2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
64 struct btrfs_iget_args
{
65 struct btrfs_key
*location
;
66 struct btrfs_root
*root
;
69 struct btrfs_dio_data
{
70 u64 outstanding_extents
;
72 u64 unsubmitted_oe_range_start
;
73 u64 unsubmitted_oe_range_end
;
76 static const struct inode_operations btrfs_dir_inode_operations
;
77 static const struct inode_operations btrfs_symlink_inode_operations
;
78 static const struct inode_operations btrfs_dir_ro_inode_operations
;
79 static const struct inode_operations btrfs_special_inode_operations
;
80 static const struct inode_operations btrfs_file_inode_operations
;
81 static const struct address_space_operations btrfs_aops
;
82 static const struct address_space_operations btrfs_symlink_aops
;
83 static const struct file_operations btrfs_dir_file_operations
;
84 static const struct extent_io_ops btrfs_extent_io_ops
;
86 static struct kmem_cache
*btrfs_inode_cachep
;
87 struct kmem_cache
*btrfs_trans_handle_cachep
;
88 struct kmem_cache
*btrfs_transaction_cachep
;
89 struct kmem_cache
*btrfs_path_cachep
;
90 struct kmem_cache
*btrfs_free_space_cachep
;
93 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
94 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
95 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
96 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
97 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
98 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
99 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
100 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
103 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
104 static int btrfs_truncate(struct inode
*inode
);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
106 static noinline
int cow_file_range(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 start
, u64 end
, int *page_started
,
109 unsigned long *nr_written
, int unlock
);
110 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
111 u64 len
, u64 orig_start
,
112 u64 block_start
, u64 block_len
,
113 u64 orig_block_len
, u64 ram_bytes
,
116 static int btrfs_dirty_inode(struct inode
*inode
);
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode
*inode
)
121 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
125 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
126 struct inode
*inode
, struct inode
*dir
,
127 const struct qstr
*qstr
)
131 err
= btrfs_init_acl(trans
, inode
, dir
);
133 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
142 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
143 struct btrfs_path
*path
, int extent_inserted
,
144 struct btrfs_root
*root
, struct inode
*inode
,
145 u64 start
, size_t size
, size_t compressed_size
,
147 struct page
**compressed_pages
)
149 struct extent_buffer
*leaf
;
150 struct page
*page
= NULL
;
153 struct btrfs_file_extent_item
*ei
;
156 size_t cur_size
= size
;
157 unsigned long offset
;
159 if (compressed_size
&& compressed_pages
)
160 cur_size
= compressed_size
;
162 inode_add_bytes(inode
, size
);
164 if (!extent_inserted
) {
165 struct btrfs_key key
;
168 key
.objectid
= btrfs_ino(inode
);
170 key
.type
= BTRFS_EXTENT_DATA_KEY
;
172 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
173 path
->leave_spinning
= 1;
174 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
181 leaf
= path
->nodes
[0];
182 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
183 struct btrfs_file_extent_item
);
184 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
185 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
186 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
187 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
188 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
189 ptr
= btrfs_file_extent_inline_start(ei
);
191 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
194 while (compressed_size
> 0) {
195 cpage
= compressed_pages
[i
];
196 cur_size
= min_t(unsigned long, compressed_size
,
199 kaddr
= kmap_atomic(cpage
);
200 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
201 kunmap_atomic(kaddr
);
205 compressed_size
-= cur_size
;
207 btrfs_set_file_extent_compression(leaf
, ei
,
210 page
= find_get_page(inode
->i_mapping
,
211 start
>> PAGE_SHIFT
);
212 btrfs_set_file_extent_compression(leaf
, ei
, 0);
213 kaddr
= kmap_atomic(page
);
214 offset
= start
& (PAGE_SIZE
- 1);
215 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
216 kunmap_atomic(kaddr
);
219 btrfs_mark_buffer_dirty(leaf
);
220 btrfs_release_path(path
);
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
231 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
232 ret
= btrfs_update_inode(trans
, root
, inode
);
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
245 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
246 struct inode
*inode
, u64 start
,
247 u64 end
, size_t compressed_size
,
249 struct page
**compressed_pages
)
251 struct btrfs_trans_handle
*trans
;
252 u64 isize
= i_size_read(inode
);
253 u64 actual_end
= min(end
+ 1, isize
);
254 u64 inline_len
= actual_end
- start
;
255 u64 aligned_end
= ALIGN(end
, root
->sectorsize
);
256 u64 data_len
= inline_len
;
258 struct btrfs_path
*path
;
259 int extent_inserted
= 0;
260 u32 extent_item_size
;
263 data_len
= compressed_size
;
266 actual_end
> root
->sectorsize
||
267 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
269 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
271 data_len
> root
->fs_info
->max_inline
) {
275 path
= btrfs_alloc_path();
279 trans
= btrfs_join_transaction(root
);
281 btrfs_free_path(path
);
282 return PTR_ERR(trans
);
284 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
286 if (compressed_size
&& compressed_pages
)
287 extent_item_size
= btrfs_file_extent_calc_inline_size(
290 extent_item_size
= btrfs_file_extent_calc_inline_size(
293 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
294 start
, aligned_end
, NULL
,
295 1, 1, extent_item_size
, &extent_inserted
);
297 btrfs_abort_transaction(trans
, root
, ret
);
301 if (isize
> actual_end
)
302 inline_len
= min_t(u64
, isize
, actual_end
);
303 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
305 inline_len
, compressed_size
,
306 compress_type
, compressed_pages
);
307 if (ret
&& ret
!= -ENOSPC
) {
308 btrfs_abort_transaction(trans
, root
, ret
);
310 } else if (ret
== -ENOSPC
) {
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
316 btrfs_delalloc_release_metadata(inode
, end
+ 1 - start
);
317 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
325 btrfs_qgroup_free_data(inode
, 0, PAGE_SIZE
);
326 btrfs_free_path(path
);
327 btrfs_end_transaction(trans
, root
);
331 struct async_extent
{
336 unsigned long nr_pages
;
338 struct list_head list
;
343 struct btrfs_root
*root
;
344 struct page
*locked_page
;
347 struct list_head extents
;
348 struct btrfs_work work
;
351 static noinline
int add_async_extent(struct async_cow
*cow
,
352 u64 start
, u64 ram_size
,
355 unsigned long nr_pages
,
358 struct async_extent
*async_extent
;
360 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
361 BUG_ON(!async_extent
); /* -ENOMEM */
362 async_extent
->start
= start
;
363 async_extent
->ram_size
= ram_size
;
364 async_extent
->compressed_size
= compressed_size
;
365 async_extent
->pages
= pages
;
366 async_extent
->nr_pages
= nr_pages
;
367 async_extent
->compress_type
= compress_type
;
368 list_add_tail(&async_extent
->list
, &cow
->extents
);
372 static inline int inode_need_compress(struct inode
*inode
)
374 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
377 if (btrfs_test_opt(root
, FORCE_COMPRESS
))
379 /* bad compression ratios */
380 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
382 if (btrfs_test_opt(root
, COMPRESS
) ||
383 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
384 BTRFS_I(inode
)->force_compress
)
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
406 static noinline
void compress_file_range(struct inode
*inode
,
407 struct page
*locked_page
,
409 struct async_cow
*async_cow
,
412 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
414 u64 blocksize
= root
->sectorsize
;
416 u64 isize
= i_size_read(inode
);
418 struct page
**pages
= NULL
;
419 unsigned long nr_pages
;
420 unsigned long nr_pages_ret
= 0;
421 unsigned long total_compressed
= 0;
422 unsigned long total_in
= 0;
423 unsigned long max_compressed
= SZ_128K
;
424 unsigned long max_uncompressed
= SZ_128K
;
427 int compress_type
= root
->fs_info
->compress_type
;
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end
- start
+ 1) < SZ_16K
&&
432 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
433 btrfs_add_inode_defrag(NULL
, inode
);
435 actual_end
= min_t(u64
, isize
, end
+ 1);
438 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
439 nr_pages
= min_t(unsigned long, nr_pages
, SZ_128K
/ PAGE_SIZE
);
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
451 if (actual_end
<= start
)
452 goto cleanup_and_bail_uncompressed
;
454 total_compressed
= actual_end
- start
;
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it doesn't save disk space at all.
460 if (total_compressed
<= blocksize
&&
461 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
462 goto cleanup_and_bail_uncompressed
;
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
474 total_compressed
= min(total_compressed
, max_uncompressed
);
475 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
476 num_bytes
= max(blocksize
, num_bytes
);
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
485 if (inode_need_compress(inode
)) {
487 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
489 /* just bail out to the uncompressed code */
493 if (BTRFS_I(inode
)->force_compress
)
494 compress_type
= BTRFS_I(inode
)->force_compress
;
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
505 extent_range_clear_dirty_for_io(inode
, start
, end
);
507 ret
= btrfs_compress_pages(compress_type
,
508 inode
->i_mapping
, start
,
509 total_compressed
, pages
,
510 nr_pages
, &nr_pages_ret
,
516 unsigned long offset
= total_compressed
&
518 struct page
*page
= pages
[nr_pages_ret
- 1];
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
525 kaddr
= kmap_atomic(page
);
526 memset(kaddr
+ offset
, 0,
528 kunmap_atomic(kaddr
);
535 /* lets try to make an inline extent */
536 if (ret
|| total_in
< (actual_end
- start
)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
540 ret
= cow_file_range_inline(root
, inode
, start
, end
,
543 /* try making a compressed inline extent */
544 ret
= cow_file_range_inline(root
, inode
, start
, end
,
546 compress_type
, pages
);
549 unsigned long clear_flags
= EXTENT_DELALLOC
|
551 unsigned long page_error_op
;
553 clear_flags
|= (ret
< 0) ? EXTENT_DO_ACCOUNTING
: 0;
554 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
561 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
562 clear_flags
, PAGE_UNLOCK
|
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
577 total_compressed
= ALIGN(total_compressed
, blocksize
);
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
583 total_in
= ALIGN(total_in
, PAGE_SIZE
);
584 if (total_compressed
>= total_in
) {
587 num_bytes
= total_in
;
590 if (!will_compress
&& pages
) {
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
595 for (i
= 0; i
< nr_pages_ret
; i
++) {
596 WARN_ON(pages
[i
]->mapping
);
601 total_compressed
= 0;
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root
, FORCE_COMPRESS
) &&
606 !(BTRFS_I(inode
)->force_compress
)) {
607 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
617 add_async_extent(async_cow
, start
, num_bytes
,
618 total_compressed
, pages
, nr_pages_ret
,
621 if (start
+ num_bytes
< end
) {
628 cleanup_and_bail_uncompressed
:
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
636 if (page_offset(locked_page
) >= start
&&
637 page_offset(locked_page
) <= end
) {
638 __set_page_dirty_nobuffers(locked_page
);
639 /* unlocked later on in the async handlers */
642 extent_range_redirty_for_io(inode
, start
, end
);
643 add_async_extent(async_cow
, start
, end
- start
+ 1,
644 0, NULL
, 0, BTRFS_COMPRESS_NONE
);
651 for (i
= 0; i
< nr_pages_ret
; i
++) {
652 WARN_ON(pages
[i
]->mapping
);
658 static void free_async_extent_pages(struct async_extent
*async_extent
)
662 if (!async_extent
->pages
)
665 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
666 WARN_ON(async_extent
->pages
[i
]->mapping
);
667 put_page(async_extent
->pages
[i
]);
669 kfree(async_extent
->pages
);
670 async_extent
->nr_pages
= 0;
671 async_extent
->pages
= NULL
;
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
680 static noinline
void submit_compressed_extents(struct inode
*inode
,
681 struct async_cow
*async_cow
)
683 struct async_extent
*async_extent
;
685 struct btrfs_key ins
;
686 struct extent_map
*em
;
687 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
688 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
689 struct extent_io_tree
*io_tree
;
693 while (!list_empty(&async_cow
->extents
)) {
694 async_extent
= list_entry(async_cow
->extents
.next
,
695 struct async_extent
, list
);
696 list_del(&async_extent
->list
);
698 io_tree
= &BTRFS_I(inode
)->io_tree
;
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent
->pages
) {
703 int page_started
= 0;
704 unsigned long nr_written
= 0;
706 lock_extent(io_tree
, async_extent
->start
,
707 async_extent
->start
+
708 async_extent
->ram_size
- 1);
710 /* allocate blocks */
711 ret
= cow_file_range(inode
, async_cow
->locked_page
,
713 async_extent
->start
+
714 async_extent
->ram_size
- 1,
715 &page_started
, &nr_written
, 0);
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
725 if (!page_started
&& !ret
)
726 extent_write_locked_range(io_tree
,
727 inode
, async_extent
->start
,
728 async_extent
->start
+
729 async_extent
->ram_size
- 1,
733 unlock_page(async_cow
->locked_page
);
739 lock_extent(io_tree
, async_extent
->start
,
740 async_extent
->start
+ async_extent
->ram_size
- 1);
742 ret
= btrfs_reserve_extent(root
,
743 async_extent
->compressed_size
,
744 async_extent
->compressed_size
,
745 0, alloc_hint
, &ins
, 1, 1);
747 free_async_extent_pages(async_extent
);
749 if (ret
== -ENOSPC
) {
750 unlock_extent(io_tree
, async_extent
->start
,
751 async_extent
->start
+
752 async_extent
->ram_size
- 1);
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
760 extent_range_redirty_for_io(inode
,
762 async_extent
->start
+
763 async_extent
->ram_size
- 1);
770 * here we're doing allocation and writeback of the
773 btrfs_drop_extent_cache(inode
, async_extent
->start
,
774 async_extent
->start
+
775 async_extent
->ram_size
- 1, 0);
777 em
= alloc_extent_map();
780 goto out_free_reserve
;
782 em
->start
= async_extent
->start
;
783 em
->len
= async_extent
->ram_size
;
784 em
->orig_start
= em
->start
;
785 em
->mod_start
= em
->start
;
786 em
->mod_len
= em
->len
;
788 em
->block_start
= ins
.objectid
;
789 em
->block_len
= ins
.offset
;
790 em
->orig_block_len
= ins
.offset
;
791 em
->ram_bytes
= async_extent
->ram_size
;
792 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
793 em
->compress_type
= async_extent
->compress_type
;
794 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
795 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
799 write_lock(&em_tree
->lock
);
800 ret
= add_extent_mapping(em_tree
, em
, 1);
801 write_unlock(&em_tree
->lock
);
802 if (ret
!= -EEXIST
) {
806 btrfs_drop_extent_cache(inode
, async_extent
->start
,
807 async_extent
->start
+
808 async_extent
->ram_size
- 1, 0);
812 goto out_free_reserve
;
814 ret
= btrfs_add_ordered_extent_compress(inode
,
817 async_extent
->ram_size
,
819 BTRFS_ORDERED_COMPRESSED
,
820 async_extent
->compress_type
);
822 btrfs_drop_extent_cache(inode
, async_extent
->start
,
823 async_extent
->start
+
824 async_extent
->ram_size
- 1, 0);
825 goto out_free_reserve
;
827 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
830 * clear dirty, set writeback and unlock the pages.
832 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
833 async_extent
->start
+
834 async_extent
->ram_size
- 1,
835 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
836 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
838 ret
= btrfs_submit_compressed_write(inode
,
840 async_extent
->ram_size
,
842 ins
.offset
, async_extent
->pages
,
843 async_extent
->nr_pages
);
845 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
846 struct page
*p
= async_extent
->pages
[0];
847 const u64 start
= async_extent
->start
;
848 const u64 end
= start
+ async_extent
->ram_size
- 1;
850 p
->mapping
= inode
->i_mapping
;
851 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
854 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
, 0,
857 free_async_extent_pages(async_extent
);
859 alloc_hint
= ins
.objectid
+ ins
.offset
;
865 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
866 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
868 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
869 async_extent
->start
+
870 async_extent
->ram_size
- 1,
871 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
872 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
873 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
874 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
876 free_async_extent_pages(async_extent
);
881 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
884 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
885 struct extent_map
*em
;
888 read_lock(&em_tree
->lock
);
889 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
896 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
898 em
= search_extent_mapping(em_tree
, 0, 0);
899 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
900 alloc_hint
= em
->block_start
;
904 alloc_hint
= em
->block_start
;
908 read_unlock(&em_tree
->lock
);
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
926 static noinline
int cow_file_range(struct inode
*inode
,
927 struct page
*locked_page
,
928 u64 start
, u64 end
, int *page_started
,
929 unsigned long *nr_written
,
932 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
935 unsigned long ram_size
;
938 u64 blocksize
= root
->sectorsize
;
939 struct btrfs_key ins
;
940 struct extent_map
*em
;
941 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
944 if (btrfs_is_free_space_inode(inode
)) {
950 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
951 num_bytes
= max(blocksize
, num_bytes
);
952 disk_num_bytes
= num_bytes
;
954 /* if this is a small write inside eof, kick off defrag */
955 if (num_bytes
< SZ_64K
&&
956 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
957 btrfs_add_inode_defrag(NULL
, inode
);
960 /* lets try to make an inline extent */
961 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0, 0,
964 extent_clear_unlock_delalloc(inode
, start
, end
, NULL
,
965 EXTENT_LOCKED
| EXTENT_DELALLOC
|
966 EXTENT_DEFRAG
, PAGE_UNLOCK
|
967 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
970 *nr_written
= *nr_written
+
971 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
974 } else if (ret
< 0) {
979 BUG_ON(disk_num_bytes
>
980 btrfs_super_total_bytes(root
->fs_info
->super_copy
));
982 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
983 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
985 while (disk_num_bytes
> 0) {
988 cur_alloc_size
= disk_num_bytes
;
989 ret
= btrfs_reserve_extent(root
, cur_alloc_size
,
990 root
->sectorsize
, 0, alloc_hint
,
995 em
= alloc_extent_map();
1001 em
->orig_start
= em
->start
;
1002 ram_size
= ins
.offset
;
1003 em
->len
= ins
.offset
;
1004 em
->mod_start
= em
->start
;
1005 em
->mod_len
= em
->len
;
1007 em
->block_start
= ins
.objectid
;
1008 em
->block_len
= ins
.offset
;
1009 em
->orig_block_len
= ins
.offset
;
1010 em
->ram_bytes
= ram_size
;
1011 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1012 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1013 em
->generation
= -1;
1016 write_lock(&em_tree
->lock
);
1017 ret
= add_extent_mapping(em_tree
, em
, 1);
1018 write_unlock(&em_tree
->lock
);
1019 if (ret
!= -EEXIST
) {
1020 free_extent_map(em
);
1023 btrfs_drop_extent_cache(inode
, start
,
1024 start
+ ram_size
- 1, 0);
1029 cur_alloc_size
= ins
.offset
;
1030 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1031 ram_size
, cur_alloc_size
, 0);
1033 goto out_drop_extent_cache
;
1035 if (root
->root_key
.objectid
==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1037 ret
= btrfs_reloc_clone_csums(inode
, start
,
1040 goto out_drop_extent_cache
;
1043 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
1045 if (disk_num_bytes
< cur_alloc_size
)
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
1055 op
= unlock
? PAGE_UNLOCK
: 0;
1056 op
|= PAGE_SET_PRIVATE2
;
1058 extent_clear_unlock_delalloc(inode
, start
,
1059 start
+ ram_size
- 1, locked_page
,
1060 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1062 disk_num_bytes
-= cur_alloc_size
;
1063 num_bytes
-= cur_alloc_size
;
1064 alloc_hint
= ins
.objectid
+ ins
.offset
;
1065 start
+= cur_alloc_size
;
1070 out_drop_extent_cache
:
1071 btrfs_drop_extent_cache(inode
, start
, start
+ ram_size
- 1, 0);
1073 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
1074 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
1076 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1077 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
1078 EXTENT_DELALLOC
| EXTENT_DEFRAG
,
1079 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
1080 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
);
1085 * work queue call back to started compression on a file and pages
1087 static noinline
void async_cow_start(struct btrfs_work
*work
)
1089 struct async_cow
*async_cow
;
1091 async_cow
= container_of(work
, struct async_cow
, work
);
1093 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1094 async_cow
->start
, async_cow
->end
, async_cow
,
1096 if (num_added
== 0) {
1097 btrfs_add_delayed_iput(async_cow
->inode
);
1098 async_cow
->inode
= NULL
;
1103 * work queue call back to submit previously compressed pages
1105 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1107 struct async_cow
*async_cow
;
1108 struct btrfs_root
*root
;
1109 unsigned long nr_pages
;
1111 async_cow
= container_of(work
, struct async_cow
, work
);
1113 root
= async_cow
->root
;
1114 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1118 * atomic_sub_return implies a barrier for waitqueue_active
1120 if (atomic_sub_return(nr_pages
, &root
->fs_info
->async_delalloc_pages
) <
1122 waitqueue_active(&root
->fs_info
->async_submit_wait
))
1123 wake_up(&root
->fs_info
->async_submit_wait
);
1125 if (async_cow
->inode
)
1126 submit_compressed_extents(async_cow
->inode
, async_cow
);
1129 static noinline
void async_cow_free(struct btrfs_work
*work
)
1131 struct async_cow
*async_cow
;
1132 async_cow
= container_of(work
, struct async_cow
, work
);
1133 if (async_cow
->inode
)
1134 btrfs_add_delayed_iput(async_cow
->inode
);
1138 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1139 u64 start
, u64 end
, int *page_started
,
1140 unsigned long *nr_written
)
1142 struct async_cow
*async_cow
;
1143 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1144 unsigned long nr_pages
;
1146 int limit
= 10 * SZ_1M
;
1148 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1149 1, 0, NULL
, GFP_NOFS
);
1150 while (start
< end
) {
1151 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1152 BUG_ON(!async_cow
); /* -ENOMEM */
1153 async_cow
->inode
= igrab(inode
);
1154 async_cow
->root
= root
;
1155 async_cow
->locked_page
= locked_page
;
1156 async_cow
->start
= start
;
1158 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1159 !btrfs_test_opt(root
, FORCE_COMPRESS
))
1162 cur_end
= min(end
, start
+ SZ_512K
- 1);
1164 async_cow
->end
= cur_end
;
1165 INIT_LIST_HEAD(&async_cow
->extents
);
1167 btrfs_init_work(&async_cow
->work
,
1168 btrfs_delalloc_helper
,
1169 async_cow_start
, async_cow_submit
,
1172 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1174 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
1176 btrfs_queue_work(root
->fs_info
->delalloc_workers
,
1179 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
1180 wait_event(root
->fs_info
->async_submit_wait
,
1181 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
1185 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
1186 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1187 wait_event(root
->fs_info
->async_submit_wait
,
1188 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
1192 *nr_written
+= nr_pages
;
1193 start
= cur_end
+ 1;
1199 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
1200 u64 bytenr
, u64 num_bytes
)
1203 struct btrfs_ordered_sum
*sums
;
1206 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
1207 bytenr
+ num_bytes
- 1, &list
, 0);
1208 if (ret
== 0 && list_empty(&list
))
1211 while (!list_empty(&list
)) {
1212 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1213 list_del(&sums
->list
);
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1223 * If no cow copies or snapshots exist, we write directly to the existing
1226 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1227 struct page
*locked_page
,
1228 u64 start
, u64 end
, int *page_started
, int force
,
1229 unsigned long *nr_written
)
1231 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1232 struct btrfs_trans_handle
*trans
;
1233 struct extent_buffer
*leaf
;
1234 struct btrfs_path
*path
;
1235 struct btrfs_file_extent_item
*fi
;
1236 struct btrfs_key found_key
;
1251 u64 ino
= btrfs_ino(inode
);
1253 path
= btrfs_alloc_path();
1255 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1256 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1257 EXTENT_DO_ACCOUNTING
|
1258 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1260 PAGE_SET_WRITEBACK
|
1261 PAGE_END_WRITEBACK
);
1265 nolock
= btrfs_is_free_space_inode(inode
);
1268 trans
= btrfs_join_transaction_nolock(root
);
1270 trans
= btrfs_join_transaction(root
);
1272 if (IS_ERR(trans
)) {
1273 extent_clear_unlock_delalloc(inode
, start
, end
, locked_page
,
1274 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1275 EXTENT_DO_ACCOUNTING
|
1276 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1278 PAGE_SET_WRITEBACK
|
1279 PAGE_END_WRITEBACK
);
1280 btrfs_free_path(path
);
1281 return PTR_ERR(trans
);
1284 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
1286 cow_start
= (u64
)-1;
1289 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
1293 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1294 leaf
= path
->nodes
[0];
1295 btrfs_item_key_to_cpu(leaf
, &found_key
,
1296 path
->slots
[0] - 1);
1297 if (found_key
.objectid
== ino
&&
1298 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1303 leaf
= path
->nodes
[0];
1304 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1305 ret
= btrfs_next_leaf(root
, path
);
1310 leaf
= path
->nodes
[0];
1316 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1318 if (found_key
.objectid
> ino
)
1320 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1321 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1325 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1326 found_key
.offset
> end
)
1329 if (found_key
.offset
> cur_offset
) {
1330 extent_end
= found_key
.offset
;
1335 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1336 struct btrfs_file_extent_item
);
1337 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1339 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1340 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1341 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1342 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1343 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1344 extent_end
= found_key
.offset
+
1345 btrfs_file_extent_num_bytes(leaf
, fi
);
1347 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1348 if (extent_end
<= start
) {
1352 if (disk_bytenr
== 0)
1354 if (btrfs_file_extent_compression(leaf
, fi
) ||
1355 btrfs_file_extent_encryption(leaf
, fi
) ||
1356 btrfs_file_extent_other_encoding(leaf
, fi
))
1358 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1360 if (btrfs_extent_readonly(root
, disk_bytenr
))
1362 if (btrfs_cross_ref_exist(trans
, root
, ino
,
1364 extent_offset
, disk_bytenr
))
1366 disk_bytenr
+= extent_offset
;
1367 disk_bytenr
+= cur_offset
- found_key
.offset
;
1368 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1374 err
= btrfs_start_write_no_snapshoting(root
);
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1383 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1385 if (!btrfs_inc_nocow_writers(root
->fs_info
,
1389 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1390 extent_end
= found_key
.offset
+
1391 btrfs_file_extent_inline_len(leaf
,
1392 path
->slots
[0], fi
);
1393 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1398 if (extent_end
<= start
) {
1400 if (!nolock
&& nocow
)
1401 btrfs_end_write_no_snapshoting(root
);
1403 btrfs_dec_nocow_writers(root
->fs_info
,
1408 if (cow_start
== (u64
)-1)
1409 cow_start
= cur_offset
;
1410 cur_offset
= extent_end
;
1411 if (cur_offset
> end
)
1417 btrfs_release_path(path
);
1418 if (cow_start
!= (u64
)-1) {
1419 ret
= cow_file_range(inode
, locked_page
,
1420 cow_start
, found_key
.offset
- 1,
1421 page_started
, nr_written
, 1);
1423 if (!nolock
&& nocow
)
1424 btrfs_end_write_no_snapshoting(root
);
1426 btrfs_dec_nocow_writers(root
->fs_info
,
1430 cow_start
= (u64
)-1;
1433 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1434 struct extent_map
*em
;
1435 struct extent_map_tree
*em_tree
;
1436 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1437 em
= alloc_extent_map();
1438 BUG_ON(!em
); /* -ENOMEM */
1439 em
->start
= cur_offset
;
1440 em
->orig_start
= found_key
.offset
- extent_offset
;
1441 em
->len
= num_bytes
;
1442 em
->block_len
= num_bytes
;
1443 em
->block_start
= disk_bytenr
;
1444 em
->orig_block_len
= disk_num_bytes
;
1445 em
->ram_bytes
= ram_bytes
;
1446 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1447 em
->mod_start
= em
->start
;
1448 em
->mod_len
= em
->len
;
1449 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1450 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
1451 em
->generation
= -1;
1453 write_lock(&em_tree
->lock
);
1454 ret
= add_extent_mapping(em_tree
, em
, 1);
1455 write_unlock(&em_tree
->lock
);
1456 if (ret
!= -EEXIST
) {
1457 free_extent_map(em
);
1460 btrfs_drop_extent_cache(inode
, em
->start
,
1461 em
->start
+ em
->len
- 1, 0);
1463 type
= BTRFS_ORDERED_PREALLOC
;
1465 type
= BTRFS_ORDERED_NOCOW
;
1468 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1469 num_bytes
, num_bytes
, type
);
1471 btrfs_dec_nocow_writers(root
->fs_info
, disk_bytenr
);
1472 BUG_ON(ret
); /* -ENOMEM */
1474 if (root
->root_key
.objectid
==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1476 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1479 if (!nolock
&& nocow
)
1480 btrfs_end_write_no_snapshoting(root
);
1485 extent_clear_unlock_delalloc(inode
, cur_offset
,
1486 cur_offset
+ num_bytes
- 1,
1487 locked_page
, EXTENT_LOCKED
|
1488 EXTENT_DELALLOC
, PAGE_UNLOCK
|
1490 if (!nolock
&& nocow
)
1491 btrfs_end_write_no_snapshoting(root
);
1492 cur_offset
= extent_end
;
1493 if (cur_offset
> end
)
1496 btrfs_release_path(path
);
1498 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1499 cow_start
= cur_offset
;
1503 if (cow_start
!= (u64
)-1) {
1504 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1505 page_started
, nr_written
, 1);
1511 err
= btrfs_end_transaction(trans
, root
);
1515 if (ret
&& cur_offset
< end
)
1516 extent_clear_unlock_delalloc(inode
, cur_offset
, end
,
1517 locked_page
, EXTENT_LOCKED
|
1518 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1519 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1521 PAGE_SET_WRITEBACK
|
1522 PAGE_END_WRITEBACK
);
1523 btrfs_free_path(path
);
1527 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1530 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1531 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1539 if (BTRFS_I(inode
)->defrag_bytes
&&
1540 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1541 EXTENT_DEFRAG
, 0, NULL
))
1548 * extent_io.c call back to do delayed allocation processing
1550 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1551 u64 start
, u64 end
, int *page_started
,
1552 unsigned long *nr_written
)
1555 int force_cow
= need_force_cow(inode
, start
, end
);
1557 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1558 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1559 page_started
, 1, nr_written
);
1560 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1561 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1562 page_started
, 0, nr_written
);
1563 } else if (!inode_need_compress(inode
)) {
1564 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1565 page_started
, nr_written
, 1);
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1568 &BTRFS_I(inode
)->runtime_flags
);
1569 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1570 page_started
, nr_written
);
1575 static void btrfs_split_extent_hook(struct inode
*inode
,
1576 struct extent_state
*orig
, u64 split
)
1580 /* not delalloc, ignore it */
1581 if (!(orig
->state
& EXTENT_DELALLOC
))
1584 size
= orig
->end
- orig
->start
+ 1;
1585 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
1593 new_size
= orig
->end
- split
+ 1;
1594 num_extents
= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1595 BTRFS_MAX_EXTENT_SIZE
);
1596 new_size
= split
- orig
->start
;
1597 num_extents
+= div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1598 BTRFS_MAX_EXTENT_SIZE
);
1599 if (div64_u64(size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1600 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1604 spin_lock(&BTRFS_I(inode
)->lock
);
1605 BTRFS_I(inode
)->outstanding_extents
++;
1606 spin_unlock(&BTRFS_I(inode
)->lock
);
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1615 static void btrfs_merge_extent_hook(struct inode
*inode
,
1616 struct extent_state
*new,
1617 struct extent_state
*other
)
1619 u64 new_size
, old_size
;
1622 /* not delalloc, ignore it */
1623 if (!(other
->state
& EXTENT_DELALLOC
))
1626 if (new->start
> other
->start
)
1627 new_size
= new->end
- other
->start
+ 1;
1629 new_size
= other
->end
- new->start
+ 1;
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1633 spin_lock(&BTRFS_I(inode
)->lock
);
1634 BTRFS_I(inode
)->outstanding_extents
--;
1635 spin_unlock(&BTRFS_I(inode
)->lock
);
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1657 old_size
= other
->end
- other
->start
+ 1;
1658 num_extents
= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1659 BTRFS_MAX_EXTENT_SIZE
);
1660 old_size
= new->end
- new->start
+ 1;
1661 num_extents
+= div64_u64(old_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1662 BTRFS_MAX_EXTENT_SIZE
);
1664 if (div64_u64(new_size
+ BTRFS_MAX_EXTENT_SIZE
- 1,
1665 BTRFS_MAX_EXTENT_SIZE
) >= num_extents
)
1668 spin_lock(&BTRFS_I(inode
)->lock
);
1669 BTRFS_I(inode
)->outstanding_extents
--;
1670 spin_unlock(&BTRFS_I(inode
)->lock
);
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1674 struct inode
*inode
)
1676 spin_lock(&root
->delalloc_lock
);
1677 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1678 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1679 &root
->delalloc_inodes
);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1681 &BTRFS_I(inode
)->runtime_flags
);
1682 root
->nr_delalloc_inodes
++;
1683 if (root
->nr_delalloc_inodes
== 1) {
1684 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1685 BUG_ON(!list_empty(&root
->delalloc_root
));
1686 list_add_tail(&root
->delalloc_root
,
1687 &root
->fs_info
->delalloc_roots
);
1688 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1691 spin_unlock(&root
->delalloc_lock
);
1694 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1695 struct inode
*inode
)
1697 spin_lock(&root
->delalloc_lock
);
1698 if (!list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1699 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1701 &BTRFS_I(inode
)->runtime_flags
);
1702 root
->nr_delalloc_inodes
--;
1703 if (!root
->nr_delalloc_inodes
) {
1704 spin_lock(&root
->fs_info
->delalloc_root_lock
);
1705 BUG_ON(list_empty(&root
->delalloc_root
));
1706 list_del_init(&root
->delalloc_root
);
1707 spin_unlock(&root
->fs_info
->delalloc_root_lock
);
1710 spin_unlock(&root
->delalloc_lock
);
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1718 static void btrfs_set_bit_hook(struct inode
*inode
,
1719 struct extent_state
*state
, unsigned *bits
)
1722 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1725 * set_bit and clear bit hooks normally require _irqsave/restore
1726 * but in this case, we are only testing for the DELALLOC
1727 * bit, which is only set or cleared with irqs on
1729 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1730 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1731 u64 len
= state
->end
+ 1 - state
->start
;
1732 bool do_list
= !btrfs_is_free_space_inode(inode
);
1734 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1735 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1737 spin_lock(&BTRFS_I(inode
)->lock
);
1738 BTRFS_I(inode
)->outstanding_extents
++;
1739 spin_unlock(&BTRFS_I(inode
)->lock
);
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root
))
1746 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, len
,
1747 root
->fs_info
->delalloc_batch
);
1748 spin_lock(&BTRFS_I(inode
)->lock
);
1749 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1750 if (*bits
& EXTENT_DEFRAG
)
1751 BTRFS_I(inode
)->defrag_bytes
+= len
;
1752 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1753 &BTRFS_I(inode
)->runtime_flags
))
1754 btrfs_add_delalloc_inodes(root
, inode
);
1755 spin_unlock(&BTRFS_I(inode
)->lock
);
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1762 static void btrfs_clear_bit_hook(struct inode
*inode
,
1763 struct extent_state
*state
,
1766 u64 len
= state
->end
+ 1 - state
->start
;
1767 u64 num_extents
= div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
-1,
1768 BTRFS_MAX_EXTENT_SIZE
);
1770 spin_lock(&BTRFS_I(inode
)->lock
);
1771 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
))
1772 BTRFS_I(inode
)->defrag_bytes
-= len
;
1773 spin_unlock(&BTRFS_I(inode
)->lock
);
1776 * set_bit and clear bit hooks normally require _irqsave/restore
1777 * but in this case, we are only testing for the DELALLOC
1778 * bit, which is only set or cleared with irqs on
1780 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1781 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1782 bool do_list
= !btrfs_is_free_space_inode(inode
);
1784 if (*bits
& EXTENT_FIRST_DELALLOC
) {
1785 *bits
&= ~EXTENT_FIRST_DELALLOC
;
1786 } else if (!(*bits
& EXTENT_DO_ACCOUNTING
)) {
1787 spin_lock(&BTRFS_I(inode
)->lock
);
1788 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
1789 spin_unlock(&BTRFS_I(inode
)->lock
);
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1797 if (*bits
& EXTENT_DO_ACCOUNTING
&&
1798 root
!= root
->fs_info
->tree_root
)
1799 btrfs_delalloc_release_metadata(inode
, len
);
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root
))
1805 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
1806 && do_list
&& !(state
->state
& EXTENT_NORESERVE
))
1807 btrfs_free_reserved_data_space_noquota(inode
,
1810 __percpu_counter_add(&root
->fs_info
->delalloc_bytes
, -len
,
1811 root
->fs_info
->delalloc_batch
);
1812 spin_lock(&BTRFS_I(inode
)->lock
);
1813 BTRFS_I(inode
)->delalloc_bytes
-= len
;
1814 if (do_list
&& BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1816 &BTRFS_I(inode
)->runtime_flags
))
1817 btrfs_del_delalloc_inode(root
, inode
);
1818 spin_unlock(&BTRFS_I(inode
)->lock
);
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1826 int btrfs_merge_bio_hook(int rw
, struct page
*page
, unsigned long offset
,
1827 size_t size
, struct bio
*bio
,
1828 unsigned long bio_flags
)
1830 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1831 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1836 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1839 length
= bio
->bi_iter
.bi_size
;
1840 map_length
= length
;
1841 ret
= btrfs_map_block(root
->fs_info
, rw
, logical
,
1842 &map_length
, NULL
, 0);
1843 /* Will always return 0 with map_multi == NULL */
1845 if (map_length
< length
+ size
)
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1858 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1859 struct bio
*bio
, int mirror_num
,
1860 unsigned long bio_flags
,
1863 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1866 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1867 BUG_ON(ret
); /* -ENOMEM */
1872 * in order to insert checksums into the metadata in large chunks,
1873 * we wait until bio submission time. All the pages in the bio are
1874 * checksummed and sums are attached onto the ordered extent record.
1876 * At IO completion time the cums attached on the ordered extent record
1877 * are inserted into the btree
1879 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1880 int mirror_num
, unsigned long bio_flags
,
1883 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1886 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1888 bio
->bi_error
= ret
;
1895 * extent_io.c submission hook. This does the right thing for csum calculation
1896 * on write, or reading the csums from the tree before a read
1898 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1899 int mirror_num
, unsigned long bio_flags
,
1902 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1903 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1906 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1908 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1910 if (btrfs_is_free_space_inode(inode
))
1911 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1913 if (!(rw
& REQ_WRITE
)) {
1914 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, metadata
);
1918 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1919 ret
= btrfs_submit_compressed_read(inode
, bio
,
1923 } else if (!skip_sum
) {
1924 ret
= btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1929 } else if (async
&& !skip_sum
) {
1930 /* csum items have already been cloned */
1931 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1933 /* we're doing a write, do the async checksumming */
1934 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1935 inode
, rw
, bio
, mirror_num
,
1936 bio_flags
, bio_offset
,
1937 __btrfs_submit_bio_start
,
1938 __btrfs_submit_bio_done
);
1940 } else if (!skip_sum
) {
1941 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1947 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1951 bio
->bi_error
= ret
;
1958 * given a list of ordered sums record them in the inode. This happens
1959 * at IO completion time based on sums calculated at bio submission time.
1961 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1962 struct inode
*inode
, u64 file_offset
,
1963 struct list_head
*list
)
1965 struct btrfs_ordered_sum
*sum
;
1967 list_for_each_entry(sum
, list
, list
) {
1968 trans
->adding_csums
= 1;
1969 btrfs_csum_file_blocks(trans
,
1970 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1971 trans
->adding_csums
= 0;
1976 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1977 struct extent_state
**cached_state
)
1979 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
1980 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1984 /* see btrfs_writepage_start_hook for details on why this is required */
1985 struct btrfs_writepage_fixup
{
1987 struct btrfs_work work
;
1990 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1992 struct btrfs_writepage_fixup
*fixup
;
1993 struct btrfs_ordered_extent
*ordered
;
1994 struct extent_state
*cached_state
= NULL
;
1996 struct inode
*inode
;
2001 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2005 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2006 ClearPageChecked(page
);
2010 inode
= page
->mapping
->host
;
2011 page_start
= page_offset(page
);
2012 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2014 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2017 /* already ordered? We're done */
2018 if (PagePrivate2(page
))
2021 ordered
= btrfs_lookup_ordered_range(inode
, page_start
,
2024 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2025 page_end
, &cached_state
, GFP_NOFS
);
2027 btrfs_start_ordered_extent(inode
, ordered
, 1);
2028 btrfs_put_ordered_extent(ordered
);
2032 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
2035 mapping_set_error(page
->mapping
, ret
);
2036 end_extent_writepage(page
, ret
, page_start
, page_end
);
2037 ClearPageChecked(page
);
2041 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, &cached_state
);
2042 ClearPageChecked(page
);
2043 set_page_dirty(page
);
2045 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2046 &cached_state
, GFP_NOFS
);
2054 * There are a few paths in the higher layers of the kernel that directly
2055 * set the page dirty bit without asking the filesystem if it is a
2056 * good idea. This causes problems because we want to make sure COW
2057 * properly happens and the data=ordered rules are followed.
2059 * In our case any range that doesn't have the ORDERED bit set
2060 * hasn't been properly setup for IO. We kick off an async process
2061 * to fix it up. The async helper will wait for ordered extents, set
2062 * the delalloc bit and make it safe to write the page.
2064 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2066 struct inode
*inode
= page
->mapping
->host
;
2067 struct btrfs_writepage_fixup
*fixup
;
2068 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2070 /* this page is properly in the ordered list */
2071 if (TestClearPagePrivate2(page
))
2074 if (PageChecked(page
))
2077 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2081 SetPageChecked(page
);
2083 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2084 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2086 btrfs_queue_work(root
->fs_info
->fixup_workers
, &fixup
->work
);
2090 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2091 struct inode
*inode
, u64 file_pos
,
2092 u64 disk_bytenr
, u64 disk_num_bytes
,
2093 u64 num_bytes
, u64 ram_bytes
,
2094 u8 compression
, u8 encryption
,
2095 u16 other_encoding
, int extent_type
)
2097 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2098 struct btrfs_file_extent_item
*fi
;
2099 struct btrfs_path
*path
;
2100 struct extent_buffer
*leaf
;
2101 struct btrfs_key ins
;
2102 int extent_inserted
= 0;
2105 path
= btrfs_alloc_path();
2110 * we may be replacing one extent in the tree with another.
2111 * The new extent is pinned in the extent map, and we don't want
2112 * to drop it from the cache until it is completely in the btree.
2114 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 * the caller is expected to unpin it and allow it to be merged
2118 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2119 file_pos
+ num_bytes
, NULL
, 0,
2120 1, sizeof(*fi
), &extent_inserted
);
2124 if (!extent_inserted
) {
2125 ins
.objectid
= btrfs_ino(inode
);
2126 ins
.offset
= file_pos
;
2127 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2129 path
->leave_spinning
= 1;
2130 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2135 leaf
= path
->nodes
[0];
2136 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2137 struct btrfs_file_extent_item
);
2138 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2139 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2140 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2141 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2142 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2143 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2144 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2145 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2146 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2147 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2149 btrfs_mark_buffer_dirty(leaf
);
2150 btrfs_release_path(path
);
2152 inode_add_bytes(inode
, num_bytes
);
2154 ins
.objectid
= disk_bytenr
;
2155 ins
.offset
= disk_num_bytes
;
2156 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2157 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2158 root
->root_key
.objectid
,
2159 btrfs_ino(inode
), file_pos
,
2162 * Release the reserved range from inode dirty range map, as it is
2163 * already moved into delayed_ref_head
2165 btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2167 btrfs_free_path(path
);
2172 /* snapshot-aware defrag */
2173 struct sa_defrag_extent_backref
{
2174 struct rb_node node
;
2175 struct old_sa_defrag_extent
*old
;
2184 struct old_sa_defrag_extent
{
2185 struct list_head list
;
2186 struct new_sa_defrag_extent
*new;
2195 struct new_sa_defrag_extent
{
2196 struct rb_root root
;
2197 struct list_head head
;
2198 struct btrfs_path
*path
;
2199 struct inode
*inode
;
2207 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2208 struct sa_defrag_extent_backref
*b2
)
2210 if (b1
->root_id
< b2
->root_id
)
2212 else if (b1
->root_id
> b2
->root_id
)
2215 if (b1
->inum
< b2
->inum
)
2217 else if (b1
->inum
> b2
->inum
)
2220 if (b1
->file_pos
< b2
->file_pos
)
2222 else if (b1
->file_pos
> b2
->file_pos
)
2226 * [------------------------------] ===> (a range of space)
2227 * |<--->| |<---->| =============> (fs/file tree A)
2228 * |<---------------------------->| ===> (fs/file tree B)
2230 * A range of space can refer to two file extents in one tree while
2231 * refer to only one file extent in another tree.
2233 * So we may process a disk offset more than one time(two extents in A)
2234 * and locate at the same extent(one extent in B), then insert two same
2235 * backrefs(both refer to the extent in B).
2240 static void backref_insert(struct rb_root
*root
,
2241 struct sa_defrag_extent_backref
*backref
)
2243 struct rb_node
**p
= &root
->rb_node
;
2244 struct rb_node
*parent
= NULL
;
2245 struct sa_defrag_extent_backref
*entry
;
2250 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2252 ret
= backref_comp(backref
, entry
);
2256 p
= &(*p
)->rb_right
;
2259 rb_link_node(&backref
->node
, parent
, p
);
2260 rb_insert_color(&backref
->node
, root
);
2264 * Note the backref might has changed, and in this case we just return 0.
2266 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2269 struct btrfs_file_extent_item
*extent
;
2270 struct btrfs_fs_info
*fs_info
;
2271 struct old_sa_defrag_extent
*old
= ctx
;
2272 struct new_sa_defrag_extent
*new = old
->new;
2273 struct btrfs_path
*path
= new->path
;
2274 struct btrfs_key key
;
2275 struct btrfs_root
*root
;
2276 struct sa_defrag_extent_backref
*backref
;
2277 struct extent_buffer
*leaf
;
2278 struct inode
*inode
= new->inode
;
2284 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2285 inum
== btrfs_ino(inode
))
2288 key
.objectid
= root_id
;
2289 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2290 key
.offset
= (u64
)-1;
2292 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2293 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2295 if (PTR_ERR(root
) == -ENOENT
)
2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 inum
, offset
, root_id
);
2300 return PTR_ERR(root
);
2303 key
.objectid
= inum
;
2304 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2305 if (offset
> (u64
)-1 << 32)
2308 key
.offset
= offset
;
2310 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2311 if (WARN_ON(ret
< 0))
2318 leaf
= path
->nodes
[0];
2319 slot
= path
->slots
[0];
2321 if (slot
>= btrfs_header_nritems(leaf
)) {
2322 ret
= btrfs_next_leaf(root
, path
);
2325 } else if (ret
> 0) {
2334 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2336 if (key
.objectid
> inum
)
2339 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2342 extent
= btrfs_item_ptr(leaf
, slot
,
2343 struct btrfs_file_extent_item
);
2345 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2349 * 'offset' refers to the exact key.offset,
2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 * (key.offset - extent_offset).
2353 if (key
.offset
!= offset
)
2356 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2357 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2359 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2360 old
->len
|| extent_offset
+ num_bytes
<=
2361 old
->extent_offset
+ old
->offset
)
2366 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2372 backref
->root_id
= root_id
;
2373 backref
->inum
= inum
;
2374 backref
->file_pos
= offset
;
2375 backref
->num_bytes
= num_bytes
;
2376 backref
->extent_offset
= extent_offset
;
2377 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2379 backref_insert(&new->root
, backref
);
2382 btrfs_release_path(path
);
2387 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2388 struct new_sa_defrag_extent
*new)
2390 struct btrfs_fs_info
*fs_info
= BTRFS_I(new->inode
)->root
->fs_info
;
2391 struct old_sa_defrag_extent
*old
, *tmp
;
2396 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2397 ret
= iterate_inodes_from_logical(old
->bytenr
+
2398 old
->extent_offset
, fs_info
,
2399 path
, record_one_backref
,
2401 if (ret
< 0 && ret
!= -ENOENT
)
2404 /* no backref to be processed for this extent */
2406 list_del(&old
->list
);
2411 if (list_empty(&new->head
))
2417 static int relink_is_mergable(struct extent_buffer
*leaf
,
2418 struct btrfs_file_extent_item
*fi
,
2419 struct new_sa_defrag_extent
*new)
2421 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2424 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2427 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2430 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2431 btrfs_file_extent_other_encoding(leaf
, fi
))
2438 * Note the backref might has changed, and in this case we just return 0.
2440 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2441 struct sa_defrag_extent_backref
*prev
,
2442 struct sa_defrag_extent_backref
*backref
)
2444 struct btrfs_file_extent_item
*extent
;
2445 struct btrfs_file_extent_item
*item
;
2446 struct btrfs_ordered_extent
*ordered
;
2447 struct btrfs_trans_handle
*trans
;
2448 struct btrfs_fs_info
*fs_info
;
2449 struct btrfs_root
*root
;
2450 struct btrfs_key key
;
2451 struct extent_buffer
*leaf
;
2452 struct old_sa_defrag_extent
*old
= backref
->old
;
2453 struct new_sa_defrag_extent
*new = old
->new;
2454 struct inode
*src_inode
= new->inode
;
2455 struct inode
*inode
;
2456 struct extent_state
*cached
= NULL
;
2465 if (prev
&& prev
->root_id
== backref
->root_id
&&
2466 prev
->inum
== backref
->inum
&&
2467 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2470 /* step 1: get root */
2471 key
.objectid
= backref
->root_id
;
2472 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2473 key
.offset
= (u64
)-1;
2475 fs_info
= BTRFS_I(src_inode
)->root
->fs_info
;
2476 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2478 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2480 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2481 if (PTR_ERR(root
) == -ENOENT
)
2483 return PTR_ERR(root
);
2486 if (btrfs_root_readonly(root
)) {
2487 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2491 /* step 2: get inode */
2492 key
.objectid
= backref
->inum
;
2493 key
.type
= BTRFS_INODE_ITEM_KEY
;
2496 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2497 if (IS_ERR(inode
)) {
2498 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2502 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2504 /* step 3: relink backref */
2505 lock_start
= backref
->file_pos
;
2506 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2507 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2510 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2512 btrfs_put_ordered_extent(ordered
);
2516 trans
= btrfs_join_transaction(root
);
2517 if (IS_ERR(trans
)) {
2518 ret
= PTR_ERR(trans
);
2522 key
.objectid
= backref
->inum
;
2523 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2524 key
.offset
= backref
->file_pos
;
2526 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2529 } else if (ret
> 0) {
2534 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2535 struct btrfs_file_extent_item
);
2537 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2538 backref
->generation
)
2541 btrfs_release_path(path
);
2543 start
= backref
->file_pos
;
2544 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2545 start
+= old
->extent_offset
+ old
->offset
-
2546 backref
->extent_offset
;
2548 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2549 old
->extent_offset
+ old
->offset
+ old
->len
);
2550 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2552 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2557 key
.objectid
= btrfs_ino(inode
);
2558 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2561 path
->leave_spinning
= 1;
2563 struct btrfs_file_extent_item
*fi
;
2565 struct btrfs_key found_key
;
2567 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2572 leaf
= path
->nodes
[0];
2573 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2575 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2576 struct btrfs_file_extent_item
);
2577 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2579 if (extent_len
+ found_key
.offset
== start
&&
2580 relink_is_mergable(leaf
, fi
, new)) {
2581 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2583 btrfs_mark_buffer_dirty(leaf
);
2584 inode_add_bytes(inode
, len
);
2590 btrfs_release_path(path
);
2595 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2598 btrfs_abort_transaction(trans
, root
, ret
);
2602 leaf
= path
->nodes
[0];
2603 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2604 struct btrfs_file_extent_item
);
2605 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2606 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2607 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2608 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2609 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2610 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2611 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2612 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2613 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2614 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2616 btrfs_mark_buffer_dirty(leaf
);
2617 inode_add_bytes(inode
, len
);
2618 btrfs_release_path(path
);
2620 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2622 backref
->root_id
, backref
->inum
,
2623 new->file_pos
); /* start - extent_offset */
2625 btrfs_abort_transaction(trans
, root
, ret
);
2631 btrfs_release_path(path
);
2632 path
->leave_spinning
= 0;
2633 btrfs_end_transaction(trans
, root
);
2635 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2643 struct old_sa_defrag_extent
*old
, *tmp
;
2648 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2654 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2656 struct btrfs_path
*path
;
2657 struct sa_defrag_extent_backref
*backref
;
2658 struct sa_defrag_extent_backref
*prev
= NULL
;
2659 struct inode
*inode
;
2660 struct btrfs_root
*root
;
2661 struct rb_node
*node
;
2665 root
= BTRFS_I(inode
)->root
;
2667 path
= btrfs_alloc_path();
2671 if (!record_extent_backrefs(path
, new)) {
2672 btrfs_free_path(path
);
2675 btrfs_release_path(path
);
2678 node
= rb_first(&new->root
);
2681 rb_erase(node
, &new->root
);
2683 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2685 ret
= relink_extent_backref(path
, prev
, backref
);
2698 btrfs_free_path(path
);
2700 free_sa_defrag_extent(new);
2702 atomic_dec(&root
->fs_info
->defrag_running
);
2703 wake_up(&root
->fs_info
->transaction_wait
);
2706 static struct new_sa_defrag_extent
*
2707 record_old_file_extents(struct inode
*inode
,
2708 struct btrfs_ordered_extent
*ordered
)
2710 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2711 struct btrfs_path
*path
;
2712 struct btrfs_key key
;
2713 struct old_sa_defrag_extent
*old
;
2714 struct new_sa_defrag_extent
*new;
2717 new = kmalloc(sizeof(*new), GFP_NOFS
);
2722 new->file_pos
= ordered
->file_offset
;
2723 new->len
= ordered
->len
;
2724 new->bytenr
= ordered
->start
;
2725 new->disk_len
= ordered
->disk_len
;
2726 new->compress_type
= ordered
->compress_type
;
2727 new->root
= RB_ROOT
;
2728 INIT_LIST_HEAD(&new->head
);
2730 path
= btrfs_alloc_path();
2734 key
.objectid
= btrfs_ino(inode
);
2735 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2736 key
.offset
= new->file_pos
;
2738 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2741 if (ret
> 0 && path
->slots
[0] > 0)
2744 /* find out all the old extents for the file range */
2746 struct btrfs_file_extent_item
*extent
;
2747 struct extent_buffer
*l
;
2756 slot
= path
->slots
[0];
2758 if (slot
>= btrfs_header_nritems(l
)) {
2759 ret
= btrfs_next_leaf(root
, path
);
2767 btrfs_item_key_to_cpu(l
, &key
, slot
);
2769 if (key
.objectid
!= btrfs_ino(inode
))
2771 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2773 if (key
.offset
>= new->file_pos
+ new->len
)
2776 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2778 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2779 if (key
.offset
+ num_bytes
< new->file_pos
)
2782 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2786 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2788 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2792 offset
= max(new->file_pos
, key
.offset
);
2793 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2795 old
->bytenr
= disk_bytenr
;
2796 old
->extent_offset
= extent_offset
;
2797 old
->offset
= offset
- key
.offset
;
2798 old
->len
= end
- offset
;
2801 list_add_tail(&old
->list
, &new->head
);
2807 btrfs_free_path(path
);
2808 atomic_inc(&root
->fs_info
->defrag_running
);
2813 btrfs_free_path(path
);
2815 free_sa_defrag_extent(new);
2819 static void btrfs_release_delalloc_bytes(struct btrfs_root
*root
,
2822 struct btrfs_block_group_cache
*cache
;
2824 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
2827 spin_lock(&cache
->lock
);
2828 cache
->delalloc_bytes
-= len
;
2829 spin_unlock(&cache
->lock
);
2831 btrfs_put_block_group(cache
);
2834 /* as ordered data IO finishes, this gets called so we can finish
2835 * an ordered extent if the range of bytes in the file it covers are
2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2840 struct inode
*inode
= ordered_extent
->inode
;
2841 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2842 struct btrfs_trans_handle
*trans
= NULL
;
2843 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2844 struct extent_state
*cached_state
= NULL
;
2845 struct new_sa_defrag_extent
*new = NULL
;
2846 int compress_type
= 0;
2848 u64 logical_len
= ordered_extent
->len
;
2850 bool truncated
= false;
2852 nolock
= btrfs_is_free_space_inode(inode
);
2854 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2859 btrfs_free_io_failure_record(inode
, ordered_extent
->file_offset
,
2860 ordered_extent
->file_offset
+
2861 ordered_extent
->len
- 1);
2863 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2865 logical_len
= ordered_extent
->truncated_len
;
2866 /* Truncated the entire extent, don't bother adding */
2871 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2872 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2875 * For mwrite(mmap + memset to write) case, we still reserve
2876 * space for NOCOW range.
2877 * As NOCOW won't cause a new delayed ref, just free the space
2879 btrfs_qgroup_free_data(inode
, ordered_extent
->file_offset
,
2880 ordered_extent
->len
);
2881 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2883 trans
= btrfs_join_transaction_nolock(root
);
2885 trans
= btrfs_join_transaction(root
);
2886 if (IS_ERR(trans
)) {
2887 ret
= PTR_ERR(trans
);
2891 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2892 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2893 if (ret
) /* -ENOMEM or corruption */
2894 btrfs_abort_transaction(trans
, root
, ret
);
2898 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2899 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2902 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2903 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2904 EXTENT_DEFRAG
, 1, cached_state
);
2906 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2907 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2908 /* the inode is shared */
2909 new = record_old_file_extents(inode
, ordered_extent
);
2911 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2912 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2913 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2917 trans
= btrfs_join_transaction_nolock(root
);
2919 trans
= btrfs_join_transaction(root
);
2920 if (IS_ERR(trans
)) {
2921 ret
= PTR_ERR(trans
);
2926 trans
->block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
2928 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
2929 compress_type
= ordered_extent
->compress_type
;
2930 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
2931 BUG_ON(compress_type
);
2932 ret
= btrfs_mark_extent_written(trans
, inode
,
2933 ordered_extent
->file_offset
,
2934 ordered_extent
->file_offset
+
2937 BUG_ON(root
== root
->fs_info
->tree_root
);
2938 ret
= insert_reserved_file_extent(trans
, inode
,
2939 ordered_extent
->file_offset
,
2940 ordered_extent
->start
,
2941 ordered_extent
->disk_len
,
2942 logical_len
, logical_len
,
2943 compress_type
, 0, 0,
2944 BTRFS_FILE_EXTENT_REG
);
2946 btrfs_release_delalloc_bytes(root
,
2947 ordered_extent
->start
,
2948 ordered_extent
->disk_len
);
2950 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
2951 ordered_extent
->file_offset
, ordered_extent
->len
,
2954 btrfs_abort_transaction(trans
, root
, ret
);
2958 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
2959 &ordered_extent
->list
);
2961 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2962 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2963 if (ret
) { /* -ENOMEM or corruption */
2964 btrfs_abort_transaction(trans
, root
, ret
);
2969 unlock_extent_cached(io_tree
, ordered_extent
->file_offset
,
2970 ordered_extent
->file_offset
+
2971 ordered_extent
->len
- 1, &cached_state
, GFP_NOFS
);
2973 if (root
!= root
->fs_info
->tree_root
)
2974 btrfs_delalloc_release_metadata(inode
, ordered_extent
->len
);
2976 btrfs_end_transaction(trans
, root
);
2978 if (ret
|| truncated
) {
2982 start
= ordered_extent
->file_offset
+ logical_len
;
2984 start
= ordered_extent
->file_offset
;
2985 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
2986 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
2988 /* Drop the cache for the part of the extent we didn't write. */
2989 btrfs_drop_extent_cache(inode
, start
, end
, 0);
2992 * If the ordered extent had an IOERR or something else went
2993 * wrong we need to return the space for this ordered extent
2994 * back to the allocator. We only free the extent in the
2995 * truncated case if we didn't write out the extent at all.
2997 if ((ret
|| !logical_len
) &&
2998 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2999 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3000 btrfs_free_reserved_extent(root
, ordered_extent
->start
,
3001 ordered_extent
->disk_len
, 1);
3006 * This needs to be done to make sure anybody waiting knows we are done
3007 * updating everything for this ordered extent.
3009 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3011 /* for snapshot-aware defrag */
3014 free_sa_defrag_extent(new);
3015 atomic_dec(&root
->fs_info
->defrag_running
);
3017 relink_file_extents(new);
3022 btrfs_put_ordered_extent(ordered_extent
);
3023 /* once for the tree */
3024 btrfs_put_ordered_extent(ordered_extent
);
3029 static void finish_ordered_fn(struct btrfs_work
*work
)
3031 struct btrfs_ordered_extent
*ordered_extent
;
3032 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3033 btrfs_finish_ordered_io(ordered_extent
);
3036 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3037 struct extent_state
*state
, int uptodate
)
3039 struct inode
*inode
= page
->mapping
->host
;
3040 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3041 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3042 struct btrfs_workqueue
*wq
;
3043 btrfs_work_func_t func
;
3045 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3047 ClearPagePrivate2(page
);
3048 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3049 end
- start
+ 1, uptodate
))
3052 if (btrfs_is_free_space_inode(inode
)) {
3053 wq
= root
->fs_info
->endio_freespace_worker
;
3054 func
= btrfs_freespace_write_helper
;
3056 wq
= root
->fs_info
->endio_write_workers
;
3057 func
= btrfs_endio_write_helper
;
3060 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3062 btrfs_queue_work(wq
, &ordered_extent
->work
);
3067 static int __readpage_endio_check(struct inode
*inode
,
3068 struct btrfs_io_bio
*io_bio
,
3069 int icsum
, struct page
*page
,
3070 int pgoff
, u64 start
, size_t len
)
3076 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3078 kaddr
= kmap_atomic(page
);
3079 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3080 btrfs_csum_final(csum
, (char *)&csum
);
3081 if (csum
!= csum_expected
)
3084 kunmap_atomic(kaddr
);
3087 btrfs_warn_rl(BTRFS_I(inode
)->root
->fs_info
,
3088 "csum failed ino %llu off %llu csum %u expected csum %u",
3089 btrfs_ino(inode
), start
, csum
, csum_expected
);
3090 memset(kaddr
+ pgoff
, 1, len
);
3091 flush_dcache_page(page
);
3092 kunmap_atomic(kaddr
);
3093 if (csum_expected
== 0)
3099 * when reads are done, we need to check csums to verify the data is correct
3100 * if there's a match, we allow the bio to finish. If not, the code in
3101 * extent_io.c will try to find good copies for us.
3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3104 u64 phy_offset
, struct page
*page
,
3105 u64 start
, u64 end
, int mirror
)
3107 size_t offset
= start
- page_offset(page
);
3108 struct inode
*inode
= page
->mapping
->host
;
3109 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3110 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3112 if (PageChecked(page
)) {
3113 ClearPageChecked(page
);
3117 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3120 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3121 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3122 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3126 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3127 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3128 start
, (size_t)(end
- start
+ 1));
3131 void btrfs_add_delayed_iput(struct inode
*inode
)
3133 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
3134 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3136 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3139 spin_lock(&fs_info
->delayed_iput_lock
);
3140 if (binode
->delayed_iput_count
== 0) {
3141 ASSERT(list_empty(&binode
->delayed_iput
));
3142 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3144 binode
->delayed_iput_count
++;
3146 spin_unlock(&fs_info
->delayed_iput_lock
);
3149 void btrfs_run_delayed_iputs(struct btrfs_root
*root
)
3151 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3153 spin_lock(&fs_info
->delayed_iput_lock
);
3154 while (!list_empty(&fs_info
->delayed_iputs
)) {
3155 struct btrfs_inode
*inode
;
3157 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3158 struct btrfs_inode
, delayed_iput
);
3159 if (inode
->delayed_iput_count
) {
3160 inode
->delayed_iput_count
--;
3161 list_move_tail(&inode
->delayed_iput
,
3162 &fs_info
->delayed_iputs
);
3164 list_del_init(&inode
->delayed_iput
);
3166 spin_unlock(&fs_info
->delayed_iput_lock
);
3167 iput(&inode
->vfs_inode
);
3168 spin_lock(&fs_info
->delayed_iput_lock
);
3170 spin_unlock(&fs_info
->delayed_iput_lock
);
3174 * This is called in transaction commit time. If there are no orphan
3175 * files in the subvolume, it removes orphan item and frees block_rsv
3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3179 struct btrfs_root
*root
)
3181 struct btrfs_block_rsv
*block_rsv
;
3184 if (atomic_read(&root
->orphan_inodes
) ||
3185 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3188 spin_lock(&root
->orphan_lock
);
3189 if (atomic_read(&root
->orphan_inodes
)) {
3190 spin_unlock(&root
->orphan_lock
);
3194 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3195 spin_unlock(&root
->orphan_lock
);
3199 block_rsv
= root
->orphan_block_rsv
;
3200 root
->orphan_block_rsv
= NULL
;
3201 spin_unlock(&root
->orphan_lock
);
3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3204 btrfs_root_refs(&root
->root_item
) > 0) {
3205 ret
= btrfs_del_orphan_item(trans
, root
->fs_info
->tree_root
,
3206 root
->root_key
.objectid
);
3208 btrfs_abort_transaction(trans
, root
, ret
);
3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3215 WARN_ON(block_rsv
->size
> 0);
3216 btrfs_free_block_rsv(root
, block_rsv
);
3221 * This creates an orphan entry for the given inode in case something goes
3222 * wrong in the middle of an unlink/truncate.
3224 * NOTE: caller of this function should reserve 5 units of metadata for
3227 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
3229 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3230 struct btrfs_block_rsv
*block_rsv
= NULL
;
3235 if (!root
->orphan_block_rsv
) {
3236 block_rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
3241 spin_lock(&root
->orphan_lock
);
3242 if (!root
->orphan_block_rsv
) {
3243 root
->orphan_block_rsv
= block_rsv
;
3244 } else if (block_rsv
) {
3245 btrfs_free_block_rsv(root
, block_rsv
);
3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3250 &BTRFS_I(inode
)->runtime_flags
)) {
3253 * For proper ENOSPC handling, we should do orphan
3254 * cleanup when mounting. But this introduces backward
3255 * compatibility issue.
3257 if (!xchg(&root
->orphan_item_inserted
, 1))
3263 atomic_inc(&root
->orphan_inodes
);
3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3267 &BTRFS_I(inode
)->runtime_flags
))
3269 spin_unlock(&root
->orphan_lock
);
3271 /* grab metadata reservation from transaction handle */
3273 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3274 BUG_ON(ret
); /* -ENOSPC in reservation; Logic error? JDM */
3277 /* insert an orphan item to track this unlinked/truncated file */
3279 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3281 atomic_dec(&root
->orphan_inodes
);
3283 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3284 &BTRFS_I(inode
)->runtime_flags
);
3285 btrfs_orphan_release_metadata(inode
);
3287 if (ret
!= -EEXIST
) {
3288 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3289 &BTRFS_I(inode
)->runtime_flags
);
3290 btrfs_abort_transaction(trans
, root
, ret
);
3297 /* insert an orphan item to track subvolume contains orphan files */
3299 ret
= btrfs_insert_orphan_item(trans
, root
->fs_info
->tree_root
,
3300 root
->root_key
.objectid
);
3301 if (ret
&& ret
!= -EEXIST
) {
3302 btrfs_abort_transaction(trans
, root
, ret
);
3310 * We have done the truncate/delete so we can go ahead and remove the orphan
3311 * item for this particular inode.
3313 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3314 struct inode
*inode
)
3316 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3317 int delete_item
= 0;
3318 int release_rsv
= 0;
3321 spin_lock(&root
->orphan_lock
);
3322 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3323 &BTRFS_I(inode
)->runtime_flags
))
3326 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3327 &BTRFS_I(inode
)->runtime_flags
))
3329 spin_unlock(&root
->orphan_lock
);
3332 atomic_dec(&root
->orphan_inodes
);
3334 ret
= btrfs_del_orphan_item(trans
, root
,
3339 btrfs_orphan_release_metadata(inode
);
3345 * this cleans up any orphans that may be left on the list from the last use
3348 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3350 struct btrfs_path
*path
;
3351 struct extent_buffer
*leaf
;
3352 struct btrfs_key key
, found_key
;
3353 struct btrfs_trans_handle
*trans
;
3354 struct inode
*inode
;
3355 u64 last_objectid
= 0;
3356 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3358 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3361 path
= btrfs_alloc_path();
3366 path
->reada
= READA_BACK
;
3368 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3369 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3370 key
.offset
= (u64
)-1;
3373 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3378 * if ret == 0 means we found what we were searching for, which
3379 * is weird, but possible, so only screw with path if we didn't
3380 * find the key and see if we have stuff that matches
3384 if (path
->slots
[0] == 0)
3389 /* pull out the item */
3390 leaf
= path
->nodes
[0];
3391 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3393 /* make sure the item matches what we want */
3394 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3396 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3399 /* release the path since we're done with it */
3400 btrfs_release_path(path
);
3403 * this is where we are basically btrfs_lookup, without the
3404 * crossing root thing. we store the inode number in the
3405 * offset of the orphan item.
3408 if (found_key
.offset
== last_objectid
) {
3409 btrfs_err(root
->fs_info
,
3410 "Error removing orphan entry, stopping orphan cleanup");
3415 last_objectid
= found_key
.offset
;
3417 found_key
.objectid
= found_key
.offset
;
3418 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3419 found_key
.offset
= 0;
3420 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
, NULL
);
3421 ret
= PTR_ERR_OR_ZERO(inode
);
3422 if (ret
&& ret
!= -ESTALE
)
3425 if (ret
== -ESTALE
&& root
== root
->fs_info
->tree_root
) {
3426 struct btrfs_root
*dead_root
;
3427 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3428 int is_dead_root
= 0;
3431 * this is an orphan in the tree root. Currently these
3432 * could come from 2 sources:
3433 * a) a snapshot deletion in progress
3434 * b) a free space cache inode
3435 * We need to distinguish those two, as the snapshot
3436 * orphan must not get deleted.
3437 * find_dead_roots already ran before us, so if this
3438 * is a snapshot deletion, we should find the root
3439 * in the dead_roots list
3441 spin_lock(&fs_info
->trans_lock
);
3442 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3444 if (dead_root
->root_key
.objectid
==
3445 found_key
.objectid
) {
3450 spin_unlock(&fs_info
->trans_lock
);
3452 /* prevent this orphan from being found again */
3453 key
.offset
= found_key
.objectid
- 1;
3458 * Inode is already gone but the orphan item is still there,
3459 * kill the orphan item.
3461 if (ret
== -ESTALE
) {
3462 trans
= btrfs_start_transaction(root
, 1);
3463 if (IS_ERR(trans
)) {
3464 ret
= PTR_ERR(trans
);
3467 btrfs_debug(root
->fs_info
, "auto deleting %Lu",
3468 found_key
.objectid
);
3469 ret
= btrfs_del_orphan_item(trans
, root
,
3470 found_key
.objectid
);
3471 btrfs_end_transaction(trans
, root
);
3478 * add this inode to the orphan list so btrfs_orphan_del does
3479 * the proper thing when we hit it
3481 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3482 &BTRFS_I(inode
)->runtime_flags
);
3483 atomic_inc(&root
->orphan_inodes
);
3485 /* if we have links, this was a truncate, lets do that */
3486 if (inode
->i_nlink
) {
3487 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3493 /* 1 for the orphan item deletion. */
3494 trans
= btrfs_start_transaction(root
, 1);
3495 if (IS_ERR(trans
)) {
3497 ret
= PTR_ERR(trans
);
3500 ret
= btrfs_orphan_add(trans
, inode
);
3501 btrfs_end_transaction(trans
, root
);
3507 ret
= btrfs_truncate(inode
);
3509 btrfs_orphan_del(NULL
, inode
);
3514 /* this will do delete_inode and everything for us */
3519 /* release the path since we're done with it */
3520 btrfs_release_path(path
);
3522 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3524 if (root
->orphan_block_rsv
)
3525 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
,
3528 if (root
->orphan_block_rsv
||
3529 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3530 trans
= btrfs_join_transaction(root
);
3532 btrfs_end_transaction(trans
, root
);
3536 btrfs_debug(root
->fs_info
, "unlinked %d orphans", nr_unlink
);
3538 btrfs_debug(root
->fs_info
, "truncated %d orphans", nr_truncate
);
3542 btrfs_err(root
->fs_info
,
3543 "could not do orphan cleanup %d", ret
);
3544 btrfs_free_path(path
);
3549 * very simple check to peek ahead in the leaf looking for xattrs. If we
3550 * don't find any xattrs, we know there can't be any acls.
3552 * slot is the slot the inode is in, objectid is the objectid of the inode
3554 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3555 int slot
, u64 objectid
,
3556 int *first_xattr_slot
)
3558 u32 nritems
= btrfs_header_nritems(leaf
);
3559 struct btrfs_key found_key
;
3560 static u64 xattr_access
= 0;
3561 static u64 xattr_default
= 0;
3564 if (!xattr_access
) {
3565 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3566 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3567 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3568 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3572 *first_xattr_slot
= -1;
3573 while (slot
< nritems
) {
3574 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3576 /* we found a different objectid, there must not be acls */
3577 if (found_key
.objectid
!= objectid
)
3580 /* we found an xattr, assume we've got an acl */
3581 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3582 if (*first_xattr_slot
== -1)
3583 *first_xattr_slot
= slot
;
3584 if (found_key
.offset
== xattr_access
||
3585 found_key
.offset
== xattr_default
)
3590 * we found a key greater than an xattr key, there can't
3591 * be any acls later on
3593 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3600 * it goes inode, inode backrefs, xattrs, extents,
3601 * so if there are a ton of hard links to an inode there can
3602 * be a lot of backrefs. Don't waste time searching too hard,
3603 * this is just an optimization
3608 /* we hit the end of the leaf before we found an xattr or
3609 * something larger than an xattr. We have to assume the inode
3612 if (*first_xattr_slot
== -1)
3613 *first_xattr_slot
= slot
;
3618 * read an inode from the btree into the in-memory inode
3620 static void btrfs_read_locked_inode(struct inode
*inode
)
3622 struct btrfs_path
*path
;
3623 struct extent_buffer
*leaf
;
3624 struct btrfs_inode_item
*inode_item
;
3625 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3626 struct btrfs_key location
;
3631 bool filled
= false;
3632 int first_xattr_slot
;
3634 ret
= btrfs_fill_inode(inode
, &rdev
);
3638 path
= btrfs_alloc_path();
3642 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3644 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3648 leaf
= path
->nodes
[0];
3653 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3654 struct btrfs_inode_item
);
3655 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3656 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3657 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3658 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3659 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
3661 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3662 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3664 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3665 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3667 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3668 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3670 BTRFS_I(inode
)->i_otime
.tv_sec
=
3671 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3672 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3673 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3675 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3676 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3677 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3679 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3680 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3682 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3684 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3685 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3689 * If we were modified in the current generation and evicted from memory
3690 * and then re-read we need to do a full sync since we don't have any
3691 * idea about which extents were modified before we were evicted from
3694 * This is required for both inode re-read from disk and delayed inode
3695 * in delayed_nodes_tree.
3697 if (BTRFS_I(inode
)->last_trans
== root
->fs_info
->generation
)
3698 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3699 &BTRFS_I(inode
)->runtime_flags
);
3702 * We don't persist the id of the transaction where an unlink operation
3703 * against the inode was last made. So here we assume the inode might
3704 * have been evicted, and therefore the exact value of last_unlink_trans
3705 * lost, and set it to last_trans to avoid metadata inconsistencies
3706 * between the inode and its parent if the inode is fsync'ed and the log
3707 * replayed. For example, in the scenario:
3710 * ln mydir/foo mydir/bar
3713 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3714 * xfs_io -c fsync mydir/foo
3716 * mount fs, triggers fsync log replay
3718 * We must make sure that when we fsync our inode foo we also log its
3719 * parent inode, otherwise after log replay the parent still has the
3720 * dentry with the "bar" name but our inode foo has a link count of 1
3721 * and doesn't have an inode ref with the name "bar" anymore.
3723 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3724 * but it guarantees correctness at the expense of occasional full
3725 * transaction commits on fsync if our inode is a directory, or if our
3726 * inode is not a directory, logging its parent unnecessarily.
3728 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3731 if (inode
->i_nlink
!= 1 ||
3732 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3735 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3736 if (location
.objectid
!= btrfs_ino(inode
))
3739 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3740 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3741 struct btrfs_inode_ref
*ref
;
3743 ref
= (struct btrfs_inode_ref
*)ptr
;
3744 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3745 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3746 struct btrfs_inode_extref
*extref
;
3748 extref
= (struct btrfs_inode_extref
*)ptr
;
3749 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3754 * try to precache a NULL acl entry for files that don't have
3755 * any xattrs or acls
3757 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3758 btrfs_ino(inode
), &first_xattr_slot
);
3759 if (first_xattr_slot
!= -1) {
3760 path
->slots
[0] = first_xattr_slot
;
3761 ret
= btrfs_load_inode_props(inode
, path
);
3763 btrfs_err(root
->fs_info
,
3764 "error loading props for ino %llu (root %llu): %d",
3766 root
->root_key
.objectid
, ret
);
3768 btrfs_free_path(path
);
3771 cache_no_acl(inode
);
3773 switch (inode
->i_mode
& S_IFMT
) {
3775 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3776 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3777 inode
->i_fop
= &btrfs_file_operations
;
3778 inode
->i_op
= &btrfs_file_inode_operations
;
3781 inode
->i_fop
= &btrfs_dir_file_operations
;
3782 if (root
== root
->fs_info
->tree_root
)
3783 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
3785 inode
->i_op
= &btrfs_dir_inode_operations
;
3788 inode
->i_op
= &btrfs_symlink_inode_operations
;
3789 inode_nohighmem(inode
);
3790 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3793 inode
->i_op
= &btrfs_special_inode_operations
;
3794 init_special_inode(inode
, inode
->i_mode
, rdev
);
3798 btrfs_update_iflags(inode
);
3802 btrfs_free_path(path
);
3803 make_bad_inode(inode
);
3807 * given a leaf and an inode, copy the inode fields into the leaf
3809 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3810 struct extent_buffer
*leaf
,
3811 struct btrfs_inode_item
*item
,
3812 struct inode
*inode
)
3814 struct btrfs_map_token token
;
3816 btrfs_init_map_token(&token
);
3818 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3819 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3820 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3822 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3823 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3825 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3826 inode
->i_atime
.tv_sec
, &token
);
3827 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3828 inode
->i_atime
.tv_nsec
, &token
);
3830 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3831 inode
->i_mtime
.tv_sec
, &token
);
3832 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3833 inode
->i_mtime
.tv_nsec
, &token
);
3835 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3836 inode
->i_ctime
.tv_sec
, &token
);
3837 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3838 inode
->i_ctime
.tv_nsec
, &token
);
3840 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3841 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3842 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3843 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3845 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3847 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3849 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3850 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3851 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3852 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3853 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3857 * copy everything in the in-memory inode into the btree.
3859 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3860 struct btrfs_root
*root
, struct inode
*inode
)
3862 struct btrfs_inode_item
*inode_item
;
3863 struct btrfs_path
*path
;
3864 struct extent_buffer
*leaf
;
3867 path
= btrfs_alloc_path();
3871 path
->leave_spinning
= 1;
3872 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3880 leaf
= path
->nodes
[0];
3881 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3882 struct btrfs_inode_item
);
3884 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3885 btrfs_mark_buffer_dirty(leaf
);
3886 btrfs_set_inode_last_trans(trans
, inode
);
3889 btrfs_free_path(path
);
3894 * copy everything in the in-memory inode into the btree.
3896 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3897 struct btrfs_root
*root
, struct inode
*inode
)
3902 * If the inode is a free space inode, we can deadlock during commit
3903 * if we put it into the delayed code.
3905 * The data relocation inode should also be directly updated
3908 if (!btrfs_is_free_space_inode(inode
)
3909 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3910 && !root
->fs_info
->log_root_recovering
) {
3911 btrfs_update_root_times(trans
, root
);
3913 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3915 btrfs_set_inode_last_trans(trans
, inode
);
3919 return btrfs_update_inode_item(trans
, root
, inode
);
3922 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3923 struct btrfs_root
*root
,
3924 struct inode
*inode
)
3928 ret
= btrfs_update_inode(trans
, root
, inode
);
3930 return btrfs_update_inode_item(trans
, root
, inode
);
3935 * unlink helper that gets used here in inode.c and in the tree logging
3936 * recovery code. It remove a link in a directory with a given name, and
3937 * also drops the back refs in the inode to the directory
3939 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3940 struct btrfs_root
*root
,
3941 struct inode
*dir
, struct inode
*inode
,
3942 const char *name
, int name_len
)
3944 struct btrfs_path
*path
;
3946 struct extent_buffer
*leaf
;
3947 struct btrfs_dir_item
*di
;
3948 struct btrfs_key key
;
3950 u64 ino
= btrfs_ino(inode
);
3951 u64 dir_ino
= btrfs_ino(dir
);
3953 path
= btrfs_alloc_path();
3959 path
->leave_spinning
= 1;
3960 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3961 name
, name_len
, -1);
3970 leaf
= path
->nodes
[0];
3971 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3972 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3975 btrfs_release_path(path
);
3978 * If we don't have dir index, we have to get it by looking up
3979 * the inode ref, since we get the inode ref, remove it directly,
3980 * it is unnecessary to do delayed deletion.
3982 * But if we have dir index, needn't search inode ref to get it.
3983 * Since the inode ref is close to the inode item, it is better
3984 * that we delay to delete it, and just do this deletion when
3985 * we update the inode item.
3987 if (BTRFS_I(inode
)->dir_index
) {
3988 ret
= btrfs_delayed_delete_inode_ref(inode
);
3990 index
= BTRFS_I(inode
)->dir_index
;
3995 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3998 btrfs_info(root
->fs_info
,
3999 "failed to delete reference to %.*s, inode %llu parent %llu",
4000 name_len
, name
, ino
, dir_ino
);
4001 btrfs_abort_transaction(trans
, root
, ret
);
4005 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4007 btrfs_abort_transaction(trans
, root
, ret
);
4011 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
4013 if (ret
!= 0 && ret
!= -ENOENT
) {
4014 btrfs_abort_transaction(trans
, root
, ret
);
4018 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
4023 btrfs_abort_transaction(trans
, root
, ret
);
4025 btrfs_free_path(path
);
4029 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4030 inode_inc_iversion(inode
);
4031 inode_inc_iversion(dir
);
4032 inode
->i_ctime
= dir
->i_mtime
=
4033 dir
->i_ctime
= current_fs_time(inode
->i_sb
);
4034 ret
= btrfs_update_inode(trans
, root
, dir
);
4039 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4040 struct btrfs_root
*root
,
4041 struct inode
*dir
, struct inode
*inode
,
4042 const char *name
, int name_len
)
4045 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4048 ret
= btrfs_update_inode(trans
, root
, inode
);
4054 * helper to start transaction for unlink and rmdir.
4056 * unlink and rmdir are special in btrfs, they do not always free space, so
4057 * if we cannot make our reservations the normal way try and see if there is
4058 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4059 * allow the unlink to occur.
4061 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4063 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4066 * 1 for the possible orphan item
4067 * 1 for the dir item
4068 * 1 for the dir index
4069 * 1 for the inode ref
4072 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4075 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4077 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4078 struct btrfs_trans_handle
*trans
;
4079 struct inode
*inode
= d_inode(dentry
);
4082 trans
= __unlink_start_trans(dir
);
4084 return PTR_ERR(trans
);
4086 btrfs_record_unlink_dir(trans
, dir
, d_inode(dentry
), 0);
4088 ret
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4089 dentry
->d_name
.name
, dentry
->d_name
.len
);
4093 if (inode
->i_nlink
== 0) {
4094 ret
= btrfs_orphan_add(trans
, inode
);
4100 btrfs_end_transaction(trans
, root
);
4101 btrfs_btree_balance_dirty(root
);
4105 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4106 struct btrfs_root
*root
,
4107 struct inode
*dir
, u64 objectid
,
4108 const char *name
, int name_len
)
4110 struct btrfs_path
*path
;
4111 struct extent_buffer
*leaf
;
4112 struct btrfs_dir_item
*di
;
4113 struct btrfs_key key
;
4116 u64 dir_ino
= btrfs_ino(dir
);
4118 path
= btrfs_alloc_path();
4122 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4123 name
, name_len
, -1);
4124 if (IS_ERR_OR_NULL(di
)) {
4132 leaf
= path
->nodes
[0];
4133 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4134 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4135 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4137 btrfs_abort_transaction(trans
, root
, ret
);
4140 btrfs_release_path(path
);
4142 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
4143 objectid
, root
->root_key
.objectid
,
4144 dir_ino
, &index
, name
, name_len
);
4146 if (ret
!= -ENOENT
) {
4147 btrfs_abort_transaction(trans
, root
, ret
);
4150 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4152 if (IS_ERR_OR_NULL(di
)) {
4157 btrfs_abort_transaction(trans
, root
, ret
);
4161 leaf
= path
->nodes
[0];
4162 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4163 btrfs_release_path(path
);
4166 btrfs_release_path(path
);
4168 ret
= btrfs_delete_delayed_dir_index(trans
, root
, dir
, index
);
4170 btrfs_abort_transaction(trans
, root
, ret
);
4174 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
4175 inode_inc_iversion(dir
);
4176 dir
->i_mtime
= dir
->i_ctime
= current_fs_time(dir
->i_sb
);
4177 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4179 btrfs_abort_transaction(trans
, root
, ret
);
4181 btrfs_free_path(path
);
4185 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4187 struct inode
*inode
= d_inode(dentry
);
4189 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4190 struct btrfs_trans_handle
*trans
;
4192 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4194 if (btrfs_ino(inode
) == BTRFS_FIRST_FREE_OBJECTID
)
4197 trans
= __unlink_start_trans(dir
);
4199 return PTR_ERR(trans
);
4201 if (unlikely(btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4202 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4203 BTRFS_I(inode
)->location
.objectid
,
4204 dentry
->d_name
.name
,
4205 dentry
->d_name
.len
);
4209 err
= btrfs_orphan_add(trans
, inode
);
4213 /* now the directory is empty */
4214 err
= btrfs_unlink_inode(trans
, root
, dir
, d_inode(dentry
),
4215 dentry
->d_name
.name
, dentry
->d_name
.len
);
4217 btrfs_i_size_write(inode
, 0);
4219 btrfs_end_transaction(trans
, root
);
4220 btrfs_btree_balance_dirty(root
);
4225 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4226 struct btrfs_root
*root
,
4232 * This is only used to apply pressure to the enospc system, we don't
4233 * intend to use this reservation at all.
4235 bytes_deleted
= btrfs_csum_bytes_to_leaves(root
, bytes_deleted
);
4236 bytes_deleted
*= root
->nodesize
;
4237 ret
= btrfs_block_rsv_add(root
, &root
->fs_info
->trans_block_rsv
,
4238 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4240 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4243 trans
->bytes_reserved
+= bytes_deleted
;
4249 static int truncate_inline_extent(struct inode
*inode
,
4250 struct btrfs_path
*path
,
4251 struct btrfs_key
*found_key
,
4255 struct extent_buffer
*leaf
= path
->nodes
[0];
4256 int slot
= path
->slots
[0];
4257 struct btrfs_file_extent_item
*fi
;
4258 u32 size
= (u32
)(new_size
- found_key
->offset
);
4259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4261 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4263 if (btrfs_file_extent_compression(leaf
, fi
) != BTRFS_COMPRESS_NONE
) {
4264 loff_t offset
= new_size
;
4265 loff_t page_end
= ALIGN(offset
, PAGE_SIZE
);
4268 * Zero out the remaining of the last page of our inline extent,
4269 * instead of directly truncating our inline extent here - that
4270 * would be much more complex (decompressing all the data, then
4271 * compressing the truncated data, which might be bigger than
4272 * the size of the inline extent, resize the extent, etc).
4273 * We release the path because to get the page we might need to
4274 * read the extent item from disk (data not in the page cache).
4276 btrfs_release_path(path
);
4277 return btrfs_truncate_block(inode
, offset
, page_end
- offset
,
4281 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4282 size
= btrfs_file_extent_calc_inline_size(size
);
4283 btrfs_truncate_item(root
, path
, size
, 1);
4285 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4286 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4292 * this can truncate away extent items, csum items and directory items.
4293 * It starts at a high offset and removes keys until it can't find
4294 * any higher than new_size
4296 * csum items that cross the new i_size are truncated to the new size
4299 * min_type is the minimum key type to truncate down to. If set to 0, this
4300 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4302 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4303 struct btrfs_root
*root
,
4304 struct inode
*inode
,
4305 u64 new_size
, u32 min_type
)
4307 struct btrfs_path
*path
;
4308 struct extent_buffer
*leaf
;
4309 struct btrfs_file_extent_item
*fi
;
4310 struct btrfs_key key
;
4311 struct btrfs_key found_key
;
4312 u64 extent_start
= 0;
4313 u64 extent_num_bytes
= 0;
4314 u64 extent_offset
= 0;
4316 u64 last_size
= new_size
;
4317 u32 found_type
= (u8
)-1;
4320 int pending_del_nr
= 0;
4321 int pending_del_slot
= 0;
4322 int extent_type
= -1;
4325 u64 ino
= btrfs_ino(inode
);
4326 u64 bytes_deleted
= 0;
4328 bool should_throttle
= 0;
4329 bool should_end
= 0;
4331 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4334 * for non-free space inodes and ref cows, we want to back off from
4337 if (!btrfs_is_free_space_inode(inode
) &&
4338 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4341 path
= btrfs_alloc_path();
4344 path
->reada
= READA_BACK
;
4347 * We want to drop from the next block forward in case this new size is
4348 * not block aligned since we will be keeping the last block of the
4349 * extent just the way it is.
4351 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4352 root
== root
->fs_info
->tree_root
)
4353 btrfs_drop_extent_cache(inode
, ALIGN(new_size
,
4354 root
->sectorsize
), (u64
)-1, 0);
4357 * This function is also used to drop the items in the log tree before
4358 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4359 * it is used to drop the loged items. So we shouldn't kill the delayed
4362 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4363 btrfs_kill_delayed_inode_items(inode
);
4366 key
.offset
= (u64
)-1;
4371 * with a 16K leaf size and 128MB extents, you can actually queue
4372 * up a huge file in a single leaf. Most of the time that
4373 * bytes_deleted is > 0, it will be huge by the time we get here
4375 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4376 if (btrfs_should_end_transaction(trans
, root
)) {
4383 path
->leave_spinning
= 1;
4384 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4391 /* there are no items in the tree for us to truncate, we're
4394 if (path
->slots
[0] == 0)
4401 leaf
= path
->nodes
[0];
4402 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4403 found_type
= found_key
.type
;
4405 if (found_key
.objectid
!= ino
)
4408 if (found_type
< min_type
)
4411 item_end
= found_key
.offset
;
4412 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4413 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4414 struct btrfs_file_extent_item
);
4415 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4416 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4418 btrfs_file_extent_num_bytes(leaf
, fi
);
4419 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4420 item_end
+= btrfs_file_extent_inline_len(leaf
,
4421 path
->slots
[0], fi
);
4425 if (found_type
> min_type
) {
4428 if (item_end
< new_size
)
4430 if (found_key
.offset
>= new_size
)
4436 /* FIXME, shrink the extent if the ref count is only 1 */
4437 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4441 last_size
= found_key
.offset
;
4443 last_size
= new_size
;
4445 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4447 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4449 u64 orig_num_bytes
=
4450 btrfs_file_extent_num_bytes(leaf
, fi
);
4451 extent_num_bytes
= ALIGN(new_size
-
4454 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4456 num_dec
= (orig_num_bytes
-
4458 if (test_bit(BTRFS_ROOT_REF_COWS
,
4461 inode_sub_bytes(inode
, num_dec
);
4462 btrfs_mark_buffer_dirty(leaf
);
4465 btrfs_file_extent_disk_num_bytes(leaf
,
4467 extent_offset
= found_key
.offset
-
4468 btrfs_file_extent_offset(leaf
, fi
);
4470 /* FIXME blocksize != 4096 */
4471 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4472 if (extent_start
!= 0) {
4474 if (test_bit(BTRFS_ROOT_REF_COWS
,
4476 inode_sub_bytes(inode
, num_dec
);
4479 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4481 * we can't truncate inline items that have had
4485 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4486 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
4489 * Need to release path in order to truncate a
4490 * compressed extent. So delete any accumulated
4491 * extent items so far.
4493 if (btrfs_file_extent_compression(leaf
, fi
) !=
4494 BTRFS_COMPRESS_NONE
&& pending_del_nr
) {
4495 err
= btrfs_del_items(trans
, root
, path
,
4499 btrfs_abort_transaction(trans
,
4507 err
= truncate_inline_extent(inode
, path
,
4512 btrfs_abort_transaction(trans
,
4516 } else if (test_bit(BTRFS_ROOT_REF_COWS
,
4518 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4523 if (!pending_del_nr
) {
4524 /* no pending yet, add ourselves */
4525 pending_del_slot
= path
->slots
[0];
4527 } else if (pending_del_nr
&&
4528 path
->slots
[0] + 1 == pending_del_slot
) {
4529 /* hop on the pending chunk */
4531 pending_del_slot
= path
->slots
[0];
4538 should_throttle
= 0;
4541 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4542 root
== root
->fs_info
->tree_root
)) {
4543 btrfs_set_path_blocking(path
);
4544 bytes_deleted
+= extent_num_bytes
;
4545 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4546 extent_num_bytes
, 0,
4547 btrfs_header_owner(leaf
),
4548 ino
, extent_offset
);
4550 if (btrfs_should_throttle_delayed_refs(trans
, root
))
4551 btrfs_async_run_delayed_refs(root
,
4552 trans
->delayed_ref_updates
* 2, 0);
4554 if (truncate_space_check(trans
, root
,
4555 extent_num_bytes
)) {
4558 if (btrfs_should_throttle_delayed_refs(trans
,
4560 should_throttle
= 1;
4565 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4568 if (path
->slots
[0] == 0 ||
4569 path
->slots
[0] != pending_del_slot
||
4570 should_throttle
|| should_end
) {
4571 if (pending_del_nr
) {
4572 ret
= btrfs_del_items(trans
, root
, path
,
4576 btrfs_abort_transaction(trans
,
4582 btrfs_release_path(path
);
4583 if (should_throttle
) {
4584 unsigned long updates
= trans
->delayed_ref_updates
;
4586 trans
->delayed_ref_updates
= 0;
4587 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4593 * if we failed to refill our space rsv, bail out
4594 * and let the transaction restart
4606 if (pending_del_nr
) {
4607 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4610 btrfs_abort_transaction(trans
, root
, ret
);
4613 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4614 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4616 btrfs_free_path(path
);
4618 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4619 unsigned long updates
= trans
->delayed_ref_updates
;
4621 trans
->delayed_ref_updates
= 0;
4622 ret
= btrfs_run_delayed_refs(trans
, root
, updates
* 2);
4631 * btrfs_truncate_block - read, zero a chunk and write a block
4632 * @inode - inode that we're zeroing
4633 * @from - the offset to start zeroing
4634 * @len - the length to zero, 0 to zero the entire range respective to the
4636 * @front - zero up to the offset instead of from the offset on
4638 * This will find the block for the "from" offset and cow the block and zero the
4639 * part we want to zero. This is used with truncate and hole punching.
4641 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4644 struct address_space
*mapping
= inode
->i_mapping
;
4645 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4646 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4647 struct btrfs_ordered_extent
*ordered
;
4648 struct extent_state
*cached_state
= NULL
;
4650 u32 blocksize
= root
->sectorsize
;
4651 pgoff_t index
= from
>> PAGE_SHIFT
;
4652 unsigned offset
= from
& (blocksize
- 1);
4654 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4659 if ((offset
& (blocksize
- 1)) == 0 &&
4660 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4663 ret
= btrfs_delalloc_reserve_space(inode
,
4664 round_down(from
, blocksize
), blocksize
);
4669 page
= find_or_create_page(mapping
, index
, mask
);
4671 btrfs_delalloc_release_space(inode
,
4672 round_down(from
, blocksize
),
4678 block_start
= round_down(from
, blocksize
);
4679 block_end
= block_start
+ blocksize
- 1;
4681 if (!PageUptodate(page
)) {
4682 ret
= btrfs_readpage(NULL
, page
);
4684 if (page
->mapping
!= mapping
) {
4689 if (!PageUptodate(page
)) {
4694 wait_on_page_writeback(page
);
4696 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4697 set_page_extent_mapped(page
);
4699 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4701 unlock_extent_cached(io_tree
, block_start
, block_end
,
4702 &cached_state
, GFP_NOFS
);
4705 btrfs_start_ordered_extent(inode
, ordered
, 1);
4706 btrfs_put_ordered_extent(ordered
);
4710 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4711 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4712 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4713 0, 0, &cached_state
, GFP_NOFS
);
4715 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
,
4718 unlock_extent_cached(io_tree
, block_start
, block_end
,
4719 &cached_state
, GFP_NOFS
);
4723 if (offset
!= blocksize
) {
4725 len
= blocksize
- offset
;
4728 memset(kaddr
+ (block_start
- page_offset(page
)),
4731 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4733 flush_dcache_page(page
);
4736 ClearPageChecked(page
);
4737 set_page_dirty(page
);
4738 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4743 btrfs_delalloc_release_space(inode
, block_start
,
4751 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4752 u64 offset
, u64 len
)
4754 struct btrfs_trans_handle
*trans
;
4758 * Still need to make sure the inode looks like it's been updated so
4759 * that any holes get logged if we fsync.
4761 if (btrfs_fs_incompat(root
->fs_info
, NO_HOLES
)) {
4762 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
4763 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4764 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4769 * 1 - for the one we're dropping
4770 * 1 - for the one we're adding
4771 * 1 - for updating the inode.
4773 trans
= btrfs_start_transaction(root
, 3);
4775 return PTR_ERR(trans
);
4777 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4779 btrfs_abort_transaction(trans
, root
, ret
);
4780 btrfs_end_transaction(trans
, root
);
4784 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
), offset
,
4785 0, 0, len
, 0, len
, 0, 0, 0);
4787 btrfs_abort_transaction(trans
, root
, ret
);
4789 btrfs_update_inode(trans
, root
, inode
);
4790 btrfs_end_transaction(trans
, root
);
4795 * This function puts in dummy file extents for the area we're creating a hole
4796 * for. So if we are truncating this file to a larger size we need to insert
4797 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4798 * the range between oldsize and size
4800 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4802 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4803 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4804 struct extent_map
*em
= NULL
;
4805 struct extent_state
*cached_state
= NULL
;
4806 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4807 u64 hole_start
= ALIGN(oldsize
, root
->sectorsize
);
4808 u64 block_end
= ALIGN(size
, root
->sectorsize
);
4815 * If our size started in the middle of a block we need to zero out the
4816 * rest of the block before we expand the i_size, otherwise we could
4817 * expose stale data.
4819 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4823 if (size
<= hole_start
)
4827 struct btrfs_ordered_extent
*ordered
;
4829 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4831 ordered
= btrfs_lookup_ordered_range(inode
, hole_start
,
4832 block_end
- hole_start
);
4835 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4836 &cached_state
, GFP_NOFS
);
4837 btrfs_start_ordered_extent(inode
, ordered
, 1);
4838 btrfs_put_ordered_extent(ordered
);
4841 cur_offset
= hole_start
;
4843 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
4844 block_end
- cur_offset
, 0);
4850 last_byte
= min(extent_map_end(em
), block_end
);
4851 last_byte
= ALIGN(last_byte
, root
->sectorsize
);
4852 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4853 struct extent_map
*hole_em
;
4854 hole_size
= last_byte
- cur_offset
;
4856 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4860 btrfs_drop_extent_cache(inode
, cur_offset
,
4861 cur_offset
+ hole_size
- 1, 0);
4862 hole_em
= alloc_extent_map();
4864 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4865 &BTRFS_I(inode
)->runtime_flags
);
4868 hole_em
->start
= cur_offset
;
4869 hole_em
->len
= hole_size
;
4870 hole_em
->orig_start
= cur_offset
;
4872 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4873 hole_em
->block_len
= 0;
4874 hole_em
->orig_block_len
= 0;
4875 hole_em
->ram_bytes
= hole_size
;
4876 hole_em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4877 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4878 hole_em
->generation
= root
->fs_info
->generation
;
4881 write_lock(&em_tree
->lock
);
4882 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4883 write_unlock(&em_tree
->lock
);
4886 btrfs_drop_extent_cache(inode
, cur_offset
,
4890 free_extent_map(hole_em
);
4893 free_extent_map(em
);
4895 cur_offset
= last_byte
;
4896 if (cur_offset
>= block_end
)
4899 free_extent_map(em
);
4900 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4905 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4907 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4908 struct btrfs_trans_handle
*trans
;
4909 loff_t oldsize
= i_size_read(inode
);
4910 loff_t newsize
= attr
->ia_size
;
4911 int mask
= attr
->ia_valid
;
4915 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4916 * special case where we need to update the times despite not having
4917 * these flags set. For all other operations the VFS set these flags
4918 * explicitly if it wants a timestamp update.
4920 if (newsize
!= oldsize
) {
4921 inode_inc_iversion(inode
);
4922 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
4923 inode
->i_ctime
= inode
->i_mtime
=
4924 current_fs_time(inode
->i_sb
);
4927 if (newsize
> oldsize
) {
4929 * Don't do an expanding truncate while snapshoting is ongoing.
4930 * This is to ensure the snapshot captures a fully consistent
4931 * state of this file - if the snapshot captures this expanding
4932 * truncation, it must capture all writes that happened before
4935 btrfs_wait_for_snapshot_creation(root
);
4936 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
4938 btrfs_end_write_no_snapshoting(root
);
4942 trans
= btrfs_start_transaction(root
, 1);
4943 if (IS_ERR(trans
)) {
4944 btrfs_end_write_no_snapshoting(root
);
4945 return PTR_ERR(trans
);
4948 i_size_write(inode
, newsize
);
4949 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
4950 pagecache_isize_extended(inode
, oldsize
, newsize
);
4951 ret
= btrfs_update_inode(trans
, root
, inode
);
4952 btrfs_end_write_no_snapshoting(root
);
4953 btrfs_end_transaction(trans
, root
);
4957 * We're truncating a file that used to have good data down to
4958 * zero. Make sure it gets into the ordered flush list so that
4959 * any new writes get down to disk quickly.
4962 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
4963 &BTRFS_I(inode
)->runtime_flags
);
4966 * 1 for the orphan item we're going to add
4967 * 1 for the orphan item deletion.
4969 trans
= btrfs_start_transaction(root
, 2);
4971 return PTR_ERR(trans
);
4974 * We need to do this in case we fail at _any_ point during the
4975 * actual truncate. Once we do the truncate_setsize we could
4976 * invalidate pages which forces any outstanding ordered io to
4977 * be instantly completed which will give us extents that need
4978 * to be truncated. If we fail to get an orphan inode down we
4979 * could have left over extents that were never meant to live,
4980 * so we need to guarantee from this point on that everything
4981 * will be consistent.
4983 ret
= btrfs_orphan_add(trans
, inode
);
4984 btrfs_end_transaction(trans
, root
);
4988 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4989 truncate_setsize(inode
, newsize
);
4991 /* Disable nonlocked read DIO to avoid the end less truncate */
4992 btrfs_inode_block_unlocked_dio(inode
);
4993 inode_dio_wait(inode
);
4994 btrfs_inode_resume_unlocked_dio(inode
);
4996 ret
= btrfs_truncate(inode
);
4997 if (ret
&& inode
->i_nlink
) {
5001 * failed to truncate, disk_i_size is only adjusted down
5002 * as we remove extents, so it should represent the true
5003 * size of the inode, so reset the in memory size and
5004 * delete our orphan entry.
5006 trans
= btrfs_join_transaction(root
);
5007 if (IS_ERR(trans
)) {
5008 btrfs_orphan_del(NULL
, inode
);
5011 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5012 err
= btrfs_orphan_del(trans
, inode
);
5014 btrfs_abort_transaction(trans
, root
, err
);
5015 btrfs_end_transaction(trans
, root
);
5022 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5024 struct inode
*inode
= d_inode(dentry
);
5025 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5028 if (btrfs_root_readonly(root
))
5031 err
= inode_change_ok(inode
, attr
);
5035 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5036 err
= btrfs_setsize(inode
, attr
);
5041 if (attr
->ia_valid
) {
5042 setattr_copy(inode
, attr
);
5043 inode_inc_iversion(inode
);
5044 err
= btrfs_dirty_inode(inode
);
5046 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5047 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5054 * While truncating the inode pages during eviction, we get the VFS calling
5055 * btrfs_invalidatepage() against each page of the inode. This is slow because
5056 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5057 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5058 * extent_state structures over and over, wasting lots of time.
5060 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5061 * those expensive operations on a per page basis and do only the ordered io
5062 * finishing, while we release here the extent_map and extent_state structures,
5063 * without the excessive merging and splitting.
5065 static void evict_inode_truncate_pages(struct inode
*inode
)
5067 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5068 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5069 struct rb_node
*node
;
5071 ASSERT(inode
->i_state
& I_FREEING
);
5072 truncate_inode_pages_final(&inode
->i_data
);
5074 write_lock(&map_tree
->lock
);
5075 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5076 struct extent_map
*em
;
5078 node
= rb_first(&map_tree
->map
);
5079 em
= rb_entry(node
, struct extent_map
, rb_node
);
5080 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5081 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5082 remove_extent_mapping(map_tree
, em
);
5083 free_extent_map(em
);
5084 if (need_resched()) {
5085 write_unlock(&map_tree
->lock
);
5087 write_lock(&map_tree
->lock
);
5090 write_unlock(&map_tree
->lock
);
5093 * Keep looping until we have no more ranges in the io tree.
5094 * We can have ongoing bios started by readpages (called from readahead)
5095 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5096 * still in progress (unlocked the pages in the bio but did not yet
5097 * unlocked the ranges in the io tree). Therefore this means some
5098 * ranges can still be locked and eviction started because before
5099 * submitting those bios, which are executed by a separate task (work
5100 * queue kthread), inode references (inode->i_count) were not taken
5101 * (which would be dropped in the end io callback of each bio).
5102 * Therefore here we effectively end up waiting for those bios and
5103 * anyone else holding locked ranges without having bumped the inode's
5104 * reference count - if we don't do it, when they access the inode's
5105 * io_tree to unlock a range it may be too late, leading to an
5106 * use-after-free issue.
5108 spin_lock(&io_tree
->lock
);
5109 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5110 struct extent_state
*state
;
5111 struct extent_state
*cached_state
= NULL
;
5115 node
= rb_first(&io_tree
->state
);
5116 state
= rb_entry(node
, struct extent_state
, rb_node
);
5117 start
= state
->start
;
5119 spin_unlock(&io_tree
->lock
);
5121 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5124 * If still has DELALLOC flag, the extent didn't reach disk,
5125 * and its reserved space won't be freed by delayed_ref.
5126 * So we need to free its reserved space here.
5127 * (Refer to comment in btrfs_invalidatepage, case 2)
5129 * Note, end is the bytenr of last byte, so we need + 1 here.
5131 if (state
->state
& EXTENT_DELALLOC
)
5132 btrfs_qgroup_free_data(inode
, start
, end
- start
+ 1);
5134 clear_extent_bit(io_tree
, start
, end
,
5135 EXTENT_LOCKED
| EXTENT_DIRTY
|
5136 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5137 EXTENT_DEFRAG
, 1, 1,
5138 &cached_state
, GFP_NOFS
);
5141 spin_lock(&io_tree
->lock
);
5143 spin_unlock(&io_tree
->lock
);
5146 void btrfs_evict_inode(struct inode
*inode
)
5148 struct btrfs_trans_handle
*trans
;
5149 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5150 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5151 int steal_from_global
= 0;
5152 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
5155 trace_btrfs_inode_evict(inode
);
5157 evict_inode_truncate_pages(inode
);
5159 if (inode
->i_nlink
&&
5160 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5161 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5162 btrfs_is_free_space_inode(inode
)))
5165 if (is_bad_inode(inode
)) {
5166 btrfs_orphan_del(NULL
, inode
);
5169 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5170 if (!special_file(inode
->i_mode
))
5171 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5173 btrfs_free_io_failure_record(inode
, 0, (u64
)-1);
5175 if (root
->fs_info
->log_root_recovering
) {
5176 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5177 &BTRFS_I(inode
)->runtime_flags
));
5181 if (inode
->i_nlink
> 0) {
5182 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5183 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5187 ret
= btrfs_commit_inode_delayed_inode(inode
);
5189 btrfs_orphan_del(NULL
, inode
);
5193 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
5195 btrfs_orphan_del(NULL
, inode
);
5198 rsv
->size
= min_size
;
5200 global_rsv
= &root
->fs_info
->global_block_rsv
;
5202 btrfs_i_size_write(inode
, 0);
5205 * This is a bit simpler than btrfs_truncate since we've already
5206 * reserved our space for our orphan item in the unlink, so we just
5207 * need to reserve some slack space in case we add bytes and update
5208 * inode item when doing the truncate.
5211 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5212 BTRFS_RESERVE_FLUSH_LIMIT
);
5215 * Try and steal from the global reserve since we will
5216 * likely not use this space anyway, we want to try as
5217 * hard as possible to get this to work.
5220 steal_from_global
++;
5222 steal_from_global
= 0;
5226 * steal_from_global == 0: we reserved stuff, hooray!
5227 * steal_from_global == 1: we didn't reserve stuff, boo!
5228 * steal_from_global == 2: we've committed, still not a lot of
5229 * room but maybe we'll have room in the global reserve this
5231 * steal_from_global == 3: abandon all hope!
5233 if (steal_from_global
> 2) {
5234 btrfs_warn(root
->fs_info
,
5235 "Could not get space for a delete, will truncate on mount %d",
5237 btrfs_orphan_del(NULL
, inode
);
5238 btrfs_free_block_rsv(root
, rsv
);
5242 trans
= btrfs_join_transaction(root
);
5243 if (IS_ERR(trans
)) {
5244 btrfs_orphan_del(NULL
, inode
);
5245 btrfs_free_block_rsv(root
, rsv
);
5250 * We can't just steal from the global reserve, we need to make
5251 * sure there is room to do it, if not we need to commit and try
5254 if (steal_from_global
) {
5255 if (!btrfs_check_space_for_delayed_refs(trans
, root
))
5256 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5263 * Couldn't steal from the global reserve, we have too much
5264 * pending stuff built up, commit the transaction and try it
5268 ret
= btrfs_commit_transaction(trans
, root
);
5270 btrfs_orphan_del(NULL
, inode
);
5271 btrfs_free_block_rsv(root
, rsv
);
5276 steal_from_global
= 0;
5279 trans
->block_rsv
= rsv
;
5281 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5282 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5285 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5286 btrfs_end_transaction(trans
, root
);
5288 btrfs_btree_balance_dirty(root
);
5291 btrfs_free_block_rsv(root
, rsv
);
5294 * Errors here aren't a big deal, it just means we leave orphan items
5295 * in the tree. They will be cleaned up on the next mount.
5298 trans
->block_rsv
= root
->orphan_block_rsv
;
5299 btrfs_orphan_del(trans
, inode
);
5301 btrfs_orphan_del(NULL
, inode
);
5304 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
5305 if (!(root
== root
->fs_info
->tree_root
||
5306 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5307 btrfs_return_ino(root
, btrfs_ino(inode
));
5309 btrfs_end_transaction(trans
, root
);
5310 btrfs_btree_balance_dirty(root
);
5312 btrfs_remove_delayed_node(inode
);
5317 * this returns the key found in the dir entry in the location pointer.
5318 * If no dir entries were found, location->objectid is 0.
5320 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5321 struct btrfs_key
*location
)
5323 const char *name
= dentry
->d_name
.name
;
5324 int namelen
= dentry
->d_name
.len
;
5325 struct btrfs_dir_item
*di
;
5326 struct btrfs_path
*path
;
5327 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5330 path
= btrfs_alloc_path();
5334 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(dir
), name
,
5339 if (IS_ERR_OR_NULL(di
))
5342 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5344 btrfs_free_path(path
);
5347 location
->objectid
= 0;
5352 * when we hit a tree root in a directory, the btrfs part of the inode
5353 * needs to be changed to reflect the root directory of the tree root. This
5354 * is kind of like crossing a mount point.
5356 static int fixup_tree_root_location(struct btrfs_root
*root
,
5358 struct dentry
*dentry
,
5359 struct btrfs_key
*location
,
5360 struct btrfs_root
**sub_root
)
5362 struct btrfs_path
*path
;
5363 struct btrfs_root
*new_root
;
5364 struct btrfs_root_ref
*ref
;
5365 struct extent_buffer
*leaf
;
5366 struct btrfs_key key
;
5370 path
= btrfs_alloc_path();
5377 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5378 key
.type
= BTRFS_ROOT_REF_KEY
;
5379 key
.offset
= location
->objectid
;
5381 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
, &key
, path
,
5389 leaf
= path
->nodes
[0];
5390 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5391 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(dir
) ||
5392 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5395 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5396 (unsigned long)(ref
+ 1),
5397 dentry
->d_name
.len
);
5401 btrfs_release_path(path
);
5403 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
5404 if (IS_ERR(new_root
)) {
5405 err
= PTR_ERR(new_root
);
5409 *sub_root
= new_root
;
5410 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5411 location
->type
= BTRFS_INODE_ITEM_KEY
;
5412 location
->offset
= 0;
5415 btrfs_free_path(path
);
5419 static void inode_tree_add(struct inode
*inode
)
5421 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5422 struct btrfs_inode
*entry
;
5424 struct rb_node
*parent
;
5425 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5426 u64 ino
= btrfs_ino(inode
);
5428 if (inode_unhashed(inode
))
5431 spin_lock(&root
->inode_lock
);
5432 p
= &root
->inode_tree
.rb_node
;
5435 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5437 if (ino
< btrfs_ino(&entry
->vfs_inode
))
5438 p
= &parent
->rb_left
;
5439 else if (ino
> btrfs_ino(&entry
->vfs_inode
))
5440 p
= &parent
->rb_right
;
5442 WARN_ON(!(entry
->vfs_inode
.i_state
&
5443 (I_WILL_FREE
| I_FREEING
)));
5444 rb_replace_node(parent
, new, &root
->inode_tree
);
5445 RB_CLEAR_NODE(parent
);
5446 spin_unlock(&root
->inode_lock
);
5450 rb_link_node(new, parent
, p
);
5451 rb_insert_color(new, &root
->inode_tree
);
5452 spin_unlock(&root
->inode_lock
);
5455 static void inode_tree_del(struct inode
*inode
)
5457 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5460 spin_lock(&root
->inode_lock
);
5461 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5462 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5463 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5464 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5466 spin_unlock(&root
->inode_lock
);
5468 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5469 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
5470 spin_lock(&root
->inode_lock
);
5471 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5472 spin_unlock(&root
->inode_lock
);
5474 btrfs_add_dead_root(root
);
5478 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5480 struct rb_node
*node
;
5481 struct rb_node
*prev
;
5482 struct btrfs_inode
*entry
;
5483 struct inode
*inode
;
5486 if (!test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
5487 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5489 spin_lock(&root
->inode_lock
);
5491 node
= root
->inode_tree
.rb_node
;
5495 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5497 if (objectid
< btrfs_ino(&entry
->vfs_inode
))
5498 node
= node
->rb_left
;
5499 else if (objectid
> btrfs_ino(&entry
->vfs_inode
))
5500 node
= node
->rb_right
;
5506 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5507 if (objectid
<= btrfs_ino(&entry
->vfs_inode
)) {
5511 prev
= rb_next(prev
);
5515 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5516 objectid
= btrfs_ino(&entry
->vfs_inode
) + 1;
5517 inode
= igrab(&entry
->vfs_inode
);
5519 spin_unlock(&root
->inode_lock
);
5520 if (atomic_read(&inode
->i_count
) > 1)
5521 d_prune_aliases(inode
);
5523 * btrfs_drop_inode will have it removed from
5524 * the inode cache when its usage count
5529 spin_lock(&root
->inode_lock
);
5533 if (cond_resched_lock(&root
->inode_lock
))
5536 node
= rb_next(node
);
5538 spin_unlock(&root
->inode_lock
);
5541 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5543 struct btrfs_iget_args
*args
= p
;
5544 inode
->i_ino
= args
->location
->objectid
;
5545 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5546 sizeof(*args
->location
));
5547 BTRFS_I(inode
)->root
= args
->root
;
5551 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5553 struct btrfs_iget_args
*args
= opaque
;
5554 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5555 args
->root
== BTRFS_I(inode
)->root
;
5558 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5559 struct btrfs_key
*location
,
5560 struct btrfs_root
*root
)
5562 struct inode
*inode
;
5563 struct btrfs_iget_args args
;
5564 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5566 args
.location
= location
;
5569 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5570 btrfs_init_locked_inode
,
5575 /* Get an inode object given its location and corresponding root.
5576 * Returns in *is_new if the inode was read from disk
5578 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5579 struct btrfs_root
*root
, int *new)
5581 struct inode
*inode
;
5583 inode
= btrfs_iget_locked(s
, location
, root
);
5585 return ERR_PTR(-ENOMEM
);
5587 if (inode
->i_state
& I_NEW
) {
5588 btrfs_read_locked_inode(inode
);
5589 if (!is_bad_inode(inode
)) {
5590 inode_tree_add(inode
);
5591 unlock_new_inode(inode
);
5595 unlock_new_inode(inode
);
5597 inode
= ERR_PTR(-ESTALE
);
5604 static struct inode
*new_simple_dir(struct super_block
*s
,
5605 struct btrfs_key
*key
,
5606 struct btrfs_root
*root
)
5608 struct inode
*inode
= new_inode(s
);
5611 return ERR_PTR(-ENOMEM
);
5613 BTRFS_I(inode
)->root
= root
;
5614 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5615 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5617 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5618 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5619 inode
->i_fop
= &simple_dir_operations
;
5620 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5621 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
5622 inode
->i_atime
= inode
->i_mtime
;
5623 inode
->i_ctime
= inode
->i_mtime
;
5624 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5629 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5631 struct inode
*inode
;
5632 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5633 struct btrfs_root
*sub_root
= root
;
5634 struct btrfs_key location
;
5638 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5639 return ERR_PTR(-ENAMETOOLONG
);
5641 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5643 return ERR_PTR(ret
);
5645 if (location
.objectid
== 0)
5646 return ERR_PTR(-ENOENT
);
5648 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5649 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5653 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
5655 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
5656 ret
= fixup_tree_root_location(root
, dir
, dentry
,
5657 &location
, &sub_root
);
5660 inode
= ERR_PTR(ret
);
5662 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5664 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5666 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
5668 if (!IS_ERR(inode
) && root
!= sub_root
) {
5669 down_read(&root
->fs_info
->cleanup_work_sem
);
5670 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
))
5671 ret
= btrfs_orphan_cleanup(sub_root
);
5672 up_read(&root
->fs_info
->cleanup_work_sem
);
5675 inode
= ERR_PTR(ret
);
5682 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5684 struct btrfs_root
*root
;
5685 struct inode
*inode
= d_inode(dentry
);
5687 if (!inode
&& !IS_ROOT(dentry
))
5688 inode
= d_inode(dentry
->d_parent
);
5691 root
= BTRFS_I(inode
)->root
;
5692 if (btrfs_root_refs(&root
->root_item
) == 0)
5695 if (btrfs_ino(inode
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5701 static void btrfs_dentry_release(struct dentry
*dentry
)
5703 kfree(dentry
->d_fsdata
);
5706 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5709 struct inode
*inode
;
5711 inode
= btrfs_lookup_dentry(dir
, dentry
);
5712 if (IS_ERR(inode
)) {
5713 if (PTR_ERR(inode
) == -ENOENT
)
5716 return ERR_CAST(inode
);
5719 return d_splice_alias(inode
, dentry
);
5722 unsigned char btrfs_filetype_table
[] = {
5723 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5726 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5728 struct inode
*inode
= file_inode(file
);
5729 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5730 struct btrfs_item
*item
;
5731 struct btrfs_dir_item
*di
;
5732 struct btrfs_key key
;
5733 struct btrfs_key found_key
;
5734 struct btrfs_path
*path
;
5735 struct list_head ins_list
;
5736 struct list_head del_list
;
5738 struct extent_buffer
*leaf
;
5740 unsigned char d_type
;
5745 int key_type
= BTRFS_DIR_INDEX_KEY
;
5749 int is_curr
= 0; /* ctx->pos points to the current index? */
5752 /* FIXME, use a real flag for deciding about the key type */
5753 if (root
->fs_info
->tree_root
== root
)
5754 key_type
= BTRFS_DIR_ITEM_KEY
;
5756 if (!dir_emit_dots(file
, ctx
))
5759 path
= btrfs_alloc_path();
5763 path
->reada
= READA_FORWARD
;
5765 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5766 INIT_LIST_HEAD(&ins_list
);
5767 INIT_LIST_HEAD(&del_list
);
5768 btrfs_get_delayed_items(inode
, &ins_list
, &del_list
);
5771 key
.type
= key_type
;
5772 key
.offset
= ctx
->pos
;
5773 key
.objectid
= btrfs_ino(inode
);
5775 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5781 leaf
= path
->nodes
[0];
5782 slot
= path
->slots
[0];
5783 if (slot
>= btrfs_header_nritems(leaf
)) {
5784 ret
= btrfs_next_leaf(root
, path
);
5792 item
= btrfs_item_nr(slot
);
5793 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5795 if (found_key
.objectid
!= key
.objectid
)
5797 if (found_key
.type
!= key_type
)
5799 if (found_key
.offset
< ctx
->pos
)
5801 if (key_type
== BTRFS_DIR_INDEX_KEY
&&
5802 btrfs_should_delete_dir_index(&del_list
,
5806 ctx
->pos
= found_key
.offset
;
5809 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5811 di_total
= btrfs_item_size(leaf
, item
);
5813 while (di_cur
< di_total
) {
5814 struct btrfs_key location
;
5816 if (verify_dir_item(root
, leaf
, di
))
5819 name_len
= btrfs_dir_name_len(leaf
, di
);
5820 if (name_len
<= sizeof(tmp_name
)) {
5821 name_ptr
= tmp_name
;
5823 name_ptr
= kmalloc(name_len
, GFP_KERNEL
);
5829 read_extent_buffer(leaf
, name_ptr
,
5830 (unsigned long)(di
+ 1), name_len
);
5832 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5833 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5836 /* is this a reference to our own snapshot? If so
5839 * In contrast to old kernels, we insert the snapshot's
5840 * dir item and dir index after it has been created, so
5841 * we won't find a reference to our own snapshot. We
5842 * still keep the following code for backward
5845 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
5846 location
.objectid
== root
->root_key
.objectid
) {
5850 over
= !dir_emit(ctx
, name_ptr
, name_len
,
5851 location
.objectid
, d_type
);
5854 if (name_ptr
!= tmp_name
)
5860 di_len
= btrfs_dir_name_len(leaf
, di
) +
5861 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
5863 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
5869 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5872 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
, &emitted
);
5878 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5879 * it was was set to the termination value in previous call. We assume
5880 * that "." and ".." were emitted if we reach this point and set the
5881 * termination value as well for an empty directory.
5883 if (ctx
->pos
> 2 && !emitted
)
5886 /* Reached end of directory/root. Bump pos past the last item. */
5890 * Stop new entries from being returned after we return the last
5893 * New directory entries are assigned a strictly increasing
5894 * offset. This means that new entries created during readdir
5895 * are *guaranteed* to be seen in the future by that readdir.
5896 * This has broken buggy programs which operate on names as
5897 * they're returned by readdir. Until we re-use freed offsets
5898 * we have this hack to stop new entries from being returned
5899 * under the assumption that they'll never reach this huge
5902 * This is being careful not to overflow 32bit loff_t unless the
5903 * last entry requires it because doing so has broken 32bit apps
5906 if (key_type
== BTRFS_DIR_INDEX_KEY
) {
5907 if (ctx
->pos
>= INT_MAX
)
5908 ctx
->pos
= LLONG_MAX
;
5915 if (key_type
== BTRFS_DIR_INDEX_KEY
)
5916 btrfs_put_delayed_items(&ins_list
, &del_list
);
5917 btrfs_free_path(path
);
5921 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5924 struct btrfs_trans_handle
*trans
;
5926 bool nolock
= false;
5928 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5931 if (btrfs_fs_closing(root
->fs_info
) && btrfs_is_free_space_inode(inode
))
5934 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
5936 trans
= btrfs_join_transaction_nolock(root
);
5938 trans
= btrfs_join_transaction(root
);
5940 return PTR_ERR(trans
);
5941 ret
= btrfs_commit_transaction(trans
, root
);
5947 * This is somewhat expensive, updating the tree every time the
5948 * inode changes. But, it is most likely to find the inode in cache.
5949 * FIXME, needs more benchmarking...there are no reasons other than performance
5950 * to keep or drop this code.
5952 static int btrfs_dirty_inode(struct inode
*inode
)
5954 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5955 struct btrfs_trans_handle
*trans
;
5958 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
5961 trans
= btrfs_join_transaction(root
);
5963 return PTR_ERR(trans
);
5965 ret
= btrfs_update_inode(trans
, root
, inode
);
5966 if (ret
&& ret
== -ENOSPC
) {
5967 /* whoops, lets try again with the full transaction */
5968 btrfs_end_transaction(trans
, root
);
5969 trans
= btrfs_start_transaction(root
, 1);
5971 return PTR_ERR(trans
);
5973 ret
= btrfs_update_inode(trans
, root
, inode
);
5975 btrfs_end_transaction(trans
, root
);
5976 if (BTRFS_I(inode
)->delayed_node
)
5977 btrfs_balance_delayed_items(root
);
5983 * This is a copy of file_update_time. We need this so we can return error on
5984 * ENOSPC for updating the inode in the case of file write and mmap writes.
5986 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
5989 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5991 if (btrfs_root_readonly(root
))
5994 if (flags
& S_VERSION
)
5995 inode_inc_iversion(inode
);
5996 if (flags
& S_CTIME
)
5997 inode
->i_ctime
= *now
;
5998 if (flags
& S_MTIME
)
5999 inode
->i_mtime
= *now
;
6000 if (flags
& S_ATIME
)
6001 inode
->i_atime
= *now
;
6002 return btrfs_dirty_inode(inode
);
6006 * find the highest existing sequence number in a directory
6007 * and then set the in-memory index_cnt variable to reflect
6008 * free sequence numbers
6010 static int btrfs_set_inode_index_count(struct inode
*inode
)
6012 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6013 struct btrfs_key key
, found_key
;
6014 struct btrfs_path
*path
;
6015 struct extent_buffer
*leaf
;
6018 key
.objectid
= btrfs_ino(inode
);
6019 key
.type
= BTRFS_DIR_INDEX_KEY
;
6020 key
.offset
= (u64
)-1;
6022 path
= btrfs_alloc_path();
6026 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6029 /* FIXME: we should be able to handle this */
6035 * MAGIC NUMBER EXPLANATION:
6036 * since we search a directory based on f_pos we have to start at 2
6037 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6038 * else has to start at 2
6040 if (path
->slots
[0] == 0) {
6041 BTRFS_I(inode
)->index_cnt
= 2;
6047 leaf
= path
->nodes
[0];
6048 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6050 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6051 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6052 BTRFS_I(inode
)->index_cnt
= 2;
6056 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
6058 btrfs_free_path(path
);
6063 * helper to find a free sequence number in a given directory. This current
6064 * code is very simple, later versions will do smarter things in the btree
6066 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
6070 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
6071 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6073 ret
= btrfs_set_inode_index_count(dir
);
6079 *index
= BTRFS_I(dir
)->index_cnt
;
6080 BTRFS_I(dir
)->index_cnt
++;
6085 static int btrfs_insert_inode_locked(struct inode
*inode
)
6087 struct btrfs_iget_args args
;
6088 args
.location
= &BTRFS_I(inode
)->location
;
6089 args
.root
= BTRFS_I(inode
)->root
;
6091 return insert_inode_locked4(inode
,
6092 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6093 btrfs_find_actor
, &args
);
6096 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6097 struct btrfs_root
*root
,
6099 const char *name
, int name_len
,
6100 u64 ref_objectid
, u64 objectid
,
6101 umode_t mode
, u64
*index
)
6103 struct inode
*inode
;
6104 struct btrfs_inode_item
*inode_item
;
6105 struct btrfs_key
*location
;
6106 struct btrfs_path
*path
;
6107 struct btrfs_inode_ref
*ref
;
6108 struct btrfs_key key
[2];
6110 int nitems
= name
? 2 : 1;
6114 path
= btrfs_alloc_path();
6116 return ERR_PTR(-ENOMEM
);
6118 inode
= new_inode(root
->fs_info
->sb
);
6120 btrfs_free_path(path
);
6121 return ERR_PTR(-ENOMEM
);
6125 * O_TMPFILE, set link count to 0, so that after this point,
6126 * we fill in an inode item with the correct link count.
6129 set_nlink(inode
, 0);
6132 * we have to initialize this early, so we can reclaim the inode
6133 * number if we fail afterwards in this function.
6135 inode
->i_ino
= objectid
;
6138 trace_btrfs_inode_request(dir
);
6140 ret
= btrfs_set_inode_index(dir
, index
);
6142 btrfs_free_path(path
);
6144 return ERR_PTR(ret
);
6150 * index_cnt is ignored for everything but a dir,
6151 * btrfs_get_inode_index_count has an explanation for the magic
6154 BTRFS_I(inode
)->index_cnt
= 2;
6155 BTRFS_I(inode
)->dir_index
= *index
;
6156 BTRFS_I(inode
)->root
= root
;
6157 BTRFS_I(inode
)->generation
= trans
->transid
;
6158 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6161 * We could have gotten an inode number from somebody who was fsynced
6162 * and then removed in this same transaction, so let's just set full
6163 * sync since it will be a full sync anyway and this will blow away the
6164 * old info in the log.
6166 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6168 key
[0].objectid
= objectid
;
6169 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6172 sizes
[0] = sizeof(struct btrfs_inode_item
);
6176 * Start new inodes with an inode_ref. This is slightly more
6177 * efficient for small numbers of hard links since they will
6178 * be packed into one item. Extended refs will kick in if we
6179 * add more hard links than can fit in the ref item.
6181 key
[1].objectid
= objectid
;
6182 key
[1].type
= BTRFS_INODE_REF_KEY
;
6183 key
[1].offset
= ref_objectid
;
6185 sizes
[1] = name_len
+ sizeof(*ref
);
6188 location
= &BTRFS_I(inode
)->location
;
6189 location
->objectid
= objectid
;
6190 location
->offset
= 0;
6191 location
->type
= BTRFS_INODE_ITEM_KEY
;
6193 ret
= btrfs_insert_inode_locked(inode
);
6197 path
->leave_spinning
= 1;
6198 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6202 inode_init_owner(inode
, dir
, mode
);
6203 inode_set_bytes(inode
, 0);
6205 inode
->i_mtime
= current_fs_time(inode
->i_sb
);
6206 inode
->i_atime
= inode
->i_mtime
;
6207 inode
->i_ctime
= inode
->i_mtime
;
6208 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6210 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6211 struct btrfs_inode_item
);
6212 memset_extent_buffer(path
->nodes
[0], 0, (unsigned long)inode_item
,
6213 sizeof(*inode_item
));
6214 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6217 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6218 struct btrfs_inode_ref
);
6219 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6220 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6221 ptr
= (unsigned long)(ref
+ 1);
6222 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6225 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6226 btrfs_free_path(path
);
6228 btrfs_inherit_iflags(inode
, dir
);
6230 if (S_ISREG(mode
)) {
6231 if (btrfs_test_opt(root
, NODATASUM
))
6232 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6233 if (btrfs_test_opt(root
, NODATACOW
))
6234 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6235 BTRFS_INODE_NODATASUM
;
6238 inode_tree_add(inode
);
6240 trace_btrfs_inode_new(inode
);
6241 btrfs_set_inode_last_trans(trans
, inode
);
6243 btrfs_update_root_times(trans
, root
);
6245 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6247 btrfs_err(root
->fs_info
,
6248 "error inheriting props for ino %llu (root %llu): %d",
6249 btrfs_ino(inode
), root
->root_key
.objectid
, ret
);
6254 unlock_new_inode(inode
);
6257 BTRFS_I(dir
)->index_cnt
--;
6258 btrfs_free_path(path
);
6260 return ERR_PTR(ret
);
6263 static inline u8
btrfs_inode_type(struct inode
*inode
)
6265 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6269 * utility function to add 'inode' into 'parent_inode' with
6270 * a give name and a given sequence number.
6271 * if 'add_backref' is true, also insert a backref from the
6272 * inode to the parent directory.
6274 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6275 struct inode
*parent_inode
, struct inode
*inode
,
6276 const char *name
, int name_len
, int add_backref
, u64 index
)
6279 struct btrfs_key key
;
6280 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
6281 u64 ino
= btrfs_ino(inode
);
6282 u64 parent_ino
= btrfs_ino(parent_inode
);
6284 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6285 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
6288 key
.type
= BTRFS_INODE_ITEM_KEY
;
6292 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6293 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
6294 key
.objectid
, root
->root_key
.objectid
,
6295 parent_ino
, index
, name
, name_len
);
6296 } else if (add_backref
) {
6297 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6301 /* Nothing to clean up yet */
6305 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6307 btrfs_inode_type(inode
), index
);
6308 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6311 btrfs_abort_transaction(trans
, root
, ret
);
6315 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
6317 inode_inc_iversion(parent_inode
);
6318 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
6319 current_fs_time(parent_inode
->i_sb
);
6320 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
6322 btrfs_abort_transaction(trans
, root
, ret
);
6326 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6329 err
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
6330 key
.objectid
, root
->root_key
.objectid
,
6331 parent_ino
, &local_index
, name
, name_len
);
6333 } else if (add_backref
) {
6337 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6338 ino
, parent_ino
, &local_index
);
6343 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6344 struct inode
*dir
, struct dentry
*dentry
,
6345 struct inode
*inode
, int backref
, u64 index
)
6347 int err
= btrfs_add_link(trans
, dir
, inode
,
6348 dentry
->d_name
.name
, dentry
->d_name
.len
,
6355 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6356 umode_t mode
, dev_t rdev
)
6358 struct btrfs_trans_handle
*trans
;
6359 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6360 struct inode
*inode
= NULL
;
6367 * 2 for inode item and ref
6369 * 1 for xattr if selinux is on
6371 trans
= btrfs_start_transaction(root
, 5);
6373 return PTR_ERR(trans
);
6375 err
= btrfs_find_free_ino(root
, &objectid
);
6379 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6380 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6382 if (IS_ERR(inode
)) {
6383 err
= PTR_ERR(inode
);
6388 * If the active LSM wants to access the inode during
6389 * d_instantiate it needs these. Smack checks to see
6390 * if the filesystem supports xattrs by looking at the
6393 inode
->i_op
= &btrfs_special_inode_operations
;
6394 init_special_inode(inode
, inode
->i_mode
, rdev
);
6396 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6398 goto out_unlock_inode
;
6400 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6402 goto out_unlock_inode
;
6404 btrfs_update_inode(trans
, root
, inode
);
6405 unlock_new_inode(inode
);
6406 d_instantiate(dentry
, inode
);
6410 btrfs_end_transaction(trans
, root
);
6411 btrfs_balance_delayed_items(root
);
6412 btrfs_btree_balance_dirty(root
);
6414 inode_dec_link_count(inode
);
6421 unlock_new_inode(inode
);
6426 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6427 umode_t mode
, bool excl
)
6429 struct btrfs_trans_handle
*trans
;
6430 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6431 struct inode
*inode
= NULL
;
6432 int drop_inode_on_err
= 0;
6438 * 2 for inode item and ref
6440 * 1 for xattr if selinux is on
6442 trans
= btrfs_start_transaction(root
, 5);
6444 return PTR_ERR(trans
);
6446 err
= btrfs_find_free_ino(root
, &objectid
);
6450 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6451 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6453 if (IS_ERR(inode
)) {
6454 err
= PTR_ERR(inode
);
6457 drop_inode_on_err
= 1;
6459 * If the active LSM wants to access the inode during
6460 * d_instantiate it needs these. Smack checks to see
6461 * if the filesystem supports xattrs by looking at the
6464 inode
->i_fop
= &btrfs_file_operations
;
6465 inode
->i_op
= &btrfs_file_inode_operations
;
6466 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6468 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6470 goto out_unlock_inode
;
6472 err
= btrfs_update_inode(trans
, root
, inode
);
6474 goto out_unlock_inode
;
6476 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
6478 goto out_unlock_inode
;
6480 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6481 unlock_new_inode(inode
);
6482 d_instantiate(dentry
, inode
);
6485 btrfs_end_transaction(trans
, root
);
6486 if (err
&& drop_inode_on_err
) {
6487 inode_dec_link_count(inode
);
6490 btrfs_balance_delayed_items(root
);
6491 btrfs_btree_balance_dirty(root
);
6495 unlock_new_inode(inode
);
6500 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6501 struct dentry
*dentry
)
6503 struct btrfs_trans_handle
*trans
= NULL
;
6504 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6505 struct inode
*inode
= d_inode(old_dentry
);
6510 /* do not allow sys_link's with other subvols of the same device */
6511 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6514 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6517 err
= btrfs_set_inode_index(dir
, &index
);
6522 * 2 items for inode and inode ref
6523 * 2 items for dir items
6524 * 1 item for parent inode
6526 trans
= btrfs_start_transaction(root
, 5);
6527 if (IS_ERR(trans
)) {
6528 err
= PTR_ERR(trans
);
6533 /* There are several dir indexes for this inode, clear the cache. */
6534 BTRFS_I(inode
)->dir_index
= 0ULL;
6536 inode_inc_iversion(inode
);
6537 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
6539 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6541 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 1, index
);
6546 struct dentry
*parent
= dentry
->d_parent
;
6547 err
= btrfs_update_inode(trans
, root
, inode
);
6550 if (inode
->i_nlink
== 1) {
6552 * If new hard link count is 1, it's a file created
6553 * with open(2) O_TMPFILE flag.
6555 err
= btrfs_orphan_del(trans
, inode
);
6559 d_instantiate(dentry
, inode
);
6560 btrfs_log_new_name(trans
, inode
, NULL
, parent
);
6563 btrfs_balance_delayed_items(root
);
6566 btrfs_end_transaction(trans
, root
);
6568 inode_dec_link_count(inode
);
6571 btrfs_btree_balance_dirty(root
);
6575 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6577 struct inode
*inode
= NULL
;
6578 struct btrfs_trans_handle
*trans
;
6579 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6581 int drop_on_err
= 0;
6586 * 2 items for inode and ref
6587 * 2 items for dir items
6588 * 1 for xattr if selinux is on
6590 trans
= btrfs_start_transaction(root
, 5);
6592 return PTR_ERR(trans
);
6594 err
= btrfs_find_free_ino(root
, &objectid
);
6598 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6599 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
6600 S_IFDIR
| mode
, &index
);
6601 if (IS_ERR(inode
)) {
6602 err
= PTR_ERR(inode
);
6607 /* these must be set before we unlock the inode */
6608 inode
->i_op
= &btrfs_dir_inode_operations
;
6609 inode
->i_fop
= &btrfs_dir_file_operations
;
6611 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6613 goto out_fail_inode
;
6615 btrfs_i_size_write(inode
, 0);
6616 err
= btrfs_update_inode(trans
, root
, inode
);
6618 goto out_fail_inode
;
6620 err
= btrfs_add_link(trans
, dir
, inode
, dentry
->d_name
.name
,
6621 dentry
->d_name
.len
, 0, index
);
6623 goto out_fail_inode
;
6625 d_instantiate(dentry
, inode
);
6627 * mkdir is special. We're unlocking after we call d_instantiate
6628 * to avoid a race with nfsd calling d_instantiate.
6630 unlock_new_inode(inode
);
6634 btrfs_end_transaction(trans
, root
);
6636 inode_dec_link_count(inode
);
6639 btrfs_balance_delayed_items(root
);
6640 btrfs_btree_balance_dirty(root
);
6644 unlock_new_inode(inode
);
6648 /* Find next extent map of a given extent map, caller needs to ensure locks */
6649 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6651 struct rb_node
*next
;
6653 next
= rb_next(&em
->rb_node
);
6656 return container_of(next
, struct extent_map
, rb_node
);
6659 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6661 struct rb_node
*prev
;
6663 prev
= rb_prev(&em
->rb_node
);
6666 return container_of(prev
, struct extent_map
, rb_node
);
6669 /* helper for btfs_get_extent. Given an existing extent in the tree,
6670 * the existing extent is the nearest extent to map_start,
6671 * and an extent that you want to insert, deal with overlap and insert
6672 * the best fitted new extent into the tree.
6674 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6675 struct extent_map
*existing
,
6676 struct extent_map
*em
,
6679 struct extent_map
*prev
;
6680 struct extent_map
*next
;
6685 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6687 if (existing
->start
> map_start
) {
6689 prev
= prev_extent_map(next
);
6692 next
= next_extent_map(prev
);
6695 start
= prev
? extent_map_end(prev
) : em
->start
;
6696 start
= max_t(u64
, start
, em
->start
);
6697 end
= next
? next
->start
: extent_map_end(em
);
6698 end
= min_t(u64
, end
, extent_map_end(em
));
6699 start_diff
= start
- em
->start
;
6701 em
->len
= end
- start
;
6702 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6703 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6704 em
->block_start
+= start_diff
;
6705 em
->block_len
-= start_diff
;
6707 return add_extent_mapping(em_tree
, em
, 0);
6710 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6712 size_t pg_offset
, u64 extent_offset
,
6713 struct btrfs_file_extent_item
*item
)
6716 struct extent_buffer
*leaf
= path
->nodes
[0];
6719 unsigned long inline_size
;
6723 WARN_ON(pg_offset
!= 0);
6724 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6725 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6726 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6727 btrfs_item_nr(path
->slots
[0]));
6728 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6731 ptr
= btrfs_file_extent_inline_start(item
);
6733 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6735 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6736 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6737 extent_offset
, inline_size
, max_size
);
6743 * a bit scary, this does extent mapping from logical file offset to the disk.
6744 * the ugly parts come from merging extents from the disk with the in-ram
6745 * representation. This gets more complex because of the data=ordered code,
6746 * where the in-ram extents might be locked pending data=ordered completion.
6748 * This also copies inline extents directly into the page.
6751 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
6752 size_t pg_offset
, u64 start
, u64 len
,
6757 u64 extent_start
= 0;
6759 u64 objectid
= btrfs_ino(inode
);
6761 struct btrfs_path
*path
= NULL
;
6762 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6763 struct btrfs_file_extent_item
*item
;
6764 struct extent_buffer
*leaf
;
6765 struct btrfs_key found_key
;
6766 struct extent_map
*em
= NULL
;
6767 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
6768 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6769 struct btrfs_trans_handle
*trans
= NULL
;
6770 const bool new_inline
= !page
|| create
;
6773 read_lock(&em_tree
->lock
);
6774 em
= lookup_extent_mapping(em_tree
, start
, len
);
6776 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6777 read_unlock(&em_tree
->lock
);
6780 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6781 free_extent_map(em
);
6782 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6783 free_extent_map(em
);
6787 em
= alloc_extent_map();
6792 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6793 em
->start
= EXTENT_MAP_HOLE
;
6794 em
->orig_start
= EXTENT_MAP_HOLE
;
6796 em
->block_len
= (u64
)-1;
6799 path
= btrfs_alloc_path();
6805 * Chances are we'll be called again, so go ahead and do
6808 path
->reada
= READA_FORWARD
;
6811 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6812 objectid
, start
, trans
!= NULL
);
6819 if (path
->slots
[0] == 0)
6824 leaf
= path
->nodes
[0];
6825 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6826 struct btrfs_file_extent_item
);
6827 /* are we inside the extent that was found? */
6828 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6829 found_type
= found_key
.type
;
6830 if (found_key
.objectid
!= objectid
||
6831 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6833 * If we backup past the first extent we want to move forward
6834 * and see if there is an extent in front of us, otherwise we'll
6835 * say there is a hole for our whole search range which can
6842 found_type
= btrfs_file_extent_type(leaf
, item
);
6843 extent_start
= found_key
.offset
;
6844 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6845 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6846 extent_end
= extent_start
+
6847 btrfs_file_extent_num_bytes(leaf
, item
);
6848 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6850 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6851 extent_end
= ALIGN(extent_start
+ size
, root
->sectorsize
);
6854 if (start
>= extent_end
) {
6856 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6857 ret
= btrfs_next_leaf(root
, path
);
6864 leaf
= path
->nodes
[0];
6866 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6867 if (found_key
.objectid
!= objectid
||
6868 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6870 if (start
+ len
<= found_key
.offset
)
6872 if (start
> found_key
.offset
)
6875 em
->orig_start
= start
;
6876 em
->len
= found_key
.offset
- start
;
6880 btrfs_extent_item_to_extent_map(inode
, path
, item
, new_inline
, em
);
6882 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6883 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6885 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6889 size_t extent_offset
;
6895 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
6896 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6897 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6898 size
- extent_offset
);
6899 em
->start
= extent_start
+ extent_offset
;
6900 em
->len
= ALIGN(copy_size
, root
->sectorsize
);
6901 em
->orig_block_len
= em
->len
;
6902 em
->orig_start
= em
->start
;
6903 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6904 if (create
== 0 && !PageUptodate(page
)) {
6905 if (btrfs_file_extent_compression(leaf
, item
) !=
6906 BTRFS_COMPRESS_NONE
) {
6907 ret
= uncompress_inline(path
, page
, pg_offset
,
6908 extent_offset
, item
);
6915 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6917 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6918 memset(map
+ pg_offset
+ copy_size
, 0,
6919 PAGE_SIZE
- pg_offset
-
6924 flush_dcache_page(page
);
6925 } else if (create
&& PageUptodate(page
)) {
6929 free_extent_map(em
);
6932 btrfs_release_path(path
);
6933 trans
= btrfs_join_transaction(root
);
6936 return ERR_CAST(trans
);
6940 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6943 btrfs_mark_buffer_dirty(leaf
);
6945 set_extent_uptodate(io_tree
, em
->start
,
6946 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6951 em
->orig_start
= start
;
6954 em
->block_start
= EXTENT_MAP_HOLE
;
6955 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
6957 btrfs_release_path(path
);
6958 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6959 btrfs_err(root
->fs_info
, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6960 em
->start
, em
->len
, start
, len
);
6966 write_lock(&em_tree
->lock
);
6967 ret
= add_extent_mapping(em_tree
, em
, 0);
6968 /* it is possible that someone inserted the extent into the tree
6969 * while we had the lock dropped. It is also possible that
6970 * an overlapping map exists in the tree
6972 if (ret
== -EEXIST
) {
6973 struct extent_map
*existing
;
6977 existing
= search_extent_mapping(em_tree
, start
, len
);
6979 * existing will always be non-NULL, since there must be
6980 * extent causing the -EEXIST.
6982 if (start
>= extent_map_end(existing
) ||
6983 start
<= existing
->start
) {
6985 * The existing extent map is the one nearest to
6986 * the [start, start + len) range which overlaps
6988 err
= merge_extent_mapping(em_tree
, existing
,
6990 free_extent_map(existing
);
6992 free_extent_map(em
);
6996 free_extent_map(em
);
7001 write_unlock(&em_tree
->lock
);
7004 trace_btrfs_get_extent(root
, em
);
7006 btrfs_free_path(path
);
7008 ret
= btrfs_end_transaction(trans
, root
);
7013 free_extent_map(em
);
7014 return ERR_PTR(err
);
7016 BUG_ON(!em
); /* Error is always set */
7020 struct extent_map
*btrfs_get_extent_fiemap(struct inode
*inode
, struct page
*page
,
7021 size_t pg_offset
, u64 start
, u64 len
,
7024 struct extent_map
*em
;
7025 struct extent_map
*hole_em
= NULL
;
7026 u64 range_start
= start
;
7032 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7039 * - a pre-alloc extent,
7040 * there might actually be delalloc bytes behind it.
7042 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7043 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7049 /* check to see if we've wrapped (len == -1 or similar) */
7058 /* ok, we didn't find anything, lets look for delalloc */
7059 found
= count_range_bits(&BTRFS_I(inode
)->io_tree
, &range_start
,
7060 end
, len
, EXTENT_DELALLOC
, 1);
7061 found_end
= range_start
+ found
;
7062 if (found_end
< range_start
)
7063 found_end
= (u64
)-1;
7066 * we didn't find anything useful, return
7067 * the original results from get_extent()
7069 if (range_start
> end
|| found_end
<= start
) {
7075 /* adjust the range_start to make sure it doesn't
7076 * go backwards from the start they passed in
7078 range_start
= max(start
, range_start
);
7079 found
= found_end
- range_start
;
7082 u64 hole_start
= start
;
7085 em
= alloc_extent_map();
7091 * when btrfs_get_extent can't find anything it
7092 * returns one huge hole
7094 * make sure what it found really fits our range, and
7095 * adjust to make sure it is based on the start from
7099 u64 calc_end
= extent_map_end(hole_em
);
7101 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7102 free_extent_map(hole_em
);
7105 hole_start
= max(hole_em
->start
, start
);
7106 hole_len
= calc_end
- hole_start
;
7110 if (hole_em
&& range_start
> hole_start
) {
7111 /* our hole starts before our delalloc, so we
7112 * have to return just the parts of the hole
7113 * that go until the delalloc starts
7115 em
->len
= min(hole_len
,
7116 range_start
- hole_start
);
7117 em
->start
= hole_start
;
7118 em
->orig_start
= hole_start
;
7120 * don't adjust block start at all,
7121 * it is fixed at EXTENT_MAP_HOLE
7123 em
->block_start
= hole_em
->block_start
;
7124 em
->block_len
= hole_len
;
7125 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7126 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7128 em
->start
= range_start
;
7130 em
->orig_start
= range_start
;
7131 em
->block_start
= EXTENT_MAP_DELALLOC
;
7132 em
->block_len
= found
;
7134 } else if (hole_em
) {
7139 free_extent_map(hole_em
);
7141 free_extent_map(em
);
7142 return ERR_PTR(err
);
7147 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7150 const u64 orig_start
,
7151 const u64 block_start
,
7152 const u64 block_len
,
7153 const u64 orig_block_len
,
7154 const u64 ram_bytes
,
7157 struct extent_map
*em
= NULL
;
7160 down_read(&BTRFS_I(inode
)->dio_sem
);
7161 if (type
!= BTRFS_ORDERED_NOCOW
) {
7162 em
= create_pinned_em(inode
, start
, len
, orig_start
,
7163 block_start
, block_len
, orig_block_len
,
7168 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7169 len
, block_len
, type
);
7172 free_extent_map(em
);
7173 btrfs_drop_extent_cache(inode
, start
,
7174 start
+ len
- 1, 0);
7179 up_read(&BTRFS_I(inode
)->dio_sem
);
7184 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7187 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7188 struct extent_map
*em
;
7189 struct btrfs_key ins
;
7193 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7194 ret
= btrfs_reserve_extent(root
, len
, root
->sectorsize
, 0,
7195 alloc_hint
, &ins
, 1, 1);
7197 return ERR_PTR(ret
);
7199 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7200 ins
.objectid
, ins
.offset
, ins
.offset
,
7202 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
7204 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 1);
7210 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7211 * block must be cow'd
7213 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7214 u64
*orig_start
, u64
*orig_block_len
,
7217 struct btrfs_trans_handle
*trans
;
7218 struct btrfs_path
*path
;
7220 struct extent_buffer
*leaf
;
7221 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7222 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7223 struct btrfs_file_extent_item
*fi
;
7224 struct btrfs_key key
;
7231 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7233 path
= btrfs_alloc_path();
7237 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
),
7242 slot
= path
->slots
[0];
7245 /* can't find the item, must cow */
7252 leaf
= path
->nodes
[0];
7253 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7254 if (key
.objectid
!= btrfs_ino(inode
) ||
7255 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7256 /* not our file or wrong item type, must cow */
7260 if (key
.offset
> offset
) {
7261 /* Wrong offset, must cow */
7265 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7266 found_type
= btrfs_file_extent_type(leaf
, fi
);
7267 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7268 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7269 /* not a regular extent, must cow */
7273 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7276 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7277 if (extent_end
<= offset
)
7280 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7281 if (disk_bytenr
== 0)
7284 if (btrfs_file_extent_compression(leaf
, fi
) ||
7285 btrfs_file_extent_encryption(leaf
, fi
) ||
7286 btrfs_file_extent_other_encoding(leaf
, fi
))
7289 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7292 *orig_start
= key
.offset
- backref_offset
;
7293 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7294 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7297 if (btrfs_extent_readonly(root
, disk_bytenr
))
7300 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7301 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7304 range_end
= round_up(offset
+ num_bytes
, root
->sectorsize
) - 1;
7305 ret
= test_range_bit(io_tree
, offset
, range_end
,
7306 EXTENT_DELALLOC
, 0, NULL
);
7313 btrfs_release_path(path
);
7316 * look for other files referencing this extent, if we
7317 * find any we must cow
7319 trans
= btrfs_join_transaction(root
);
7320 if (IS_ERR(trans
)) {
7325 ret
= btrfs_cross_ref_exist(trans
, root
, btrfs_ino(inode
),
7326 key
.offset
- backref_offset
, disk_bytenr
);
7327 btrfs_end_transaction(trans
, root
);
7334 * adjust disk_bytenr and num_bytes to cover just the bytes
7335 * in this extent we are about to write. If there
7336 * are any csums in that range we have to cow in order
7337 * to keep the csums correct
7339 disk_bytenr
+= backref_offset
;
7340 disk_bytenr
+= offset
- key
.offset
;
7341 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
7344 * all of the above have passed, it is safe to overwrite this extent
7350 btrfs_free_path(path
);
7354 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7356 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7358 void **pagep
= NULL
;
7359 struct page
*page
= NULL
;
7363 start_idx
= start
>> PAGE_SHIFT
;
7366 * end is the last byte in the last page. end == start is legal
7368 end_idx
= end
>> PAGE_SHIFT
;
7372 /* Most of the code in this while loop is lifted from
7373 * find_get_page. It's been modified to begin searching from a
7374 * page and return just the first page found in that range. If the
7375 * found idx is less than or equal to the end idx then we know that
7376 * a page exists. If no pages are found or if those pages are
7377 * outside of the range then we're fine (yay!) */
7378 while (page
== NULL
&&
7379 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7380 page
= radix_tree_deref_slot(pagep
);
7381 if (unlikely(!page
))
7384 if (radix_tree_exception(page
)) {
7385 if (radix_tree_deref_retry(page
)) {
7390 * Otherwise, shmem/tmpfs must be storing a swap entry
7391 * here as an exceptional entry: so return it without
7392 * attempting to raise page count.
7395 break; /* TODO: Is this relevant for this use case? */
7398 if (!page_cache_get_speculative(page
)) {
7404 * Has the page moved?
7405 * This is part of the lockless pagecache protocol. See
7406 * include/linux/pagemap.h for details.
7408 if (unlikely(page
!= *pagep
)) {
7415 if (page
->index
<= end_idx
)
7424 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7425 struct extent_state
**cached_state
, int writing
)
7427 struct btrfs_ordered_extent
*ordered
;
7431 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7434 * We're concerned with the entire range that we're going to be
7435 * doing DIO to, so we need to make sure there's no ordered
7436 * extents in this range.
7438 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
7439 lockend
- lockstart
+ 1);
7442 * We need to make sure there are no buffered pages in this
7443 * range either, we could have raced between the invalidate in
7444 * generic_file_direct_write and locking the extent. The
7445 * invalidate needs to happen so that reads after a write do not
7450 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7453 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7454 cached_state
, GFP_NOFS
);
7458 * If we are doing a DIO read and the ordered extent we
7459 * found is for a buffered write, we can not wait for it
7460 * to complete and retry, because if we do so we can
7461 * deadlock with concurrent buffered writes on page
7462 * locks. This happens only if our DIO read covers more
7463 * than one extent map, if at this point has already
7464 * created an ordered extent for a previous extent map
7465 * and locked its range in the inode's io tree, and a
7466 * concurrent write against that previous extent map's
7467 * range and this range started (we unlock the ranges
7468 * in the io tree only when the bios complete and
7469 * buffered writes always lock pages before attempting
7470 * to lock range in the io tree).
7473 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7474 btrfs_start_ordered_extent(inode
, ordered
, 1);
7477 btrfs_put_ordered_extent(ordered
);
7480 * We could trigger writeback for this range (and wait
7481 * for it to complete) and then invalidate the pages for
7482 * this range (through invalidate_inode_pages2_range()),
7483 * but that can lead us to a deadlock with a concurrent
7484 * call to readpages() (a buffered read or a defrag call
7485 * triggered a readahead) on a page lock due to an
7486 * ordered dio extent we created before but did not have
7487 * yet a corresponding bio submitted (whence it can not
7488 * complete), which makes readpages() wait for that
7489 * ordered extent to complete while holding a lock on
7504 static struct extent_map
*create_pinned_em(struct inode
*inode
, u64 start
,
7505 u64 len
, u64 orig_start
,
7506 u64 block_start
, u64 block_len
,
7507 u64 orig_block_len
, u64 ram_bytes
,
7510 struct extent_map_tree
*em_tree
;
7511 struct extent_map
*em
;
7512 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7515 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7516 em
= alloc_extent_map();
7518 return ERR_PTR(-ENOMEM
);
7521 em
->orig_start
= orig_start
;
7522 em
->mod_start
= start
;
7525 em
->block_len
= block_len
;
7526 em
->block_start
= block_start
;
7527 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7528 em
->orig_block_len
= orig_block_len
;
7529 em
->ram_bytes
= ram_bytes
;
7530 em
->generation
= -1;
7531 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7532 if (type
== BTRFS_ORDERED_PREALLOC
)
7533 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7536 btrfs_drop_extent_cache(inode
, em
->start
,
7537 em
->start
+ em
->len
- 1, 0);
7538 write_lock(&em_tree
->lock
);
7539 ret
= add_extent_mapping(em_tree
, em
, 1);
7540 write_unlock(&em_tree
->lock
);
7541 } while (ret
== -EEXIST
);
7544 free_extent_map(em
);
7545 return ERR_PTR(ret
);
7551 static void adjust_dio_outstanding_extents(struct inode
*inode
,
7552 struct btrfs_dio_data
*dio_data
,
7555 unsigned num_extents
;
7557 num_extents
= (unsigned) div64_u64(len
+ BTRFS_MAX_EXTENT_SIZE
- 1,
7558 BTRFS_MAX_EXTENT_SIZE
);
7560 * If we have an outstanding_extents count still set then we're
7561 * within our reservation, otherwise we need to adjust our inode
7562 * counter appropriately.
7564 if (dio_data
->outstanding_extents
) {
7565 dio_data
->outstanding_extents
-= num_extents
;
7567 spin_lock(&BTRFS_I(inode
)->lock
);
7568 BTRFS_I(inode
)->outstanding_extents
+= num_extents
;
7569 spin_unlock(&BTRFS_I(inode
)->lock
);
7573 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7574 struct buffer_head
*bh_result
, int create
)
7576 struct extent_map
*em
;
7577 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7578 struct extent_state
*cached_state
= NULL
;
7579 struct btrfs_dio_data
*dio_data
= NULL
;
7580 u64 start
= iblock
<< inode
->i_blkbits
;
7581 u64 lockstart
, lockend
;
7582 u64 len
= bh_result
->b_size
;
7583 int unlock_bits
= EXTENT_LOCKED
;
7587 unlock_bits
|= EXTENT_DIRTY
;
7589 len
= min_t(u64
, len
, root
->sectorsize
);
7592 lockend
= start
+ len
- 1;
7594 if (current
->journal_info
) {
7596 * Need to pull our outstanding extents and set journal_info to NULL so
7597 * that anything that needs to check if there's a transaction doesn't get
7600 dio_data
= current
->journal_info
;
7601 current
->journal_info
= NULL
;
7605 * If this errors out it's because we couldn't invalidate pagecache for
7606 * this range and we need to fallback to buffered.
7608 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7614 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
7621 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7622 * io. INLINE is special, and we could probably kludge it in here, but
7623 * it's still buffered so for safety lets just fall back to the generic
7626 * For COMPRESSED we _have_ to read the entire extent in so we can
7627 * decompress it, so there will be buffering required no matter what we
7628 * do, so go ahead and fallback to buffered.
7630 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7631 * to buffered IO. Don't blame me, this is the price we pay for using
7634 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7635 em
->block_start
== EXTENT_MAP_INLINE
) {
7636 free_extent_map(em
);
7641 /* Just a good old fashioned hole, return */
7642 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7643 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7644 free_extent_map(em
);
7649 * We don't allocate a new extent in the following cases
7651 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7653 * 2) The extent is marked as PREALLOC. We're good to go here and can
7654 * just use the extent.
7658 len
= min(len
, em
->len
- (start
- em
->start
));
7659 lockstart
= start
+ len
;
7663 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7664 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7665 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7667 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7669 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7670 type
= BTRFS_ORDERED_PREALLOC
;
7672 type
= BTRFS_ORDERED_NOCOW
;
7673 len
= min(len
, em
->len
- (start
- em
->start
));
7674 block_start
= em
->block_start
+ (start
- em
->start
);
7676 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7677 &orig_block_len
, &ram_bytes
) == 1 &&
7678 btrfs_inc_nocow_writers(root
->fs_info
, block_start
)) {
7679 struct extent_map
*em2
;
7681 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7682 orig_start
, block_start
,
7683 len
, orig_block_len
,
7685 btrfs_dec_nocow_writers(root
->fs_info
, block_start
);
7686 if (type
== BTRFS_ORDERED_PREALLOC
) {
7687 free_extent_map(em
);
7690 if (em2
&& IS_ERR(em2
)) {
7699 * this will cow the extent, reset the len in case we changed
7702 len
= bh_result
->b_size
;
7703 free_extent_map(em
);
7704 em
= btrfs_new_extent_direct(inode
, start
, len
);
7709 len
= min(len
, em
->len
- (start
- em
->start
));
7711 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7713 bh_result
->b_size
= len
;
7714 bh_result
->b_bdev
= em
->bdev
;
7715 set_buffer_mapped(bh_result
);
7717 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7718 set_buffer_new(bh_result
);
7721 * Need to update the i_size under the extent lock so buffered
7722 * readers will get the updated i_size when we unlock.
7724 if (start
+ len
> i_size_read(inode
))
7725 i_size_write(inode
, start
+ len
);
7727 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7728 btrfs_free_reserved_data_space(inode
, start
, len
);
7729 WARN_ON(dio_data
->reserve
< len
);
7730 dio_data
->reserve
-= len
;
7731 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7732 current
->journal_info
= dio_data
;
7736 * In the case of write we need to clear and unlock the entire range,
7737 * in the case of read we need to unlock only the end area that we
7738 * aren't using if there is any left over space.
7740 if (lockstart
< lockend
) {
7741 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7742 lockend
, unlock_bits
, 1, 0,
7743 &cached_state
, GFP_NOFS
);
7745 free_extent_state(cached_state
);
7748 free_extent_map(em
);
7753 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7754 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7757 current
->journal_info
= dio_data
;
7759 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7760 * write less data then expected, so that we don't underflow our inode's
7761 * outstanding extents counter.
7763 if (create
&& dio_data
)
7764 adjust_dio_outstanding_extents(inode
, dio_data
, len
);
7769 static inline int submit_dio_repair_bio(struct inode
*inode
, struct bio
*bio
,
7770 int rw
, int mirror_num
)
7772 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7775 BUG_ON(rw
& REQ_WRITE
);
7779 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
7780 BTRFS_WQ_ENDIO_DIO_REPAIR
);
7784 ret
= btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
7790 static int btrfs_check_dio_repairable(struct inode
*inode
,
7791 struct bio
*failed_bio
,
7792 struct io_failure_record
*failrec
,
7797 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
7798 failrec
->logical
, failrec
->len
);
7799 if (num_copies
== 1) {
7801 * we only have a single copy of the data, so don't bother with
7802 * all the retry and error correction code that follows. no
7803 * matter what the error is, it is very likely to persist.
7805 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7806 num_copies
, failrec
->this_mirror
, failed_mirror
);
7810 failrec
->failed_mirror
= failed_mirror
;
7811 failrec
->this_mirror
++;
7812 if (failrec
->this_mirror
== failed_mirror
)
7813 failrec
->this_mirror
++;
7815 if (failrec
->this_mirror
> num_copies
) {
7816 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7817 num_copies
, failrec
->this_mirror
, failed_mirror
);
7824 static int dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7825 struct page
*page
, unsigned int pgoff
,
7826 u64 start
, u64 end
, int failed_mirror
,
7827 bio_end_io_t
*repair_endio
, void *repair_arg
)
7829 struct io_failure_record
*failrec
;
7835 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
7837 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7841 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7844 free_io_failure(inode
, failrec
);
7848 if ((failed_bio
->bi_vcnt
> 1)
7849 || (failed_bio
->bi_io_vec
->bv_len
7850 > BTRFS_I(inode
)->root
->sectorsize
))
7851 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
7853 read_mode
= READ_SYNC
;
7855 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7856 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7857 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7858 pgoff
, isector
, repair_endio
, repair_arg
);
7860 free_io_failure(inode
, failrec
);
7864 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7865 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7866 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7868 ret
= submit_dio_repair_bio(inode
, bio
, read_mode
,
7869 failrec
->this_mirror
);
7871 free_io_failure(inode
, failrec
);
7878 struct btrfs_retry_complete
{
7879 struct completion done
;
7880 struct inode
*inode
;
7885 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7887 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7888 struct inode
*inode
;
7889 struct bio_vec
*bvec
;
7895 ASSERT(bio
->bi_vcnt
== 1);
7896 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
7897 ASSERT(bio
->bi_io_vec
->bv_len
== BTRFS_I(inode
)->root
->sectorsize
);
7900 bio_for_each_segment_all(bvec
, bio
, i
)
7901 clean_io_failure(done
->inode
, done
->start
, bvec
->bv_page
, 0);
7903 complete(&done
->done
);
7907 static int __btrfs_correct_data_nocsum(struct inode
*inode
,
7908 struct btrfs_io_bio
*io_bio
)
7910 struct btrfs_fs_info
*fs_info
;
7911 struct bio_vec
*bvec
;
7912 struct btrfs_retry_complete done
;
7920 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7921 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
7923 start
= io_bio
->logical
;
7926 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
7927 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
7928 pgoff
= bvec
->bv_offset
;
7930 next_block_or_try_again
:
7933 init_completion(&done
.done
);
7935 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
7936 pgoff
, start
, start
+ sectorsize
- 1,
7938 btrfs_retry_endio_nocsum
, &done
);
7942 wait_for_completion(&done
.done
);
7944 if (!done
.uptodate
) {
7945 /* We might have another mirror, so try again */
7946 goto next_block_or_try_again
;
7949 start
+= sectorsize
;
7952 pgoff
+= sectorsize
;
7953 goto next_block_or_try_again
;
7960 static void btrfs_retry_endio(struct bio
*bio
)
7962 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7963 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7964 struct inode
*inode
;
7965 struct bio_vec
*bvec
;
7976 start
= done
->start
;
7978 ASSERT(bio
->bi_vcnt
== 1);
7979 inode
= bio
->bi_io_vec
->bv_page
->mapping
->host
;
7980 ASSERT(bio
->bi_io_vec
->bv_len
== BTRFS_I(inode
)->root
->sectorsize
);
7982 bio_for_each_segment_all(bvec
, bio
, i
) {
7983 ret
= __readpage_endio_check(done
->inode
, io_bio
, i
,
7984 bvec
->bv_page
, bvec
->bv_offset
,
7985 done
->start
, bvec
->bv_len
);
7987 clean_io_failure(done
->inode
, done
->start
,
7988 bvec
->bv_page
, bvec
->bv_offset
);
7993 done
->uptodate
= uptodate
;
7995 complete(&done
->done
);
7999 static int __btrfs_subio_endio_read(struct inode
*inode
,
8000 struct btrfs_io_bio
*io_bio
, int err
)
8002 struct btrfs_fs_info
*fs_info
;
8003 struct bio_vec
*bvec
;
8004 struct btrfs_retry_complete done
;
8014 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8015 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
8018 start
= io_bio
->logical
;
8021 bio_for_each_segment_all(bvec
, &io_bio
->bio
, i
) {
8022 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
->bv_len
);
8024 pgoff
= bvec
->bv_offset
;
8026 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8027 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8028 bvec
->bv_page
, pgoff
, start
,
8035 init_completion(&done
.done
);
8037 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
->bv_page
,
8038 pgoff
, start
, start
+ sectorsize
- 1,
8040 btrfs_retry_endio
, &done
);
8046 wait_for_completion(&done
.done
);
8048 if (!done
.uptodate
) {
8049 /* We might have another mirror, so try again */
8053 offset
+= sectorsize
;
8054 start
+= sectorsize
;
8059 pgoff
+= sectorsize
;
8067 static int btrfs_subio_endio_read(struct inode
*inode
,
8068 struct btrfs_io_bio
*io_bio
, int err
)
8070 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8074 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8078 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8082 static void btrfs_endio_direct_read(struct bio
*bio
)
8084 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8085 struct inode
*inode
= dip
->inode
;
8086 struct bio
*dio_bio
;
8087 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8088 int err
= bio
->bi_error
;
8090 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8091 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8093 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8094 dip
->logical_offset
+ dip
->bytes
- 1);
8095 dio_bio
= dip
->dio_bio
;
8099 dio_bio
->bi_error
= bio
->bi_error
;
8100 dio_end_io(dio_bio
, bio
->bi_error
);
8103 io_bio
->end_io(io_bio
, err
);
8107 static void btrfs_endio_direct_write_update_ordered(struct inode
*inode
,
8112 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8113 struct btrfs_ordered_extent
*ordered
= NULL
;
8114 u64 ordered_offset
= offset
;
8115 u64 ordered_bytes
= bytes
;
8119 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8126 btrfs_init_work(&ordered
->work
, btrfs_endio_write_helper
,
8127 finish_ordered_fn
, NULL
, NULL
);
8128 btrfs_queue_work(root
->fs_info
->endio_write_workers
,
8132 * our bio might span multiple ordered extents. If we haven't
8133 * completed the accounting for the whole dio, go back and try again
8135 if (ordered_offset
< offset
+ bytes
) {
8136 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8142 static void btrfs_endio_direct_write(struct bio
*bio
)
8144 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8145 struct bio
*dio_bio
= dip
->dio_bio
;
8147 btrfs_endio_direct_write_update_ordered(dip
->inode
,
8148 dip
->logical_offset
,
8154 dio_bio
->bi_error
= bio
->bi_error
;
8155 dio_end_io(dio_bio
, bio
->bi_error
);
8159 static int __btrfs_submit_bio_start_direct_io(struct inode
*inode
, int rw
,
8160 struct bio
*bio
, int mirror_num
,
8161 unsigned long bio_flags
, u64 offset
)
8164 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8165 ret
= btrfs_csum_one_bio(root
, inode
, bio
, offset
, 1);
8166 BUG_ON(ret
); /* -ENOMEM */
8170 static void btrfs_end_dio_bio(struct bio
*bio
)
8172 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8173 int err
= bio
->bi_error
;
8176 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8177 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8178 btrfs_ino(dip
->inode
), bio
->bi_rw
,
8179 (unsigned long long)bio
->bi_iter
.bi_sector
,
8180 bio
->bi_iter
.bi_size
, err
);
8182 if (dip
->subio_endio
)
8183 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8189 * before atomic variable goto zero, we must make sure
8190 * dip->errors is perceived to be set.
8192 smp_mb__before_atomic();
8195 /* if there are more bios still pending for this dio, just exit */
8196 if (!atomic_dec_and_test(&dip
->pending_bios
))
8200 bio_io_error(dip
->orig_bio
);
8202 dip
->dio_bio
->bi_error
= 0;
8203 bio_endio(dip
->orig_bio
);
8209 static struct bio
*btrfs_dio_bio_alloc(struct block_device
*bdev
,
8210 u64 first_sector
, gfp_t gfp_flags
)
8213 bio
= btrfs_bio_alloc(bdev
, first_sector
, BIO_MAX_PAGES
, gfp_flags
);
8215 bio_associate_current(bio
);
8219 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root
*root
,
8220 struct inode
*inode
,
8221 struct btrfs_dio_private
*dip
,
8225 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8226 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8230 * We load all the csum data we need when we submit
8231 * the first bio to reduce the csum tree search and
8234 if (dip
->logical_offset
== file_offset
) {
8235 ret
= btrfs_lookup_bio_sums_dio(root
, inode
, dip
->orig_bio
,
8241 if (bio
== dip
->orig_bio
)
8244 file_offset
-= dip
->logical_offset
;
8245 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8246 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8251 static inline int __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
,
8252 int rw
, u64 file_offset
, int skip_sum
,
8255 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8256 int write
= rw
& REQ_WRITE
;
8257 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8261 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8266 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
,
8267 BTRFS_WQ_ENDIO_DATA
);
8275 if (write
&& async_submit
) {
8276 ret
= btrfs_wq_submit_bio(root
->fs_info
,
8277 inode
, rw
, bio
, 0, 0,
8279 __btrfs_submit_bio_start_direct_io
,
8280 __btrfs_submit_bio_done
);
8284 * If we aren't doing async submit, calculate the csum of the
8287 ret
= btrfs_csum_one_bio(root
, inode
, bio
, file_offset
, 1);
8291 ret
= btrfs_lookup_and_bind_dio_csum(root
, inode
, dip
, bio
,
8297 ret
= btrfs_map_bio(root
, rw
, bio
, 0, async_submit
);
8303 static int btrfs_submit_direct_hook(int rw
, struct btrfs_dio_private
*dip
,
8306 struct inode
*inode
= dip
->inode
;
8307 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8309 struct bio
*orig_bio
= dip
->orig_bio
;
8310 struct bio_vec
*bvec
= orig_bio
->bi_io_vec
;
8311 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8312 u64 file_offset
= dip
->logical_offset
;
8315 u32 blocksize
= root
->sectorsize
;
8316 int async_submit
= 0;
8321 map_length
= orig_bio
->bi_iter
.bi_size
;
8322 ret
= btrfs_map_block(root
->fs_info
, rw
, start_sector
<< 9,
8323 &map_length
, NULL
, 0);
8327 if (map_length
>= orig_bio
->bi_iter
.bi_size
) {
8329 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8333 /* async crcs make it difficult to collect full stripe writes. */
8334 if (btrfs_get_alloc_profile(root
, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8339 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
, start_sector
, GFP_NOFS
);
8343 bio
->bi_private
= dip
;
8344 bio
->bi_end_io
= btrfs_end_dio_bio
;
8345 btrfs_io_bio(bio
)->logical
= file_offset
;
8346 atomic_inc(&dip
->pending_bios
);
8348 while (bvec
<= (orig_bio
->bi_io_vec
+ orig_bio
->bi_vcnt
- 1)) {
8349 nr_sectors
= BTRFS_BYTES_TO_BLKS(root
->fs_info
, bvec
->bv_len
);
8352 if (unlikely(map_length
< submit_len
+ blocksize
||
8353 bio_add_page(bio
, bvec
->bv_page
, blocksize
,
8354 bvec
->bv_offset
+ (i
* blocksize
)) < blocksize
)) {
8356 * inc the count before we submit the bio so
8357 * we know the end IO handler won't happen before
8358 * we inc the count. Otherwise, the dip might get freed
8359 * before we're done setting it up
8361 atomic_inc(&dip
->pending_bios
);
8362 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
,
8363 file_offset
, skip_sum
,
8367 atomic_dec(&dip
->pending_bios
);
8371 start_sector
+= submit_len
>> 9;
8372 file_offset
+= submit_len
;
8376 bio
= btrfs_dio_bio_alloc(orig_bio
->bi_bdev
,
8377 start_sector
, GFP_NOFS
);
8380 bio
->bi_private
= dip
;
8381 bio
->bi_end_io
= btrfs_end_dio_bio
;
8382 btrfs_io_bio(bio
)->logical
= file_offset
;
8384 map_length
= orig_bio
->bi_iter
.bi_size
;
8385 ret
= btrfs_map_block(root
->fs_info
, rw
,
8387 &map_length
, NULL
, 0);
8395 submit_len
+= blocksize
;
8405 ret
= __btrfs_submit_dio_bio(bio
, inode
, rw
, file_offset
, skip_sum
,
8414 * before atomic variable goto zero, we must
8415 * make sure dip->errors is perceived to be set.
8417 smp_mb__before_atomic();
8418 if (atomic_dec_and_test(&dip
->pending_bios
))
8419 bio_io_error(dip
->orig_bio
);
8421 /* bio_end_io() will handle error, so we needn't return it */
8425 static void btrfs_submit_direct(int rw
, struct bio
*dio_bio
,
8426 struct inode
*inode
, loff_t file_offset
)
8428 struct btrfs_dio_private
*dip
= NULL
;
8429 struct bio
*io_bio
= NULL
;
8430 struct btrfs_io_bio
*btrfs_bio
;
8432 int write
= rw
& REQ_WRITE
;
8435 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8437 io_bio
= btrfs_bio_clone(dio_bio
, GFP_NOFS
);
8443 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8449 dip
->private = dio_bio
->bi_private
;
8451 dip
->logical_offset
= file_offset
;
8452 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8453 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8454 io_bio
->bi_private
= dip
;
8455 dip
->orig_bio
= io_bio
;
8456 dip
->dio_bio
= dio_bio
;
8457 atomic_set(&dip
->pending_bios
, 0);
8458 btrfs_bio
= btrfs_io_bio(io_bio
);
8459 btrfs_bio
->logical
= file_offset
;
8462 io_bio
->bi_end_io
= btrfs_endio_direct_write
;
8464 io_bio
->bi_end_io
= btrfs_endio_direct_read
;
8465 dip
->subio_endio
= btrfs_subio_endio_read
;
8469 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8470 * even if we fail to submit a bio, because in such case we do the
8471 * corresponding error handling below and it must not be done a second
8472 * time by btrfs_direct_IO().
8475 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8477 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8479 dio_data
->unsubmitted_oe_range_start
=
8480 dio_data
->unsubmitted_oe_range_end
;
8483 ret
= btrfs_submit_direct_hook(rw
, dip
, skip_sum
);
8487 if (btrfs_bio
->end_io
)
8488 btrfs_bio
->end_io(btrfs_bio
, ret
);
8492 * If we arrived here it means either we failed to submit the dip
8493 * or we either failed to clone the dio_bio or failed to allocate the
8494 * dip. If we cloned the dio_bio and allocated the dip, we can just
8495 * call bio_endio against our io_bio so that we get proper resource
8496 * cleanup if we fail to submit the dip, otherwise, we must do the
8497 * same as btrfs_endio_direct_[write|read] because we can't call these
8498 * callbacks - they require an allocated dip and a clone of dio_bio.
8500 if (io_bio
&& dip
) {
8501 io_bio
->bi_error
= -EIO
;
8504 * The end io callbacks free our dip, do the final put on io_bio
8505 * and all the cleanup and final put for dio_bio (through
8512 btrfs_endio_direct_write_update_ordered(inode
,
8514 dio_bio
->bi_iter
.bi_size
,
8517 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8518 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8520 dio_bio
->bi_error
= -EIO
;
8522 * Releases and cleans up our dio_bio, no need to bio_put()
8523 * nor bio_endio()/bio_io_error() against dio_bio.
8525 dio_end_io(dio_bio
, ret
);
8532 static ssize_t
check_direct_IO(struct btrfs_root
*root
, struct kiocb
*iocb
,
8533 const struct iov_iter
*iter
, loff_t offset
)
8537 unsigned blocksize_mask
= root
->sectorsize
- 1;
8538 ssize_t retval
= -EINVAL
;
8540 if (offset
& blocksize_mask
)
8543 if (iov_iter_alignment(iter
) & blocksize_mask
)
8546 /* If this is a write we don't need to check anymore */
8547 if (iov_iter_rw(iter
) == WRITE
)
8550 * Check to make sure we don't have duplicate iov_base's in this
8551 * iovec, if so return EINVAL, otherwise we'll get csum errors
8552 * when reading back.
8554 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8555 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8556 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8565 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8567 struct file
*file
= iocb
->ki_filp
;
8568 struct inode
*inode
= file
->f_mapping
->host
;
8569 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8570 struct btrfs_dio_data dio_data
= { 0 };
8571 loff_t offset
= iocb
->ki_pos
;
8575 bool relock
= false;
8578 if (check_direct_IO(BTRFS_I(inode
)->root
, iocb
, iter
, offset
))
8581 inode_dio_begin(inode
);
8582 smp_mb__after_atomic();
8585 * The generic stuff only does filemap_write_and_wait_range, which
8586 * isn't enough if we've written compressed pages to this area, so
8587 * we need to flush the dirty pages again to make absolutely sure
8588 * that any outstanding dirty pages are on disk.
8590 count
= iov_iter_count(iter
);
8591 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8592 &BTRFS_I(inode
)->runtime_flags
))
8593 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8594 offset
+ count
- 1);
8596 if (iov_iter_rw(iter
) == WRITE
) {
8598 * If the write DIO is beyond the EOF, we need update
8599 * the isize, but it is protected by i_mutex. So we can
8600 * not unlock the i_mutex at this case.
8602 if (offset
+ count
<= inode
->i_size
) {
8603 inode_unlock(inode
);
8606 ret
= btrfs_delalloc_reserve_space(inode
, offset
, count
);
8609 dio_data
.outstanding_extents
= div64_u64(count
+
8610 BTRFS_MAX_EXTENT_SIZE
- 1,
8611 BTRFS_MAX_EXTENT_SIZE
);
8614 * We need to know how many extents we reserved so that we can
8615 * do the accounting properly if we go over the number we
8616 * originally calculated. Abuse current->journal_info for this.
8618 dio_data
.reserve
= round_up(count
, root
->sectorsize
);
8619 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8620 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8621 current
->journal_info
= &dio_data
;
8622 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8623 &BTRFS_I(inode
)->runtime_flags
)) {
8624 inode_dio_end(inode
);
8625 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8629 ret
= __blockdev_direct_IO(iocb
, inode
,
8630 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
,
8631 iter
, btrfs_get_blocks_direct
, NULL
,
8632 btrfs_submit_direct
, flags
);
8633 if (iov_iter_rw(iter
) == WRITE
) {
8634 current
->journal_info
= NULL
;
8635 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8636 if (dio_data
.reserve
)
8637 btrfs_delalloc_release_space(inode
, offset
,
8640 * On error we might have left some ordered extents
8641 * without submitting corresponding bios for them, so
8642 * cleanup them up to avoid other tasks getting them
8643 * and waiting for them to complete forever.
8645 if (dio_data
.unsubmitted_oe_range_start
<
8646 dio_data
.unsubmitted_oe_range_end
)
8647 btrfs_endio_direct_write_update_ordered(inode
,
8648 dio_data
.unsubmitted_oe_range_start
,
8649 dio_data
.unsubmitted_oe_range_end
-
8650 dio_data
.unsubmitted_oe_range_start
,
8652 } else if (ret
>= 0 && (size_t)ret
< count
)
8653 btrfs_delalloc_release_space(inode
, offset
,
8654 count
- (size_t)ret
);
8658 inode_dio_end(inode
);
8665 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8667 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8668 __u64 start
, __u64 len
)
8672 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8676 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8679 int btrfs_readpage(struct file
*file
, struct page
*page
)
8681 struct extent_io_tree
*tree
;
8682 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8683 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8686 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8688 struct extent_io_tree
*tree
;
8689 struct inode
*inode
= page
->mapping
->host
;
8692 if (current
->flags
& PF_MEMALLOC
) {
8693 redirty_page_for_writepage(wbc
, page
);
8699 * If we are under memory pressure we will call this directly from the
8700 * VM, we need to make sure we have the inode referenced for the ordered
8701 * extent. If not just return like we didn't do anything.
8703 if (!igrab(inode
)) {
8704 redirty_page_for_writepage(wbc
, page
);
8705 return AOP_WRITEPAGE_ACTIVATE
;
8707 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8708 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8709 btrfs_add_delayed_iput(inode
);
8713 static int btrfs_writepages(struct address_space
*mapping
,
8714 struct writeback_control
*wbc
)
8716 struct extent_io_tree
*tree
;
8718 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8719 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8723 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8724 struct list_head
*pages
, unsigned nr_pages
)
8726 struct extent_io_tree
*tree
;
8727 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8728 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8731 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8733 struct extent_io_tree
*tree
;
8734 struct extent_map_tree
*map
;
8737 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8738 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8739 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8741 ClearPagePrivate(page
);
8742 set_page_private(page
, 0);
8748 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8750 if (PageWriteback(page
) || PageDirty(page
))
8752 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
8755 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8756 unsigned int length
)
8758 struct inode
*inode
= page
->mapping
->host
;
8759 struct extent_io_tree
*tree
;
8760 struct btrfs_ordered_extent
*ordered
;
8761 struct extent_state
*cached_state
= NULL
;
8762 u64 page_start
= page_offset(page
);
8763 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8766 int inode_evicting
= inode
->i_state
& I_FREEING
;
8769 * we have the page locked, so new writeback can't start,
8770 * and the dirty bit won't be cleared while we are here.
8772 * Wait for IO on this page so that we can safely clear
8773 * the PagePrivate2 bit and do ordered accounting
8775 wait_on_page_writeback(page
);
8777 tree
= &BTRFS_I(inode
)->io_tree
;
8779 btrfs_releasepage(page
, GFP_NOFS
);
8783 if (!inode_evicting
)
8784 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8787 ordered
= btrfs_lookup_ordered_range(inode
, start
,
8788 page_end
- start
+ 1);
8790 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8792 * IO on this page will never be started, so we need
8793 * to account for any ordered extents now
8795 if (!inode_evicting
)
8796 clear_extent_bit(tree
, start
, end
,
8797 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8798 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8799 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8802 * whoever cleared the private bit is responsible
8803 * for the finish_ordered_io
8805 if (TestClearPagePrivate2(page
)) {
8806 struct btrfs_ordered_inode_tree
*tree
;
8809 tree
= &BTRFS_I(inode
)->ordered_tree
;
8811 spin_lock_irq(&tree
->lock
);
8812 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8813 new_len
= start
- ordered
->file_offset
;
8814 if (new_len
< ordered
->truncated_len
)
8815 ordered
->truncated_len
= new_len
;
8816 spin_unlock_irq(&tree
->lock
);
8818 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8820 end
- start
+ 1, 1))
8821 btrfs_finish_ordered_io(ordered
);
8823 btrfs_put_ordered_extent(ordered
);
8824 if (!inode_evicting
) {
8825 cached_state
= NULL
;
8826 lock_extent_bits(tree
, start
, end
,
8831 if (start
< page_end
)
8836 * Qgroup reserved space handler
8837 * Page here will be either
8838 * 1) Already written to disk
8839 * In this case, its reserved space is released from data rsv map
8840 * and will be freed by delayed_ref handler finally.
8841 * So even we call qgroup_free_data(), it won't decrease reserved
8843 * 2) Not written to disk
8844 * This means the reserved space should be freed here.
8846 btrfs_qgroup_free_data(inode
, page_start
, PAGE_SIZE
);
8847 if (!inode_evicting
) {
8848 clear_extent_bit(tree
, page_start
, page_end
,
8849 EXTENT_LOCKED
| EXTENT_DIRTY
|
8850 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
8851 EXTENT_DEFRAG
, 1, 1,
8852 &cached_state
, GFP_NOFS
);
8854 __btrfs_releasepage(page
, GFP_NOFS
);
8857 ClearPageChecked(page
);
8858 if (PagePrivate(page
)) {
8859 ClearPagePrivate(page
);
8860 set_page_private(page
, 0);
8866 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8867 * called from a page fault handler when a page is first dirtied. Hence we must
8868 * be careful to check for EOF conditions here. We set the page up correctly
8869 * for a written page which means we get ENOSPC checking when writing into
8870 * holes and correct delalloc and unwritten extent mapping on filesystems that
8871 * support these features.
8873 * We are not allowed to take the i_mutex here so we have to play games to
8874 * protect against truncate races as the page could now be beyond EOF. Because
8875 * vmtruncate() writes the inode size before removing pages, once we have the
8876 * page lock we can determine safely if the page is beyond EOF. If it is not
8877 * beyond EOF, then the page is guaranteed safe against truncation until we
8880 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
8882 struct page
*page
= vmf
->page
;
8883 struct inode
*inode
= file_inode(vma
->vm_file
);
8884 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8885 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8886 struct btrfs_ordered_extent
*ordered
;
8887 struct extent_state
*cached_state
= NULL
;
8889 unsigned long zero_start
;
8898 reserved_space
= PAGE_SIZE
;
8900 sb_start_pagefault(inode
->i_sb
);
8901 page_start
= page_offset(page
);
8902 page_end
= page_start
+ PAGE_SIZE
- 1;
8906 * Reserving delalloc space after obtaining the page lock can lead to
8907 * deadlock. For example, if a dirty page is locked by this function
8908 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8909 * dirty page write out, then the btrfs_writepage() function could
8910 * end up waiting indefinitely to get a lock on the page currently
8911 * being processed by btrfs_page_mkwrite() function.
8913 ret
= btrfs_delalloc_reserve_space(inode
, page_start
,
8916 ret
= file_update_time(vma
->vm_file
);
8922 else /* -ENOSPC, -EIO, etc */
8923 ret
= VM_FAULT_SIGBUS
;
8929 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8932 size
= i_size_read(inode
);
8934 if ((page
->mapping
!= inode
->i_mapping
) ||
8935 (page_start
>= size
)) {
8936 /* page got truncated out from underneath us */
8939 wait_on_page_writeback(page
);
8941 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8942 set_page_extent_mapped(page
);
8945 * we can't set the delalloc bits if there are pending ordered
8946 * extents. Drop our locks and wait for them to finish
8948 ordered
= btrfs_lookup_ordered_range(inode
, page_start
, page_end
);
8950 unlock_extent_cached(io_tree
, page_start
, page_end
,
8951 &cached_state
, GFP_NOFS
);
8953 btrfs_start_ordered_extent(inode
, ordered
, 1);
8954 btrfs_put_ordered_extent(ordered
);
8958 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8959 reserved_space
= round_up(size
- page_start
, root
->sectorsize
);
8960 if (reserved_space
< PAGE_SIZE
) {
8961 end
= page_start
+ reserved_space
- 1;
8962 spin_lock(&BTRFS_I(inode
)->lock
);
8963 BTRFS_I(inode
)->outstanding_extents
++;
8964 spin_unlock(&BTRFS_I(inode
)->lock
);
8965 btrfs_delalloc_release_space(inode
, page_start
,
8966 PAGE_SIZE
- reserved_space
);
8971 * XXX - page_mkwrite gets called every time the page is dirtied, even
8972 * if it was already dirty, so for space accounting reasons we need to
8973 * clear any delalloc bits for the range we are fixing to save. There
8974 * is probably a better way to do this, but for now keep consistent with
8975 * prepare_pages in the normal write path.
8977 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8978 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8979 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8980 0, 0, &cached_state
, GFP_NOFS
);
8982 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
,
8985 unlock_extent_cached(io_tree
, page_start
, page_end
,
8986 &cached_state
, GFP_NOFS
);
8987 ret
= VM_FAULT_SIGBUS
;
8992 /* page is wholly or partially inside EOF */
8993 if (page_start
+ PAGE_SIZE
> size
)
8994 zero_start
= size
& ~PAGE_MASK
;
8996 zero_start
= PAGE_SIZE
;
8998 if (zero_start
!= PAGE_SIZE
) {
9000 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9001 flush_dcache_page(page
);
9004 ClearPageChecked(page
);
9005 set_page_dirty(page
);
9006 SetPageUptodate(page
);
9008 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
9009 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9010 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9012 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9016 sb_end_pagefault(inode
->i_sb
);
9017 return VM_FAULT_LOCKED
;
9021 btrfs_delalloc_release_space(inode
, page_start
, reserved_space
);
9023 sb_end_pagefault(inode
->i_sb
);
9027 static int btrfs_truncate(struct inode
*inode
)
9029 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9030 struct btrfs_block_rsv
*rsv
;
9033 struct btrfs_trans_handle
*trans
;
9034 u64 mask
= root
->sectorsize
- 1;
9035 u64 min_size
= btrfs_calc_trunc_metadata_size(root
, 1);
9037 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9043 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9044 * 3 things going on here
9046 * 1) We need to reserve space for our orphan item and the space to
9047 * delete our orphan item. Lord knows we don't want to have a dangling
9048 * orphan item because we didn't reserve space to remove it.
9050 * 2) We need to reserve space to update our inode.
9052 * 3) We need to have something to cache all the space that is going to
9053 * be free'd up by the truncate operation, but also have some slack
9054 * space reserved in case it uses space during the truncate (thank you
9055 * very much snapshotting).
9057 * And we need these to all be separate. The fact is we can use a lot of
9058 * space doing the truncate, and we have no earthly idea how much space
9059 * we will use, so we need the truncate reservation to be separate so it
9060 * doesn't end up using space reserved for updating the inode or
9061 * removing the orphan item. We also need to be able to stop the
9062 * transaction and start a new one, which means we need to be able to
9063 * update the inode several times, and we have no idea of knowing how
9064 * many times that will be, so we can't just reserve 1 item for the
9065 * entirety of the operation, so that has to be done separately as well.
9066 * Then there is the orphan item, which does indeed need to be held on
9067 * to for the whole operation, and we need nobody to touch this reserved
9068 * space except the orphan code.
9070 * So that leaves us with
9072 * 1) root->orphan_block_rsv - for the orphan deletion.
9073 * 2) rsv - for the truncate reservation, which we will steal from the
9074 * transaction reservation.
9075 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9076 * updating the inode.
9078 rsv
= btrfs_alloc_block_rsv(root
, BTRFS_BLOCK_RSV_TEMP
);
9081 rsv
->size
= min_size
;
9085 * 1 for the truncate slack space
9086 * 1 for updating the inode.
9088 trans
= btrfs_start_transaction(root
, 2);
9089 if (IS_ERR(trans
)) {
9090 err
= PTR_ERR(trans
);
9094 /* Migrate the slack space for the truncate to our reserve */
9095 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
, rsv
,
9100 * So if we truncate and then write and fsync we normally would just
9101 * write the extents that changed, which is a problem if we need to
9102 * first truncate that entire inode. So set this flag so we write out
9103 * all of the extents in the inode to the sync log so we're completely
9106 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9107 trans
->block_rsv
= rsv
;
9110 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9112 BTRFS_EXTENT_DATA_KEY
);
9113 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9118 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
9119 ret
= btrfs_update_inode(trans
, root
, inode
);
9125 btrfs_end_transaction(trans
, root
);
9126 btrfs_btree_balance_dirty(root
);
9128 trans
= btrfs_start_transaction(root
, 2);
9129 if (IS_ERR(trans
)) {
9130 ret
= err
= PTR_ERR(trans
);
9135 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->trans_block_rsv
,
9137 BUG_ON(ret
); /* shouldn't happen */
9138 trans
->block_rsv
= rsv
;
9141 if (ret
== 0 && inode
->i_nlink
> 0) {
9142 trans
->block_rsv
= root
->orphan_block_rsv
;
9143 ret
= btrfs_orphan_del(trans
, inode
);
9149 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
9150 ret
= btrfs_update_inode(trans
, root
, inode
);
9154 ret
= btrfs_end_transaction(trans
, root
);
9155 btrfs_btree_balance_dirty(root
);
9159 btrfs_free_block_rsv(root
, rsv
);
9168 * create a new subvolume directory/inode (helper for the ioctl).
9170 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9171 struct btrfs_root
*new_root
,
9172 struct btrfs_root
*parent_root
,
9175 struct inode
*inode
;
9179 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9180 new_dirid
, new_dirid
,
9181 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9184 return PTR_ERR(inode
);
9185 inode
->i_op
= &btrfs_dir_inode_operations
;
9186 inode
->i_fop
= &btrfs_dir_file_operations
;
9188 set_nlink(inode
, 1);
9189 btrfs_i_size_write(inode
, 0);
9190 unlock_new_inode(inode
);
9192 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9194 btrfs_err(new_root
->fs_info
,
9195 "error inheriting subvolume %llu properties: %d",
9196 new_root
->root_key
.objectid
, err
);
9198 err
= btrfs_update_inode(trans
, new_root
, inode
);
9204 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9206 struct btrfs_inode
*ei
;
9207 struct inode
*inode
;
9209 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9216 ei
->last_sub_trans
= 0;
9217 ei
->logged_trans
= 0;
9218 ei
->delalloc_bytes
= 0;
9219 ei
->defrag_bytes
= 0;
9220 ei
->disk_i_size
= 0;
9223 ei
->index_cnt
= (u64
)-1;
9225 ei
->last_unlink_trans
= 0;
9226 ei
->last_log_commit
= 0;
9227 ei
->delayed_iput_count
= 0;
9229 spin_lock_init(&ei
->lock
);
9230 ei
->outstanding_extents
= 0;
9231 ei
->reserved_extents
= 0;
9233 ei
->runtime_flags
= 0;
9234 ei
->force_compress
= BTRFS_COMPRESS_NONE
;
9236 ei
->delayed_node
= NULL
;
9238 ei
->i_otime
.tv_sec
= 0;
9239 ei
->i_otime
.tv_nsec
= 0;
9241 inode
= &ei
->vfs_inode
;
9242 extent_map_tree_init(&ei
->extent_tree
);
9243 extent_io_tree_init(&ei
->io_tree
, &inode
->i_data
);
9244 extent_io_tree_init(&ei
->io_failure_tree
, &inode
->i_data
);
9245 ei
->io_tree
.track_uptodate
= 1;
9246 ei
->io_failure_tree
.track_uptodate
= 1;
9247 atomic_set(&ei
->sync_writers
, 0);
9248 mutex_init(&ei
->log_mutex
);
9249 mutex_init(&ei
->delalloc_mutex
);
9250 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9251 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9252 INIT_LIST_HEAD(&ei
->delayed_iput
);
9253 RB_CLEAR_NODE(&ei
->rb_node
);
9254 init_rwsem(&ei
->dio_sem
);
9259 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9260 void btrfs_test_destroy_inode(struct inode
*inode
)
9262 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9263 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9267 static void btrfs_i_callback(struct rcu_head
*head
)
9269 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9270 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9273 void btrfs_destroy_inode(struct inode
*inode
)
9275 struct btrfs_ordered_extent
*ordered
;
9276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9278 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9279 WARN_ON(inode
->i_data
.nrpages
);
9280 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9281 WARN_ON(BTRFS_I(inode
)->reserved_extents
);
9282 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9283 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9284 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9287 * This can happen where we create an inode, but somebody else also
9288 * created the same inode and we need to destroy the one we already
9294 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9295 &BTRFS_I(inode
)->runtime_flags
)) {
9296 btrfs_info(root
->fs_info
, "inode %llu still on the orphan list",
9298 atomic_dec(&root
->orphan_inodes
);
9302 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9306 btrfs_err(root
->fs_info
, "found ordered extent %llu %llu on inode cleanup",
9307 ordered
->file_offset
, ordered
->len
);
9308 btrfs_remove_ordered_extent(inode
, ordered
);
9309 btrfs_put_ordered_extent(ordered
);
9310 btrfs_put_ordered_extent(ordered
);
9313 btrfs_qgroup_check_reserved_leak(inode
);
9314 inode_tree_del(inode
);
9315 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
9317 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9320 int btrfs_drop_inode(struct inode
*inode
)
9322 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9327 /* the snap/subvol tree is on deleting */
9328 if (btrfs_root_refs(&root
->root_item
) == 0)
9331 return generic_drop_inode(inode
);
9334 static void init_once(void *foo
)
9336 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9338 inode_init_once(&ei
->vfs_inode
);
9341 void btrfs_destroy_cachep(void)
9344 * Make sure all delayed rcu free inodes are flushed before we
9348 kmem_cache_destroy(btrfs_inode_cachep
);
9349 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9350 kmem_cache_destroy(btrfs_transaction_cachep
);
9351 kmem_cache_destroy(btrfs_path_cachep
);
9352 kmem_cache_destroy(btrfs_free_space_cachep
);
9355 int btrfs_init_cachep(void)
9357 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9358 sizeof(struct btrfs_inode
), 0,
9359 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9361 if (!btrfs_inode_cachep
)
9364 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9365 sizeof(struct btrfs_trans_handle
), 0,
9366 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9367 if (!btrfs_trans_handle_cachep
)
9370 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction",
9371 sizeof(struct btrfs_transaction
), 0,
9372 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9373 if (!btrfs_transaction_cachep
)
9376 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9377 sizeof(struct btrfs_path
), 0,
9378 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9379 if (!btrfs_path_cachep
)
9382 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9383 sizeof(struct btrfs_free_space
), 0,
9384 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
9385 if (!btrfs_free_space_cachep
)
9390 btrfs_destroy_cachep();
9394 static int btrfs_getattr(struct vfsmount
*mnt
,
9395 struct dentry
*dentry
, struct kstat
*stat
)
9398 struct inode
*inode
= d_inode(dentry
);
9399 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9401 generic_fillattr(inode
, stat
);
9402 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9404 spin_lock(&BTRFS_I(inode
)->lock
);
9405 delalloc_bytes
= BTRFS_I(inode
)->delalloc_bytes
;
9406 spin_unlock(&BTRFS_I(inode
)->lock
);
9407 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9408 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9412 static int btrfs_rename_exchange(struct inode
*old_dir
,
9413 struct dentry
*old_dentry
,
9414 struct inode
*new_dir
,
9415 struct dentry
*new_dentry
)
9417 struct btrfs_trans_handle
*trans
;
9418 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9419 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9420 struct inode
*new_inode
= new_dentry
->d_inode
;
9421 struct inode
*old_inode
= old_dentry
->d_inode
;
9422 struct timespec ctime
= CURRENT_TIME
;
9423 struct dentry
*parent
;
9424 u64 old_ino
= btrfs_ino(old_inode
);
9425 u64 new_ino
= btrfs_ino(new_inode
);
9430 bool root_log_pinned
= false;
9431 bool dest_log_pinned
= false;
9433 /* we only allow rename subvolume link between subvolumes */
9434 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9437 /* close the race window with snapshot create/destroy ioctl */
9438 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9439 down_read(&root
->fs_info
->subvol_sem
);
9440 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9441 down_read(&dest
->fs_info
->subvol_sem
);
9444 * We want to reserve the absolute worst case amount of items. So if
9445 * both inodes are subvols and we need to unlink them then that would
9446 * require 4 item modifications, but if they are both normal inodes it
9447 * would require 5 item modifications, so we'll assume their normal
9448 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9449 * should cover the worst case number of items we'll modify.
9451 trans
= btrfs_start_transaction(root
, 12);
9452 if (IS_ERR(trans
)) {
9453 ret
= PTR_ERR(trans
);
9458 * We need to find a free sequence number both in the source and
9459 * in the destination directory for the exchange.
9461 ret
= btrfs_set_inode_index(new_dir
, &old_idx
);
9464 ret
= btrfs_set_inode_index(old_dir
, &new_idx
);
9468 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9469 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9471 /* Reference for the source. */
9472 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9473 /* force full log commit if subvolume involved. */
9474 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9476 btrfs_pin_log_trans(root
);
9477 root_log_pinned
= true;
9478 ret
= btrfs_insert_inode_ref(trans
, dest
,
9479 new_dentry
->d_name
.name
,
9480 new_dentry
->d_name
.len
,
9482 btrfs_ino(new_dir
), old_idx
);
9487 /* And now for the dest. */
9488 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9489 /* force full log commit if subvolume involved. */
9490 btrfs_set_log_full_commit(dest
->fs_info
, trans
);
9492 btrfs_pin_log_trans(dest
);
9493 dest_log_pinned
= true;
9494 ret
= btrfs_insert_inode_ref(trans
, root
,
9495 old_dentry
->d_name
.name
,
9496 old_dentry
->d_name
.len
,
9498 btrfs_ino(old_dir
), new_idx
);
9503 /* Update inode version and ctime/mtime. */
9504 inode_inc_iversion(old_dir
);
9505 inode_inc_iversion(new_dir
);
9506 inode_inc_iversion(old_inode
);
9507 inode_inc_iversion(new_inode
);
9508 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9509 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9510 old_inode
->i_ctime
= ctime
;
9511 new_inode
->i_ctime
= ctime
;
9513 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9514 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9515 btrfs_record_unlink_dir(trans
, new_dir
, new_inode
, 1);
9518 /* src is a subvolume */
9519 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9520 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9521 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9523 old_dentry
->d_name
.name
,
9524 old_dentry
->d_name
.len
);
9525 } else { /* src is an inode */
9526 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9527 old_dentry
->d_inode
,
9528 old_dentry
->d_name
.name
,
9529 old_dentry
->d_name
.len
);
9531 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9534 btrfs_abort_transaction(trans
, root
, ret
);
9538 /* dest is a subvolume */
9539 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9540 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9541 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9543 new_dentry
->d_name
.name
,
9544 new_dentry
->d_name
.len
);
9545 } else { /* dest is an inode */
9546 ret
= __btrfs_unlink_inode(trans
, dest
, new_dir
,
9547 new_dentry
->d_inode
,
9548 new_dentry
->d_name
.name
,
9549 new_dentry
->d_name
.len
);
9551 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9554 btrfs_abort_transaction(trans
, root
, ret
);
9558 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9559 new_dentry
->d_name
.name
,
9560 new_dentry
->d_name
.len
, 0, old_idx
);
9562 btrfs_abort_transaction(trans
, root
, ret
);
9566 ret
= btrfs_add_link(trans
, old_dir
, new_inode
,
9567 old_dentry
->d_name
.name
,
9568 old_dentry
->d_name
.len
, 0, new_idx
);
9570 btrfs_abort_transaction(trans
, root
, ret
);
9574 if (old_inode
->i_nlink
== 1)
9575 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9576 if (new_inode
->i_nlink
== 1)
9577 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9579 if (root_log_pinned
) {
9580 parent
= new_dentry
->d_parent
;
9581 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9582 btrfs_end_log_trans(root
);
9583 root_log_pinned
= false;
9585 if (dest_log_pinned
) {
9586 parent
= old_dentry
->d_parent
;
9587 btrfs_log_new_name(trans
, new_inode
, new_dir
, parent
);
9588 btrfs_end_log_trans(dest
);
9589 dest_log_pinned
= false;
9593 * If we have pinned a log and an error happened, we unpin tasks
9594 * trying to sync the log and force them to fallback to a transaction
9595 * commit if the log currently contains any of the inodes involved in
9596 * this rename operation (to ensure we do not persist a log with an
9597 * inconsistent state for any of these inodes or leading to any
9598 * inconsistencies when replayed). If the transaction was aborted, the
9599 * abortion reason is propagated to userspace when attempting to commit
9600 * the transaction. If the log does not contain any of these inodes, we
9601 * allow the tasks to sync it.
9603 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9604 if (btrfs_inode_in_log(old_dir
, root
->fs_info
->generation
) ||
9605 btrfs_inode_in_log(new_dir
, root
->fs_info
->generation
) ||
9606 btrfs_inode_in_log(old_inode
, root
->fs_info
->generation
) ||
9608 btrfs_inode_in_log(new_inode
, root
->fs_info
->generation
)))
9609 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9611 if (root_log_pinned
) {
9612 btrfs_end_log_trans(root
);
9613 root_log_pinned
= false;
9615 if (dest_log_pinned
) {
9616 btrfs_end_log_trans(dest
);
9617 dest_log_pinned
= false;
9620 ret
= btrfs_end_transaction(trans
, root
);
9622 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9623 up_read(&dest
->fs_info
->subvol_sem
);
9624 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9625 up_read(&root
->fs_info
->subvol_sem
);
9630 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9631 struct btrfs_root
*root
,
9633 struct dentry
*dentry
)
9636 struct inode
*inode
;
9640 ret
= btrfs_find_free_ino(root
, &objectid
);
9644 inode
= btrfs_new_inode(trans
, root
, dir
,
9645 dentry
->d_name
.name
,
9649 S_IFCHR
| WHITEOUT_MODE
,
9652 if (IS_ERR(inode
)) {
9653 ret
= PTR_ERR(inode
);
9657 inode
->i_op
= &btrfs_special_inode_operations
;
9658 init_special_inode(inode
, inode
->i_mode
,
9661 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9666 ret
= btrfs_add_nondir(trans
, dir
, dentry
,
9671 ret
= btrfs_update_inode(trans
, root
, inode
);
9673 unlock_new_inode(inode
);
9675 inode_dec_link_count(inode
);
9681 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9682 struct inode
*new_dir
, struct dentry
*new_dentry
,
9685 struct btrfs_trans_handle
*trans
;
9686 unsigned int trans_num_items
;
9687 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9688 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9689 struct inode
*new_inode
= d_inode(new_dentry
);
9690 struct inode
*old_inode
= d_inode(old_dentry
);
9694 u64 old_ino
= btrfs_ino(old_inode
);
9695 bool log_pinned
= false;
9697 if (btrfs_ino(new_dir
) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9700 /* we only allow rename subvolume link between subvolumes */
9701 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9704 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9705 (new_inode
&& btrfs_ino(new_inode
) == BTRFS_FIRST_FREE_OBJECTID
))
9708 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9709 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9713 /* check for collisions, even if the name isn't there */
9714 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9715 new_dentry
->d_name
.name
,
9716 new_dentry
->d_name
.len
);
9719 if (ret
== -EEXIST
) {
9721 * eexist without a new_inode */
9722 if (WARN_ON(!new_inode
)) {
9726 /* maybe -EOVERFLOW */
9733 * we're using rename to replace one file with another. Start IO on it
9734 * now so we don't add too much work to the end of the transaction
9736 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9737 filemap_flush(old_inode
->i_mapping
);
9739 /* close the racy window with snapshot create/destroy ioctl */
9740 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9741 down_read(&root
->fs_info
->subvol_sem
);
9743 * We want to reserve the absolute worst case amount of items. So if
9744 * both inodes are subvols and we need to unlink them then that would
9745 * require 4 item modifications, but if they are both normal inodes it
9746 * would require 5 item modifications, so we'll assume they are normal
9747 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9748 * should cover the worst case number of items we'll modify.
9749 * If our rename has the whiteout flag, we need more 5 units for the
9750 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9751 * when selinux is enabled).
9753 trans_num_items
= 11;
9754 if (flags
& RENAME_WHITEOUT
)
9755 trans_num_items
+= 5;
9756 trans
= btrfs_start_transaction(root
, trans_num_items
);
9757 if (IS_ERR(trans
)) {
9758 ret
= PTR_ERR(trans
);
9763 btrfs_record_root_in_trans(trans
, dest
);
9765 ret
= btrfs_set_inode_index(new_dir
, &index
);
9769 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9770 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9771 /* force full log commit if subvolume involved. */
9772 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9774 btrfs_pin_log_trans(root
);
9776 ret
= btrfs_insert_inode_ref(trans
, dest
,
9777 new_dentry
->d_name
.name
,
9778 new_dentry
->d_name
.len
,
9780 btrfs_ino(new_dir
), index
);
9785 inode_inc_iversion(old_dir
);
9786 inode_inc_iversion(new_dir
);
9787 inode_inc_iversion(old_inode
);
9788 old_dir
->i_ctime
= old_dir
->i_mtime
=
9789 new_dir
->i_ctime
= new_dir
->i_mtime
=
9790 old_inode
->i_ctime
= current_fs_time(old_dir
->i_sb
);
9792 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9793 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
9795 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9796 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9797 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
9798 old_dentry
->d_name
.name
,
9799 old_dentry
->d_name
.len
);
9801 ret
= __btrfs_unlink_inode(trans
, root
, old_dir
,
9802 d_inode(old_dentry
),
9803 old_dentry
->d_name
.name
,
9804 old_dentry
->d_name
.len
);
9806 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9809 btrfs_abort_transaction(trans
, root
, ret
);
9814 inode_inc_iversion(new_inode
);
9815 new_inode
->i_ctime
= current_fs_time(new_inode
->i_sb
);
9816 if (unlikely(btrfs_ino(new_inode
) ==
9817 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9818 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9819 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9821 new_dentry
->d_name
.name
,
9822 new_dentry
->d_name
.len
);
9823 BUG_ON(new_inode
->i_nlink
== 0);
9825 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
9826 d_inode(new_dentry
),
9827 new_dentry
->d_name
.name
,
9828 new_dentry
->d_name
.len
);
9830 if (!ret
&& new_inode
->i_nlink
== 0)
9831 ret
= btrfs_orphan_add(trans
, d_inode(new_dentry
));
9833 btrfs_abort_transaction(trans
, root
, ret
);
9838 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
9839 new_dentry
->d_name
.name
,
9840 new_dentry
->d_name
.len
, 0, index
);
9842 btrfs_abort_transaction(trans
, root
, ret
);
9846 if (old_inode
->i_nlink
== 1)
9847 BTRFS_I(old_inode
)->dir_index
= index
;
9850 struct dentry
*parent
= new_dentry
->d_parent
;
9852 btrfs_log_new_name(trans
, old_inode
, old_dir
, parent
);
9853 btrfs_end_log_trans(root
);
9857 if (flags
& RENAME_WHITEOUT
) {
9858 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9862 btrfs_abort_transaction(trans
, root
, ret
);
9868 * If we have pinned the log and an error happened, we unpin tasks
9869 * trying to sync the log and force them to fallback to a transaction
9870 * commit if the log currently contains any of the inodes involved in
9871 * this rename operation (to ensure we do not persist a log with an
9872 * inconsistent state for any of these inodes or leading to any
9873 * inconsistencies when replayed). If the transaction was aborted, the
9874 * abortion reason is propagated to userspace when attempting to commit
9875 * the transaction. If the log does not contain any of these inodes, we
9876 * allow the tasks to sync it.
9878 if (ret
&& log_pinned
) {
9879 if (btrfs_inode_in_log(old_dir
, root
->fs_info
->generation
) ||
9880 btrfs_inode_in_log(new_dir
, root
->fs_info
->generation
) ||
9881 btrfs_inode_in_log(old_inode
, root
->fs_info
->generation
) ||
9883 btrfs_inode_in_log(new_inode
, root
->fs_info
->generation
)))
9884 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9886 btrfs_end_log_trans(root
);
9889 btrfs_end_transaction(trans
, root
);
9891 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9892 up_read(&root
->fs_info
->subvol_sem
);
9897 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9898 struct inode
*new_dir
, struct dentry
*new_dentry
,
9901 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9904 if (flags
& RENAME_EXCHANGE
)
9905 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9908 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9911 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9913 struct btrfs_delalloc_work
*delalloc_work
;
9914 struct inode
*inode
;
9916 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9918 inode
= delalloc_work
->inode
;
9919 filemap_flush(inode
->i_mapping
);
9920 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9921 &BTRFS_I(inode
)->runtime_flags
))
9922 filemap_flush(inode
->i_mapping
);
9924 if (delalloc_work
->delay_iput
)
9925 btrfs_add_delayed_iput(inode
);
9928 complete(&delalloc_work
->completion
);
9931 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
9934 struct btrfs_delalloc_work
*work
;
9936 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9940 init_completion(&work
->completion
);
9941 INIT_LIST_HEAD(&work
->list
);
9942 work
->inode
= inode
;
9943 work
->delay_iput
= delay_iput
;
9944 WARN_ON_ONCE(!inode
);
9945 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9946 btrfs_run_delalloc_work
, NULL
, NULL
);
9951 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
9953 wait_for_completion(&work
->completion
);
9958 * some fairly slow code that needs optimization. This walks the list
9959 * of all the inodes with pending delalloc and forces them to disk.
9961 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
9964 struct btrfs_inode
*binode
;
9965 struct inode
*inode
;
9966 struct btrfs_delalloc_work
*work
, *next
;
9967 struct list_head works
;
9968 struct list_head splice
;
9971 INIT_LIST_HEAD(&works
);
9972 INIT_LIST_HEAD(&splice
);
9974 mutex_lock(&root
->delalloc_mutex
);
9975 spin_lock(&root
->delalloc_lock
);
9976 list_splice_init(&root
->delalloc_inodes
, &splice
);
9977 while (!list_empty(&splice
)) {
9978 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9981 list_move_tail(&binode
->delalloc_inodes
,
9982 &root
->delalloc_inodes
);
9983 inode
= igrab(&binode
->vfs_inode
);
9985 cond_resched_lock(&root
->delalloc_lock
);
9988 spin_unlock(&root
->delalloc_lock
);
9990 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
9993 btrfs_add_delayed_iput(inode
);
9999 list_add_tail(&work
->list
, &works
);
10000 btrfs_queue_work(root
->fs_info
->flush_workers
,
10003 if (nr
!= -1 && ret
>= nr
)
10006 spin_lock(&root
->delalloc_lock
);
10008 spin_unlock(&root
->delalloc_lock
);
10011 list_for_each_entry_safe(work
, next
, &works
, list
) {
10012 list_del_init(&work
->list
);
10013 btrfs_wait_and_free_delalloc_work(work
);
10016 if (!list_empty_careful(&splice
)) {
10017 spin_lock(&root
->delalloc_lock
);
10018 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10019 spin_unlock(&root
->delalloc_lock
);
10021 mutex_unlock(&root
->delalloc_mutex
);
10025 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10029 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
10032 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10036 * the filemap_flush will queue IO into the worker threads, but
10037 * we have to make sure the IO is actually started and that
10038 * ordered extents get created before we return
10040 atomic_inc(&root
->fs_info
->async_submit_draining
);
10041 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
10042 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
10043 wait_event(root
->fs_info
->async_submit_wait
,
10044 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
10045 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
10047 atomic_dec(&root
->fs_info
->async_submit_draining
);
10051 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10054 struct btrfs_root
*root
;
10055 struct list_head splice
;
10058 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10061 INIT_LIST_HEAD(&splice
);
10063 mutex_lock(&fs_info
->delalloc_root_mutex
);
10064 spin_lock(&fs_info
->delalloc_root_lock
);
10065 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10066 while (!list_empty(&splice
) && nr
) {
10067 root
= list_first_entry(&splice
, struct btrfs_root
,
10069 root
= btrfs_grab_fs_root(root
);
10071 list_move_tail(&root
->delalloc_root
,
10072 &fs_info
->delalloc_roots
);
10073 spin_unlock(&fs_info
->delalloc_root_lock
);
10075 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10076 btrfs_put_fs_root(root
);
10084 spin_lock(&fs_info
->delalloc_root_lock
);
10086 spin_unlock(&fs_info
->delalloc_root_lock
);
10089 atomic_inc(&fs_info
->async_submit_draining
);
10090 while (atomic_read(&fs_info
->nr_async_submits
) ||
10091 atomic_read(&fs_info
->async_delalloc_pages
)) {
10092 wait_event(fs_info
->async_submit_wait
,
10093 (atomic_read(&fs_info
->nr_async_submits
) == 0 &&
10094 atomic_read(&fs_info
->async_delalloc_pages
) == 0));
10096 atomic_dec(&fs_info
->async_submit_draining
);
10098 if (!list_empty_careful(&splice
)) {
10099 spin_lock(&fs_info
->delalloc_root_lock
);
10100 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10101 spin_unlock(&fs_info
->delalloc_root_lock
);
10103 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10107 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10108 const char *symname
)
10110 struct btrfs_trans_handle
*trans
;
10111 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10112 struct btrfs_path
*path
;
10113 struct btrfs_key key
;
10114 struct inode
*inode
= NULL
;
10116 int drop_inode
= 0;
10122 struct btrfs_file_extent_item
*ei
;
10123 struct extent_buffer
*leaf
;
10125 name_len
= strlen(symname
);
10126 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
10127 return -ENAMETOOLONG
;
10130 * 2 items for inode item and ref
10131 * 2 items for dir items
10132 * 1 item for updating parent inode item
10133 * 1 item for the inline extent item
10134 * 1 item for xattr if selinux is on
10136 trans
= btrfs_start_transaction(root
, 7);
10138 return PTR_ERR(trans
);
10140 err
= btrfs_find_free_ino(root
, &objectid
);
10144 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10145 dentry
->d_name
.len
, btrfs_ino(dir
), objectid
,
10146 S_IFLNK
|S_IRWXUGO
, &index
);
10147 if (IS_ERR(inode
)) {
10148 err
= PTR_ERR(inode
);
10153 * If the active LSM wants to access the inode during
10154 * d_instantiate it needs these. Smack checks to see
10155 * if the filesystem supports xattrs by looking at the
10158 inode
->i_fop
= &btrfs_file_operations
;
10159 inode
->i_op
= &btrfs_file_inode_operations
;
10160 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10161 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10163 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10165 goto out_unlock_inode
;
10167 path
= btrfs_alloc_path();
10170 goto out_unlock_inode
;
10172 key
.objectid
= btrfs_ino(inode
);
10174 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10175 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10176 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10179 btrfs_free_path(path
);
10180 goto out_unlock_inode
;
10182 leaf
= path
->nodes
[0];
10183 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10184 struct btrfs_file_extent_item
);
10185 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10186 btrfs_set_file_extent_type(leaf
, ei
,
10187 BTRFS_FILE_EXTENT_INLINE
);
10188 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10189 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10190 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10191 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10193 ptr
= btrfs_file_extent_inline_start(ei
);
10194 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10195 btrfs_mark_buffer_dirty(leaf
);
10196 btrfs_free_path(path
);
10198 inode
->i_op
= &btrfs_symlink_inode_operations
;
10199 inode_nohighmem(inode
);
10200 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10201 inode_set_bytes(inode
, name_len
);
10202 btrfs_i_size_write(inode
, name_len
);
10203 err
= btrfs_update_inode(trans
, root
, inode
);
10205 * Last step, add directory indexes for our symlink inode. This is the
10206 * last step to avoid extra cleanup of these indexes if an error happens
10210 err
= btrfs_add_nondir(trans
, dir
, dentry
, inode
, 0, index
);
10213 goto out_unlock_inode
;
10216 unlock_new_inode(inode
);
10217 d_instantiate(dentry
, inode
);
10220 btrfs_end_transaction(trans
, root
);
10222 inode_dec_link_count(inode
);
10225 btrfs_btree_balance_dirty(root
);
10230 unlock_new_inode(inode
);
10234 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10235 u64 start
, u64 num_bytes
, u64 min_size
,
10236 loff_t actual_len
, u64
*alloc_hint
,
10237 struct btrfs_trans_handle
*trans
)
10239 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10240 struct extent_map
*em
;
10241 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10242 struct btrfs_key ins
;
10243 u64 cur_offset
= start
;
10246 u64 last_alloc
= (u64
)-1;
10248 bool own_trans
= true;
10252 while (num_bytes
> 0) {
10254 trans
= btrfs_start_transaction(root
, 3);
10255 if (IS_ERR(trans
)) {
10256 ret
= PTR_ERR(trans
);
10261 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10262 cur_bytes
= max(cur_bytes
, min_size
);
10264 * If we are severely fragmented we could end up with really
10265 * small allocations, so if the allocator is returning small
10266 * chunks lets make its job easier by only searching for those
10269 cur_bytes
= min(cur_bytes
, last_alloc
);
10270 ret
= btrfs_reserve_extent(root
, cur_bytes
, min_size
, 0,
10271 *alloc_hint
, &ins
, 1, 0);
10274 btrfs_end_transaction(trans
, root
);
10277 btrfs_dec_block_group_reservations(root
->fs_info
, ins
.objectid
);
10279 last_alloc
= ins
.offset
;
10280 ret
= insert_reserved_file_extent(trans
, inode
,
10281 cur_offset
, ins
.objectid
,
10282 ins
.offset
, ins
.offset
,
10283 ins
.offset
, 0, 0, 0,
10284 BTRFS_FILE_EXTENT_PREALLOC
);
10286 btrfs_free_reserved_extent(root
, ins
.objectid
,
10288 btrfs_abort_transaction(trans
, root
, ret
);
10290 btrfs_end_transaction(trans
, root
);
10294 btrfs_drop_extent_cache(inode
, cur_offset
,
10295 cur_offset
+ ins
.offset
-1, 0);
10297 em
= alloc_extent_map();
10299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10300 &BTRFS_I(inode
)->runtime_flags
);
10304 em
->start
= cur_offset
;
10305 em
->orig_start
= cur_offset
;
10306 em
->len
= ins
.offset
;
10307 em
->block_start
= ins
.objectid
;
10308 em
->block_len
= ins
.offset
;
10309 em
->orig_block_len
= ins
.offset
;
10310 em
->ram_bytes
= ins
.offset
;
10311 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
10312 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10313 em
->generation
= trans
->transid
;
10316 write_lock(&em_tree
->lock
);
10317 ret
= add_extent_mapping(em_tree
, em
, 1);
10318 write_unlock(&em_tree
->lock
);
10319 if (ret
!= -EEXIST
)
10321 btrfs_drop_extent_cache(inode
, cur_offset
,
10322 cur_offset
+ ins
.offset
- 1,
10325 free_extent_map(em
);
10327 num_bytes
-= ins
.offset
;
10328 cur_offset
+= ins
.offset
;
10329 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10331 inode_inc_iversion(inode
);
10332 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
10333 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10334 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10335 (actual_len
> inode
->i_size
) &&
10336 (cur_offset
> inode
->i_size
)) {
10337 if (cur_offset
> actual_len
)
10338 i_size
= actual_len
;
10340 i_size
= cur_offset
;
10341 i_size_write(inode
, i_size
);
10342 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10345 ret
= btrfs_update_inode(trans
, root
, inode
);
10348 btrfs_abort_transaction(trans
, root
, ret
);
10350 btrfs_end_transaction(trans
, root
);
10355 btrfs_end_transaction(trans
, root
);
10360 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10361 u64 start
, u64 num_bytes
, u64 min_size
,
10362 loff_t actual_len
, u64
*alloc_hint
)
10364 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10365 min_size
, actual_len
, alloc_hint
,
10369 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10370 struct btrfs_trans_handle
*trans
, int mode
,
10371 u64 start
, u64 num_bytes
, u64 min_size
,
10372 loff_t actual_len
, u64
*alloc_hint
)
10374 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10375 min_size
, actual_len
, alloc_hint
, trans
);
10378 static int btrfs_set_page_dirty(struct page
*page
)
10380 return __set_page_dirty_nobuffers(page
);
10383 static int btrfs_permission(struct inode
*inode
, int mask
)
10385 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10386 umode_t mode
= inode
->i_mode
;
10388 if (mask
& MAY_WRITE
&&
10389 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10390 if (btrfs_root_readonly(root
))
10392 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10395 return generic_permission(inode
, mask
);
10398 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10400 struct btrfs_trans_handle
*trans
;
10401 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10402 struct inode
*inode
= NULL
;
10408 * 5 units required for adding orphan entry
10410 trans
= btrfs_start_transaction(root
, 5);
10412 return PTR_ERR(trans
);
10414 ret
= btrfs_find_free_ino(root
, &objectid
);
10418 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10419 btrfs_ino(dir
), objectid
, mode
, &index
);
10420 if (IS_ERR(inode
)) {
10421 ret
= PTR_ERR(inode
);
10426 inode
->i_fop
= &btrfs_file_operations
;
10427 inode
->i_op
= &btrfs_file_inode_operations
;
10429 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10430 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10432 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10436 ret
= btrfs_update_inode(trans
, root
, inode
);
10439 ret
= btrfs_orphan_add(trans
, inode
);
10444 * We set number of links to 0 in btrfs_new_inode(), and here we set
10445 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10448 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10450 set_nlink(inode
, 1);
10451 unlock_new_inode(inode
);
10452 d_tmpfile(dentry
, inode
);
10453 mark_inode_dirty(inode
);
10456 btrfs_end_transaction(trans
, root
);
10459 btrfs_balance_delayed_items(root
);
10460 btrfs_btree_balance_dirty(root
);
10464 unlock_new_inode(inode
);
10469 /* Inspired by filemap_check_errors() */
10470 int btrfs_inode_check_errors(struct inode
*inode
)
10474 if (test_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
) &&
10475 test_and_clear_bit(AS_ENOSPC
, &inode
->i_mapping
->flags
))
10477 if (test_bit(AS_EIO
, &inode
->i_mapping
->flags
) &&
10478 test_and_clear_bit(AS_EIO
, &inode
->i_mapping
->flags
))
10484 static const struct inode_operations btrfs_dir_inode_operations
= {
10485 .getattr
= btrfs_getattr
,
10486 .lookup
= btrfs_lookup
,
10487 .create
= btrfs_create
,
10488 .unlink
= btrfs_unlink
,
10489 .link
= btrfs_link
,
10490 .mkdir
= btrfs_mkdir
,
10491 .rmdir
= btrfs_rmdir
,
10492 .rename2
= btrfs_rename2
,
10493 .symlink
= btrfs_symlink
,
10494 .setattr
= btrfs_setattr
,
10495 .mknod
= btrfs_mknod
,
10496 .setxattr
= generic_setxattr
,
10497 .getxattr
= generic_getxattr
,
10498 .listxattr
= btrfs_listxattr
,
10499 .removexattr
= generic_removexattr
,
10500 .permission
= btrfs_permission
,
10501 .get_acl
= btrfs_get_acl
,
10502 .set_acl
= btrfs_set_acl
,
10503 .update_time
= btrfs_update_time
,
10504 .tmpfile
= btrfs_tmpfile
,
10506 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10507 .lookup
= btrfs_lookup
,
10508 .permission
= btrfs_permission
,
10509 .get_acl
= btrfs_get_acl
,
10510 .set_acl
= btrfs_set_acl
,
10511 .update_time
= btrfs_update_time
,
10514 static const struct file_operations btrfs_dir_file_operations
= {
10515 .llseek
= generic_file_llseek
,
10516 .read
= generic_read_dir
,
10517 .iterate
= btrfs_real_readdir
,
10518 .unlocked_ioctl
= btrfs_ioctl
,
10519 #ifdef CONFIG_COMPAT
10520 .compat_ioctl
= btrfs_compat_ioctl
,
10522 .release
= btrfs_release_file
,
10523 .fsync
= btrfs_sync_file
,
10526 static const struct extent_io_ops btrfs_extent_io_ops
= {
10527 .fill_delalloc
= run_delalloc_range
,
10528 .submit_bio_hook
= btrfs_submit_bio_hook
,
10529 .merge_bio_hook
= btrfs_merge_bio_hook
,
10530 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10531 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10532 .writepage_start_hook
= btrfs_writepage_start_hook
,
10533 .set_bit_hook
= btrfs_set_bit_hook
,
10534 .clear_bit_hook
= btrfs_clear_bit_hook
,
10535 .merge_extent_hook
= btrfs_merge_extent_hook
,
10536 .split_extent_hook
= btrfs_split_extent_hook
,
10540 * btrfs doesn't support the bmap operation because swapfiles
10541 * use bmap to make a mapping of extents in the file. They assume
10542 * these extents won't change over the life of the file and they
10543 * use the bmap result to do IO directly to the drive.
10545 * the btrfs bmap call would return logical addresses that aren't
10546 * suitable for IO and they also will change frequently as COW
10547 * operations happen. So, swapfile + btrfs == corruption.
10549 * For now we're avoiding this by dropping bmap.
10551 static const struct address_space_operations btrfs_aops
= {
10552 .readpage
= btrfs_readpage
,
10553 .writepage
= btrfs_writepage
,
10554 .writepages
= btrfs_writepages
,
10555 .readpages
= btrfs_readpages
,
10556 .direct_IO
= btrfs_direct_IO
,
10557 .invalidatepage
= btrfs_invalidatepage
,
10558 .releasepage
= btrfs_releasepage
,
10559 .set_page_dirty
= btrfs_set_page_dirty
,
10560 .error_remove_page
= generic_error_remove_page
,
10563 static const struct address_space_operations btrfs_symlink_aops
= {
10564 .readpage
= btrfs_readpage
,
10565 .writepage
= btrfs_writepage
,
10566 .invalidatepage
= btrfs_invalidatepage
,
10567 .releasepage
= btrfs_releasepage
,
10570 static const struct inode_operations btrfs_file_inode_operations
= {
10571 .getattr
= btrfs_getattr
,
10572 .setattr
= btrfs_setattr
,
10573 .setxattr
= generic_setxattr
,
10574 .getxattr
= generic_getxattr
,
10575 .listxattr
= btrfs_listxattr
,
10576 .removexattr
= generic_removexattr
,
10577 .permission
= btrfs_permission
,
10578 .fiemap
= btrfs_fiemap
,
10579 .get_acl
= btrfs_get_acl
,
10580 .set_acl
= btrfs_set_acl
,
10581 .update_time
= btrfs_update_time
,
10583 static const struct inode_operations btrfs_special_inode_operations
= {
10584 .getattr
= btrfs_getattr
,
10585 .setattr
= btrfs_setattr
,
10586 .permission
= btrfs_permission
,
10587 .setxattr
= generic_setxattr
,
10588 .getxattr
= generic_getxattr
,
10589 .listxattr
= btrfs_listxattr
,
10590 .removexattr
= generic_removexattr
,
10591 .get_acl
= btrfs_get_acl
,
10592 .set_acl
= btrfs_set_acl
,
10593 .update_time
= btrfs_update_time
,
10595 static const struct inode_operations btrfs_symlink_inode_operations
= {
10596 .readlink
= generic_readlink
,
10597 .get_link
= page_get_link
,
10598 .getattr
= btrfs_getattr
,
10599 .setattr
= btrfs_setattr
,
10600 .permission
= btrfs_permission
,
10601 .setxattr
= generic_setxattr
,
10602 .getxattr
= generic_getxattr
,
10603 .listxattr
= btrfs_listxattr
,
10604 .removexattr
= generic_removexattr
,
10605 .update_time
= btrfs_update_time
,
10608 const struct dentry_operations btrfs_dentry_operations
= {
10609 .d_delete
= btrfs_dentry_delete
,
10610 .d_release
= btrfs_dentry_release
,