Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / btrfs / file.c
blobe0c9bd3fb02dffdb46ac221953c941604043bcf5
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
52 struct inode_defrag {
53 struct rb_node rb_node;
54 /* objectid */
55 u64 ino;
57 * transid where the defrag was added, we search for
58 * extents newer than this
60 u64 transid;
62 /* root objectid */
63 u64 root;
65 /* last offset we were able to defrag */
66 u64 last_offset;
68 /* if we've wrapped around back to zero once already */
69 int cycled;
72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
75 if (defrag1->root > defrag2->root)
76 return 1;
77 else if (defrag1->root < defrag2->root)
78 return -1;
79 else if (defrag1->ino > defrag2->ino)
80 return 1;
81 else if (defrag1->ino < defrag2->ino)
82 return -1;
83 else
84 return 0;
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
93 * If an existing record is found the defrag item you
94 * pass in is freed
96 static int __btrfs_add_inode_defrag(struct inode *inode,
97 struct inode_defrag *defrag)
99 struct btrfs_root *root = BTRFS_I(inode)->root;
100 struct inode_defrag *entry;
101 struct rb_node **p;
102 struct rb_node *parent = NULL;
103 int ret;
105 p = &root->fs_info->defrag_inodes.rb_node;
106 while (*p) {
107 parent = *p;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
110 ret = __compare_inode_defrag(defrag, entry);
111 if (ret < 0)
112 p = &parent->rb_left;
113 else if (ret > 0)
114 p = &parent->rb_right;
115 else {
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
124 return -EEXIST;
127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 return 0;
133 static inline int __need_auto_defrag(struct btrfs_root *root)
135 if (!btrfs_test_opt(root, AUTO_DEFRAG))
136 return 0;
138 if (btrfs_fs_closing(root->fs_info))
139 return 0;
141 return 1;
145 * insert a defrag record for this inode if auto defrag is
146 * enabled
148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct inode *inode)
151 struct btrfs_root *root = BTRFS_I(inode)->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
156 if (!__need_auto_defrag(root))
157 return 0;
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 return 0;
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = BTRFS_I(inode)->root->last_trans;
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
175 spin_lock(&root->fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
188 spin_unlock(&root->fs_info->defrag_inodes_lock);
189 return 0;
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198 struct inode_defrag *defrag)
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201 int ret;
203 if (!__need_auto_defrag(root))
204 goto out;
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
210 spin_lock(&root->fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&root->fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
224 static struct inode_defrag *
225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
233 tmp.ino = ino;
234 tmp.root = root;
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
267 struct inode_defrag *defrag;
268 struct rb_node *node;
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
279 node = rb_first(&fs_info->defrag_inodes);
281 spin_unlock(&fs_info->defrag_inodes_lock);
284 #define BTRFS_DEFRAG_BATCH 1024
286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
302 index = srcu_read_lock(&fs_info->subvol_srcu);
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(inode, defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(inode, defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
360 * run through the list of inodes in the FS that need
361 * defragging
363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
376 if (!__need_auto_defrag(fs_info->tree_root))
377 break;
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
395 __btrfs_run_defrag_inode(fs_info, defrag);
397 atomic_dec(&fs_info->defrag_running);
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
403 wake_up(&fs_info->transaction_wait);
404 return 0;
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
424 * Copy data from userspace to the current page
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
458 return total_copied;
462 * unlocks pages after btrfs_file_write is done with them
464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached);
507 if (err)
508 return err;
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
551 while (1) {
552 int no_splits = 0;
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
663 free_extent_map(split);
664 split = NULL;
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
817 * | - range to drop - |
818 * | -------- extent -------- |
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
835 if (ret < 0)
836 break;
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
861 key.offset = start;
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
887 search_start = extent_end;
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
907 path->slots[0]++;
908 goto next_slot;
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
942 if (end == extent_end)
943 break;
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, root, ret);
954 break;
957 del_nr = 0;
958 del_slot = 0;
960 btrfs_release_path(path);
961 continue;
964 BUG_ON(1);
967 if (!ret && del_nr > 0) {
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, root, ret);
980 leaf = path->nodes[0];
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1021 struct btrfs_path *path;
1022 int ret;
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1067 * Mark extent in the range start - end as written.
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1114 fi = btrfs_item_ptr(leaf, path->slots[0],
1115 struct btrfs_file_extent_item);
1116 BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1117 BTRFS_FILE_EXTENT_PREALLOC);
1118 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1119 BUG_ON(key.offset > start || extent_end < end);
1121 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1122 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1123 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1124 memcpy(&new_key, &key, sizeof(new_key));
1126 if (start == key.offset && end < extent_end) {
1127 other_start = 0;
1128 other_end = start;
1129 if (extent_mergeable(leaf, path->slots[0] - 1,
1130 ino, bytenr, orig_offset,
1131 &other_start, &other_end)) {
1132 new_key.offset = end;
1133 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1134 fi = btrfs_item_ptr(leaf, path->slots[0],
1135 struct btrfs_file_extent_item);
1136 btrfs_set_file_extent_generation(leaf, fi,
1137 trans->transid);
1138 btrfs_set_file_extent_num_bytes(leaf, fi,
1139 extent_end - end);
1140 btrfs_set_file_extent_offset(leaf, fi,
1141 end - orig_offset);
1142 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1143 struct btrfs_file_extent_item);
1144 btrfs_set_file_extent_generation(leaf, fi,
1145 trans->transid);
1146 btrfs_set_file_extent_num_bytes(leaf, fi,
1147 end - other_start);
1148 btrfs_mark_buffer_dirty(leaf);
1149 goto out;
1153 if (start > key.offset && end == extent_end) {
1154 other_start = end;
1155 other_end = 0;
1156 if (extent_mergeable(leaf, path->slots[0] + 1,
1157 ino, bytenr, orig_offset,
1158 &other_start, &other_end)) {
1159 fi = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_file_extent_item);
1161 btrfs_set_file_extent_num_bytes(leaf, fi,
1162 start - key.offset);
1163 btrfs_set_file_extent_generation(leaf, fi,
1164 trans->transid);
1165 path->slots[0]++;
1166 new_key.offset = start;
1167 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1169 fi = btrfs_item_ptr(leaf, path->slots[0],
1170 struct btrfs_file_extent_item);
1171 btrfs_set_file_extent_generation(leaf, fi,
1172 trans->transid);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 other_end - start);
1175 btrfs_set_file_extent_offset(leaf, fi,
1176 start - orig_offset);
1177 btrfs_mark_buffer_dirty(leaf);
1178 goto out;
1182 while (start > key.offset || end < extent_end) {
1183 if (key.offset == start)
1184 split = end;
1186 new_key.offset = split;
1187 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1188 if (ret == -EAGAIN) {
1189 btrfs_release_path(path);
1190 goto again;
1192 if (ret < 0) {
1193 btrfs_abort_transaction(trans, root, ret);
1194 goto out;
1197 leaf = path->nodes[0];
1198 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1199 struct btrfs_file_extent_item);
1200 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1201 btrfs_set_file_extent_num_bytes(leaf, fi,
1202 split - key.offset);
1204 fi = btrfs_item_ptr(leaf, path->slots[0],
1205 struct btrfs_file_extent_item);
1207 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1208 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1209 btrfs_set_file_extent_num_bytes(leaf, fi,
1210 extent_end - split);
1211 btrfs_mark_buffer_dirty(leaf);
1213 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1214 root->root_key.objectid,
1215 ino, orig_offset);
1216 BUG_ON(ret); /* -ENOMEM */
1218 if (split == start) {
1219 key.offset = start;
1220 } else {
1221 BUG_ON(start != key.offset);
1222 path->slots[0]--;
1223 extent_end = end;
1225 recow = 1;
1228 other_start = end;
1229 other_end = 0;
1230 if (extent_mergeable(leaf, path->slots[0] + 1,
1231 ino, bytenr, orig_offset,
1232 &other_start, &other_end)) {
1233 if (recow) {
1234 btrfs_release_path(path);
1235 goto again;
1237 extent_end = other_end;
1238 del_slot = path->slots[0] + 1;
1239 del_nr++;
1240 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1241 0, root->root_key.objectid,
1242 ino, orig_offset);
1243 BUG_ON(ret); /* -ENOMEM */
1245 other_start = 0;
1246 other_end = start;
1247 if (extent_mergeable(leaf, path->slots[0] - 1,
1248 ino, bytenr, orig_offset,
1249 &other_start, &other_end)) {
1250 if (recow) {
1251 btrfs_release_path(path);
1252 goto again;
1254 key.offset = other_start;
1255 del_slot = path->slots[0];
1256 del_nr++;
1257 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1258 0, root->root_key.objectid,
1259 ino, orig_offset);
1260 BUG_ON(ret); /* -ENOMEM */
1262 if (del_nr == 0) {
1263 fi = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_file_extent_item);
1265 btrfs_set_file_extent_type(leaf, fi,
1266 BTRFS_FILE_EXTENT_REG);
1267 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1268 btrfs_mark_buffer_dirty(leaf);
1269 } else {
1270 fi = btrfs_item_ptr(leaf, del_slot - 1,
1271 struct btrfs_file_extent_item);
1272 btrfs_set_file_extent_type(leaf, fi,
1273 BTRFS_FILE_EXTENT_REG);
1274 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1275 btrfs_set_file_extent_num_bytes(leaf, fi,
1276 extent_end - key.offset);
1277 btrfs_mark_buffer_dirty(leaf);
1279 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1280 if (ret < 0) {
1281 btrfs_abort_transaction(trans, root, ret);
1282 goto out;
1285 out:
1286 btrfs_free_path(path);
1287 return 0;
1291 * on error we return an unlocked page and the error value
1292 * on success we return a locked page and 0
1294 static int prepare_uptodate_page(struct inode *inode,
1295 struct page *page, u64 pos,
1296 bool force_uptodate)
1298 int ret = 0;
1300 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1301 !PageUptodate(page)) {
1302 ret = btrfs_readpage(NULL, page);
1303 if (ret)
1304 return ret;
1305 lock_page(page);
1306 if (!PageUptodate(page)) {
1307 unlock_page(page);
1308 return -EIO;
1310 if (page->mapping != inode->i_mapping) {
1311 unlock_page(page);
1312 return -EAGAIN;
1315 return 0;
1319 * this just gets pages into the page cache and locks them down.
1321 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1322 size_t num_pages, loff_t pos,
1323 size_t write_bytes, bool force_uptodate)
1325 int i;
1326 unsigned long index = pos >> PAGE_SHIFT;
1327 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1328 int err = 0;
1329 int faili;
1331 for (i = 0; i < num_pages; i++) {
1332 again:
1333 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1334 mask | __GFP_WRITE);
1335 if (!pages[i]) {
1336 faili = i - 1;
1337 err = -ENOMEM;
1338 goto fail;
1341 if (i == 0)
1342 err = prepare_uptodate_page(inode, pages[i], pos,
1343 force_uptodate);
1344 if (!err && i == num_pages - 1)
1345 err = prepare_uptodate_page(inode, pages[i],
1346 pos + write_bytes, false);
1347 if (err) {
1348 put_page(pages[i]);
1349 if (err == -EAGAIN) {
1350 err = 0;
1351 goto again;
1353 faili = i - 1;
1354 goto fail;
1356 wait_on_page_writeback(pages[i]);
1359 return 0;
1360 fail:
1361 while (faili >= 0) {
1362 unlock_page(pages[faili]);
1363 put_page(pages[faili]);
1364 faili--;
1366 return err;
1371 * This function locks the extent and properly waits for data=ordered extents
1372 * to finish before allowing the pages to be modified if need.
1374 * The return value:
1375 * 1 - the extent is locked
1376 * 0 - the extent is not locked, and everything is OK
1377 * -EAGAIN - need re-prepare the pages
1378 * the other < 0 number - Something wrong happens
1380 static noinline int
1381 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1382 size_t num_pages, loff_t pos,
1383 size_t write_bytes,
1384 u64 *lockstart, u64 *lockend,
1385 struct extent_state **cached_state)
1387 struct btrfs_root *root = BTRFS_I(inode)->root;
1388 u64 start_pos;
1389 u64 last_pos;
1390 int i;
1391 int ret = 0;
1393 start_pos = round_down(pos, root->sectorsize);
1394 last_pos = start_pos
1395 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1397 if (start_pos < inode->i_size) {
1398 struct btrfs_ordered_extent *ordered;
1399 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1400 start_pos, last_pos, cached_state);
1401 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1402 last_pos - start_pos + 1);
1403 if (ordered &&
1404 ordered->file_offset + ordered->len > start_pos &&
1405 ordered->file_offset <= last_pos) {
1406 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1407 start_pos, last_pos,
1408 cached_state, GFP_NOFS);
1409 for (i = 0; i < num_pages; i++) {
1410 unlock_page(pages[i]);
1411 put_page(pages[i]);
1413 btrfs_start_ordered_extent(inode, ordered, 1);
1414 btrfs_put_ordered_extent(ordered);
1415 return -EAGAIN;
1417 if (ordered)
1418 btrfs_put_ordered_extent(ordered);
1420 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1421 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1422 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1423 0, 0, cached_state, GFP_NOFS);
1424 *lockstart = start_pos;
1425 *lockend = last_pos;
1426 ret = 1;
1429 for (i = 0; i < num_pages; i++) {
1430 if (clear_page_dirty_for_io(pages[i]))
1431 account_page_redirty(pages[i]);
1432 set_page_extent_mapped(pages[i]);
1433 WARN_ON(!PageLocked(pages[i]));
1436 return ret;
1439 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1440 size_t *write_bytes)
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 struct btrfs_ordered_extent *ordered;
1444 u64 lockstart, lockend;
1445 u64 num_bytes;
1446 int ret;
1448 ret = btrfs_start_write_no_snapshoting(root);
1449 if (!ret)
1450 return -ENOSPC;
1452 lockstart = round_down(pos, root->sectorsize);
1453 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1455 while (1) {
1456 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1457 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1458 lockend - lockstart + 1);
1459 if (!ordered) {
1460 break;
1462 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1463 btrfs_start_ordered_extent(inode, ordered, 1);
1464 btrfs_put_ordered_extent(ordered);
1467 num_bytes = lockend - lockstart + 1;
1468 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1469 if (ret <= 0) {
1470 ret = 0;
1471 btrfs_end_write_no_snapshoting(root);
1472 } else {
1473 *write_bytes = min_t(size_t, *write_bytes ,
1474 num_bytes - pos + lockstart);
1477 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1479 return ret;
1482 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1483 struct iov_iter *i,
1484 loff_t pos)
1486 struct inode *inode = file_inode(file);
1487 struct btrfs_root *root = BTRFS_I(inode)->root;
1488 struct page **pages = NULL;
1489 struct extent_state *cached_state = NULL;
1490 u64 release_bytes = 0;
1491 u64 lockstart;
1492 u64 lockend;
1493 size_t num_written = 0;
1494 int nrptrs;
1495 int ret = 0;
1496 bool only_release_metadata = false;
1497 bool force_page_uptodate = false;
1498 bool need_unlock;
1500 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1501 PAGE_SIZE / (sizeof(struct page *)));
1502 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1503 nrptrs = max(nrptrs, 8);
1504 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1505 if (!pages)
1506 return -ENOMEM;
1508 while (iov_iter_count(i) > 0) {
1509 size_t offset = pos & (PAGE_SIZE - 1);
1510 size_t sector_offset;
1511 size_t write_bytes = min(iov_iter_count(i),
1512 nrptrs * (size_t)PAGE_SIZE -
1513 offset);
1514 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1515 PAGE_SIZE);
1516 size_t reserve_bytes;
1517 size_t dirty_pages;
1518 size_t copied;
1519 size_t dirty_sectors;
1520 size_t num_sectors;
1522 WARN_ON(num_pages > nrptrs);
1525 * Fault pages before locking them in prepare_pages
1526 * to avoid recursive lock
1528 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1529 ret = -EFAULT;
1530 break;
1533 sector_offset = pos & (root->sectorsize - 1);
1534 reserve_bytes = round_up(write_bytes + sector_offset,
1535 root->sectorsize);
1537 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1538 BTRFS_INODE_PREALLOC)) &&
1539 check_can_nocow(inode, pos, &write_bytes) > 0) {
1541 * For nodata cow case, no need to reserve
1542 * data space.
1544 only_release_metadata = true;
1546 * our prealloc extent may be smaller than
1547 * write_bytes, so scale down.
1549 num_pages = DIV_ROUND_UP(write_bytes + offset,
1550 PAGE_SIZE);
1551 reserve_bytes = round_up(write_bytes + sector_offset,
1552 root->sectorsize);
1553 goto reserve_metadata;
1556 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1557 if (ret < 0)
1558 break;
1560 reserve_metadata:
1561 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1562 if (ret) {
1563 if (!only_release_metadata)
1564 btrfs_free_reserved_data_space(inode, pos,
1565 write_bytes);
1566 else
1567 btrfs_end_write_no_snapshoting(root);
1568 break;
1571 release_bytes = reserve_bytes;
1572 need_unlock = false;
1573 again:
1575 * This is going to setup the pages array with the number of
1576 * pages we want, so we don't really need to worry about the
1577 * contents of pages from loop to loop
1579 ret = prepare_pages(inode, pages, num_pages,
1580 pos, write_bytes,
1581 force_page_uptodate);
1582 if (ret)
1583 break;
1585 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1586 pos, write_bytes, &lockstart,
1587 &lockend, &cached_state);
1588 if (ret < 0) {
1589 if (ret == -EAGAIN)
1590 goto again;
1591 break;
1592 } else if (ret > 0) {
1593 need_unlock = true;
1594 ret = 0;
1597 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1599 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1600 reserve_bytes);
1601 dirty_sectors = round_up(copied + sector_offset,
1602 root->sectorsize);
1603 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1604 dirty_sectors);
1607 * if we have trouble faulting in the pages, fall
1608 * back to one page at a time
1610 if (copied < write_bytes)
1611 nrptrs = 1;
1613 if (copied == 0) {
1614 force_page_uptodate = true;
1615 dirty_sectors = 0;
1616 dirty_pages = 0;
1617 } else {
1618 force_page_uptodate = false;
1619 dirty_pages = DIV_ROUND_UP(copied + offset,
1620 PAGE_SIZE);
1624 * If we had a short copy we need to release the excess delaloc
1625 * bytes we reserved. We need to increment outstanding_extents
1626 * because btrfs_delalloc_release_space and
1627 * btrfs_delalloc_release_metadata will decrement it, but
1628 * we still have an outstanding extent for the chunk we actually
1629 * managed to copy.
1631 if (num_sectors > dirty_sectors) {
1633 * we round down because we don't want to count
1634 * any partial blocks actually sent through the
1635 * IO machines
1637 release_bytes = round_down(release_bytes - copied,
1638 root->sectorsize);
1639 if (copied > 0) {
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 BTRFS_I(inode)->outstanding_extents++;
1642 spin_unlock(&BTRFS_I(inode)->lock);
1644 if (only_release_metadata) {
1645 btrfs_delalloc_release_metadata(inode,
1646 release_bytes);
1647 } else {
1648 u64 __pos;
1650 __pos = round_down(pos, root->sectorsize) +
1651 (dirty_pages << PAGE_SHIFT);
1652 btrfs_delalloc_release_space(inode, __pos,
1653 release_bytes);
1657 release_bytes = round_up(copied + sector_offset,
1658 root->sectorsize);
1660 if (copied > 0)
1661 ret = btrfs_dirty_pages(root, inode, pages,
1662 dirty_pages, pos, copied,
1663 NULL);
1664 if (need_unlock)
1665 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1666 lockstart, lockend, &cached_state,
1667 GFP_NOFS);
1668 if (ret) {
1669 btrfs_drop_pages(pages, num_pages);
1670 break;
1673 release_bytes = 0;
1674 if (only_release_metadata)
1675 btrfs_end_write_no_snapshoting(root);
1677 if (only_release_metadata && copied > 0) {
1678 lockstart = round_down(pos, root->sectorsize);
1679 lockend = round_up(pos + copied, root->sectorsize) - 1;
1681 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1682 lockend, EXTENT_NORESERVE, NULL,
1683 NULL, GFP_NOFS);
1684 only_release_metadata = false;
1687 btrfs_drop_pages(pages, num_pages);
1689 cond_resched();
1691 balance_dirty_pages_ratelimited(inode->i_mapping);
1692 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1693 btrfs_btree_balance_dirty(root);
1695 pos += copied;
1696 num_written += copied;
1699 kfree(pages);
1701 if (release_bytes) {
1702 if (only_release_metadata) {
1703 btrfs_end_write_no_snapshoting(root);
1704 btrfs_delalloc_release_metadata(inode, release_bytes);
1705 } else {
1706 btrfs_delalloc_release_space(inode,
1707 round_down(pos, root->sectorsize),
1708 release_bytes);
1712 return num_written ? num_written : ret;
1715 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1717 struct file *file = iocb->ki_filp;
1718 struct inode *inode = file_inode(file);
1719 loff_t pos = iocb->ki_pos;
1720 ssize_t written;
1721 ssize_t written_buffered;
1722 loff_t endbyte;
1723 int err;
1725 written = generic_file_direct_write(iocb, from);
1727 if (written < 0 || !iov_iter_count(from))
1728 return written;
1730 pos += written;
1731 written_buffered = __btrfs_buffered_write(file, from, pos);
1732 if (written_buffered < 0) {
1733 err = written_buffered;
1734 goto out;
1737 * Ensure all data is persisted. We want the next direct IO read to be
1738 * able to read what was just written.
1740 endbyte = pos + written_buffered - 1;
1741 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1742 if (err)
1743 goto out;
1744 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1745 if (err)
1746 goto out;
1747 written += written_buffered;
1748 iocb->ki_pos = pos + written_buffered;
1749 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1750 endbyte >> PAGE_SHIFT);
1751 out:
1752 return written ? written : err;
1755 static void update_time_for_write(struct inode *inode)
1757 struct timespec now;
1759 if (IS_NOCMTIME(inode))
1760 return;
1762 now = current_fs_time(inode->i_sb);
1763 if (!timespec_equal(&inode->i_mtime, &now))
1764 inode->i_mtime = now;
1766 if (!timespec_equal(&inode->i_ctime, &now))
1767 inode->i_ctime = now;
1769 if (IS_I_VERSION(inode))
1770 inode_inc_iversion(inode);
1773 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1774 struct iov_iter *from)
1776 struct file *file = iocb->ki_filp;
1777 struct inode *inode = file_inode(file);
1778 struct btrfs_root *root = BTRFS_I(inode)->root;
1779 u64 start_pos;
1780 u64 end_pos;
1781 ssize_t num_written = 0;
1782 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1783 ssize_t err;
1784 loff_t pos;
1785 size_t count;
1786 loff_t oldsize;
1787 int clean_page = 0;
1789 inode_lock(inode);
1790 err = generic_write_checks(iocb, from);
1791 if (err <= 0) {
1792 inode_unlock(inode);
1793 return err;
1796 current->backing_dev_info = inode_to_bdi(inode);
1797 err = file_remove_privs(file);
1798 if (err) {
1799 inode_unlock(inode);
1800 goto out;
1804 * If BTRFS flips readonly due to some impossible error
1805 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1806 * although we have opened a file as writable, we have
1807 * to stop this write operation to ensure FS consistency.
1809 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1810 inode_unlock(inode);
1811 err = -EROFS;
1812 goto out;
1816 * We reserve space for updating the inode when we reserve space for the
1817 * extent we are going to write, so we will enospc out there. We don't
1818 * need to start yet another transaction to update the inode as we will
1819 * update the inode when we finish writing whatever data we write.
1821 update_time_for_write(inode);
1823 pos = iocb->ki_pos;
1824 count = iov_iter_count(from);
1825 start_pos = round_down(pos, root->sectorsize);
1826 oldsize = i_size_read(inode);
1827 if (start_pos > oldsize) {
1828 /* Expand hole size to cover write data, preventing empty gap */
1829 end_pos = round_up(pos + count, root->sectorsize);
1830 err = btrfs_cont_expand(inode, oldsize, end_pos);
1831 if (err) {
1832 inode_unlock(inode);
1833 goto out;
1835 if (start_pos > round_up(oldsize, root->sectorsize))
1836 clean_page = 1;
1839 if (sync)
1840 atomic_inc(&BTRFS_I(inode)->sync_writers);
1842 if (iocb->ki_flags & IOCB_DIRECT) {
1843 num_written = __btrfs_direct_write(iocb, from);
1844 } else {
1845 num_written = __btrfs_buffered_write(file, from, pos);
1846 if (num_written > 0)
1847 iocb->ki_pos = pos + num_written;
1848 if (clean_page)
1849 pagecache_isize_extended(inode, oldsize,
1850 i_size_read(inode));
1853 inode_unlock(inode);
1856 * We also have to set last_sub_trans to the current log transid,
1857 * otherwise subsequent syncs to a file that's been synced in this
1858 * transaction will appear to have already occurred.
1860 spin_lock(&BTRFS_I(inode)->lock);
1861 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1862 spin_unlock(&BTRFS_I(inode)->lock);
1863 if (num_written > 0)
1864 num_written = generic_write_sync(iocb, num_written);
1866 if (sync)
1867 atomic_dec(&BTRFS_I(inode)->sync_writers);
1868 out:
1869 current->backing_dev_info = NULL;
1870 return num_written ? num_written : err;
1873 int btrfs_release_file(struct inode *inode, struct file *filp)
1875 if (filp->private_data)
1876 btrfs_ioctl_trans_end(filp);
1878 * ordered_data_close is set by settattr when we are about to truncate
1879 * a file from a non-zero size to a zero size. This tries to
1880 * flush down new bytes that may have been written if the
1881 * application were using truncate to replace a file in place.
1883 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1884 &BTRFS_I(inode)->runtime_flags))
1885 filemap_flush(inode->i_mapping);
1886 return 0;
1889 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1891 int ret;
1893 atomic_inc(&BTRFS_I(inode)->sync_writers);
1894 ret = btrfs_fdatawrite_range(inode, start, end);
1895 atomic_dec(&BTRFS_I(inode)->sync_writers);
1897 return ret;
1901 * fsync call for both files and directories. This logs the inode into
1902 * the tree log instead of forcing full commits whenever possible.
1904 * It needs to call filemap_fdatawait so that all ordered extent updates are
1905 * in the metadata btree are up to date for copying to the log.
1907 * It drops the inode mutex before doing the tree log commit. This is an
1908 * important optimization for directories because holding the mutex prevents
1909 * new operations on the dir while we write to disk.
1911 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1913 struct dentry *dentry = file_dentry(file);
1914 struct inode *inode = d_inode(dentry);
1915 struct btrfs_root *root = BTRFS_I(inode)->root;
1916 struct btrfs_trans_handle *trans;
1917 struct btrfs_log_ctx ctx;
1918 int ret = 0;
1919 bool full_sync = 0;
1920 u64 len;
1923 * The range length can be represented by u64, we have to do the typecasts
1924 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1926 len = (u64)end - (u64)start + 1;
1927 trace_btrfs_sync_file(file, datasync);
1930 * We write the dirty pages in the range and wait until they complete
1931 * out of the ->i_mutex. If so, we can flush the dirty pages by
1932 * multi-task, and make the performance up. See
1933 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1935 ret = start_ordered_ops(inode, start, end);
1936 if (ret)
1937 return ret;
1939 inode_lock(inode);
1940 atomic_inc(&root->log_batch);
1941 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1942 &BTRFS_I(inode)->runtime_flags);
1944 * We might have have had more pages made dirty after calling
1945 * start_ordered_ops and before acquiring the inode's i_mutex.
1947 if (full_sync) {
1949 * For a full sync, we need to make sure any ordered operations
1950 * start and finish before we start logging the inode, so that
1951 * all extents are persisted and the respective file extent
1952 * items are in the fs/subvol btree.
1954 ret = btrfs_wait_ordered_range(inode, start, len);
1955 } else {
1957 * Start any new ordered operations before starting to log the
1958 * inode. We will wait for them to finish in btrfs_sync_log().
1960 * Right before acquiring the inode's mutex, we might have new
1961 * writes dirtying pages, which won't immediately start the
1962 * respective ordered operations - that is done through the
1963 * fill_delalloc callbacks invoked from the writepage and
1964 * writepages address space operations. So make sure we start
1965 * all ordered operations before starting to log our inode. Not
1966 * doing this means that while logging the inode, writeback
1967 * could start and invoke writepage/writepages, which would call
1968 * the fill_delalloc callbacks (cow_file_range,
1969 * submit_compressed_extents). These callbacks add first an
1970 * extent map to the modified list of extents and then create
1971 * the respective ordered operation, which means in
1972 * tree-log.c:btrfs_log_inode() we might capture all existing
1973 * ordered operations (with btrfs_get_logged_extents()) before
1974 * the fill_delalloc callback adds its ordered operation, and by
1975 * the time we visit the modified list of extent maps (with
1976 * btrfs_log_changed_extents()), we see and process the extent
1977 * map they created. We then use the extent map to construct a
1978 * file extent item for logging without waiting for the
1979 * respective ordered operation to finish - this file extent
1980 * item points to a disk location that might not have yet been
1981 * written to, containing random data - so after a crash a log
1982 * replay will make our inode have file extent items that point
1983 * to disk locations containing invalid data, as we returned
1984 * success to userspace without waiting for the respective
1985 * ordered operation to finish, because it wasn't captured by
1986 * btrfs_get_logged_extents().
1988 ret = start_ordered_ops(inode, start, end);
1990 if (ret) {
1991 inode_unlock(inode);
1992 goto out;
1994 atomic_inc(&root->log_batch);
1997 * If the last transaction that changed this file was before the current
1998 * transaction and we have the full sync flag set in our inode, we can
1999 * bail out now without any syncing.
2001 * Note that we can't bail out if the full sync flag isn't set. This is
2002 * because when the full sync flag is set we start all ordered extents
2003 * and wait for them to fully complete - when they complete they update
2004 * the inode's last_trans field through:
2006 * btrfs_finish_ordered_io() ->
2007 * btrfs_update_inode_fallback() ->
2008 * btrfs_update_inode() ->
2009 * btrfs_set_inode_last_trans()
2011 * So we are sure that last_trans is up to date and can do this check to
2012 * bail out safely. For the fast path, when the full sync flag is not
2013 * set in our inode, we can not do it because we start only our ordered
2014 * extents and don't wait for them to complete (that is when
2015 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2016 * value might be less than or equals to fs_info->last_trans_committed,
2017 * and setting a speculative last_trans for an inode when a buffered
2018 * write is made (such as fs_info->generation + 1 for example) would not
2019 * be reliable since after setting the value and before fsync is called
2020 * any number of transactions can start and commit (transaction kthread
2021 * commits the current transaction periodically), and a transaction
2022 * commit does not start nor waits for ordered extents to complete.
2024 smp_mb();
2025 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2026 (full_sync && BTRFS_I(inode)->last_trans <=
2027 root->fs_info->last_trans_committed) ||
2028 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2029 BTRFS_I(inode)->last_trans
2030 <= root->fs_info->last_trans_committed)) {
2032 * We've had everything committed since the last time we were
2033 * modified so clear this flag in case it was set for whatever
2034 * reason, it's no longer relevant.
2036 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2037 &BTRFS_I(inode)->runtime_flags);
2038 inode_unlock(inode);
2039 goto out;
2043 * ok we haven't committed the transaction yet, lets do a commit
2045 if (file->private_data)
2046 btrfs_ioctl_trans_end(file);
2049 * We use start here because we will need to wait on the IO to complete
2050 * in btrfs_sync_log, which could require joining a transaction (for
2051 * example checking cross references in the nocow path). If we use join
2052 * here we could get into a situation where we're waiting on IO to
2053 * happen that is blocked on a transaction trying to commit. With start
2054 * we inc the extwriter counter, so we wait for all extwriters to exit
2055 * before we start blocking join'ers. This comment is to keep somebody
2056 * from thinking they are super smart and changing this to
2057 * btrfs_join_transaction *cough*Josef*cough*.
2059 trans = btrfs_start_transaction(root, 0);
2060 if (IS_ERR(trans)) {
2061 ret = PTR_ERR(trans);
2062 inode_unlock(inode);
2063 goto out;
2065 trans->sync = true;
2067 btrfs_init_log_ctx(&ctx);
2069 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2070 if (ret < 0) {
2071 /* Fallthrough and commit/free transaction. */
2072 ret = 1;
2075 /* we've logged all the items and now have a consistent
2076 * version of the file in the log. It is possible that
2077 * someone will come in and modify the file, but that's
2078 * fine because the log is consistent on disk, and we
2079 * have references to all of the file's extents
2081 * It is possible that someone will come in and log the
2082 * file again, but that will end up using the synchronization
2083 * inside btrfs_sync_log to keep things safe.
2085 inode_unlock(inode);
2088 * If any of the ordered extents had an error, just return it to user
2089 * space, so that the application knows some writes didn't succeed and
2090 * can take proper action (retry for e.g.). Blindly committing the
2091 * transaction in this case, would fool userspace that everything was
2092 * successful. And we also want to make sure our log doesn't contain
2093 * file extent items pointing to extents that weren't fully written to -
2094 * just like in the non fast fsync path, where we check for the ordered
2095 * operation's error flag before writing to the log tree and return -EIO
2096 * if any of them had this flag set (btrfs_wait_ordered_range) -
2097 * therefore we need to check for errors in the ordered operations,
2098 * which are indicated by ctx.io_err.
2100 if (ctx.io_err) {
2101 btrfs_end_transaction(trans, root);
2102 ret = ctx.io_err;
2103 goto out;
2106 if (ret != BTRFS_NO_LOG_SYNC) {
2107 if (!ret) {
2108 ret = btrfs_sync_log(trans, root, &ctx);
2109 if (!ret) {
2110 ret = btrfs_end_transaction(trans, root);
2111 goto out;
2114 if (!full_sync) {
2115 ret = btrfs_wait_ordered_range(inode, start, len);
2116 if (ret) {
2117 btrfs_end_transaction(trans, root);
2118 goto out;
2121 ret = btrfs_commit_transaction(trans, root);
2122 } else {
2123 ret = btrfs_end_transaction(trans, root);
2125 out:
2126 return ret > 0 ? -EIO : ret;
2129 static const struct vm_operations_struct btrfs_file_vm_ops = {
2130 .fault = filemap_fault,
2131 .map_pages = filemap_map_pages,
2132 .page_mkwrite = btrfs_page_mkwrite,
2135 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2137 struct address_space *mapping = filp->f_mapping;
2139 if (!mapping->a_ops->readpage)
2140 return -ENOEXEC;
2142 file_accessed(filp);
2143 vma->vm_ops = &btrfs_file_vm_ops;
2145 return 0;
2148 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2149 int slot, u64 start, u64 end)
2151 struct btrfs_file_extent_item *fi;
2152 struct btrfs_key key;
2154 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2155 return 0;
2157 btrfs_item_key_to_cpu(leaf, &key, slot);
2158 if (key.objectid != btrfs_ino(inode) ||
2159 key.type != BTRFS_EXTENT_DATA_KEY)
2160 return 0;
2162 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2164 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2165 return 0;
2167 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2168 return 0;
2170 if (key.offset == end)
2171 return 1;
2172 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2173 return 1;
2174 return 0;
2177 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2178 struct btrfs_path *path, u64 offset, u64 end)
2180 struct btrfs_root *root = BTRFS_I(inode)->root;
2181 struct extent_buffer *leaf;
2182 struct btrfs_file_extent_item *fi;
2183 struct extent_map *hole_em;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 struct btrfs_key key;
2186 int ret;
2188 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2189 goto out;
2191 key.objectid = btrfs_ino(inode);
2192 key.type = BTRFS_EXTENT_DATA_KEY;
2193 key.offset = offset;
2195 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2196 if (ret < 0)
2197 return ret;
2198 BUG_ON(!ret);
2200 leaf = path->nodes[0];
2201 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2202 u64 num_bytes;
2204 path->slots[0]--;
2205 fi = btrfs_item_ptr(leaf, path->slots[0],
2206 struct btrfs_file_extent_item);
2207 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2208 end - offset;
2209 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2210 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2211 btrfs_set_file_extent_offset(leaf, fi, 0);
2212 btrfs_mark_buffer_dirty(leaf);
2213 goto out;
2216 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2217 u64 num_bytes;
2219 key.offset = offset;
2220 btrfs_set_item_key_safe(root->fs_info, path, &key);
2221 fi = btrfs_item_ptr(leaf, path->slots[0],
2222 struct btrfs_file_extent_item);
2223 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2224 offset;
2225 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2226 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2227 btrfs_set_file_extent_offset(leaf, fi, 0);
2228 btrfs_mark_buffer_dirty(leaf);
2229 goto out;
2231 btrfs_release_path(path);
2233 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2234 0, 0, end - offset, 0, end - offset,
2235 0, 0, 0);
2236 if (ret)
2237 return ret;
2239 out:
2240 btrfs_release_path(path);
2242 hole_em = alloc_extent_map();
2243 if (!hole_em) {
2244 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2245 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2246 &BTRFS_I(inode)->runtime_flags);
2247 } else {
2248 hole_em->start = offset;
2249 hole_em->len = end - offset;
2250 hole_em->ram_bytes = hole_em->len;
2251 hole_em->orig_start = offset;
2253 hole_em->block_start = EXTENT_MAP_HOLE;
2254 hole_em->block_len = 0;
2255 hole_em->orig_block_len = 0;
2256 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2257 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2258 hole_em->generation = trans->transid;
2260 do {
2261 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2262 write_lock(&em_tree->lock);
2263 ret = add_extent_mapping(em_tree, hole_em, 1);
2264 write_unlock(&em_tree->lock);
2265 } while (ret == -EEXIST);
2266 free_extent_map(hole_em);
2267 if (ret)
2268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2269 &BTRFS_I(inode)->runtime_flags);
2272 return 0;
2276 * Find a hole extent on given inode and change start/len to the end of hole
2277 * extent.(hole/vacuum extent whose em->start <= start &&
2278 * em->start + em->len > start)
2279 * When a hole extent is found, return 1 and modify start/len.
2281 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2283 struct extent_map *em;
2284 int ret = 0;
2286 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2287 if (IS_ERR_OR_NULL(em)) {
2288 if (!em)
2289 ret = -ENOMEM;
2290 else
2291 ret = PTR_ERR(em);
2292 return ret;
2295 /* Hole or vacuum extent(only exists in no-hole mode) */
2296 if (em->block_start == EXTENT_MAP_HOLE) {
2297 ret = 1;
2298 *len = em->start + em->len > *start + *len ?
2299 0 : *start + *len - em->start - em->len;
2300 *start = em->start + em->len;
2302 free_extent_map(em);
2303 return ret;
2306 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2308 struct btrfs_root *root = BTRFS_I(inode)->root;
2309 struct extent_state *cached_state = NULL;
2310 struct btrfs_path *path;
2311 struct btrfs_block_rsv *rsv;
2312 struct btrfs_trans_handle *trans;
2313 u64 lockstart;
2314 u64 lockend;
2315 u64 tail_start;
2316 u64 tail_len;
2317 u64 orig_start = offset;
2318 u64 cur_offset;
2319 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2320 u64 drop_end;
2321 int ret = 0;
2322 int err = 0;
2323 unsigned int rsv_count;
2324 bool same_block;
2325 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2326 u64 ino_size;
2327 bool truncated_block = false;
2328 bool updated_inode = false;
2330 ret = btrfs_wait_ordered_range(inode, offset, len);
2331 if (ret)
2332 return ret;
2334 inode_lock(inode);
2335 ino_size = round_up(inode->i_size, root->sectorsize);
2336 ret = find_first_non_hole(inode, &offset, &len);
2337 if (ret < 0)
2338 goto out_only_mutex;
2339 if (ret && !len) {
2340 /* Already in a large hole */
2341 ret = 0;
2342 goto out_only_mutex;
2345 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2346 lockend = round_down(offset + len,
2347 BTRFS_I(inode)->root->sectorsize) - 1;
2348 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2349 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2351 * We needn't truncate any block which is beyond the end of the file
2352 * because we are sure there is no data there.
2355 * Only do this if we are in the same block and we aren't doing the
2356 * entire block.
2358 if (same_block && len < root->sectorsize) {
2359 if (offset < ino_size) {
2360 truncated_block = true;
2361 ret = btrfs_truncate_block(inode, offset, len, 0);
2362 } else {
2363 ret = 0;
2365 goto out_only_mutex;
2368 /* zero back part of the first block */
2369 if (offset < ino_size) {
2370 truncated_block = true;
2371 ret = btrfs_truncate_block(inode, offset, 0, 0);
2372 if (ret) {
2373 inode_unlock(inode);
2374 return ret;
2378 /* Check the aligned pages after the first unaligned page,
2379 * if offset != orig_start, which means the first unaligned page
2380 * including several following pages are already in holes,
2381 * the extra check can be skipped */
2382 if (offset == orig_start) {
2383 /* after truncate page, check hole again */
2384 len = offset + len - lockstart;
2385 offset = lockstart;
2386 ret = find_first_non_hole(inode, &offset, &len);
2387 if (ret < 0)
2388 goto out_only_mutex;
2389 if (ret && !len) {
2390 ret = 0;
2391 goto out_only_mutex;
2393 lockstart = offset;
2396 /* Check the tail unaligned part is in a hole */
2397 tail_start = lockend + 1;
2398 tail_len = offset + len - tail_start;
2399 if (tail_len) {
2400 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2401 if (unlikely(ret < 0))
2402 goto out_only_mutex;
2403 if (!ret) {
2404 /* zero the front end of the last page */
2405 if (tail_start + tail_len < ino_size) {
2406 truncated_block = true;
2407 ret = btrfs_truncate_block(inode,
2408 tail_start + tail_len,
2409 0, 1);
2410 if (ret)
2411 goto out_only_mutex;
2416 if (lockend < lockstart) {
2417 ret = 0;
2418 goto out_only_mutex;
2421 while (1) {
2422 struct btrfs_ordered_extent *ordered;
2424 truncate_pagecache_range(inode, lockstart, lockend);
2426 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2427 &cached_state);
2428 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2431 * We need to make sure we have no ordered extents in this range
2432 * and nobody raced in and read a page in this range, if we did
2433 * we need to try again.
2435 if ((!ordered ||
2436 (ordered->file_offset + ordered->len <= lockstart ||
2437 ordered->file_offset > lockend)) &&
2438 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2439 if (ordered)
2440 btrfs_put_ordered_extent(ordered);
2441 break;
2443 if (ordered)
2444 btrfs_put_ordered_extent(ordered);
2445 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2446 lockend, &cached_state, GFP_NOFS);
2447 ret = btrfs_wait_ordered_range(inode, lockstart,
2448 lockend - lockstart + 1);
2449 if (ret) {
2450 inode_unlock(inode);
2451 return ret;
2455 path = btrfs_alloc_path();
2456 if (!path) {
2457 ret = -ENOMEM;
2458 goto out;
2461 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2462 if (!rsv) {
2463 ret = -ENOMEM;
2464 goto out_free;
2466 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2467 rsv->failfast = 1;
2470 * 1 - update the inode
2471 * 1 - removing the extents in the range
2472 * 1 - adding the hole extent if no_holes isn't set
2474 rsv_count = no_holes ? 2 : 3;
2475 trans = btrfs_start_transaction(root, rsv_count);
2476 if (IS_ERR(trans)) {
2477 err = PTR_ERR(trans);
2478 goto out_free;
2481 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2482 min_size);
2483 BUG_ON(ret);
2484 trans->block_rsv = rsv;
2486 cur_offset = lockstart;
2487 len = lockend - cur_offset;
2488 while (cur_offset < lockend) {
2489 ret = __btrfs_drop_extents(trans, root, inode, path,
2490 cur_offset, lockend + 1,
2491 &drop_end, 1, 0, 0, NULL);
2492 if (ret != -ENOSPC)
2493 break;
2495 trans->block_rsv = &root->fs_info->trans_block_rsv;
2497 if (cur_offset < ino_size) {
2498 ret = fill_holes(trans, inode, path, cur_offset,
2499 drop_end);
2500 if (ret) {
2501 err = ret;
2502 break;
2506 cur_offset = drop_end;
2508 ret = btrfs_update_inode(trans, root, inode);
2509 if (ret) {
2510 err = ret;
2511 break;
2514 btrfs_end_transaction(trans, root);
2515 btrfs_btree_balance_dirty(root);
2517 trans = btrfs_start_transaction(root, rsv_count);
2518 if (IS_ERR(trans)) {
2519 ret = PTR_ERR(trans);
2520 trans = NULL;
2521 break;
2524 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2525 rsv, min_size);
2526 BUG_ON(ret); /* shouldn't happen */
2527 trans->block_rsv = rsv;
2529 ret = find_first_non_hole(inode, &cur_offset, &len);
2530 if (unlikely(ret < 0))
2531 break;
2532 if (ret && !len) {
2533 ret = 0;
2534 break;
2538 if (ret) {
2539 err = ret;
2540 goto out_trans;
2543 trans->block_rsv = &root->fs_info->trans_block_rsv;
2545 * If we are using the NO_HOLES feature we might have had already an
2546 * hole that overlaps a part of the region [lockstart, lockend] and
2547 * ends at (or beyond) lockend. Since we have no file extent items to
2548 * represent holes, drop_end can be less than lockend and so we must
2549 * make sure we have an extent map representing the existing hole (the
2550 * call to __btrfs_drop_extents() might have dropped the existing extent
2551 * map representing the existing hole), otherwise the fast fsync path
2552 * will not record the existence of the hole region
2553 * [existing_hole_start, lockend].
2555 if (drop_end <= lockend)
2556 drop_end = lockend + 1;
2558 * Don't insert file hole extent item if it's for a range beyond eof
2559 * (because it's useless) or if it represents a 0 bytes range (when
2560 * cur_offset == drop_end).
2562 if (cur_offset < ino_size && cur_offset < drop_end) {
2563 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2564 if (ret) {
2565 err = ret;
2566 goto out_trans;
2570 out_trans:
2571 if (!trans)
2572 goto out_free;
2574 inode_inc_iversion(inode);
2575 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
2577 trans->block_rsv = &root->fs_info->trans_block_rsv;
2578 ret = btrfs_update_inode(trans, root, inode);
2579 updated_inode = true;
2580 btrfs_end_transaction(trans, root);
2581 btrfs_btree_balance_dirty(root);
2582 out_free:
2583 btrfs_free_path(path);
2584 btrfs_free_block_rsv(root, rsv);
2585 out:
2586 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2587 &cached_state, GFP_NOFS);
2588 out_only_mutex:
2589 if (!updated_inode && truncated_block && !ret && !err) {
2591 * If we only end up zeroing part of a page, we still need to
2592 * update the inode item, so that all the time fields are
2593 * updated as well as the necessary btrfs inode in memory fields
2594 * for detecting, at fsync time, if the inode isn't yet in the
2595 * log tree or it's there but not up to date.
2597 trans = btrfs_start_transaction(root, 1);
2598 if (IS_ERR(trans)) {
2599 err = PTR_ERR(trans);
2600 } else {
2601 err = btrfs_update_inode(trans, root, inode);
2602 ret = btrfs_end_transaction(trans, root);
2605 inode_unlock(inode);
2606 if (ret && !err)
2607 err = ret;
2608 return err;
2611 /* Helper structure to record which range is already reserved */
2612 struct falloc_range {
2613 struct list_head list;
2614 u64 start;
2615 u64 len;
2619 * Helper function to add falloc range
2621 * Caller should have locked the larger range of extent containing
2622 * [start, len)
2624 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2626 struct falloc_range *prev = NULL;
2627 struct falloc_range *range = NULL;
2629 if (list_empty(head))
2630 goto insert;
2633 * As fallocate iterate by bytenr order, we only need to check
2634 * the last range.
2636 prev = list_entry(head->prev, struct falloc_range, list);
2637 if (prev->start + prev->len == start) {
2638 prev->len += len;
2639 return 0;
2641 insert:
2642 range = kmalloc(sizeof(*range), GFP_KERNEL);
2643 if (!range)
2644 return -ENOMEM;
2645 range->start = start;
2646 range->len = len;
2647 list_add_tail(&range->list, head);
2648 return 0;
2651 static long btrfs_fallocate(struct file *file, int mode,
2652 loff_t offset, loff_t len)
2654 struct inode *inode = file_inode(file);
2655 struct extent_state *cached_state = NULL;
2656 struct falloc_range *range;
2657 struct falloc_range *tmp;
2658 struct list_head reserve_list;
2659 u64 cur_offset;
2660 u64 last_byte;
2661 u64 alloc_start;
2662 u64 alloc_end;
2663 u64 alloc_hint = 0;
2664 u64 locked_end;
2665 u64 actual_end = 0;
2666 struct extent_map *em;
2667 int blocksize = BTRFS_I(inode)->root->sectorsize;
2668 int ret;
2670 alloc_start = round_down(offset, blocksize);
2671 alloc_end = round_up(offset + len, blocksize);
2673 /* Make sure we aren't being give some crap mode */
2674 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2675 return -EOPNOTSUPP;
2677 if (mode & FALLOC_FL_PUNCH_HOLE)
2678 return btrfs_punch_hole(inode, offset, len);
2681 * Only trigger disk allocation, don't trigger qgroup reserve
2683 * For qgroup space, it will be checked later.
2685 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2686 if (ret < 0)
2687 return ret;
2689 inode_lock(inode);
2691 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2692 ret = inode_newsize_ok(inode, offset + len);
2693 if (ret)
2694 goto out;
2698 * TODO: Move these two operations after we have checked
2699 * accurate reserved space, or fallocate can still fail but
2700 * with page truncated or size expanded.
2702 * But that's a minor problem and won't do much harm BTW.
2704 if (alloc_start > inode->i_size) {
2705 ret = btrfs_cont_expand(inode, i_size_read(inode),
2706 alloc_start);
2707 if (ret)
2708 goto out;
2709 } else if (offset + len > inode->i_size) {
2711 * If we are fallocating from the end of the file onward we
2712 * need to zero out the end of the block if i_size lands in the
2713 * middle of a block.
2715 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2716 if (ret)
2717 goto out;
2721 * wait for ordered IO before we have any locks. We'll loop again
2722 * below with the locks held.
2724 ret = btrfs_wait_ordered_range(inode, alloc_start,
2725 alloc_end - alloc_start);
2726 if (ret)
2727 goto out;
2729 locked_end = alloc_end - 1;
2730 while (1) {
2731 struct btrfs_ordered_extent *ordered;
2733 /* the extent lock is ordered inside the running
2734 * transaction
2736 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2737 locked_end, &cached_state);
2738 ordered = btrfs_lookup_first_ordered_extent(inode,
2739 alloc_end - 1);
2740 if (ordered &&
2741 ordered->file_offset + ordered->len > alloc_start &&
2742 ordered->file_offset < alloc_end) {
2743 btrfs_put_ordered_extent(ordered);
2744 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2745 alloc_start, locked_end,
2746 &cached_state, GFP_KERNEL);
2748 * we can't wait on the range with the transaction
2749 * running or with the extent lock held
2751 ret = btrfs_wait_ordered_range(inode, alloc_start,
2752 alloc_end - alloc_start);
2753 if (ret)
2754 goto out;
2755 } else {
2756 if (ordered)
2757 btrfs_put_ordered_extent(ordered);
2758 break;
2762 /* First, check if we exceed the qgroup limit */
2763 INIT_LIST_HEAD(&reserve_list);
2764 cur_offset = alloc_start;
2765 while (1) {
2766 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2767 alloc_end - cur_offset, 0);
2768 if (IS_ERR_OR_NULL(em)) {
2769 if (!em)
2770 ret = -ENOMEM;
2771 else
2772 ret = PTR_ERR(em);
2773 break;
2775 last_byte = min(extent_map_end(em), alloc_end);
2776 actual_end = min_t(u64, extent_map_end(em), offset + len);
2777 last_byte = ALIGN(last_byte, blocksize);
2778 if (em->block_start == EXTENT_MAP_HOLE ||
2779 (cur_offset >= inode->i_size &&
2780 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2781 ret = add_falloc_range(&reserve_list, cur_offset,
2782 last_byte - cur_offset);
2783 if (ret < 0) {
2784 free_extent_map(em);
2785 break;
2787 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2788 last_byte - cur_offset);
2789 if (ret < 0)
2790 break;
2792 free_extent_map(em);
2793 cur_offset = last_byte;
2794 if (cur_offset >= alloc_end)
2795 break;
2799 * If ret is still 0, means we're OK to fallocate.
2800 * Or just cleanup the list and exit.
2802 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2803 if (!ret)
2804 ret = btrfs_prealloc_file_range(inode, mode,
2805 range->start,
2806 range->len, 1 << inode->i_blkbits,
2807 offset + len, &alloc_hint);
2808 list_del(&range->list);
2809 kfree(range);
2811 if (ret < 0)
2812 goto out_unlock;
2814 if (actual_end > inode->i_size &&
2815 !(mode & FALLOC_FL_KEEP_SIZE)) {
2816 struct btrfs_trans_handle *trans;
2817 struct btrfs_root *root = BTRFS_I(inode)->root;
2820 * We didn't need to allocate any more space, but we
2821 * still extended the size of the file so we need to
2822 * update i_size and the inode item.
2824 trans = btrfs_start_transaction(root, 1);
2825 if (IS_ERR(trans)) {
2826 ret = PTR_ERR(trans);
2827 } else {
2828 inode->i_ctime = current_fs_time(inode->i_sb);
2829 i_size_write(inode, actual_end);
2830 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2831 ret = btrfs_update_inode(trans, root, inode);
2832 if (ret)
2833 btrfs_end_transaction(trans, root);
2834 else
2835 ret = btrfs_end_transaction(trans, root);
2838 out_unlock:
2839 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2840 &cached_state, GFP_KERNEL);
2841 out:
2843 * As we waited the extent range, the data_rsv_map must be empty
2844 * in the range, as written data range will be released from it.
2845 * And for prealloacted extent, it will also be released when
2846 * its metadata is written.
2847 * So this is completely used as cleanup.
2849 btrfs_qgroup_free_data(inode, alloc_start, alloc_end - alloc_start);
2850 inode_unlock(inode);
2851 /* Let go of our reservation. */
2852 btrfs_free_reserved_data_space(inode, alloc_start,
2853 alloc_end - alloc_start);
2854 return ret;
2857 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2859 struct btrfs_root *root = BTRFS_I(inode)->root;
2860 struct extent_map *em = NULL;
2861 struct extent_state *cached_state = NULL;
2862 u64 lockstart;
2863 u64 lockend;
2864 u64 start;
2865 u64 len;
2866 int ret = 0;
2868 if (inode->i_size == 0)
2869 return -ENXIO;
2872 * *offset can be negative, in this case we start finding DATA/HOLE from
2873 * the very start of the file.
2875 start = max_t(loff_t, 0, *offset);
2877 lockstart = round_down(start, root->sectorsize);
2878 lockend = round_up(i_size_read(inode), root->sectorsize);
2879 if (lockend <= lockstart)
2880 lockend = lockstart + root->sectorsize;
2881 lockend--;
2882 len = lockend - lockstart + 1;
2884 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2885 &cached_state);
2887 while (start < inode->i_size) {
2888 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2889 if (IS_ERR(em)) {
2890 ret = PTR_ERR(em);
2891 em = NULL;
2892 break;
2895 if (whence == SEEK_HOLE &&
2896 (em->block_start == EXTENT_MAP_HOLE ||
2897 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2898 break;
2899 else if (whence == SEEK_DATA &&
2900 (em->block_start != EXTENT_MAP_HOLE &&
2901 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2902 break;
2904 start = em->start + em->len;
2905 free_extent_map(em);
2906 em = NULL;
2907 cond_resched();
2909 free_extent_map(em);
2910 if (!ret) {
2911 if (whence == SEEK_DATA && start >= inode->i_size)
2912 ret = -ENXIO;
2913 else
2914 *offset = min_t(loff_t, start, inode->i_size);
2916 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2917 &cached_state, GFP_NOFS);
2918 return ret;
2921 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2923 struct inode *inode = file->f_mapping->host;
2924 int ret;
2926 inode_lock(inode);
2927 switch (whence) {
2928 case SEEK_END:
2929 case SEEK_CUR:
2930 offset = generic_file_llseek(file, offset, whence);
2931 goto out;
2932 case SEEK_DATA:
2933 case SEEK_HOLE:
2934 if (offset >= i_size_read(inode)) {
2935 inode_unlock(inode);
2936 return -ENXIO;
2939 ret = find_desired_extent(inode, &offset, whence);
2940 if (ret) {
2941 inode_unlock(inode);
2942 return ret;
2946 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2947 out:
2948 inode_unlock(inode);
2949 return offset;
2952 const struct file_operations btrfs_file_operations = {
2953 .llseek = btrfs_file_llseek,
2954 .read_iter = generic_file_read_iter,
2955 .splice_read = generic_file_splice_read,
2956 .write_iter = btrfs_file_write_iter,
2957 .mmap = btrfs_file_mmap,
2958 .open = generic_file_open,
2959 .release = btrfs_release_file,
2960 .fsync = btrfs_sync_file,
2961 .fallocate = btrfs_fallocate,
2962 .unlocked_ioctl = btrfs_ioctl,
2963 #ifdef CONFIG_COMPAT
2964 .compat_ioctl = btrfs_compat_ioctl,
2965 #endif
2966 .copy_file_range = btrfs_copy_file_range,
2967 .clone_file_range = btrfs_clone_file_range,
2968 .dedupe_file_range = btrfs_dedupe_file_range,
2971 void btrfs_auto_defrag_exit(void)
2973 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2976 int btrfs_auto_defrag_init(void)
2978 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2979 sizeof(struct inode_defrag), 0,
2980 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2981 NULL);
2982 if (!btrfs_inode_defrag_cachep)
2983 return -ENOMEM;
2985 return 0;
2988 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
2990 int ret;
2993 * So with compression we will find and lock a dirty page and clear the
2994 * first one as dirty, setup an async extent, and immediately return
2995 * with the entire range locked but with nobody actually marked with
2996 * writeback. So we can't just filemap_write_and_wait_range() and
2997 * expect it to work since it will just kick off a thread to do the
2998 * actual work. So we need to call filemap_fdatawrite_range _again_
2999 * since it will wait on the page lock, which won't be unlocked until
3000 * after the pages have been marked as writeback and so we're good to go
3001 * from there. We have to do this otherwise we'll miss the ordered
3002 * extents and that results in badness. Please Josef, do not think you
3003 * know better and pull this out at some point in the future, it is
3004 * right and you are wrong.
3006 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3007 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3008 &BTRFS_I(inode)->runtime_flags))
3009 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3011 return ret;