_TRANS
)
5111 if (ret
== -ENOSPC
&&
5112 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5113 struct btrfs_block_rsv
*global_rsv
=
5114 &root
->fs_info
->global_block_rsv
;
5116 if (block_rsv
!= global_rsv
&&
5117 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5121 trace_btrfs_space_reservation(root
->fs_info
,
5122 "space_info:enospc",
5123 space_info
->flags
, orig_bytes
, 1);
5125 spin_lock(&space_info
->lock
);
5126 space_info
->flush
= 0;
5127 wake_up_all(&space_info
->wait
);
5128 spin_unlock(&space_info
->lock
);
5133 static struct btrfs_block_rsv
*get_block_rsv(
5134 const struct btrfs_trans_handle
*trans
,
5135 const struct btrfs_root
*root
)
5137 struct btrfs_block_rsv
*block_rsv
= NULL
;
5139 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5140 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5141 (root
== root
->fs_info
->uuid_root
))
5142 block_rsv
= trans
->block_rsv
;
5145 block_rsv
= root
->block_rsv
;
5148 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5153 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5157 spin_lock(&block_rsv
->lock
);
5158 if (block_rsv
->reserved
>= num_bytes
) {
5159 block_rsv
->reserved
-= num_bytes
;
5160 if (block_rsv
->reserved
< block_rsv
->size
)
5161 block_rsv
->full
= 0;
5164 spin_unlock(&block_rsv
->lock
);
5168 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5169 u64 num_bytes
, int update_size
)
5171 spin_lock(&block_rsv
->lock
);
5172 block_rsv
->reserved
+= num_bytes
;
5174 block_rsv
->size
+= num_bytes
;
5175 else if (block_rsv
->reserved
>= block_rsv
->size
)
5176 block_rsv
->full
= 1;
5177 spin_unlock(&block_rsv
->lock
);
5180 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5181 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5184 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5187 if (global_rsv
->space_info
!= dest
->space_info
)
5190 spin_lock(&global_rsv
->lock
);
5191 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5192 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5193 spin_unlock(&global_rsv
->lock
);
5196 global_rsv
->reserved
-= num_bytes
;
5197 if (global_rsv
->reserved
< global_rsv
->size
)
5198 global_rsv
->full
= 0;
5199 spin_unlock(&global_rsv
->lock
);
5201 block_rsv_add_bytes(dest
, num_bytes
, 1);
5205 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5206 struct btrfs_block_rsv
*block_rsv
,
5207 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5209 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5211 spin_lock(&block_rsv
->lock
);
5212 if (num_bytes
== (u64
)-1)
5213 num_bytes
= block_rsv
->size
;
5214 block_rsv
->size
-= num_bytes
;
5215 if (block_rsv
->reserved
>= block_rsv
->size
) {
5216 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5217 block_rsv
->reserved
= block_rsv
->size
;
5218 block_rsv
->full
= 1;
5222 spin_unlock(&block_rsv
->lock
);
5224 if (num_bytes
> 0) {
5226 spin_lock(&dest
->lock
);
5230 bytes_to_add
= dest
->size
- dest
->reserved
;
5231 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5232 dest
->reserved
+= bytes_to_add
;
5233 if (dest
->reserved
>= dest
->size
)
5235 num_bytes
-= bytes_to_add
;
5237 spin_unlock(&dest
->lock
);
5240 spin_lock(&space_info
->lock
);
5241 space_info
->bytes_may_use
-= num_bytes
;
5242 trace_btrfs_space_reservation(fs_info
, "space_info",
5243 space_info
->flags
, num_bytes
, 0);
5244 spin_unlock(&space_info
->lock
);
5249 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
5250 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
5254 ret
= block_rsv_use_bytes(src
, num_bytes
);
5258 block_rsv_add_bytes(dst
, num_bytes
, 1);
5262 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5264 memset(rsv
, 0, sizeof(*rsv
));
5265 spin_lock_init(&rsv
->lock
);
5269 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5270 unsigned short type
)
5272 struct btrfs_block_rsv
*block_rsv
;
5273 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5275 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5279 btrfs_init_block_rsv(block_rsv
, type
);
5280 block_rsv
->space_info
= __find_space_info(fs_info
,
5281 BTRFS_BLOCK_GROUP_METADATA
);
5285 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5286 struct btrfs_block_rsv
*rsv
)
5290 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5294 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5299 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5300 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5301 enum btrfs_reserve_flush_enum flush
)
5308 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5310 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5317 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5318 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5326 spin_lock(&block_rsv
->lock
);
5327 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5328 if (block_rsv
->reserved
>= num_bytes
)
5330 spin_unlock(&block_rsv
->lock
);
5335 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5336 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5337 enum btrfs_reserve_flush_enum flush
)
5345 spin_lock(&block_rsv
->lock
);
5346 num_bytes
= min_reserved
;
5347 if (block_rsv
->reserved
>= num_bytes
)
5350 num_bytes
-= block_rsv
->reserved
;
5351 spin_unlock(&block_rsv
->lock
);
5356 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5358 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5365 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
5366 struct btrfs_block_rsv
*dst_rsv
,
5369 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5372 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5373 struct btrfs_block_rsv
*block_rsv
,
5376 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5377 if (global_rsv
== block_rsv
||
5378 block_rsv
->space_info
!= global_rsv
->space_info
)
5380 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5385 * helper to calculate size of global block reservation.
5386 * the desired value is sum of space used by extent tree,
5387 * checksum tree and root tree
5389 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
5391 struct btrfs_space_info
*sinfo
;
5395 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
5397 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
5398 spin_lock(&sinfo
->lock
);
5399 data_used
= sinfo
->bytes_used
;
5400 spin_unlock(&sinfo
->lock
);
5402 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5403 spin_lock(&sinfo
->lock
);
5404 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
5406 meta_used
= sinfo
->bytes_used
;
5407 spin_unlock(&sinfo
->lock
);
5409 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
5411 num_bytes
+= div_u64(data_used
+ meta_used
, 50);
5413 if (num_bytes
* 3 > meta_used
)
5414 num_bytes
= div_u64(meta_used
, 3);
5416 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
5419 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5421 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5422 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5425 num_bytes
= calc_global_metadata_size(fs_info
);
5427 spin_lock(&sinfo
->lock
);
5428 spin_lock(&block_rsv
->lock
);
5430 block_rsv
->size
= min_t(u64
, num_bytes
, SZ_512M
);
5432 if (block_rsv
->reserved
< block_rsv
->size
) {
5433 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5434 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5435 sinfo
->bytes_may_use
;
5436 if (sinfo
->total_bytes
> num_bytes
) {
5437 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5438 num_bytes
= min(num_bytes
,
5439 block_rsv
->size
- block_rsv
->reserved
);
5440 block_rsv
->reserved
+= num_bytes
;
5441 sinfo
->bytes_may_use
+= num_bytes
;
5442 trace_btrfs_space_reservation(fs_info
, "space_info",
5443 sinfo
->flags
, num_bytes
,
5446 } else if (block_rsv
->reserved
> block_rsv
->size
) {
5447 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5448 sinfo
->bytes_may_use
-= num_bytes
;
5449 trace_btrfs_space_reservation(fs_info
, "space_info",
5450 sinfo
->flags
, num_bytes
, 0);
5451 block_rsv
->reserved
= block_rsv
->size
;
5454 if (block_rsv
->reserved
== block_rsv
->size
)
5455 block_rsv
->full
= 1;
5457 block_rsv
->full
= 0;
5459 spin_unlock(&block_rsv
->lock
);
5460 spin_unlock(&sinfo
->lock
);
5463 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5465 struct btrfs_space_info
*space_info
;
5467 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5468 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5470 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5471 fs_info
->global_block_rsv
.space_info
= space_info
;
5472 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5473 fs_info
->trans_block_rsv
.space_info
= space_info
;
5474 fs_info
->empty_block_rsv
.space_info
= space_info
;
5475 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5477 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5478 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5479 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5480 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5481 if (fs_info
->quota_root
)
5482 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5483 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5485 update_global_block_rsv(fs_info
);
5488 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5490 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5492 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5493 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5494 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5495 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5496 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5497 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5498 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5499 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5502 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5503 struct btrfs_root
*root
)
5505 if (!trans
->block_rsv
)
5508 if (!trans
->bytes_reserved
)
5511 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5512 trans
->transid
, trans
->bytes_reserved
, 0);
5513 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5514 trans
->bytes_reserved
= 0;
5518 * To be called after all the new block groups attached to the transaction
5519 * handle have been created (btrfs_create_pending_block_groups()).
5521 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5523 struct btrfs_fs_info
*fs_info
= trans
->root
->fs_info
;
5525 if (!trans
->chunk_bytes_reserved
)
5528 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5530 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5531 trans
->chunk_bytes_reserved
);
5532 trans
->chunk_bytes_reserved
= 0;
5535 /* Can only return 0 or -ENOSPC */
5536 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5537 struct inode
*inode
)
5539 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5540 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
5541 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5544 * We need to hold space in order to delete our orphan item once we've
5545 * added it, so this takes the reservation so we can release it later
5546 * when we are truly done with the orphan item.
5548 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5549 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5550 btrfs_ino(inode
), num_bytes
, 1);
5551 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5554 void btrfs_orphan_release_metadata(struct inode
*inode
)
5556 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5557 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5558 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5559 btrfs_ino(inode
), num_bytes
, 0);
5560 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5564 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5565 * root: the root of the parent directory
5566 * rsv: block reservation
5567 * items: the number of items that we need do reservation
5568 * qgroup_reserved: used to return the reserved size in qgroup
5570 * This function is used to reserve the space for snapshot/subvolume
5571 * creation and deletion. Those operations are different with the
5572 * common file/directory operations, they change two fs/file trees
5573 * and root tree, the number of items that the qgroup reserves is
5574 * different with the free space reservation. So we can not use
5575 * the space reservation mechanism in start_transaction().
5577 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5578 struct btrfs_block_rsv
*rsv
,
5580 u64
*qgroup_reserved
,
5581 bool use_global_rsv
)
5585 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5587 if (root
->fs_info
->quota_enabled
) {
5588 /* One for parent inode, two for dir entries */
5589 num_bytes
= 3 * root
->nodesize
;
5590 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5597 *qgroup_reserved
= num_bytes
;
5599 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5600 rsv
->space_info
= __find_space_info(root
->fs_info
,
5601 BTRFS_BLOCK_GROUP_METADATA
);
5602 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5603 BTRFS_RESERVE_FLUSH_ALL
);
5605 if (ret
== -ENOSPC
&& use_global_rsv
)
5606 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5608 if (ret
&& *qgroup_reserved
)
5609 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5614 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5615 struct btrfs_block_rsv
*rsv
,
5616 u64 qgroup_reserved
)
5618 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5622 * drop_outstanding_extent - drop an outstanding extent
5623 * @inode: the inode we're dropping the extent for
5624 * @num_bytes: the number of bytes we're releasing.
5626 * This is called when we are freeing up an outstanding extent, either called
5627 * after an error or after an extent is written. This will return the number of
5628 * reserved extents that need to be freed. This must be called with
5629 * BTRFS_I(inode)->lock held.
5631 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5633 unsigned drop_inode_space
= 0;
5634 unsigned dropped_extents
= 0;
5635 unsigned num_extents
= 0;
5637 num_extents
= (unsigned)div64_u64(num_bytes
+
5638 BTRFS_MAX_EXTENT_SIZE
- 1,
5639 BTRFS_MAX_EXTENT_SIZE
);
5640 ASSERT(num_extents
);
5641 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5642 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5644 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5645 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5646 &BTRFS_I(inode
)->runtime_flags
))
5647 drop_inode_space
= 1;
5650 * If we have more or the same amount of outstanding extents than we have
5651 * reserved then we need to leave the reserved extents count alone.
5653 if (BTRFS_I(inode
)->outstanding_extents
>=
5654 BTRFS_I(inode
)->reserved_extents
)
5655 return drop_inode_space
;
5657 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5658 BTRFS_I(inode
)->outstanding_extents
;
5659 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5660 return dropped_extents
+ drop_inode_space
;
5664 * calc_csum_metadata_size - return the amount of metadata space that must be
5665 * reserved/freed for the given bytes.
5666 * @inode: the inode we're manipulating
5667 * @num_bytes: the number of bytes in question
5668 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5670 * This adjusts the number of csum_bytes in the inode and then returns the
5671 * correct amount of metadata that must either be reserved or freed. We
5672 * calculate how many checksums we can fit into one leaf and then divide the
5673 * number of bytes that will need to be checksumed by this value to figure out
5674 * how many checksums will be required. If we are adding bytes then the number
5675 * may go up and we will return the number of additional bytes that must be
5676 * reserved. If it is going down we will return the number of bytes that must
5679 * This must be called with BTRFS_I(inode)->lock held.
5681 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5684 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5685 u64 old_csums
, num_csums
;
5687 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5688 BTRFS_I(inode
)->csum_bytes
== 0)
5691 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5693 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5695 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5696 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5698 /* No change, no need to reserve more */
5699 if (old_csums
== num_csums
)
5703 return btrfs_calc_trans_metadata_size(root
,
5704 num_csums
- old_csums
);
5706 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5709 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5711 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5712 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5715 unsigned nr_extents
= 0;
5716 int extra_reserve
= 0;
5717 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5719 bool delalloc_lock
= true;
5723 /* If we are a free space inode we need to not flush since we will be in
5724 * the middle of a transaction commit. We also don't need the delalloc
5725 * mutex since we won't race with anybody. We need this mostly to make
5726 * lockdep shut its filthy mouth.
5728 if (btrfs_is_free_space_inode(inode
)) {
5729 flush
= BTRFS_RESERVE_NO_FLUSH
;
5730 delalloc_lock
= false;
5733 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5734 btrfs_transaction_in_commit(root
->fs_info
))
5735 schedule_timeout(1);
5738 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5740 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5742 spin_lock(&BTRFS_I(inode
)->lock
);
5743 nr_extents
= (unsigned)div64_u64(num_bytes
+
5744 BTRFS_MAX_EXTENT_SIZE
- 1,
5745 BTRFS_MAX_EXTENT_SIZE
);
5746 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5749 if (BTRFS_I(inode
)->outstanding_extents
>
5750 BTRFS_I(inode
)->reserved_extents
)
5751 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5752 BTRFS_I(inode
)->reserved_extents
;
5755 * Add an item to reserve for updating the inode when we complete the
5758 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5759 &BTRFS_I(inode
)->runtime_flags
)) {
5764 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5765 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5766 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5767 spin_unlock(&BTRFS_I(inode
)->lock
);
5769 if (root
->fs_info
->quota_enabled
) {
5770 ret
= btrfs_qgroup_reserve_meta(root
,
5771 nr_extents
* root
->nodesize
);
5776 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5777 if (unlikely(ret
)) {
5778 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5782 spin_lock(&BTRFS_I(inode
)->lock
);
5783 if (extra_reserve
) {
5784 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5785 &BTRFS_I(inode
)->runtime_flags
);
5788 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5789 spin_unlock(&BTRFS_I(inode
)->lock
);
5792 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5795 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5796 btrfs_ino(inode
), to_reserve
, 1);
5797 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5802 spin_lock(&BTRFS_I(inode
)->lock
);
5803 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5805 * If the inodes csum_bytes is the same as the original
5806 * csum_bytes then we know we haven't raced with any free()ers
5807 * so we can just reduce our inodes csum bytes and carry on.
5809 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5810 calc_csum_metadata_size(inode
, num_bytes
, 0);
5812 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5816 * This is tricky, but first we need to figure out how much we
5817 * freed from any free-ers that occurred during this
5818 * reservation, so we reset ->csum_bytes to the csum_bytes
5819 * before we dropped our lock, and then call the free for the
5820 * number of bytes that were freed while we were trying our
5823 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5824 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5825 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5829 * Now we need to see how much we would have freed had we not
5830 * been making this reservation and our ->csum_bytes were not
5831 * artificially inflated.
5833 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5834 bytes
= csum_bytes
- orig_csum_bytes
;
5835 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5838 * Now reset ->csum_bytes to what it should be. If bytes is
5839 * more than to_free then we would have freed more space had we
5840 * not had an artificially high ->csum_bytes, so we need to free
5841 * the remainder. If bytes is the same or less then we don't
5842 * need to do anything, the other free-ers did the correct
5845 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5846 if (bytes
> to_free
)
5847 to_free
= bytes
- to_free
;
5851 spin_unlock(&BTRFS_I(inode
)->lock
);
5853 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5856 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5857 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5858 btrfs_ino(inode
), to_free
, 0);
5861 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5866 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5867 * @inode: the inode to release the reservation for
5868 * @num_bytes: the number of bytes we're releasing
5870 * This will release the metadata reservation for an inode. This can be called
5871 * once we complete IO for a given set of bytes to release their metadata
5874 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5876 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5880 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5881 spin_lock(&BTRFS_I(inode
)->lock
);
5882 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5885 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5886 spin_unlock(&BTRFS_I(inode
)->lock
);
5888 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5890 if (btrfs_test_is_dummy_root(root
))
5893 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5894 btrfs_ino(inode
), to_free
, 0);
5896 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5901 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5903 * @inode: inode we're writing to
5904 * @start: start range we are writing to
5905 * @len: how long the range we are writing to
5907 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5909 * This will do the following things
5911 * o reserve space in data space info for num bytes
5912 * and reserve precious corresponding qgroup space
5913 * (Done in check_data_free_space)
5915 * o reserve space for metadata space, based on the number of outstanding
5916 * extents and how much csums will be needed
5917 * also reserve metadata space in a per root over-reserve method.
5918 * o add to the inodes->delalloc_bytes
5919 * o add it to the fs_info's delalloc inodes list.
5920 * (Above 3 all done in delalloc_reserve_metadata)
5922 * Return 0 for success
5923 * Return <0 for error(-ENOSPC or -EQUOT)
5925 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
5929 ret
= btrfs_check_data_free_space(inode
, start
, len
);
5932 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
5934 btrfs_free_reserved_data_space(inode
, start
, len
);
5939 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5940 * @inode: inode we're releasing space for
5941 * @start: start position of the space already reserved
5942 * @len: the len of the space already reserved
5944 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5945 * called in the case that we don't need the metadata AND data reservations
5946 * anymore. So if there is an error or we insert an inline extent.
5948 * This function will release the metadata space that was not used and will
5949 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5950 * list if there are no delalloc bytes left.
5951 * Also it will handle the qgroup reserved space.
5953 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
5955 btrfs_delalloc_release_metadata(inode
, len
);
5956 btrfs_free_reserved_data_space(inode
, start
, len
);
5959 static int update_block_group(struct btrfs_trans_handle
*trans
,
5960 struct btrfs_root
*root
, u64 bytenr
,
5961 u64 num_bytes
, int alloc
)
5963 struct btrfs_block_group_cache
*cache
= NULL
;
5964 struct btrfs_fs_info
*info
= root
->fs_info
;
5965 u64 total
= num_bytes
;
5970 /* block accounting for super block */
5971 spin_lock(&info
->delalloc_root_lock
);
5972 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5974 old_val
+= num_bytes
;
5976 old_val
-= num_bytes
;
5977 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5978 spin_unlock(&info
->delalloc_root_lock
);
5981 cache
= btrfs_lookup_block_group(info
, bytenr
);
5984 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5985 BTRFS_BLOCK_GROUP_RAID1
|
5986 BTRFS_BLOCK_GROUP_RAID10
))
5991 * If this block group has free space cache written out, we
5992 * need to make sure to load it if we are removing space. This
5993 * is because we need the unpinning stage to actually add the
5994 * space back to the block group, otherwise we will leak space.
5996 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5997 cache_block_group(cache
, 1);
5999 byte_in_group
= bytenr
- cache
->key
.objectid
;
6000 WARN_ON(byte_in_group
> cache
->key
.offset
);
6002 spin_lock(&cache
->space_info
->lock
);
6003 spin_lock(&cache
->lock
);
6005 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
6006 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
6007 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
6009 old_val
= btrfs_block_group_used(&cache
->item
);
6010 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
6012 old_val
+= num_bytes
;
6013 btrfs_set_block_group_used(&cache
->item
, old_val
);
6014 cache
->reserved
-= num_bytes
;
6015 cache
->space_info
->bytes_reserved
-= num_bytes
;
6016 cache
->space_info
->bytes_used
+= num_bytes
;
6017 cache
->space_info
->disk_used
+= num_bytes
* factor
;
6018 spin_unlock(&cache
->lock
);
6019 spin_unlock(&cache
->space_info
->lock
);
6021 old_val
-= num_bytes
;
6022 btrfs_set_block_group_used(&cache
->item
, old_val
);
6023 cache
->pinned
+= num_bytes
;
6024 cache
->space_info
->bytes_pinned
+= num_bytes
;
6025 cache
->space_info
->bytes_used
-= num_bytes
;
6026 cache
->space_info
->disk_used
-= num_bytes
* factor
;
6027 spin_unlock(&cache
->lock
);
6028 spin_unlock(&cache
->space_info
->lock
);
6030 set_extent_dirty(info
->pinned_extents
,
6031 bytenr
, bytenr
+ num_bytes
- 1,
6032 GFP_NOFS
| __GFP_NOFAIL
);
6035 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
6036 if (list_empty(&cache
->dirty_list
)) {
6037 list_add_tail(&cache
->dirty_list
,
6038 &trans
->transaction
->dirty_bgs
);
6039 trans
->transaction
->num_dirty_bgs
++;
6040 btrfs_get_block_group(cache
);
6042 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
6045 * No longer have used bytes in this block group, queue it for
6046 * deletion. We do this after adding the block group to the
6047 * dirty list to avoid races between cleaner kthread and space
6050 if (!alloc
&& old_val
== 0) {
6051 spin_lock(&info
->unused_bgs_lock
);
6052 if (list_empty(&cache
->bg_list
)) {
6053 btrfs_get_block_group(cache
);
6054 list_add_tail(&cache
->bg_list
,
6057 spin_unlock(&info
->unused_bgs_lock
);
6060 btrfs_put_block_group(cache
);
6062 bytenr
+= num_bytes
;
6067 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
6069 struct btrfs_block_group_cache
*cache
;
6072 spin_lock(&root
->fs_info
->block_group_cache_lock
);
6073 bytenr
= root
->fs_info
->first_logical_byte
;
6074 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
6076 if (bytenr
< (u64
)-1)
6079 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
6083 bytenr
= cache
->key
.objectid
;
6084 btrfs_put_block_group(cache
);
6089 static int pin_down_extent(struct btrfs_root
*root
,
6090 struct btrfs_block_group_cache
*cache
,
6091 u64 bytenr
, u64 num_bytes
, int reserved
)
6093 spin_lock(&cache
->space_info
->lock
);
6094 spin_lock(&cache
->lock
);
6095 cache
->pinned
+= num_bytes
;
6096 cache
->space_info
->bytes_pinned
+= num_bytes
;
6098 cache
->reserved
-= num_bytes
;
6099 cache
->space_info
->bytes_reserved
-= num_bytes
;
6101 spin_unlock(&cache
->lock
);
6102 spin_unlock(&cache
->space_info
->lock
);
6104 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6105 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6107 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
6112 * this function must be called within transaction
6114 int btrfs_pin_extent(struct btrfs_root
*root
,
6115 u64 bytenr
, u64 num_bytes
, int reserved
)
6117 struct btrfs_block_group_cache
*cache
;
6119 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6120 BUG_ON(!cache
); /* Logic error */
6122 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6124 btrfs_put_block_group(cache
);
6129 * this function must be called within transaction
6131 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6132 u64 bytenr
, u64 num_bytes
)
6134 struct btrfs_block_group_cache
*cache
;
6137 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6142 * pull in the free space cache (if any) so that our pin
6143 * removes the free space from the cache. We have load_only set
6144 * to one because the slow code to read in the free extents does check
6145 * the pinned extents.
6147 cache_block_group(cache
, 1);
6149 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6151 /* remove us from the free space cache (if we're there at all) */
6152 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6153 btrfs_put_block_group(cache
);
6157 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6160 struct btrfs_block_group_cache
*block_group
;
6161 struct btrfs_caching_control
*caching_ctl
;
6163 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6167 cache_block_group(block_group
, 0);
6168 caching_ctl
= get_caching_control(block_group
);
6172 BUG_ON(!block_group_cache_done(block_group
));
6173 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6175 mutex_lock(&caching_ctl
->mutex
);
6177 if (start
>= caching_ctl
->progress
) {
6178 ret
= add_excluded_extent(root
, start
, num_bytes
);
6179 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6180 ret
= btrfs_remove_free_space(block_group
,
6183 num_bytes
= caching_ctl
->progress
- start
;
6184 ret
= btrfs_remove_free_space(block_group
,
6189 num_bytes
= (start
+ num_bytes
) -
6190 caching_ctl
->progress
;
6191 start
= caching_ctl
->progress
;
6192 ret
= add_excluded_extent(root
, start
, num_bytes
);
6195 mutex_unlock(&caching_ctl
->mutex
);
6196 put_caching_control(caching_ctl
);
6198 btrfs_put_block_group(block_group
);
6202 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6203 struct extent_buffer
*eb
)
6205 struct btrfs_file_extent_item
*item
;
6206 struct btrfs_key key
;
6210 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6213 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6214 btrfs_item_key_to_cpu(eb
, &key
, i
);
6215 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6217 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6218 found_type
= btrfs_file_extent_type(eb
, item
);
6219 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6221 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6223 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6224 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6225 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6232 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6234 atomic_inc(&bg
->reservations
);
6237 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
6240 struct btrfs_block_group_cache
*bg
;
6242 bg
= btrfs_lookup_block_group(fs_info
, start
);
6244 if (atomic_dec_and_test(&bg
->reservations
))
6245 wake_up_atomic_t(&bg
->reservations
);
6246 btrfs_put_block_group(bg
);
6249 static int btrfs_wait_bg_reservations_atomic_t(atomic_t
*a
)
6255 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
6257 struct btrfs_space_info
*space_info
= bg
->space_info
;
6261 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
6265 * Our block group is read only but before we set it to read only,
6266 * some task might have had allocated an extent from it already, but it
6267 * has not yet created a respective ordered extent (and added it to a
6268 * root's list of ordered extents).
6269 * Therefore wait for any task currently allocating extents, since the
6270 * block group's reservations counter is incremented while a read lock
6271 * on the groups' semaphore is held and decremented after releasing
6272 * the read access on that semaphore and creating the ordered extent.
6274 down_write(&space_info
->groups_sem
);
6275 up_write(&space_info
->groups_sem
);
6277 wait_on_atomic_t(&bg
->reservations
,
6278 btrfs_wait_bg_reservations_atomic_t
,
6279 TASK_UNINTERRUPTIBLE
);
6283 * btrfs_update_reserved_bytes - update the block_group and space info counters
6284 * @cache: The cache we are manipulating
6285 * @num_bytes: The number of bytes in question
6286 * @reserve: One of the reservation enums
6287 * @delalloc: The blocks are allocated for the delalloc write
6289 * This is called by the allocator when it reserves space, or by somebody who is
6290 * freeing space that was never actually used on disk. For example if you
6291 * reserve some space for a new leaf in transaction A and before transaction A
6292 * commits you free that leaf, you call this with reserve set to 0 in order to
6293 * clear the reservation.
6295 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6296 * ENOSPC accounting. For data we handle the reservation through clearing the
6297 * delalloc bits in the io_tree. We have to do this since we could end up
6298 * allocating less disk space for the amount of data we have reserved in the
6299 * case of compression.
6301 * If this is a reservation and the block group has become read only we cannot
6302 * make the reservation and return -EAGAIN, otherwise this function always
6305 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6306 u64 num_bytes
, int reserve
, int delalloc
)
6308 struct btrfs_space_info
*space_info
= cache
->space_info
;
6311 spin_lock(&space_info
->lock
);
6312 spin_lock(&cache
->lock
);
6313 if (reserve
!= RESERVE_FREE
) {
6317 cache
->reserved
+= num_bytes
;
6318 space_info
->bytes_reserved
+= num_bytes
;
6319 if (reserve
== RESERVE_ALLOC
) {
6320 trace_btrfs_space_reservation(cache
->fs_info
,
6321 "space_info", space_info
->flags
,
6323 space_info
->bytes_may_use
-= num_bytes
;
6327 cache
->delalloc_bytes
+= num_bytes
;
6331 space_info
->bytes_readonly
+= num_bytes
;
6332 cache
->reserved
-= num_bytes
;
6333 space_info
->bytes_reserved
-= num_bytes
;
6336 cache
->delalloc_bytes
-= num_bytes
;
6338 spin_unlock(&cache
->lock
);
6339 spin_unlock(&space_info
->lock
);
6343 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6344 struct btrfs_root
*root
)
6346 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6347 struct btrfs_caching_control
*next
;
6348 struct btrfs_caching_control
*caching_ctl
;
6349 struct btrfs_block_group_cache
*cache
;
6351 down_write(&fs_info
->commit_root_sem
);
6353 list_for_each_entry_safe(caching_ctl
, next
,
6354 &fs_info
->caching_block_groups
, list
) {
6355 cache
= caching_ctl
->block_group
;
6356 if (block_group_cache_done(cache
)) {
6357 cache
->last_byte_to_unpin
= (u64
)-1;
6358 list_del_init(&caching_ctl
->list
);
6359 put_caching_control(caching_ctl
);
6361 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6365 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6366 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6368 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6370 up_write(&fs_info
->commit_root_sem
);
6372 update_global_block_rsv(fs_info
);
6376 * Returns the free cluster for the given space info and sets empty_cluster to
6377 * what it should be based on the mount options.
6379 static struct btrfs_free_cluster
*
6380 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6383 struct btrfs_free_cluster
*ret
= NULL
;
6384 bool ssd
= btrfs_test_opt(root
, SSD
);
6387 if (btrfs_mixed_space_info(space_info
))
6391 *empty_cluster
= SZ_2M
;
6392 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6393 ret
= &root
->fs_info
->meta_alloc_cluster
;
6395 *empty_cluster
= SZ_64K
;
6396 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6397 ret
= &root
->fs_info
->data_alloc_cluster
;
6403 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6404 const bool return_free_space
)
6406 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6407 struct btrfs_block_group_cache
*cache
= NULL
;
6408 struct btrfs_space_info
*space_info
;
6409 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6410 struct btrfs_free_cluster
*cluster
= NULL
;
6412 u64 total_unpinned
= 0;
6413 u64 empty_cluster
= 0;
6416 while (start
<= end
) {
6419 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6421 btrfs_put_block_group(cache
);
6423 cache
= btrfs_lookup_block_group(fs_info
, start
);
6424 BUG_ON(!cache
); /* Logic error */
6426 cluster
= fetch_cluster_info(root
,
6429 empty_cluster
<<= 1;
6432 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6433 len
= min(len
, end
+ 1 - start
);
6435 if (start
< cache
->last_byte_to_unpin
) {
6436 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6437 if (return_free_space
)
6438 btrfs_add_free_space(cache
, start
, len
);
6442 total_unpinned
+= len
;
6443 space_info
= cache
->space_info
;
6446 * If this space cluster has been marked as fragmented and we've
6447 * unpinned enough in this block group to potentially allow a
6448 * cluster to be created inside of it go ahead and clear the
6451 if (cluster
&& cluster
->fragmented
&&
6452 total_unpinned
> empty_cluster
) {
6453 spin_lock(&cluster
->lock
);
6454 cluster
->fragmented
= 0;
6455 spin_unlock(&cluster
->lock
);
6458 spin_lock(&space_info
->lock
);
6459 spin_lock(&cache
->lock
);
6460 cache
->pinned
-= len
;
6461 space_info
->bytes_pinned
-= len
;
6462 space_info
->max_extent_size
= 0;
6463 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6465 space_info
->bytes_readonly
+= len
;
6468 spin_unlock(&cache
->lock
);
6469 if (!readonly
&& global_rsv
->space_info
== space_info
) {
6470 spin_lock(&global_rsv
->lock
);
6471 if (!global_rsv
->full
) {
6472 len
= min(len
, global_rsv
->size
-
6473 global_rsv
->reserved
);
6474 global_rsv
->reserved
+= len
;
6475 space_info
->bytes_may_use
+= len
;
6476 if (global_rsv
->reserved
>= global_rsv
->size
)
6477 global_rsv
->full
= 1;
6479 spin_unlock(&global_rsv
->lock
);
6481 spin_unlock(&space_info
->lock
);
6485 btrfs_put_block_group(cache
);
6489 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6490 struct btrfs_root
*root
)
6492 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6493 struct btrfs_block_group_cache
*block_group
, *tmp
;
6494 struct list_head
*deleted_bgs
;
6495 struct extent_io_tree
*unpin
;
6500 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6501 unpin
= &fs_info
->freed_extents
[1];
6503 unpin
= &fs_info
->freed_extents
[0];
6505 while (!trans
->aborted
) {
6506 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6507 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6508 EXTENT_DIRTY
, NULL
);
6510 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6514 if (btrfs_test_opt(root
, DISCARD
))
6515 ret
= btrfs_discard_extent(root
, start
,
6516 end
+ 1 - start
, NULL
);
6518 clear_extent_dirty(unpin
, start
, end
);
6519 unpin_extent_range(root
, start
, end
, true);
6520 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6525 * Transaction is finished. We don't need the lock anymore. We
6526 * do need to clean up the block groups in case of a transaction
6529 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6530 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6534 if (!trans
->aborted
)
6535 ret
= btrfs_discard_extent(root
,
6536 block_group
->key
.objectid
,
6537 block_group
->key
.offset
,
6540 list_del_init(&block_group
->bg_list
);
6541 btrfs_put_block_group_trimming(block_group
);
6542 btrfs_put_block_group(block_group
);
6545 const char *errstr
= btrfs_decode_error(ret
);
6547 "Discard failed while removing blockgroup: errno=%d %s\n",
6555 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6556 u64 owner
, u64 root_objectid
)
6558 struct btrfs_space_info
*space_info
;
6561 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6562 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6563 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6565 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6567 flags
= BTRFS_BLOCK_GROUP_DATA
;
6570 space_info
= __find_space_info(fs_info
, flags
);
6571 BUG_ON(!space_info
); /* Logic bug */
6572 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6576 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6577 struct btrfs_root
*root
,
6578 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6579 u64 root_objectid
, u64 owner_objectid
,
6580 u64 owner_offset
, int refs_to_drop
,
6581 struct btrfs_delayed_extent_op
*extent_op
)
6583 struct btrfs_key key
;
6584 struct btrfs_path
*path
;
6585 struct btrfs_fs_info
*info
= root
->fs_info
;
6586 struct btrfs_root
*extent_root
= info
->extent_root
;
6587 struct extent_buffer
*leaf
;
6588 struct btrfs_extent_item
*ei
;
6589 struct btrfs_extent_inline_ref
*iref
;
6592 int extent_slot
= 0;
6593 int found_extent
= 0;
6597 u64 bytenr
= node
->bytenr
;
6598 u64 num_bytes
= node
->num_bytes
;
6600 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6603 path
= btrfs_alloc_path();
6607 path
->reada
= READA_FORWARD
;
6608 path
->leave_spinning
= 1;
6610 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6611 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6614 skinny_metadata
= 0;
6616 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6617 bytenr
, num_bytes
, parent
,
6618 root_objectid
, owner_objectid
,
6621 extent_slot
= path
->slots
[0];
6622 while (extent_slot
>= 0) {
6623 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6625 if (key
.objectid
!= bytenr
)
6627 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6628 key
.offset
== num_bytes
) {
6632 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6633 key
.offset
== owner_objectid
) {
6637 if (path
->slots
[0] - extent_slot
> 5)
6641 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6642 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6643 if (found_extent
&& item_size
< sizeof(*ei
))
6646 if (!found_extent
) {
6648 ret
= remove_extent_backref(trans
, extent_root
, path
,
6650 is_data
, &last_ref
);
6652 btrfs_abort_transaction(trans
, extent_root
, ret
);
6655 btrfs_release_path(path
);
6656 path
->leave_spinning
= 1;
6658 key
.objectid
= bytenr
;
6659 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6660 key
.offset
= num_bytes
;
6662 if (!is_data
&& skinny_metadata
) {
6663 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6664 key
.offset
= owner_objectid
;
6667 ret
= btrfs_search_slot(trans
, extent_root
,
6669 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6671 * Couldn't find our skinny metadata item,
6672 * see if we have ye olde extent item.
6675 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6677 if (key
.objectid
== bytenr
&&
6678 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6679 key
.offset
== num_bytes
)
6683 if (ret
> 0 && skinny_metadata
) {
6684 skinny_metadata
= false;
6685 key
.objectid
= bytenr
;
6686 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6687 key
.offset
= num_bytes
;
6688 btrfs_release_path(path
);
6689 ret
= btrfs_search_slot(trans
, extent_root
,
6694 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6697 btrfs_print_leaf(extent_root
,
6701 btrfs_abort_transaction(trans
, extent_root
, ret
);
6704 extent_slot
= path
->slots
[0];
6706 } else if (WARN_ON(ret
== -ENOENT
)) {
6707 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6709 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6710 bytenr
, parent
, root_objectid
, owner_objectid
,
6712 btrfs_abort_transaction(trans
, extent_root
, ret
);
6715 btrfs_abort_transaction(trans
, extent_root
, ret
);
6719 leaf
= path
->nodes
[0];
6720 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6721 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6722 if (item_size
< sizeof(*ei
)) {
6723 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6724 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6727 btrfs_abort_transaction(trans
, extent_root
, ret
);
6731 btrfs_release_path(path
);
6732 path
->leave_spinning
= 1;
6734 key
.objectid
= bytenr
;
6735 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6736 key
.offset
= num_bytes
;
6738 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6741 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6743 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6746 btrfs_abort_transaction(trans
, extent_root
, ret
);
6750 extent_slot
= path
->slots
[0];
6751 leaf
= path
->nodes
[0];
6752 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6755 BUG_ON(item_size
< sizeof(*ei
));
6756 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6757 struct btrfs_extent_item
);
6758 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6759 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6760 struct btrfs_tree_block_info
*bi
;
6761 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6762 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6763 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6766 refs
= btrfs_extent_refs(leaf
, ei
);
6767 if (refs
< refs_to_drop
) {
6768 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6769 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6771 btrfs_abort_transaction(trans
, extent_root
, ret
);
6774 refs
-= refs_to_drop
;
6778 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6780 * In the case of inline back ref, reference count will
6781 * be updated by remove_extent_backref
6784 BUG_ON(!found_extent
);
6786 btrfs_set_extent_refs(leaf
, ei
, refs
);
6787 btrfs_mark_buffer_dirty(leaf
);
6790 ret
= remove_extent_backref(trans
, extent_root
, path
,
6792 is_data
, &last_ref
);
6794 btrfs_abort_transaction(trans
, extent_root
, ret
);
6798 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6802 BUG_ON(is_data
&& refs_to_drop
!=
6803 extent_data_ref_count(path
, iref
));
6805 BUG_ON(path
->slots
[0] != extent_slot
);
6807 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6808 path
->slots
[0] = extent_slot
;
6814 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6817 btrfs_abort_transaction(trans
, extent_root
, ret
);
6820 btrfs_release_path(path
);
6823 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6825 btrfs_abort_transaction(trans
, extent_root
, ret
);
6830 ret
= add_to_free_space_tree(trans
, root
->fs_info
, bytenr
,
6833 btrfs_abort_transaction(trans
, extent_root
, ret
);
6837 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
6839 btrfs_abort_transaction(trans
, extent_root
, ret
);
6843 btrfs_release_path(path
);
6846 btrfs_free_path(path
);
6851 * when we free an block, it is possible (and likely) that we free the last
6852 * delayed ref for that extent as well. This searches the delayed ref tree for
6853 * a given extent, and if there are no other delayed refs to be processed, it
6854 * removes it from the tree.
6856 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6857 struct btrfs_root
*root
, u64 bytenr
)
6859 struct btrfs_delayed_ref_head
*head
;
6860 struct btrfs_delayed_ref_root
*delayed_refs
;
6863 delayed_refs
= &trans
->transaction
->delayed_refs
;
6864 spin_lock(&delayed_refs
->lock
);
6865 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6867 goto out_delayed_unlock
;
6869 spin_lock(&head
->lock
);
6870 if (!list_empty(&head
->ref_list
))
6873 if (head
->extent_op
) {
6874 if (!head
->must_insert_reserved
)
6876 btrfs_free_delayed_extent_op(head
->extent_op
);
6877 head
->extent_op
= NULL
;
6881 * waiting for the lock here would deadlock. If someone else has it
6882 * locked they are already in the process of dropping it anyway
6884 if (!mutex_trylock(&head
->mutex
))
6888 * at this point we have a head with no other entries. Go
6889 * ahead and process it.
6891 head
->node
.in_tree
= 0;
6892 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6894 atomic_dec(&delayed_refs
->num_entries
);
6897 * we don't take a ref on the node because we're removing it from the
6898 * tree, so we just steal the ref the tree was holding.
6900 delayed_refs
->num_heads
--;
6901 if (head
->processing
== 0)
6902 delayed_refs
->num_heads_ready
--;
6903 head
->processing
= 0;
6904 spin_unlock(&head
->lock
);
6905 spin_unlock(&delayed_refs
->lock
);
6907 BUG_ON(head
->extent_op
);
6908 if (head
->must_insert_reserved
)
6911 mutex_unlock(&head
->mutex
);
6912 btrfs_put_delayed_ref(&head
->node
);
6915 spin_unlock(&head
->lock
);
6918 spin_unlock(&delayed_refs
->lock
);
6922 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6923 struct btrfs_root
*root
,
6924 struct extent_buffer
*buf
,
6925 u64 parent
, int last_ref
)
6930 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6931 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6932 buf
->start
, buf
->len
,
6933 parent
, root
->root_key
.objectid
,
6934 btrfs_header_level(buf
),
6935 BTRFS_DROP_DELAYED_REF
, NULL
);
6936 BUG_ON(ret
); /* -ENOMEM */
6942 if (btrfs_header_generation(buf
) == trans
->transid
) {
6943 struct btrfs_block_group_cache
*cache
;
6945 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6946 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6951 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6953 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6954 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6955 btrfs_put_block_group(cache
);
6959 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6961 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6962 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6963 btrfs_put_block_group(cache
);
6964 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6969 add_pinned_bytes(root
->fs_info
, buf
->len
,
6970 btrfs_header_level(buf
),
6971 root
->root_key
.objectid
);
6974 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6977 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6980 /* Can return -ENOMEM */
6981 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6982 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6983 u64 owner
, u64 offset
)
6986 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6988 if (btrfs_test_is_dummy_root(root
))
6991 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6994 * tree log blocks never actually go into the extent allocation
6995 * tree, just update pinning info and exit early.
6997 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6998 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6999 /* unlocks the pinned mutex */
7000 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
7002 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
7003 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
7005 parent
, root_objectid
, (int)owner
,
7006 BTRFS_DROP_DELAYED_REF
, NULL
);
7008 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
7010 parent
, root_objectid
, owner
,
7012 BTRFS_DROP_DELAYED_REF
, NULL
);
7018 * when we wait for progress in the block group caching, its because
7019 * our allocation attempt failed at least once. So, we must sleep
7020 * and let some progress happen before we try again.
7022 * This function will sleep at least once waiting for new free space to
7023 * show up, and then it will check the block group free space numbers
7024 * for our min num_bytes. Another option is to have it go ahead
7025 * and look in the rbtree for a free extent of a given size, but this
7028 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7029 * any of the information in this block group.
7031 static noinline
void
7032 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
7035 struct btrfs_caching_control
*caching_ctl
;
7037 caching_ctl
= get_caching_control(cache
);
7041 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
7042 (cache
->free_space_ctl
->free_space
>= num_bytes
));
7044 put_caching_control(caching_ctl
);
7048 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
7050 struct btrfs_caching_control
*caching_ctl
;
7053 caching_ctl
= get_caching_control(cache
);
7055 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
7057 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
7058 if (cache
->cached
== BTRFS_CACHE_ERROR
)
7060 put_caching_control(caching_ctl
);
7064 int __get_raid_index(u64 flags
)
7066 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
7067 return BTRFS_RAID_RAID10
;
7068 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
7069 return BTRFS_RAID_RAID1
;
7070 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
7071 return BTRFS_RAID_DUP
;
7072 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7073 return BTRFS_RAID_RAID0
;
7074 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
7075 return BTRFS_RAID_RAID5
;
7076 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
7077 return BTRFS_RAID_RAID6
;
7079 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
7082 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
7084 return __get_raid_index(cache
->flags
);
7087 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
7088 [BTRFS_RAID_RAID10
] = "raid10",
7089 [BTRFS_RAID_RAID1
] = "raid1",
7090 [BTRFS_RAID_DUP
] = "dup",
7091 [BTRFS_RAID_RAID0
] = "raid0",
7092 [BTRFS_RAID_SINGLE
] = "single",
7093 [BTRFS_RAID_RAID5
] = "raid5",
7094 [BTRFS_RAID_RAID6
] = "raid6",
7097 static const char *get_raid_name(enum btrfs_raid_types type
)
7099 if (type
>= BTRFS_NR_RAID_TYPES
)
7102 return btrfs_raid_type_names
[type
];
7105 enum btrfs_loop_type
{
7106 LOOP_CACHING_NOWAIT
= 0,
7107 LOOP_CACHING_WAIT
= 1,
7108 LOOP_ALLOC_CHUNK
= 2,
7109 LOOP_NO_EMPTY_SIZE
= 3,
7113 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
7117 down_read(&cache
->data_rwsem
);
7121 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
7124 btrfs_get_block_group(cache
);
7126 down_read(&cache
->data_rwsem
);
7129 static struct btrfs_block_group_cache
*
7130 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
7131 struct btrfs_free_cluster
*cluster
,
7134 struct btrfs_block_group_cache
*used_bg
= NULL
;
7136 spin_lock(&cluster
->refill_lock
);
7138 used_bg
= cluster
->block_group
;
7142 if (used_bg
== block_group
)
7145 btrfs_get_block_group(used_bg
);
7150 if (down_read_trylock(&used_bg
->data_rwsem
))
7153 spin_unlock(&cluster
->refill_lock
);
7155 down_read(&used_bg
->data_rwsem
);
7157 spin_lock(&cluster
->refill_lock
);
7158 if (used_bg
== cluster
->block_group
)
7161 up_read(&used_bg
->data_rwsem
);
7162 btrfs_put_block_group(used_bg
);
7167 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7171 up_read(&cache
->data_rwsem
);
7172 btrfs_put_block_group(cache
);
7176 * walks the btree of allocated extents and find a hole of a given size.
7177 * The key ins is changed to record the hole:
7178 * ins->objectid == start position
7179 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7180 * ins->offset == the size of the hole.
7181 * Any available blocks before search_start are skipped.
7183 * If there is no suitable free space, we will record the max size of
7184 * the free space extent currently.
7186 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7187 u64 num_bytes
, u64 empty_size
,
7188 u64 hint_byte
, struct btrfs_key
*ins
,
7189 u64 flags
, int delalloc
)
7192 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7193 struct btrfs_free_cluster
*last_ptr
= NULL
;
7194 struct btrfs_block_group_cache
*block_group
= NULL
;
7195 u64 search_start
= 0;
7196 u64 max_extent_size
= 0;
7197 u64 empty_cluster
= 0;
7198 struct btrfs_space_info
*space_info
;
7200 int index
= __get_raid_index(flags
);
7201 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
7202 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
7203 bool failed_cluster_refill
= false;
7204 bool failed_alloc
= false;
7205 bool use_cluster
= true;
7206 bool have_caching_bg
= false;
7207 bool orig_have_caching_bg
= false;
7208 bool full_search
= false;
7210 WARN_ON(num_bytes
< root
->sectorsize
);
7211 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7215 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7217 space_info
= __find_space_info(root
->fs_info
, flags
);
7219 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7224 * If our free space is heavily fragmented we may not be able to make
7225 * big contiguous allocations, so instead of doing the expensive search
7226 * for free space, simply return ENOSPC with our max_extent_size so we
7227 * can go ahead and search for a more manageable chunk.
7229 * If our max_extent_size is large enough for our allocation simply
7230 * disable clustering since we will likely not be able to find enough
7231 * space to create a cluster and induce latency trying.
7233 if (unlikely(space_info
->max_extent_size
)) {
7234 spin_lock(&space_info
->lock
);
7235 if (space_info
->max_extent_size
&&
7236 num_bytes
> space_info
->max_extent_size
) {
7237 ins
->offset
= space_info
->max_extent_size
;
7238 spin_unlock(&space_info
->lock
);
7240 } else if (space_info
->max_extent_size
) {
7241 use_cluster
= false;
7243 spin_unlock(&space_info
->lock
);
7246 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7248 spin_lock(&last_ptr
->lock
);
7249 if (last_ptr
->block_group
)
7250 hint_byte
= last_ptr
->window_start
;
7251 if (last_ptr
->fragmented
) {
7253 * We still set window_start so we can keep track of the
7254 * last place we found an allocation to try and save
7257 hint_byte
= last_ptr
->window_start
;
7258 use_cluster
= false;
7260 spin_unlock(&last_ptr
->lock
);
7263 search_start
= max(search_start
, first_logical_byte(root
, 0));
7264 search_start
= max(search_start
, hint_byte
);
7265 if (search_start
== hint_byte
) {
7266 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7269 * we don't want to use the block group if it doesn't match our
7270 * allocation bits, or if its not cached.
7272 * However if we are re-searching with an ideal block group
7273 * picked out then we don't care that the block group is cached.
7275 if (block_group
&& block_group_bits(block_group
, flags
) &&
7276 block_group
->cached
!= BTRFS_CACHE_NO
) {
7277 down_read(&space_info
->groups_sem
);
7278 if (list_empty(&block_group
->list
) ||
7281 * someone is removing this block group,
7282 * we can't jump into the have_block_group
7283 * target because our list pointers are not
7286 btrfs_put_block_group(block_group
);
7287 up_read(&space_info
->groups_sem
);
7289 index
= get_block_group_index(block_group
);
7290 btrfs_lock_block_group(block_group
, delalloc
);
7291 goto have_block_group
;
7293 } else if (block_group
) {
7294 btrfs_put_block_group(block_group
);
7298 have_caching_bg
= false;
7299 if (index
== 0 || index
== __get_raid_index(flags
))
7301 down_read(&space_info
->groups_sem
);
7302 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7307 btrfs_grab_block_group(block_group
, delalloc
);
7308 search_start
= block_group
->key
.objectid
;
7311 * this can happen if we end up cycling through all the
7312 * raid types, but we want to make sure we only allocate
7313 * for the proper type.
7315 if (!block_group_bits(block_group
, flags
)) {
7316 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7317 BTRFS_BLOCK_GROUP_RAID1
|
7318 BTRFS_BLOCK_GROUP_RAID5
|
7319 BTRFS_BLOCK_GROUP_RAID6
|
7320 BTRFS_BLOCK_GROUP_RAID10
;
7323 * if they asked for extra copies and this block group
7324 * doesn't provide them, bail. This does allow us to
7325 * fill raid0 from raid1.
7327 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7332 cached
= block_group_cache_done(block_group
);
7333 if (unlikely(!cached
)) {
7334 have_caching_bg
= true;
7335 ret
= cache_block_group(block_group
, 0);
7340 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7342 if (unlikely(block_group
->ro
))
7346 * Ok we want to try and use the cluster allocator, so
7349 if (last_ptr
&& use_cluster
) {
7350 struct btrfs_block_group_cache
*used_block_group
;
7351 unsigned long aligned_cluster
;
7353 * the refill lock keeps out other
7354 * people trying to start a new cluster
7356 used_block_group
= btrfs_lock_cluster(block_group
,
7359 if (!used_block_group
)
7360 goto refill_cluster
;
7362 if (used_block_group
!= block_group
&&
7363 (used_block_group
->ro
||
7364 !block_group_bits(used_block_group
, flags
)))
7365 goto release_cluster
;
7367 offset
= btrfs_alloc_from_cluster(used_block_group
,
7370 used_block_group
->key
.objectid
,
7373 /* we have a block, we're done */
7374 spin_unlock(&last_ptr
->refill_lock
);
7375 trace_btrfs_reserve_extent_cluster(root
,
7377 search_start
, num_bytes
);
7378 if (used_block_group
!= block_group
) {
7379 btrfs_release_block_group(block_group
,
7381 block_group
= used_block_group
;
7386 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7388 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7389 * set up a new clusters, so lets just skip it
7390 * and let the allocator find whatever block
7391 * it can find. If we reach this point, we
7392 * will have tried the cluster allocator
7393 * plenty of times and not have found
7394 * anything, so we are likely way too
7395 * fragmented for the clustering stuff to find
7398 * However, if the cluster is taken from the
7399 * current block group, release the cluster
7400 * first, so that we stand a better chance of
7401 * succeeding in the unclustered
7403 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7404 used_block_group
!= block_group
) {
7405 spin_unlock(&last_ptr
->refill_lock
);
7406 btrfs_release_block_group(used_block_group
,
7408 goto unclustered_alloc
;
7412 * this cluster didn't work out, free it and
7415 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7417 if (used_block_group
!= block_group
)
7418 btrfs_release_block_group(used_block_group
,
7421 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7422 spin_unlock(&last_ptr
->refill_lock
);
7423 goto unclustered_alloc
;
7426 aligned_cluster
= max_t(unsigned long,
7427 empty_cluster
+ empty_size
,
7428 block_group
->full_stripe_len
);
7430 /* allocate a cluster in this block group */
7431 ret
= btrfs_find_space_cluster(root
, block_group
,
7432 last_ptr
, search_start
,
7437 * now pull our allocation out of this
7440 offset
= btrfs_alloc_from_cluster(block_group
,
7446 /* we found one, proceed */
7447 spin_unlock(&last_ptr
->refill_lock
);
7448 trace_btrfs_reserve_extent_cluster(root
,
7449 block_group
, search_start
,
7453 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7454 && !failed_cluster_refill
) {
7455 spin_unlock(&last_ptr
->refill_lock
);
7457 failed_cluster_refill
= true;
7458 wait_block_group_cache_progress(block_group
,
7459 num_bytes
+ empty_cluster
+ empty_size
);
7460 goto have_block_group
;
7464 * at this point we either didn't find a cluster
7465 * or we weren't able to allocate a block from our
7466 * cluster. Free the cluster we've been trying
7467 * to use, and go to the next block group
7469 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7470 spin_unlock(&last_ptr
->refill_lock
);
7476 * We are doing an unclustered alloc, set the fragmented flag so
7477 * we don't bother trying to setup a cluster again until we get
7480 if (unlikely(last_ptr
)) {
7481 spin_lock(&last_ptr
->lock
);
7482 last_ptr
->fragmented
= 1;
7483 spin_unlock(&last_ptr
->lock
);
7485 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7487 block_group
->free_space_ctl
->free_space
<
7488 num_bytes
+ empty_cluster
+ empty_size
) {
7489 if (block_group
->free_space_ctl
->free_space
>
7492 block_group
->free_space_ctl
->free_space
;
7493 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7496 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7498 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7499 num_bytes
, empty_size
,
7502 * If we didn't find a chunk, and we haven't failed on this
7503 * block group before, and this block group is in the middle of
7504 * caching and we are ok with waiting, then go ahead and wait
7505 * for progress to be made, and set failed_alloc to true.
7507 * If failed_alloc is true then we've already waited on this
7508 * block group once and should move on to the next block group.
7510 if (!offset
&& !failed_alloc
&& !cached
&&
7511 loop
> LOOP_CACHING_NOWAIT
) {
7512 wait_block_group_cache_progress(block_group
,
7513 num_bytes
+ empty_size
);
7514 failed_alloc
= true;
7515 goto have_block_group
;
7516 } else if (!offset
) {
7520 search_start
= ALIGN(offset
, root
->stripesize
);
7522 /* move on to the next group */
7523 if (search_start
+ num_bytes
>
7524 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7525 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7529 if (offset
< search_start
)
7530 btrfs_add_free_space(block_group
, offset
,
7531 search_start
- offset
);
7532 BUG_ON(offset
> search_start
);
7534 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
7535 alloc_type
, delalloc
);
7536 if (ret
== -EAGAIN
) {
7537 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7540 btrfs_inc_block_group_reservations(block_group
);
7542 /* we are all good, lets return */
7543 ins
->objectid
= search_start
;
7544 ins
->offset
= num_bytes
;
7546 trace_btrfs_reserve_extent(orig_root
, block_group
,
7547 search_start
, num_bytes
);
7548 btrfs_release_block_group(block_group
, delalloc
);
7551 failed_cluster_refill
= false;
7552 failed_alloc
= false;
7553 BUG_ON(index
!= get_block_group_index(block_group
));
7554 btrfs_release_block_group(block_group
, delalloc
);
7556 up_read(&space_info
->groups_sem
);
7558 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7559 && !orig_have_caching_bg
)
7560 orig_have_caching_bg
= true;
7562 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7565 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7569 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7570 * caching kthreads as we move along
7571 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7572 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7573 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7576 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7578 if (loop
== LOOP_CACHING_NOWAIT
) {
7580 * We want to skip the LOOP_CACHING_WAIT step if we
7581 * don't have any uncached bgs and we've already done a
7582 * full search through.
7584 if (orig_have_caching_bg
|| !full_search
)
7585 loop
= LOOP_CACHING_WAIT
;
7587 loop
= LOOP_ALLOC_CHUNK
;
7592 if (loop
== LOOP_ALLOC_CHUNK
) {
7593 struct btrfs_trans_handle
*trans
;
7596 trans
= current
->journal_info
;
7600 trans
= btrfs_join_transaction(root
);
7602 if (IS_ERR(trans
)) {
7603 ret
= PTR_ERR(trans
);
7607 ret
= do_chunk_alloc(trans
, root
, flags
,
7611 * If we can't allocate a new chunk we've already looped
7612 * through at least once, move on to the NO_EMPTY_SIZE
7616 loop
= LOOP_NO_EMPTY_SIZE
;
7619 * Do not bail out on ENOSPC since we
7620 * can do more things.
7622 if (ret
< 0 && ret
!= -ENOSPC
)
7623 btrfs_abort_transaction(trans
,
7628 btrfs_end_transaction(trans
, root
);
7633 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7635 * Don't loop again if we already have no empty_size and
7638 if (empty_size
== 0 &&
7639 empty_cluster
== 0) {
7648 } else if (!ins
->objectid
) {
7650 } else if (ins
->objectid
) {
7651 if (!use_cluster
&& last_ptr
) {
7652 spin_lock(&last_ptr
->lock
);
7653 last_ptr
->window_start
= ins
->objectid
;
7654 spin_unlock(&last_ptr
->lock
);
7659 if (ret
== -ENOSPC
) {
7660 spin_lock(&space_info
->lock
);
7661 space_info
->max_extent_size
= max_extent_size
;
7662 spin_unlock(&space_info
->lock
);
7663 ins
->offset
= max_extent_size
;
7668 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7669 int dump_block_groups
)
7671 struct btrfs_block_group_cache
*cache
;
7674 spin_lock(&info
->lock
);
7675 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7677 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7678 info
->bytes_reserved
- info
->bytes_readonly
,
7679 (info
->full
) ? "" : "not ");
7680 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7681 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7682 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7683 info
->bytes_reserved
, info
->bytes_may_use
,
7684 info
->bytes_readonly
);
7685 spin_unlock(&info
->lock
);
7687 if (!dump_block_groups
)
7690 down_read(&info
->groups_sem
);
7692 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7693 spin_lock(&cache
->lock
);
7694 printk(KERN_INFO
"BTRFS: "
7695 "block group %llu has %llu bytes, "
7696 "%llu used %llu pinned %llu reserved %s\n",
7697 cache
->key
.objectid
, cache
->key
.offset
,
7698 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7699 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7700 btrfs_dump_free_space(cache
, bytes
);
7701 spin_unlock(&cache
->lock
);
7703 if (++index
< BTRFS_NR_RAID_TYPES
)
7705 up_read(&info
->groups_sem
);
7708 int btrfs_reserve_extent(struct btrfs_root
*root
,
7709 u64 num_bytes
, u64 min_alloc_size
,
7710 u64 empty_size
, u64 hint_byte
,
7711 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7713 bool final_tried
= num_bytes
== min_alloc_size
;
7717 flags
= btrfs_get_alloc_profile(root
, is_data
);
7719 WARN_ON(num_bytes
< root
->sectorsize
);
7720 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
7722 if (!ret
&& !is_data
) {
7723 btrfs_dec_block_group_reservations(root
->fs_info
,
7725 } else if (ret
== -ENOSPC
) {
7726 if (!final_tried
&& ins
->offset
) {
7727 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7728 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7729 num_bytes
= max(num_bytes
, min_alloc_size
);
7730 if (num_bytes
== min_alloc_size
)
7733 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7734 struct btrfs_space_info
*sinfo
;
7736 sinfo
= __find_space_info(root
->fs_info
, flags
);
7737 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7740 dump_space_info(sinfo
, num_bytes
, 1);
7747 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7749 int pin
, int delalloc
)
7751 struct btrfs_block_group_cache
*cache
;
7754 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7756 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
7762 pin_down_extent(root
, cache
, start
, len
, 1);
7764 if (btrfs_test_opt(root
, DISCARD
))
7765 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
7766 btrfs_add_free_space(cache
, start
, len
);
7767 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
7770 btrfs_put_block_group(cache
);
7772 trace_btrfs_reserved_extent_free(root
, start
, len
);
7777 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
7778 u64 start
, u64 len
, int delalloc
)
7780 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
7783 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
7786 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
7789 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7790 struct btrfs_root
*root
,
7791 u64 parent
, u64 root_objectid
,
7792 u64 flags
, u64 owner
, u64 offset
,
7793 struct btrfs_key
*ins
, int ref_mod
)
7796 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7797 struct btrfs_extent_item
*extent_item
;
7798 struct btrfs_extent_inline_ref
*iref
;
7799 struct btrfs_path
*path
;
7800 struct extent_buffer
*leaf
;
7805 type
= BTRFS_SHARED_DATA_REF_KEY
;
7807 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7809 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7811 path
= btrfs_alloc_path();
7815 path
->leave_spinning
= 1;
7816 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7819 btrfs_free_path(path
);
7823 leaf
= path
->nodes
[0];
7824 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7825 struct btrfs_extent_item
);
7826 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7827 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7828 btrfs_set_extent_flags(leaf
, extent_item
,
7829 flags
| BTRFS_EXTENT_FLAG_DATA
);
7831 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7832 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7834 struct btrfs_shared_data_ref
*ref
;
7835 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7836 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7837 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7839 struct btrfs_extent_data_ref
*ref
;
7840 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7841 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7842 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7843 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7844 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7847 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7848 btrfs_free_path(path
);
7850 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
7855 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
7856 if (ret
) { /* -ENOENT, logic error */
7857 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7858 ins
->objectid
, ins
->offset
);
7861 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7865 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7866 struct btrfs_root
*root
,
7867 u64 parent
, u64 root_objectid
,
7868 u64 flags
, struct btrfs_disk_key
*key
,
7869 int level
, struct btrfs_key
*ins
)
7872 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7873 struct btrfs_extent_item
*extent_item
;
7874 struct btrfs_tree_block_info
*block_info
;
7875 struct btrfs_extent_inline_ref
*iref
;
7876 struct btrfs_path
*path
;
7877 struct extent_buffer
*leaf
;
7878 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7879 u64 num_bytes
= ins
->offset
;
7880 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7883 if (!skinny_metadata
)
7884 size
+= sizeof(*block_info
);
7886 path
= btrfs_alloc_path();
7888 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7893 path
->leave_spinning
= 1;
7894 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7897 btrfs_free_path(path
);
7898 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7903 leaf
= path
->nodes
[0];
7904 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7905 struct btrfs_extent_item
);
7906 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7907 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7908 btrfs_set_extent_flags(leaf
, extent_item
,
7909 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7911 if (skinny_metadata
) {
7912 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7913 num_bytes
= root
->nodesize
;
7915 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7916 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7917 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7918 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7922 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7923 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7924 BTRFS_SHARED_BLOCK_REF_KEY
);
7925 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7927 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7928 BTRFS_TREE_BLOCK_REF_KEY
);
7929 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7932 btrfs_mark_buffer_dirty(leaf
);
7933 btrfs_free_path(path
);
7935 ret
= remove_from_free_space_tree(trans
, fs_info
, ins
->objectid
,
7940 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
7942 if (ret
) { /* -ENOENT, logic error */
7943 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7944 ins
->objectid
, ins
->offset
);
7948 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7952 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7953 struct btrfs_root
*root
,
7954 u64 root_objectid
, u64 owner
,
7955 u64 offset
, u64 ram_bytes
,
7956 struct btrfs_key
*ins
)
7960 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7962 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7964 root_objectid
, owner
, offset
,
7965 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
7971 * this is used by the tree logging recovery code. It records that
7972 * an extent has been allocated and makes sure to clear the free
7973 * space cache bits as well
7975 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7976 struct btrfs_root
*root
,
7977 u64 root_objectid
, u64 owner
, u64 offset
,
7978 struct btrfs_key
*ins
)
7981 struct btrfs_block_group_cache
*block_group
;
7984 * Mixed block groups will exclude before processing the log so we only
7985 * need to do the exclude dance if this fs isn't mixed.
7987 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7988 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7993 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7997 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7998 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7999 BUG_ON(ret
); /* logic error */
8000 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
8001 0, owner
, offset
, ins
, 1);
8002 btrfs_put_block_group(block_group
);
8006 static struct extent_buffer
*
8007 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
8008 u64 bytenr
, int level
)
8010 struct extent_buffer
*buf
;
8012 buf
= btrfs_find_create_tree_block(root
, bytenr
);
8014 return ERR_PTR(-ENOMEM
);
8015 btrfs_set_header_generation(buf
, trans
->transid
);
8016 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
8017 btrfs_tree_lock(buf
);
8018 clean_tree_block(trans
, root
->fs_info
, buf
);
8019 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
8021 btrfs_set_lock_blocking(buf
);
8022 set_extent_buffer_uptodate(buf
);
8024 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
8025 buf
->log_index
= root
->log_transid
% 2;
8027 * we allow two log transactions at a time, use different
8028 * EXENT bit to differentiate dirty pages.
8030 if (buf
->log_index
== 0)
8031 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
8032 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8034 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
8035 buf
->start
+ buf
->len
- 1);
8037 buf
->log_index
= -1;
8038 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
8039 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
8041 trans
->blocks_used
++;
8042 /* this returns a buffer locked for blocking */
8046 static struct btrfs_block_rsv
*
8047 use_block_rsv(struct btrfs_trans_handle
*trans
,
8048 struct btrfs_root
*root
, u32 blocksize
)
8050 struct btrfs_block_rsv
*block_rsv
;
8051 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
8053 bool global_updated
= false;
8055 block_rsv
= get_block_rsv(trans
, root
);
8057 if (unlikely(block_rsv
->size
== 0))
8060 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
8064 if (block_rsv
->failfast
)
8065 return ERR_PTR(ret
);
8067 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
8068 global_updated
= true;
8069 update_global_block_rsv(root
->fs_info
);
8073 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
8074 static DEFINE_RATELIMIT_STATE(_rs
,
8075 DEFAULT_RATELIMIT_INTERVAL
* 10,
8076 /*DEFAULT_RATELIMIT_BURST*/ 1);
8077 if (__ratelimit(&_rs
))
8079 "BTRFS: block rsv returned %d\n", ret
);
8082 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
8083 BTRFS_RESERVE_NO_FLUSH
);
8087 * If we couldn't reserve metadata bytes try and use some from
8088 * the global reserve if its space type is the same as the global
8091 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
8092 block_rsv
->space_info
== global_rsv
->space_info
) {
8093 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
8097 return ERR_PTR(ret
);
8100 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
8101 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
8103 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
8104 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
8108 * finds a free extent and does all the dirty work required for allocation
8109 * returns the tree buffer or an ERR_PTR on error.
8111 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
8112 struct btrfs_root
*root
,
8113 u64 parent
, u64 root_objectid
,
8114 struct btrfs_disk_key
*key
, int level
,
8115 u64 hint
, u64 empty_size
)
8117 struct btrfs_key ins
;
8118 struct btrfs_block_rsv
*block_rsv
;
8119 struct extent_buffer
*buf
;
8120 struct btrfs_delayed_extent_op
*extent_op
;
8123 u32 blocksize
= root
->nodesize
;
8124 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
8127 if (btrfs_test_is_dummy_root(root
)) {
8128 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
8131 root
->alloc_bytenr
+= blocksize
;
8135 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
8136 if (IS_ERR(block_rsv
))
8137 return ERR_CAST(block_rsv
);
8139 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
8140 empty_size
, hint
, &ins
, 0, 0);
8144 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
8147 goto out_free_reserved
;
8150 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8152 parent
= ins
.objectid
;
8153 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8157 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8158 extent_op
= btrfs_alloc_delayed_extent_op();
8164 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8166 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8167 extent_op
->flags_to_set
= flags
;
8168 extent_op
->update_key
= skinny_metadata
? false : true;
8169 extent_op
->update_flags
= true;
8170 extent_op
->is_data
= false;
8171 extent_op
->level
= level
;
8173 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8174 ins
.objectid
, ins
.offset
,
8175 parent
, root_objectid
, level
,
8176 BTRFS_ADD_DELAYED_EXTENT
,
8179 goto out_free_delayed
;
8184 btrfs_free_delayed_extent_op(extent_op
);
8186 free_extent_buffer(buf
);
8188 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8190 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8191 return ERR_PTR(ret
);
8194 struct walk_control
{
8195 u64 refs
[BTRFS_MAX_LEVEL
];
8196 u64 flags
[BTRFS_MAX_LEVEL
];
8197 struct btrfs_key update_progress
;
8208 #define DROP_REFERENCE 1
8209 #define UPDATE_BACKREF 2
8211 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8212 struct btrfs_root
*root
,
8213 struct walk_control
*wc
,
8214 struct btrfs_path
*path
)
8222 struct btrfs_key key
;
8223 struct extent_buffer
*eb
;
8228 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8229 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8230 wc
->reada_count
= max(wc
->reada_count
, 2);
8232 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8233 wc
->reada_count
= min_t(int, wc
->reada_count
,
8234 BTRFS_NODEPTRS_PER_BLOCK(root
));
8237 eb
= path
->nodes
[wc
->level
];
8238 nritems
= btrfs_header_nritems(eb
);
8239 blocksize
= root
->nodesize
;
8241 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8242 if (nread
>= wc
->reada_count
)
8246 bytenr
= btrfs_node_blockptr(eb
, slot
);
8247 generation
= btrfs_node_ptr_generation(eb
, slot
);
8249 if (slot
== path
->slots
[wc
->level
])
8252 if (wc
->stage
== UPDATE_BACKREF
&&
8253 generation
<= root
->root_key
.offset
)
8256 /* We don't lock the tree block, it's OK to be racy here */
8257 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8258 wc
->level
- 1, 1, &refs
,
8260 /* We don't care about errors in readahead. */
8265 if (wc
->stage
== DROP_REFERENCE
) {
8269 if (wc
->level
== 1 &&
8270 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8272 if (!wc
->update_ref
||
8273 generation
<= root
->root_key
.offset
)
8275 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8276 ret
= btrfs_comp_cpu_keys(&key
,
8277 &wc
->update_progress
);
8281 if (wc
->level
== 1 &&
8282 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8286 readahead_tree_block(root
, bytenr
);
8289 wc
->reada_slot
= slot
;
8293 * These may not be seen by the usual inc/dec ref code so we have to
8296 static int record_one_subtree_extent(struct btrfs_trans_handle
*trans
,
8297 struct btrfs_root
*root
, u64 bytenr
,
8300 struct btrfs_qgroup_extent_record
*qrecord
;
8301 struct btrfs_delayed_ref_root
*delayed_refs
;
8303 qrecord
= kmalloc(sizeof(*qrecord
), GFP_NOFS
);
8307 qrecord
->bytenr
= bytenr
;
8308 qrecord
->num_bytes
= num_bytes
;
8309 qrecord
->old_roots
= NULL
;
8311 delayed_refs
= &trans
->transaction
->delayed_refs
;
8312 spin_lock(&delayed_refs
->lock
);
8313 if (btrfs_qgroup_insert_dirty_extent(delayed_refs
, qrecord
))
8315 spin_unlock(&delayed_refs
->lock
);
8320 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8321 struct btrfs_root
*root
,
8322 struct extent_buffer
*eb
)
8324 int nr
= btrfs_header_nritems(eb
);
8325 int i
, extent_type
, ret
;
8326 struct btrfs_key key
;
8327 struct btrfs_file_extent_item
*fi
;
8328 u64 bytenr
, num_bytes
;
8330 /* We can be called directly from walk_up_proc() */
8331 if (!root
->fs_info
->quota_enabled
)
8334 for (i
= 0; i
< nr
; i
++) {
8335 btrfs_item_key_to_cpu(eb
, &key
, i
);
8337 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8340 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8341 /* filter out non qgroup-accountable extents */
8342 extent_type
= btrfs_file_extent_type(eb
, fi
);
8344 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8347 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8351 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8353 ret
= record_one_subtree_extent(trans
, root
, bytenr
, num_bytes
);
8361 * Walk up the tree from the bottom, freeing leaves and any interior
8362 * nodes which have had all slots visited. If a node (leaf or
8363 * interior) is freed, the node above it will have it's slot
8364 * incremented. The root node will never be freed.
8366 * At the end of this function, we should have a path which has all
8367 * slots incremented to the next position for a search. If we need to
8368 * read a new node it will be NULL and the node above it will have the
8369 * correct slot selected for a later read.
8371 * If we increment the root nodes slot counter past the number of
8372 * elements, 1 is returned to signal completion of the search.
8374 static int adjust_slots_upwards(struct btrfs_root
*root
,
8375 struct btrfs_path
*path
, int root_level
)
8379 struct extent_buffer
*eb
;
8381 if (root_level
== 0)
8384 while (level
<= root_level
) {
8385 eb
= path
->nodes
[level
];
8386 nr
= btrfs_header_nritems(eb
);
8387 path
->slots
[level
]++;
8388 slot
= path
->slots
[level
];
8389 if (slot
>= nr
|| level
== 0) {
8391 * Don't free the root - we will detect this
8392 * condition after our loop and return a
8393 * positive value for caller to stop walking the tree.
8395 if (level
!= root_level
) {
8396 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8397 path
->locks
[level
] = 0;
8399 free_extent_buffer(eb
);
8400 path
->nodes
[level
] = NULL
;
8401 path
->slots
[level
] = 0;
8405 * We have a valid slot to walk back down
8406 * from. Stop here so caller can process these
8415 eb
= path
->nodes
[root_level
];
8416 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8423 * root_eb is the subtree root and is locked before this function is called.
8425 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8426 struct btrfs_root
*root
,
8427 struct extent_buffer
*root_eb
,
8433 struct extent_buffer
*eb
= root_eb
;
8434 struct btrfs_path
*path
= NULL
;
8436 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8437 BUG_ON(root_eb
== NULL
);
8439 if (!root
->fs_info
->quota_enabled
)
8442 if (!extent_buffer_uptodate(root_eb
)) {
8443 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8448 if (root_level
== 0) {
8449 ret
= account_leaf_items(trans
, root
, root_eb
);
8453 path
= btrfs_alloc_path();
8458 * Walk down the tree. Missing extent blocks are filled in as
8459 * we go. Metadata is accounted every time we read a new
8462 * When we reach a leaf, we account for file extent items in it,
8463 * walk back up the tree (adjusting slot pointers as we go)
8464 * and restart the search process.
8466 extent_buffer_get(root_eb
); /* For path */
8467 path
->nodes
[root_level
] = root_eb
;
8468 path
->slots
[root_level
] = 0;
8469 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8472 while (level
>= 0) {
8473 if (path
->nodes
[level
] == NULL
) {
8478 /* We need to get child blockptr/gen from
8479 * parent before we can read it. */
8480 eb
= path
->nodes
[level
+ 1];
8481 parent_slot
= path
->slots
[level
+ 1];
8482 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8483 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8485 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8489 } else if (!extent_buffer_uptodate(eb
)) {
8490 free_extent_buffer(eb
);
8495 path
->nodes
[level
] = eb
;
8496 path
->slots
[level
] = 0;
8498 btrfs_tree_read_lock(eb
);
8499 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8500 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8502 ret
= record_one_subtree_extent(trans
, root
, child_bytenr
,
8509 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8513 /* Nonzero return here means we completed our search */
8514 ret
= adjust_slots_upwards(root
, path
, root_level
);
8518 /* Restart search with new slots */
8527 btrfs_free_path(path
);
8533 * helper to process tree block while walking down the tree.
8535 * when wc->stage == UPDATE_BACKREF, this function updates
8536 * back refs for pointers in the block.
8538 * NOTE: return value 1 means we should stop walking down.
8540 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8541 struct btrfs_root
*root
,
8542 struct btrfs_path
*path
,
8543 struct walk_control
*wc
, int lookup_info
)
8545 int level
= wc
->level
;
8546 struct extent_buffer
*eb
= path
->nodes
[level
];
8547 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8550 if (wc
->stage
== UPDATE_BACKREF
&&
8551 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8555 * when reference count of tree block is 1, it won't increase
8556 * again. once full backref flag is set, we never clear it.
8559 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8560 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8561 BUG_ON(!path
->locks
[level
]);
8562 ret
= btrfs_lookup_extent_info(trans
, root
,
8563 eb
->start
, level
, 1,
8566 BUG_ON(ret
== -ENOMEM
);
8569 BUG_ON(wc
->refs
[level
] == 0);
8572 if (wc
->stage
== DROP_REFERENCE
) {
8573 if (wc
->refs
[level
] > 1)
8576 if (path
->locks
[level
] && !wc
->keep_locks
) {
8577 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8578 path
->locks
[level
] = 0;
8583 /* wc->stage == UPDATE_BACKREF */
8584 if (!(wc
->flags
[level
] & flag
)) {
8585 BUG_ON(!path
->locks
[level
]);
8586 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8587 BUG_ON(ret
); /* -ENOMEM */
8588 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8589 BUG_ON(ret
); /* -ENOMEM */
8590 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8592 btrfs_header_level(eb
), 0);
8593 BUG_ON(ret
); /* -ENOMEM */
8594 wc
->flags
[level
] |= flag
;
8598 * the block is shared by multiple trees, so it's not good to
8599 * keep the tree lock
8601 if (path
->locks
[level
] && level
> 0) {
8602 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8603 path
->locks
[level
] = 0;
8609 * helper to process tree block pointer.
8611 * when wc->stage == DROP_REFERENCE, this function checks
8612 * reference count of the block pointed to. if the block
8613 * is shared and we need update back refs for the subtree
8614 * rooted at the block, this function changes wc->stage to
8615 * UPDATE_BACKREF. if the block is shared and there is no
8616 * need to update back, this function drops the reference
8619 * NOTE: return value 1 means we should stop walking down.
8621 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8622 struct btrfs_root
*root
,
8623 struct btrfs_path
*path
,
8624 struct walk_control
*wc
, int *lookup_info
)
8630 struct btrfs_key key
;
8631 struct extent_buffer
*next
;
8632 int level
= wc
->level
;
8635 bool need_account
= false;
8637 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8638 path
->slots
[level
]);
8640 * if the lower level block was created before the snapshot
8641 * was created, we know there is no need to update back refs
8644 if (wc
->stage
== UPDATE_BACKREF
&&
8645 generation
<= root
->root_key
.offset
) {
8650 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8651 blocksize
= root
->nodesize
;
8653 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8655 next
= btrfs_find_create_tree_block(root
, bytenr
);
8658 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8662 btrfs_tree_lock(next
);
8663 btrfs_set_lock_blocking(next
);
8665 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8666 &wc
->refs
[level
- 1],
8667 &wc
->flags
[level
- 1]);
8669 btrfs_tree_unlock(next
);
8673 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8674 btrfs_err(root
->fs_info
, "Missing references.");
8679 if (wc
->stage
== DROP_REFERENCE
) {
8680 if (wc
->refs
[level
- 1] > 1) {
8681 need_account
= true;
8683 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8686 if (!wc
->update_ref
||
8687 generation
<= root
->root_key
.offset
)
8690 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8691 path
->slots
[level
]);
8692 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8696 wc
->stage
= UPDATE_BACKREF
;
8697 wc
->shared_level
= level
- 1;
8701 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8705 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8706 btrfs_tree_unlock(next
);
8707 free_extent_buffer(next
);
8713 if (reada
&& level
== 1)
8714 reada_walk_down(trans
, root
, wc
, path
);
8715 next
= read_tree_block(root
, bytenr
, generation
);
8717 return PTR_ERR(next
);
8718 } else if (!extent_buffer_uptodate(next
)) {
8719 free_extent_buffer(next
);
8722 btrfs_tree_lock(next
);
8723 btrfs_set_lock_blocking(next
);
8727 BUG_ON(level
!= btrfs_header_level(next
));
8728 path
->nodes
[level
] = next
;
8729 path
->slots
[level
] = 0;
8730 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8736 wc
->refs
[level
- 1] = 0;
8737 wc
->flags
[level
- 1] = 0;
8738 if (wc
->stage
== DROP_REFERENCE
) {
8739 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8740 parent
= path
->nodes
[level
]->start
;
8742 BUG_ON(root
->root_key
.objectid
!=
8743 btrfs_header_owner(path
->nodes
[level
]));
8748 ret
= account_shared_subtree(trans
, root
, next
,
8749 generation
, level
- 1);
8751 btrfs_err_rl(root
->fs_info
,
8753 "%d accounting shared subtree. Quota "
8754 "is out of sync, rescan required.",
8758 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8759 root
->root_key
.objectid
, level
- 1, 0);
8760 BUG_ON(ret
); /* -ENOMEM */
8762 btrfs_tree_unlock(next
);
8763 free_extent_buffer(next
);
8769 * helper to process tree block while walking up the tree.
8771 * when wc->stage == DROP_REFERENCE, this function drops
8772 * reference count on the block.
8774 * when wc->stage == UPDATE_BACKREF, this function changes
8775 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8776 * to UPDATE_BACKREF previously while processing the block.
8778 * NOTE: return value 1 means we should stop walking up.
8780 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8781 struct btrfs_root
*root
,
8782 struct btrfs_path
*path
,
8783 struct walk_control
*wc
)
8786 int level
= wc
->level
;
8787 struct extent_buffer
*eb
= path
->nodes
[level
];
8790 if (wc
->stage
== UPDATE_BACKREF
) {
8791 BUG_ON(wc
->shared_level
< level
);
8792 if (level
< wc
->shared_level
)
8795 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8799 wc
->stage
= DROP_REFERENCE
;
8800 wc
->shared_level
= -1;
8801 path
->slots
[level
] = 0;
8804 * check reference count again if the block isn't locked.
8805 * we should start walking down the tree again if reference
8808 if (!path
->locks
[level
]) {
8810 btrfs_tree_lock(eb
);
8811 btrfs_set_lock_blocking(eb
);
8812 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8814 ret
= btrfs_lookup_extent_info(trans
, root
,
8815 eb
->start
, level
, 1,
8819 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8820 path
->locks
[level
] = 0;
8823 BUG_ON(wc
->refs
[level
] == 0);
8824 if (wc
->refs
[level
] == 1) {
8825 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8826 path
->locks
[level
] = 0;
8832 /* wc->stage == DROP_REFERENCE */
8833 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8835 if (wc
->refs
[level
] == 1) {
8837 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8838 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8840 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8841 BUG_ON(ret
); /* -ENOMEM */
8842 ret
= account_leaf_items(trans
, root
, eb
);
8844 btrfs_err_rl(root
->fs_info
,
8846 "%d accounting leaf items. Quota "
8847 "is out of sync, rescan required.",
8851 /* make block locked assertion in clean_tree_block happy */
8852 if (!path
->locks
[level
] &&
8853 btrfs_header_generation(eb
) == trans
->transid
) {
8854 btrfs_tree_lock(eb
);
8855 btrfs_set_lock_blocking(eb
);
8856 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8858 clean_tree_block(trans
, root
->fs_info
, eb
);
8861 if (eb
== root
->node
) {
8862 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8865 BUG_ON(root
->root_key
.objectid
!=
8866 btrfs_header_owner(eb
));
8868 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8869 parent
= path
->nodes
[level
+ 1]->start
;
8871 BUG_ON(root
->root_key
.objectid
!=
8872 btrfs_header_owner(path
->nodes
[level
+ 1]));
8875 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8877 wc
->refs
[level
] = 0;
8878 wc
->flags
[level
] = 0;
8882 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8883 struct btrfs_root
*root
,
8884 struct btrfs_path
*path
,
8885 struct walk_control
*wc
)
8887 int level
= wc
->level
;
8888 int lookup_info
= 1;
8891 while (level
>= 0) {
8892 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8899 if (path
->slots
[level
] >=
8900 btrfs_header_nritems(path
->nodes
[level
]))
8903 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8905 path
->slots
[level
]++;
8914 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8915 struct btrfs_root
*root
,
8916 struct btrfs_path
*path
,
8917 struct walk_control
*wc
, int max_level
)
8919 int level
= wc
->level
;
8922 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8923 while (level
< max_level
&& path
->nodes
[level
]) {
8925 if (path
->slots
[level
] + 1 <
8926 btrfs_header_nritems(path
->nodes
[level
])) {
8927 path
->slots
[level
]++;
8930 ret
= walk_up_proc(trans
, root
, path
, wc
);
8934 if (path
->locks
[level
]) {
8935 btrfs_tree_unlock_rw(path
->nodes
[level
],
8936 path
->locks
[level
]);
8937 path
->locks
[level
] = 0;
8939 free_extent_buffer(path
->nodes
[level
]);
8940 path
->nodes
[level
] = NULL
;
8948 * drop a subvolume tree.
8950 * this function traverses the tree freeing any blocks that only
8951 * referenced by the tree.
8953 * when a shared tree block is found. this function decreases its
8954 * reference count by one. if update_ref is true, this function
8955 * also make sure backrefs for the shared block and all lower level
8956 * blocks are properly updated.
8958 * If called with for_reloc == 0, may exit early with -EAGAIN
8960 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8961 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8964 struct btrfs_path
*path
;
8965 struct btrfs_trans_handle
*trans
;
8966 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8967 struct btrfs_root_item
*root_item
= &root
->root_item
;
8968 struct walk_control
*wc
;
8969 struct btrfs_key key
;
8973 bool root_dropped
= false;
8975 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8977 path
= btrfs_alloc_path();
8983 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8985 btrfs_free_path(path
);
8990 trans
= btrfs_start_transaction(tree_root
, 0);
8991 if (IS_ERR(trans
)) {
8992 err
= PTR_ERR(trans
);
8997 trans
->block_rsv
= block_rsv
;
8999 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
9000 level
= btrfs_header_level(root
->node
);
9001 path
->nodes
[level
] = btrfs_lock_root_node(root
);
9002 btrfs_set_lock_blocking(path
->nodes
[level
]);
9003 path
->slots
[level
] = 0;
9004 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9005 memset(&wc
->update_progress
, 0,
9006 sizeof(wc
->update_progress
));
9008 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
9009 memcpy(&wc
->update_progress
, &key
,
9010 sizeof(wc
->update_progress
));
9012 level
= root_item
->drop_level
;
9014 path
->lowest_level
= level
;
9015 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
9016 path
->lowest_level
= 0;
9024 * unlock our path, this is safe because only this
9025 * function is allowed to delete this snapshot
9027 btrfs_unlock_up_safe(path
, 0);
9029 level
= btrfs_header_level(root
->node
);
9031 btrfs_tree_lock(path
->nodes
[level
]);
9032 btrfs_set_lock_blocking(path
->nodes
[level
]);
9033 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9035 ret
= btrfs_lookup_extent_info(trans
, root
,
9036 path
->nodes
[level
]->start
,
9037 level
, 1, &wc
->refs
[level
],
9043 BUG_ON(wc
->refs
[level
] == 0);
9045 if (level
== root_item
->drop_level
)
9048 btrfs_tree_unlock(path
->nodes
[level
]);
9049 path
->locks
[level
] = 0;
9050 WARN_ON(wc
->refs
[level
] != 1);
9056 wc
->shared_level
= -1;
9057 wc
->stage
= DROP_REFERENCE
;
9058 wc
->update_ref
= update_ref
;
9060 wc
->for_reloc
= for_reloc
;
9061 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9065 ret
= walk_down_tree(trans
, root
, path
, wc
);
9071 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
9078 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
9082 if (wc
->stage
== DROP_REFERENCE
) {
9084 btrfs_node_key(path
->nodes
[level
],
9085 &root_item
->drop_progress
,
9086 path
->slots
[level
]);
9087 root_item
->drop_level
= level
;
9090 BUG_ON(wc
->level
== 0);
9091 if (btrfs_should_end_transaction(trans
, tree_root
) ||
9092 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
9093 ret
= btrfs_update_root(trans
, tree_root
,
9097 btrfs_abort_transaction(trans
, tree_root
, ret
);
9102 btrfs_end_transaction_throttle(trans
, tree_root
);
9103 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
9104 pr_debug("BTRFS: drop snapshot early exit\n");
9109 trans
= btrfs_start_transaction(tree_root
, 0);
9110 if (IS_ERR(trans
)) {
9111 err
= PTR_ERR(trans
);
9115 trans
->block_rsv
= block_rsv
;
9118 btrfs_release_path(path
);
9122 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9124 btrfs_abort_transaction(trans
, tree_root
, ret
);
9128 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9129 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9132 btrfs_abort_transaction(trans
, tree_root
, ret
);
9135 } else if (ret
> 0) {
9136 /* if we fail to delete the orphan item this time
9137 * around, it'll get picked up the next time.
9139 * The most common failure here is just -ENOENT.
9141 btrfs_del_orphan_item(trans
, tree_root
,
9142 root
->root_key
.objectid
);
9146 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9147 btrfs_add_dropped_root(trans
, root
);
9149 free_extent_buffer(root
->node
);
9150 free_extent_buffer(root
->commit_root
);
9151 btrfs_put_fs_root(root
);
9153 root_dropped
= true;
9155 btrfs_end_transaction_throttle(trans
, tree_root
);
9158 btrfs_free_path(path
);
9161 * So if we need to stop dropping the snapshot for whatever reason we
9162 * need to make sure to add it back to the dead root list so that we
9163 * keep trying to do the work later. This also cleans up roots if we
9164 * don't have it in the radix (like when we recover after a power fail
9165 * or unmount) so we don't leak memory.
9167 if (!for_reloc
&& root_dropped
== false)
9168 btrfs_add_dead_root(root
);
9169 if (err
&& err
!= -EAGAIN
)
9170 btrfs_handle_fs_error(root
->fs_info
, err
, NULL
);
9175 * drop subtree rooted at tree block 'node'.
9177 * NOTE: this function will unlock and release tree block 'node'
9178 * only used by relocation code
9180 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9181 struct btrfs_root
*root
,
9182 struct extent_buffer
*node
,
9183 struct extent_buffer
*parent
)
9185 struct btrfs_path
*path
;
9186 struct walk_control
*wc
;
9192 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9194 path
= btrfs_alloc_path();
9198 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9200 btrfs_free_path(path
);
9204 btrfs_assert_tree_locked(parent
);
9205 parent_level
= btrfs_header_level(parent
);
9206 extent_buffer_get(parent
);
9207 path
->nodes
[parent_level
] = parent
;
9208 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9210 btrfs_assert_tree_locked(node
);
9211 level
= btrfs_header_level(node
);
9212 path
->nodes
[level
] = node
;
9213 path
->slots
[level
] = 0;
9214 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9216 wc
->refs
[parent_level
] = 1;
9217 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9219 wc
->shared_level
= -1;
9220 wc
->stage
= DROP_REFERENCE
;
9224 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9227 wret
= walk_down_tree(trans
, root
, path
, wc
);
9233 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9241 btrfs_free_path(path
);
9245 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9251 * if restripe for this chunk_type is on pick target profile and
9252 * return, otherwise do the usual balance
9254 stripped
= get_restripe_target(root
->fs_info
, flags
);
9256 return extended_to_chunk(stripped
);
9258 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9260 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9261 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9262 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9264 if (num_devices
== 1) {
9265 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9266 stripped
= flags
& ~stripped
;
9268 /* turn raid0 into single device chunks */
9269 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9272 /* turn mirroring into duplication */
9273 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9274 BTRFS_BLOCK_GROUP_RAID10
))
9275 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9277 /* they already had raid on here, just return */
9278 if (flags
& stripped
)
9281 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9282 stripped
= flags
& ~stripped
;
9284 /* switch duplicated blocks with raid1 */
9285 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9286 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9288 /* this is drive concat, leave it alone */
9294 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9296 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9298 u64 min_allocable_bytes
;
9302 * We need some metadata space and system metadata space for
9303 * allocating chunks in some corner cases until we force to set
9304 * it to be readonly.
9307 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9309 min_allocable_bytes
= SZ_1M
;
9311 min_allocable_bytes
= 0;
9313 spin_lock(&sinfo
->lock
);
9314 spin_lock(&cache
->lock
);
9322 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9323 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9325 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9326 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9327 min_allocable_bytes
<= sinfo
->total_bytes
) {
9328 sinfo
->bytes_readonly
+= num_bytes
;
9330 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9334 spin_unlock(&cache
->lock
);
9335 spin_unlock(&sinfo
->lock
);
9339 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9340 struct btrfs_block_group_cache
*cache
)
9343 struct btrfs_trans_handle
*trans
;
9348 trans
= btrfs_join_transaction(root
);
9350 return PTR_ERR(trans
);
9353 * we're not allowed to set block groups readonly after the dirty
9354 * block groups cache has started writing. If it already started,
9355 * back off and let this transaction commit
9357 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9358 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9359 u64 transid
= trans
->transid
;
9361 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9362 btrfs_end_transaction(trans
, root
);
9364 ret
= btrfs_wait_for_commit(root
, transid
);
9371 * if we are changing raid levels, try to allocate a corresponding
9372 * block group with the new raid level.
9374 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9375 if (alloc_flags
!= cache
->flags
) {
9376 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9379 * ENOSPC is allowed here, we may have enough space
9380 * already allocated at the new raid level to
9389 ret
= inc_block_group_ro(cache
, 0);
9392 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9393 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9397 ret
= inc_block_group_ro(cache
, 0);
9399 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9400 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9401 lock_chunks(root
->fs_info
->chunk_root
);
9402 check_system_chunk(trans
, root
, alloc_flags
);
9403 unlock_chunks(root
->fs_info
->chunk_root
);
9405 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9407 btrfs_end_transaction(trans
, root
);
9411 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9412 struct btrfs_root
*root
, u64 type
)
9414 u64 alloc_flags
= get_alloc_profile(root
, type
);
9415 return do_chunk_alloc(trans
, root
, alloc_flags
,
9420 * helper to account the unused space of all the readonly block group in the
9421 * space_info. takes mirrors into account.
9423 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9425 struct btrfs_block_group_cache
*block_group
;
9429 /* It's df, we don't care if it's racy */
9430 if (list_empty(&sinfo
->ro_bgs
))
9433 spin_lock(&sinfo
->lock
);
9434 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9435 spin_lock(&block_group
->lock
);
9437 if (!block_group
->ro
) {
9438 spin_unlock(&block_group
->lock
);
9442 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9443 BTRFS_BLOCK_GROUP_RAID10
|
9444 BTRFS_BLOCK_GROUP_DUP
))
9449 free_bytes
+= (block_group
->key
.offset
-
9450 btrfs_block_group_used(&block_group
->item
)) *
9453 spin_unlock(&block_group
->lock
);
9455 spin_unlock(&sinfo
->lock
);
9460 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9461 struct btrfs_block_group_cache
*cache
)
9463 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9468 spin_lock(&sinfo
->lock
);
9469 spin_lock(&cache
->lock
);
9471 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9472 cache
->pinned
- cache
->bytes_super
-
9473 btrfs_block_group_used(&cache
->item
);
9474 sinfo
->bytes_readonly
-= num_bytes
;
9475 list_del_init(&cache
->ro_list
);
9477 spin_unlock(&cache
->lock
);
9478 spin_unlock(&sinfo
->lock
);
9482 * checks to see if its even possible to relocate this block group.
9484 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9485 * ok to go ahead and try.
9487 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9489 struct btrfs_block_group_cache
*block_group
;
9490 struct btrfs_space_info
*space_info
;
9491 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9492 struct btrfs_device
*device
;
9493 struct btrfs_trans_handle
*trans
;
9503 debug
= btrfs_test_opt(root
, ENOSPC_DEBUG
);
9505 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9507 /* odd, couldn't find the block group, leave it alone */
9510 btrfs_warn(root
->fs_info
,
9511 "can't find block group for bytenr %llu",
9516 min_free
= btrfs_block_group_used(&block_group
->item
);
9518 /* no bytes used, we're good */
9522 space_info
= block_group
->space_info
;
9523 spin_lock(&space_info
->lock
);
9525 full
= space_info
->full
;
9528 * if this is the last block group we have in this space, we can't
9529 * relocate it unless we're able to allocate a new chunk below.
9531 * Otherwise, we need to make sure we have room in the space to handle
9532 * all of the extents from this block group. If we can, we're good
9534 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9535 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9536 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9537 min_free
< space_info
->total_bytes
)) {
9538 spin_unlock(&space_info
->lock
);
9541 spin_unlock(&space_info
->lock
);
9544 * ok we don't have enough space, but maybe we have free space on our
9545 * devices to allocate new chunks for relocation, so loop through our
9546 * alloc devices and guess if we have enough space. if this block
9547 * group is going to be restriped, run checks against the target
9548 * profile instead of the current one.
9560 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9562 index
= __get_raid_index(extended_to_chunk(target
));
9565 * this is just a balance, so if we were marked as full
9566 * we know there is no space for a new chunk
9570 btrfs_warn(root
->fs_info
,
9571 "no space to alloc new chunk for block group %llu",
9572 block_group
->key
.objectid
);
9576 index
= get_block_group_index(block_group
);
9579 if (index
== BTRFS_RAID_RAID10
) {
9583 } else if (index
== BTRFS_RAID_RAID1
) {
9585 } else if (index
== BTRFS_RAID_DUP
) {
9588 } else if (index
== BTRFS_RAID_RAID0
) {
9589 dev_min
= fs_devices
->rw_devices
;
9590 min_free
= div64_u64(min_free
, dev_min
);
9593 /* We need to do this so that we can look at pending chunks */
9594 trans
= btrfs_join_transaction(root
);
9595 if (IS_ERR(trans
)) {
9596 ret
= PTR_ERR(trans
);
9600 mutex_lock(&root
->fs_info
->chunk_mutex
);
9601 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9605 * check to make sure we can actually find a chunk with enough
9606 * space to fit our block group in.
9608 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9609 !device
->is_tgtdev_for_dev_replace
) {
9610 ret
= find_free_dev_extent(trans
, device
, min_free
,
9615 if (dev_nr
>= dev_min
)
9621 if (debug
&& ret
== -1)
9622 btrfs_warn(root
->fs_info
,
9623 "no space to allocate a new chunk for block group %llu",
9624 block_group
->key
.objectid
);
9625 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9626 btrfs_end_transaction(trans
, root
);
9628 btrfs_put_block_group(block_group
);
9632 static int find_first_block_group(struct btrfs_root
*root
,
9633 struct btrfs_path
*path
, struct btrfs_key
*key
)
9636 struct btrfs_key found_key
;
9637 struct extent_buffer
*leaf
;
9640 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9645 slot
= path
->slots
[0];
9646 leaf
= path
->nodes
[0];
9647 if (slot
>= btrfs_header_nritems(leaf
)) {
9648 ret
= btrfs_next_leaf(root
, path
);
9655 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9657 if (found_key
.objectid
>= key
->objectid
&&
9658 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9668 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9670 struct btrfs_block_group_cache
*block_group
;
9674 struct inode
*inode
;
9676 block_group
= btrfs_lookup_first_block_group(info
, last
);
9677 while (block_group
) {
9678 spin_lock(&block_group
->lock
);
9679 if (block_group
->iref
)
9681 spin_unlock(&block_group
->lock
);
9682 block_group
= next_block_group(info
->tree_root
,
9692 inode
= block_group
->inode
;
9693 block_group
->iref
= 0;
9694 block_group
->inode
= NULL
;
9695 spin_unlock(&block_group
->lock
);
9697 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9698 btrfs_put_block_group(block_group
);
9702 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9704 struct btrfs_block_group_cache
*block_group
;
9705 struct btrfs_space_info
*space_info
;
9706 struct btrfs_caching_control
*caching_ctl
;
9709 down_write(&info
->commit_root_sem
);
9710 while (!list_empty(&info
->caching_block_groups
)) {
9711 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9712 struct btrfs_caching_control
, list
);
9713 list_del(&caching_ctl
->list
);
9714 put_caching_control(caching_ctl
);
9716 up_write(&info
->commit_root_sem
);
9718 spin_lock(&info
->unused_bgs_lock
);
9719 while (!list_empty(&info
->unused_bgs
)) {
9720 block_group
= list_first_entry(&info
->unused_bgs
,
9721 struct btrfs_block_group_cache
,
9723 list_del_init(&block_group
->bg_list
);
9724 btrfs_put_block_group(block_group
);
9726 spin_unlock(&info
->unused_bgs_lock
);
9728 spin_lock(&info
->block_group_cache_lock
);
9729 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9730 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9732 rb_erase(&block_group
->cache_node
,
9733 &info
->block_group_cache_tree
);
9734 RB_CLEAR_NODE(&block_group
->cache_node
);
9735 spin_unlock(&info
->block_group_cache_lock
);
9737 down_write(&block_group
->space_info
->groups_sem
);
9738 list_del(&block_group
->list
);
9739 up_write(&block_group
->space_info
->groups_sem
);
9741 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9742 wait_block_group_cache_done(block_group
);
9745 * We haven't cached this block group, which means we could
9746 * possibly have excluded extents on this block group.
9748 if (block_group
->cached
== BTRFS_CACHE_NO
||
9749 block_group
->cached
== BTRFS_CACHE_ERROR
)
9750 free_excluded_extents(info
->extent_root
, block_group
);
9752 btrfs_remove_free_space_cache(block_group
);
9753 btrfs_put_block_group(block_group
);
9755 spin_lock(&info
->block_group_cache_lock
);
9757 spin_unlock(&info
->block_group_cache_lock
);
9759 /* now that all the block groups are freed, go through and
9760 * free all the space_info structs. This is only called during
9761 * the final stages of unmount, and so we know nobody is
9762 * using them. We call synchronize_rcu() once before we start,
9763 * just to be on the safe side.
9767 release_global_block_rsv(info
);
9769 while (!list_empty(&info
->space_info
)) {
9772 space_info
= list_entry(info
->space_info
.next
,
9773 struct btrfs_space_info
,
9775 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
9776 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9777 space_info
->bytes_reserved
> 0 ||
9778 space_info
->bytes_may_use
> 0)) {
9779 dump_space_info(space_info
, 0, 0);
9782 list_del(&space_info
->list
);
9783 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9784 struct kobject
*kobj
;
9785 kobj
= space_info
->block_group_kobjs
[i
];
9786 space_info
->block_group_kobjs
[i
] = NULL
;
9792 kobject_del(&space_info
->kobj
);
9793 kobject_put(&space_info
->kobj
);
9798 static void __link_block_group(struct btrfs_space_info
*space_info
,
9799 struct btrfs_block_group_cache
*cache
)
9801 int index
= get_block_group_index(cache
);
9804 down_write(&space_info
->groups_sem
);
9805 if (list_empty(&space_info
->block_groups
[index
]))
9807 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9808 up_write(&space_info
->groups_sem
);
9811 struct raid_kobject
*rkobj
;
9814 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9817 rkobj
->raid_type
= index
;
9818 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9819 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9820 "%s", get_raid_name(index
));
9822 kobject_put(&rkobj
->kobj
);
9825 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9830 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9833 static struct btrfs_block_group_cache
*
9834 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
9836 struct btrfs_block_group_cache
*cache
;
9838 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9842 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9844 if (!cache
->free_space_ctl
) {
9849 cache
->key
.objectid
= start
;
9850 cache
->key
.offset
= size
;
9851 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9853 cache
->sectorsize
= root
->sectorsize
;
9854 cache
->fs_info
= root
->fs_info
;
9855 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
9856 &root
->fs_info
->mapping_tree
,
9858 set_free_space_tree_thresholds(cache
);
9860 atomic_set(&cache
->count
, 1);
9861 spin_lock_init(&cache
->lock
);
9862 init_rwsem(&cache
->data_rwsem
);
9863 INIT_LIST_HEAD(&cache
->list
);
9864 INIT_LIST_HEAD(&cache
->cluster_list
);
9865 INIT_LIST_HEAD(&cache
->bg_list
);
9866 INIT_LIST_HEAD(&cache
->ro_list
);
9867 INIT_LIST_HEAD(&cache
->dirty_list
);
9868 INIT_LIST_HEAD(&cache
->io_list
);
9869 btrfs_init_free_space_ctl(cache
);
9870 atomic_set(&cache
->trimming
, 0);
9871 mutex_init(&cache
->free_space_lock
);
9876 int btrfs_read_block_groups(struct btrfs_root
*root
)
9878 struct btrfs_path
*path
;
9880 struct btrfs_block_group_cache
*cache
;
9881 struct btrfs_fs_info
*info
= root
->fs_info
;
9882 struct btrfs_space_info
*space_info
;
9883 struct btrfs_key key
;
9884 struct btrfs_key found_key
;
9885 struct extent_buffer
*leaf
;
9889 root
= info
->extent_root
;
9892 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9893 path
= btrfs_alloc_path();
9896 path
->reada
= READA_FORWARD
;
9898 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
9899 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
9900 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
9902 if (btrfs_test_opt(root
, CLEAR_CACHE
))
9906 ret
= find_first_block_group(root
, path
, &key
);
9912 leaf
= path
->nodes
[0];
9913 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9915 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
9924 * When we mount with old space cache, we need to
9925 * set BTRFS_DC_CLEAR and set dirty flag.
9927 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9928 * truncate the old free space cache inode and
9930 * b) Setting 'dirty flag' makes sure that we flush
9931 * the new space cache info onto disk.
9933 if (btrfs_test_opt(root
, SPACE_CACHE
))
9934 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9937 read_extent_buffer(leaf
, &cache
->item
,
9938 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9939 sizeof(cache
->item
));
9940 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9942 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9943 btrfs_release_path(path
);
9946 * We need to exclude the super stripes now so that the space
9947 * info has super bytes accounted for, otherwise we'll think
9948 * we have more space than we actually do.
9950 ret
= exclude_super_stripes(root
, cache
);
9953 * We may have excluded something, so call this just in
9956 free_excluded_extents(root
, cache
);
9957 btrfs_put_block_group(cache
);
9962 * check for two cases, either we are full, and therefore
9963 * don't need to bother with the caching work since we won't
9964 * find any space, or we are empty, and we can just add all
9965 * the space in and be done with it. This saves us _alot_ of
9966 * time, particularly in the full case.
9968 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9969 cache
->last_byte_to_unpin
= (u64
)-1;
9970 cache
->cached
= BTRFS_CACHE_FINISHED
;
9971 free_excluded_extents(root
, cache
);
9972 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9973 cache
->last_byte_to_unpin
= (u64
)-1;
9974 cache
->cached
= BTRFS_CACHE_FINISHED
;
9975 add_new_free_space(cache
, root
->fs_info
,
9977 found_key
.objectid
+
9979 free_excluded_extents(root
, cache
);
9982 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9984 btrfs_remove_free_space_cache(cache
);
9985 btrfs_put_block_group(cache
);
9989 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9990 btrfs_block_group_used(&cache
->item
),
9993 btrfs_remove_free_space_cache(cache
);
9994 spin_lock(&info
->block_group_cache_lock
);
9995 rb_erase(&cache
->cache_node
,
9996 &info
->block_group_cache_tree
);
9997 RB_CLEAR_NODE(&cache
->cache_node
);
9998 spin_unlock(&info
->block_group_cache_lock
);
9999 btrfs_put_block_group(cache
);
10003 cache
->space_info
= space_info
;
10004 spin_lock(&cache
->space_info
->lock
);
10005 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
10006 spin_unlock(&cache
->space_info
->lock
);
10008 __link_block_group(space_info
, cache
);
10010 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
10011 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
10012 inc_block_group_ro(cache
, 1);
10013 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
10014 spin_lock(&info
->unused_bgs_lock
);
10015 /* Should always be true but just in case. */
10016 if (list_empty(&cache
->bg_list
)) {
10017 btrfs_get_block_group(cache
);
10018 list_add_tail(&cache
->bg_list
,
10019 &info
->unused_bgs
);
10021 spin_unlock(&info
->unused_bgs_lock
);
10025 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
10026 if (!(get_alloc_profile(root
, space_info
->flags
) &
10027 (BTRFS_BLOCK_GROUP_RAID10
|
10028 BTRFS_BLOCK_GROUP_RAID1
|
10029 BTRFS_BLOCK_GROUP_RAID5
|
10030 BTRFS_BLOCK_GROUP_RAID6
|
10031 BTRFS_BLOCK_GROUP_DUP
)))
10034 * avoid allocating from un-mirrored block group if there are
10035 * mirrored block groups.
10037 list_for_each_entry(cache
,
10038 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10040 inc_block_group_ro(cache
, 1);
10041 list_for_each_entry(cache
,
10042 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10044 inc_block_group_ro(cache
, 1);
10047 init_global_block_rsv(info
);
10050 btrfs_free_path(path
);
10054 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10055 struct btrfs_root
*root
)
10057 struct btrfs_block_group_cache
*block_group
, *tmp
;
10058 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10059 struct btrfs_block_group_item item
;
10060 struct btrfs_key key
;
10062 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10064 trans
->can_flush_pending_bgs
= false;
10065 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
10069 spin_lock(&block_group
->lock
);
10070 memcpy(&item
, &block_group
->item
, sizeof(item
));
10071 memcpy(&key
, &block_group
->key
, sizeof(key
));
10072 spin_unlock(&block_group
->lock
);
10074 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10077 btrfs_abort_transaction(trans
, extent_root
, ret
);
10078 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10079 key
.objectid
, key
.offset
);
10081 btrfs_abort_transaction(trans
, extent_root
, ret
);
10082 add_block_group_free_space(trans
, root
->fs_info
, block_group
);
10083 /* already aborted the transaction if it failed. */
10085 list_del_init(&block_group
->bg_list
);
10087 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10090 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10091 struct btrfs_root
*root
, u64 bytes_used
,
10092 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10096 struct btrfs_root
*extent_root
;
10097 struct btrfs_block_group_cache
*cache
;
10099 extent_root
= root
->fs_info
->extent_root
;
10101 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10103 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10107 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10108 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10109 btrfs_set_block_group_flags(&cache
->item
, type
);
10111 cache
->flags
= type
;
10112 cache
->last_byte_to_unpin
= (u64
)-1;
10113 cache
->cached
= BTRFS_CACHE_FINISHED
;
10114 cache
->needs_free_space
= 1;
10115 ret
= exclude_super_stripes(root
, cache
);
10118 * We may have excluded something, so call this just in
10121 free_excluded_extents(root
, cache
);
10122 btrfs_put_block_group(cache
);
10126 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10127 chunk_offset
+ size
);
10129 free_excluded_extents(root
, cache
);
10131 #ifdef CONFIG_BTRFS_DEBUG
10132 if (btrfs_should_fragment_free_space(root
, cache
)) {
10133 u64 new_bytes_used
= size
- bytes_used
;
10135 bytes_used
+= new_bytes_used
>> 1;
10136 fragment_free_space(root
, cache
);
10140 * Call to ensure the corresponding space_info object is created and
10141 * assigned to our block group, but don't update its counters just yet.
10142 * We want our bg to be added to the rbtree with its ->space_info set.
10144 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0,
10145 &cache
->space_info
);
10147 btrfs_remove_free_space_cache(cache
);
10148 btrfs_put_block_group(cache
);
10152 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10154 btrfs_remove_free_space_cache(cache
);
10155 btrfs_put_block_group(cache
);
10160 * Now that our block group has its ->space_info set and is inserted in
10161 * the rbtree, update the space info's counters.
10163 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10164 &cache
->space_info
);
10166 btrfs_remove_free_space_cache(cache
);
10167 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10168 rb_erase(&cache
->cache_node
,
10169 &root
->fs_info
->block_group_cache_tree
);
10170 RB_CLEAR_NODE(&cache
->cache_node
);
10171 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10172 btrfs_put_block_group(cache
);
10175 update_global_block_rsv(root
->fs_info
);
10177 spin_lock(&cache
->space_info
->lock
);
10178 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
10179 spin_unlock(&cache
->space_info
->lock
);
10181 __link_block_group(cache
->space_info
, cache
);
10183 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10185 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10190 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10192 u64 extra_flags
= chunk_to_extended(flags
) &
10193 BTRFS_EXTENDED_PROFILE_MASK
;
10195 write_seqlock(&fs_info
->profiles_lock
);
10196 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10197 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10198 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10199 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10200 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10201 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10202 write_sequnlock(&fs_info
->profiles_lock
);
10205 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10206 struct btrfs_root
*root
, u64 group_start
,
10207 struct extent_map
*em
)
10209 struct btrfs_path
*path
;
10210 struct btrfs_block_group_cache
*block_group
;
10211 struct btrfs_free_cluster
*cluster
;
10212 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10213 struct btrfs_key key
;
10214 struct inode
*inode
;
10215 struct kobject
*kobj
= NULL
;
10219 struct btrfs_caching_control
*caching_ctl
= NULL
;
10222 root
= root
->fs_info
->extent_root
;
10224 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10225 BUG_ON(!block_group
);
10226 BUG_ON(!block_group
->ro
);
10229 * Free the reserved super bytes from this block group before
10232 free_excluded_extents(root
, block_group
);
10234 memcpy(&key
, &block_group
->key
, sizeof(key
));
10235 index
= get_block_group_index(block_group
);
10236 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10237 BTRFS_BLOCK_GROUP_RAID1
|
10238 BTRFS_BLOCK_GROUP_RAID10
))
10243 /* make sure this block group isn't part of an allocation cluster */
10244 cluster
= &root
->fs_info
->data_alloc_cluster
;
10245 spin_lock(&cluster
->refill_lock
);
10246 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10247 spin_unlock(&cluster
->refill_lock
);
10250 * make sure this block group isn't part of a metadata
10251 * allocation cluster
10253 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10254 spin_lock(&cluster
->refill_lock
);
10255 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10256 spin_unlock(&cluster
->refill_lock
);
10258 path
= btrfs_alloc_path();
10265 * get the inode first so any iput calls done for the io_list
10266 * aren't the final iput (no unlinks allowed now)
10268 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10270 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10272 * make sure our free spache cache IO is done before remove the
10275 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10276 if (!list_empty(&block_group
->io_list
)) {
10277 list_del_init(&block_group
->io_list
);
10279 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10281 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10282 btrfs_wait_cache_io(root
, trans
, block_group
,
10283 &block_group
->io_ctl
, path
,
10284 block_group
->key
.objectid
);
10285 btrfs_put_block_group(block_group
);
10286 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10289 if (!list_empty(&block_group
->dirty_list
)) {
10290 list_del_init(&block_group
->dirty_list
);
10291 btrfs_put_block_group(block_group
);
10293 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10294 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10296 if (!IS_ERR(inode
)) {
10297 ret
= btrfs_orphan_add(trans
, inode
);
10299 btrfs_add_delayed_iput(inode
);
10302 clear_nlink(inode
);
10303 /* One for the block groups ref */
10304 spin_lock(&block_group
->lock
);
10305 if (block_group
->iref
) {
10306 block_group
->iref
= 0;
10307 block_group
->inode
= NULL
;
10308 spin_unlock(&block_group
->lock
);
10311 spin_unlock(&block_group
->lock
);
10313 /* One for our lookup ref */
10314 btrfs_add_delayed_iput(inode
);
10317 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10318 key
.offset
= block_group
->key
.objectid
;
10321 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10325 btrfs_release_path(path
);
10327 ret
= btrfs_del_item(trans
, tree_root
, path
);
10330 btrfs_release_path(path
);
10333 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10334 rb_erase(&block_group
->cache_node
,
10335 &root
->fs_info
->block_group_cache_tree
);
10336 RB_CLEAR_NODE(&block_group
->cache_node
);
10338 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10339 root
->fs_info
->first_logical_byte
= (u64
)-1;
10340 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10342 down_write(&block_group
->space_info
->groups_sem
);
10344 * we must use list_del_init so people can check to see if they
10345 * are still on the list after taking the semaphore
10347 list_del_init(&block_group
->list
);
10348 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10349 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10350 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10351 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10353 up_write(&block_group
->space_info
->groups_sem
);
10359 if (block_group
->has_caching_ctl
)
10360 caching_ctl
= get_caching_control(block_group
);
10361 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10362 wait_block_group_cache_done(block_group
);
10363 if (block_group
->has_caching_ctl
) {
10364 down_write(&root
->fs_info
->commit_root_sem
);
10365 if (!caching_ctl
) {
10366 struct btrfs_caching_control
*ctl
;
10368 list_for_each_entry(ctl
,
10369 &root
->fs_info
->caching_block_groups
, list
)
10370 if (ctl
->block_group
== block_group
) {
10372 atomic_inc(&caching_ctl
->count
);
10377 list_del_init(&caching_ctl
->list
);
10378 up_write(&root
->fs_info
->commit_root_sem
);
10380 /* Once for the caching bgs list and once for us. */
10381 put_caching_control(caching_ctl
);
10382 put_caching_control(caching_ctl
);
10386 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10387 if (!list_empty(&block_group
->dirty_list
)) {
10390 if (!list_empty(&block_group
->io_list
)) {
10393 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10394 btrfs_remove_free_space_cache(block_group
);
10396 spin_lock(&block_group
->space_info
->lock
);
10397 list_del_init(&block_group
->ro_list
);
10399 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
10400 WARN_ON(block_group
->space_info
->total_bytes
10401 < block_group
->key
.offset
);
10402 WARN_ON(block_group
->space_info
->bytes_readonly
10403 < block_group
->key
.offset
);
10404 WARN_ON(block_group
->space_info
->disk_total
10405 < block_group
->key
.offset
* factor
);
10407 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10408 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10409 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10411 spin_unlock(&block_group
->space_info
->lock
);
10413 memcpy(&key
, &block_group
->key
, sizeof(key
));
10416 if (!list_empty(&em
->list
)) {
10417 /* We're in the transaction->pending_chunks list. */
10418 free_extent_map(em
);
10420 spin_lock(&block_group
->lock
);
10421 block_group
->removed
= 1;
10423 * At this point trimming can't start on this block group, because we
10424 * removed the block group from the tree fs_info->block_group_cache_tree
10425 * so no one can't find it anymore and even if someone already got this
10426 * block group before we removed it from the rbtree, they have already
10427 * incremented block_group->trimming - if they didn't, they won't find
10428 * any free space entries because we already removed them all when we
10429 * called btrfs_remove_free_space_cache().
10431 * And we must not remove the extent map from the fs_info->mapping_tree
10432 * to prevent the same logical address range and physical device space
10433 * ranges from being reused for a new block group. This is because our
10434 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10435 * completely transactionless, so while it is trimming a range the
10436 * currently running transaction might finish and a new one start,
10437 * allowing for new block groups to be created that can reuse the same
10438 * physical device locations unless we take this special care.
10440 * There may also be an implicit trim operation if the file system
10441 * is mounted with -odiscard. The same protections must remain
10442 * in place until the extents have been discarded completely when
10443 * the transaction commit has completed.
10445 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10447 * Make sure a trimmer task always sees the em in the pinned_chunks list
10448 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10449 * before checking block_group->removed).
10453 * Our em might be in trans->transaction->pending_chunks which
10454 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10455 * and so is the fs_info->pinned_chunks list.
10457 * So at this point we must be holding the chunk_mutex to avoid
10458 * any races with chunk allocation (more specifically at
10459 * volumes.c:contains_pending_extent()), to ensure it always
10460 * sees the em, either in the pending_chunks list or in the
10461 * pinned_chunks list.
10463 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10465 spin_unlock(&block_group
->lock
);
10468 struct extent_map_tree
*em_tree
;
10470 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10471 write_lock(&em_tree
->lock
);
10473 * The em might be in the pending_chunks list, so make sure the
10474 * chunk mutex is locked, since remove_extent_mapping() will
10475 * delete us from that list.
10477 remove_extent_mapping(em_tree
, em
);
10478 write_unlock(&em_tree
->lock
);
10479 /* once for the tree */
10480 free_extent_map(em
);
10483 unlock_chunks(root
);
10485 ret
= remove_block_group_free_space(trans
, root
->fs_info
, block_group
);
10489 btrfs_put_block_group(block_group
);
10490 btrfs_put_block_group(block_group
);
10492 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10498 ret
= btrfs_del_item(trans
, root
, path
);
10500 btrfs_free_path(path
);
10504 struct btrfs_trans_handle
*
10505 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10506 const u64 chunk_offset
)
10508 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10509 struct extent_map
*em
;
10510 struct map_lookup
*map
;
10511 unsigned int num_items
;
10513 read_lock(&em_tree
->lock
);
10514 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10515 read_unlock(&em_tree
->lock
);
10516 ASSERT(em
&& em
->start
== chunk_offset
);
10519 * We need to reserve 3 + N units from the metadata space info in order
10520 * to remove a block group (done at btrfs_remove_chunk() and at
10521 * btrfs_remove_block_group()), which are used for:
10523 * 1 unit for adding the free space inode's orphan (located in the tree
10525 * 1 unit for deleting the block group item (located in the extent
10527 * 1 unit for deleting the free space item (located in tree of tree
10529 * N units for deleting N device extent items corresponding to each
10530 * stripe (located in the device tree).
10532 * In order to remove a block group we also need to reserve units in the
10533 * system space info in order to update the chunk tree (update one or
10534 * more device items and remove one chunk item), but this is done at
10535 * btrfs_remove_chunk() through a call to check_system_chunk().
10537 map
= em
->map_lookup
;
10538 num_items
= 3 + map
->num_stripes
;
10539 free_extent_map(em
);
10541 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10546 * Process the unused_bgs list and remove any that don't have any allocated
10547 * space inside of them.
10549 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10551 struct btrfs_block_group_cache
*block_group
;
10552 struct btrfs_space_info
*space_info
;
10553 struct btrfs_root
*root
= fs_info
->extent_root
;
10554 struct btrfs_trans_handle
*trans
;
10557 if (!fs_info
->open
)
10560 spin_lock(&fs_info
->unused_bgs_lock
);
10561 while (!list_empty(&fs_info
->unused_bgs
)) {
10565 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10566 struct btrfs_block_group_cache
,
10568 list_del_init(&block_group
->bg_list
);
10570 space_info
= block_group
->space_info
;
10572 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10573 btrfs_put_block_group(block_group
);
10576 spin_unlock(&fs_info
->unused_bgs_lock
);
10578 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10580 /* Don't want to race with allocators so take the groups_sem */
10581 down_write(&space_info
->groups_sem
);
10582 spin_lock(&block_group
->lock
);
10583 if (block_group
->reserved
||
10584 btrfs_block_group_used(&block_group
->item
) ||
10586 list_is_singular(&block_group
->list
)) {
10588 * We want to bail if we made new allocations or have
10589 * outstanding allocations in this block group. We do
10590 * the ro check in case balance is currently acting on
10591 * this block group.
10593 spin_unlock(&block_group
->lock
);
10594 up_write(&space_info
->groups_sem
);
10597 spin_unlock(&block_group
->lock
);
10599 /* We don't want to force the issue, only flip if it's ok. */
10600 ret
= inc_block_group_ro(block_group
, 0);
10601 up_write(&space_info
->groups_sem
);
10608 * Want to do this before we do anything else so we can recover
10609 * properly if we fail to join the transaction.
10611 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10612 block_group
->key
.objectid
);
10613 if (IS_ERR(trans
)) {
10614 btrfs_dec_block_group_ro(root
, block_group
);
10615 ret
= PTR_ERR(trans
);
10620 * We could have pending pinned extents for this block group,
10621 * just delete them, we don't care about them anymore.
10623 start
= block_group
->key
.objectid
;
10624 end
= start
+ block_group
->key
.offset
- 1;
10626 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10627 * btrfs_finish_extent_commit(). If we are at transaction N,
10628 * another task might be running finish_extent_commit() for the
10629 * previous transaction N - 1, and have seen a range belonging
10630 * to the block group in freed_extents[] before we were able to
10631 * clear the whole block group range from freed_extents[]. This
10632 * means that task can lookup for the block group after we
10633 * unpinned it from freed_extents[] and removed it, leading to
10634 * a BUG_ON() at btrfs_unpin_extent_range().
10636 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10637 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10640 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10641 btrfs_dec_block_group_ro(root
, block_group
);
10644 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10647 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10648 btrfs_dec_block_group_ro(root
, block_group
);
10651 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10653 /* Reset pinned so btrfs_put_block_group doesn't complain */
10654 spin_lock(&space_info
->lock
);
10655 spin_lock(&block_group
->lock
);
10657 space_info
->bytes_pinned
-= block_group
->pinned
;
10658 space_info
->bytes_readonly
+= block_group
->pinned
;
10659 percpu_counter_add(&space_info
->total_bytes_pinned
,
10660 -block_group
->pinned
);
10661 block_group
->pinned
= 0;
10663 spin_unlock(&block_group
->lock
);
10664 spin_unlock(&space_info
->lock
);
10666 /* DISCARD can flip during remount */
10667 trimming
= btrfs_test_opt(root
, DISCARD
);
10669 /* Implicit trim during transaction commit. */
10671 btrfs_get_block_group_trimming(block_group
);
10674 * Btrfs_remove_chunk will abort the transaction if things go
10677 ret
= btrfs_remove_chunk(trans
, root
,
10678 block_group
->key
.objectid
);
10682 btrfs_put_block_group_trimming(block_group
);
10687 * If we're not mounted with -odiscard, we can just forget
10688 * about this block group. Otherwise we'll need to wait
10689 * until transaction commit to do the actual discard.
10692 spin_lock(&fs_info
->unused_bgs_lock
);
10694 * A concurrent scrub might have added us to the list
10695 * fs_info->unused_bgs, so use a list_move operation
10696 * to add the block group to the deleted_bgs list.
10698 list_move(&block_group
->bg_list
,
10699 &trans
->transaction
->deleted_bgs
);
10700 spin_unlock(&fs_info
->unused_bgs_lock
);
10701 btrfs_get_block_group(block_group
);
10704 btrfs_end_transaction(trans
, root
);
10706 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10707 btrfs_put_block_group(block_group
);
10708 spin_lock(&fs_info
->unused_bgs_lock
);
10710 spin_unlock(&fs_info
->unused_bgs_lock
);
10713 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10715 struct btrfs_space_info
*space_info
;
10716 struct btrfs_super_block
*disk_super
;
10722 disk_super
= fs_info
->super_copy
;
10723 if (!btrfs_super_root(disk_super
))
10726 features
= btrfs_super_incompat_flags(disk_super
);
10727 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10730 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10731 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10736 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10737 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10739 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10740 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10744 flags
= BTRFS_BLOCK_GROUP_DATA
;
10745 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10751 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10753 return unpin_extent_range(root
, start
, end
, false);
10757 * It used to be that old block groups would be left around forever.
10758 * Iterating over them would be enough to trim unused space. Since we
10759 * now automatically remove them, we also need to iterate over unallocated
10762 * We don't want a transaction for this since the discard may take a
10763 * substantial amount of time. We don't require that a transaction be
10764 * running, but we do need to take a running transaction into account
10765 * to ensure that we're not discarding chunks that were released in
10766 * the current transaction.
10768 * Holding the chunks lock will prevent other threads from allocating
10769 * or releasing chunks, but it won't prevent a running transaction
10770 * from committing and releasing the memory that the pending chunks
10771 * list head uses. For that, we need to take a reference to the
10774 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10775 u64 minlen
, u64
*trimmed
)
10777 u64 start
= 0, len
= 0;
10782 /* Not writeable = nothing to do. */
10783 if (!device
->writeable
)
10786 /* No free space = nothing to do. */
10787 if (device
->total_bytes
<= device
->bytes_used
)
10793 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
10794 struct btrfs_transaction
*trans
;
10797 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10801 down_read(&fs_info
->commit_root_sem
);
10803 spin_lock(&fs_info
->trans_lock
);
10804 trans
= fs_info
->running_transaction
;
10806 atomic_inc(&trans
->use_count
);
10807 spin_unlock(&fs_info
->trans_lock
);
10809 ret
= find_free_dev_extent_start(trans
, device
, minlen
, start
,
10812 btrfs_put_transaction(trans
);
10815 up_read(&fs_info
->commit_root_sem
);
10816 mutex_unlock(&fs_info
->chunk_mutex
);
10817 if (ret
== -ENOSPC
)
10822 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10823 up_read(&fs_info
->commit_root_sem
);
10824 mutex_unlock(&fs_info
->chunk_mutex
);
10832 if (fatal_signal_pending(current
)) {
10833 ret
= -ERESTARTSYS
;
10843 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
10845 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10846 struct btrfs_block_group_cache
*cache
= NULL
;
10847 struct btrfs_device
*device
;
10848 struct list_head
*devices
;
10853 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
10857 * try to trim all FS space, our block group may start from non-zero.
10859 if (range
->len
== total_bytes
)
10860 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10862 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
10865 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10866 btrfs_put_block_group(cache
);
10870 start
= max(range
->start
, cache
->key
.objectid
);
10871 end
= min(range
->start
+ range
->len
,
10872 cache
->key
.objectid
+ cache
->key
.offset
);
10874 if (end
- start
>= range
->minlen
) {
10875 if (!block_group_cache_done(cache
)) {
10876 ret
= cache_block_group(cache
, 0);
10878 btrfs_put_block_group(cache
);
10881 ret
= wait_block_group_cache_done(cache
);
10883 btrfs_put_block_group(cache
);
10887 ret
= btrfs_trim_block_group(cache
,
10893 trimmed
+= group_trimmed
;
10895 btrfs_put_block_group(cache
);
10900 cache
= next_block_group(fs_info
->tree_root
, cache
);
10903 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
10904 devices
= &root
->fs_info
->fs_devices
->alloc_list
;
10905 list_for_each_entry(device
, devices
, dev_alloc_list
) {
10906 ret
= btrfs_trim_free_extents(device
, range
->minlen
,
10911 trimmed
+= group_trimmed
;
10913 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
10915 range
->len
= trimmed
;
10920 * btrfs_{start,end}_write_no_snapshoting() are similar to
10921 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10922 * data into the page cache through nocow before the subvolume is snapshoted,
10923 * but flush the data into disk after the snapshot creation, or to prevent
10924 * operations while snapshoting is ongoing and that cause the snapshot to be
10925 * inconsistent (writes followed by expanding truncates for example).
10927 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
10929 percpu_counter_dec(&root
->subv_writers
->counter
);
10931 * Make sure counter is updated before we wake up waiters.
10934 if (waitqueue_active(&root
->subv_writers
->wait
))
10935 wake_up(&root
->subv_writers
->wait
);
10938 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
10940 if (atomic_read(&root
->will_be_snapshoted
))
10943 percpu_counter_inc(&root
->subv_writers
->counter
);
10945 * Make sure counter is updated before we check for snapshot creation.
10948 if (atomic_read(&root
->will_be_snapshoted
)) {
10949 btrfs_end_write_no_snapshoting(root
);
10955 static int wait_snapshoting_atomic_t(atomic_t
*a
)
10961 void btrfs_wait_for_snapshot_creation(struct btrfs_root
*root
)
10966 ret
= btrfs_start_write_no_snapshoting(root
);
10969 wait_on_atomic_t(&root
->will_be_snapshoted
,
10970 wait_snapshoting_atomic_t
,
10971 TASK_UNINTERRUPTIBLE
);