2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
61 #include "tests/btrfs-tests.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
67 static const struct super_operations btrfs_super_ops
;
68 static struct file_system_type btrfs_fs_type
;
70 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
72 const char *btrfs_decode_error(int errno
)
74 char *errstr
= "unknown";
78 errstr
= "IO failure";
81 errstr
= "Out of memory";
84 errstr
= "Readonly filesystem";
87 errstr
= "Object already exists";
90 errstr
= "No space left";
93 errstr
= "No such entry";
100 /* btrfs handle error by forcing the filesystem readonly */
101 static void btrfs_handle_error(struct btrfs_fs_info
*fs_info
)
103 struct super_block
*sb
= fs_info
->sb
;
105 if (sb
->s_flags
& MS_RDONLY
)
108 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
109 sb
->s_flags
|= MS_RDONLY
;
110 btrfs_info(fs_info
, "forced readonly");
112 * Note that a running device replace operation is not
113 * canceled here although there is no way to update
114 * the progress. It would add the risk of a deadlock,
115 * therefore the canceling is omitted. The only penalty
116 * is that some I/O remains active until the procedure
117 * completes. The next time when the filesystem is
118 * mounted writeable again, the device replace
119 * operation continues.
125 * __btrfs_handle_fs_error decodes expected errors from the caller and
126 * invokes the approciate error response.
129 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
130 unsigned int line
, int errno
, const char *fmt
, ...)
132 struct super_block
*sb
= fs_info
->sb
;
138 * Special case: if the error is EROFS, and we're already
139 * under MS_RDONLY, then it is safe here.
141 if (errno
== -EROFS
&& (sb
->s_flags
& MS_RDONLY
))
145 errstr
= btrfs_decode_error(errno
);
147 struct va_format vaf
;
155 "BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
159 printk(KERN_CRIT
"BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 sb
->s_id
, function
, line
, errno
, errstr
);
165 * Today we only save the error info to memory. Long term we'll
166 * also send it down to the disk
168 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
170 /* Don't go through full error handling during mount */
171 if (sb
->s_flags
& MS_BORN
)
172 btrfs_handle_error(fs_info
);
176 static const char * const logtypes
[] = {
187 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
189 struct super_block
*sb
= fs_info
->sb
;
191 struct va_format vaf
;
193 const char *type
= logtypes
[4];
198 kern_level
= printk_get_level(fmt
);
200 size_t size
= printk_skip_level(fmt
) - fmt
;
201 memcpy(lvl
, fmt
, size
);
204 type
= logtypes
[kern_level
- '0'];
211 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
, sb
->s_id
, &vaf
);
218 * We only mark the transaction aborted and then set the file system read-only.
219 * This will prevent new transactions from starting or trying to join this
222 * This means that error recovery at the call site is limited to freeing
223 * any local memory allocations and passing the error code up without
224 * further cleanup. The transaction should complete as it normally would
225 * in the call path but will return -EIO.
227 * We'll complete the cleanup in btrfs_end_transaction and
228 * btrfs_commit_transaction.
231 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
232 struct btrfs_root
*root
, const char *function
,
233 unsigned int line
, int errno
)
235 trans
->aborted
= errno
;
236 /* Nothing used. The other threads that have joined this
237 * transaction may be able to continue. */
238 if (!trans
->blocks_used
&& list_empty(&trans
->new_bgs
)) {
241 errstr
= btrfs_decode_error(errno
);
242 btrfs_warn(root
->fs_info
,
243 "%s:%d: Aborting unused transaction(%s).",
244 function
, line
, errstr
);
247 ACCESS_ONCE(trans
->transaction
->aborted
) = errno
;
248 /* Wake up anybody who may be waiting on this transaction */
249 wake_up(&root
->fs_info
->transaction_wait
);
250 wake_up(&root
->fs_info
->transaction_blocked_wait
);
251 __btrfs_handle_fs_error(root
->fs_info
, function
, line
, errno
, NULL
);
254 * __btrfs_panic decodes unexpected, fatal errors from the caller,
255 * issues an alert, and either panics or BUGs, depending on mount options.
258 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
259 unsigned int line
, int errno
, const char *fmt
, ...)
261 char *s_id
= "<unknown>";
263 struct va_format vaf
= { .fmt
= fmt
};
267 s_id
= fs_info
->sb
->s_id
;
272 errstr
= btrfs_decode_error(errno
);
273 if (fs_info
&& (fs_info
->mount_opt
& BTRFS_MOUNT_PANIC_ON_FATAL_ERROR
))
274 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
275 s_id
, function
, line
, &vaf
, errno
, errstr
);
277 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
278 function
, line
, &vaf
, errno
, errstr
);
280 /* Caller calls BUG() */
283 static void btrfs_put_super(struct super_block
*sb
)
285 close_ctree(btrfs_sb(sb
)->tree_root
);
289 Opt_degraded
, Opt_subvol
, Opt_subvolid
, Opt_device
, Opt_nodatasum
,
290 Opt_nodatacow
, Opt_max_inline
, Opt_alloc_start
, Opt_nobarrier
, Opt_ssd
,
291 Opt_nossd
, Opt_ssd_spread
, Opt_thread_pool
, Opt_noacl
, Opt_compress
,
292 Opt_compress_type
, Opt_compress_force
, Opt_compress_force_type
,
293 Opt_notreelog
, Opt_ratio
, Opt_flushoncommit
, Opt_discard
,
294 Opt_space_cache
, Opt_space_cache_version
, Opt_clear_cache
,
295 Opt_user_subvol_rm_allowed
, Opt_enospc_debug
, Opt_subvolrootid
,
296 Opt_defrag
, Opt_inode_cache
, Opt_no_space_cache
, Opt_recovery
,
297 Opt_skip_balance
, Opt_check_integrity
,
298 Opt_check_integrity_including_extent_data
,
299 Opt_check_integrity_print_mask
, Opt_fatal_errors
, Opt_rescan_uuid_tree
,
300 Opt_commit_interval
, Opt_barrier
, Opt_nodefrag
, Opt_nodiscard
,
301 Opt_noenospc_debug
, Opt_noflushoncommit
, Opt_acl
, Opt_datacow
,
302 Opt_datasum
, Opt_treelog
, Opt_noinode_cache
, Opt_usebackuproot
,
303 Opt_nologreplay
, Opt_norecovery
,
304 #ifdef CONFIG_BTRFS_DEBUG
305 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
310 static const match_table_t tokens
= {
311 {Opt_degraded
, "degraded"},
312 {Opt_subvol
, "subvol=%s"},
313 {Opt_subvolid
, "subvolid=%s"},
314 {Opt_device
, "device=%s"},
315 {Opt_nodatasum
, "nodatasum"},
316 {Opt_datasum
, "datasum"},
317 {Opt_nodatacow
, "nodatacow"},
318 {Opt_datacow
, "datacow"},
319 {Opt_nobarrier
, "nobarrier"},
320 {Opt_barrier
, "barrier"},
321 {Opt_max_inline
, "max_inline=%s"},
322 {Opt_alloc_start
, "alloc_start=%s"},
323 {Opt_thread_pool
, "thread_pool=%d"},
324 {Opt_compress
, "compress"},
325 {Opt_compress_type
, "compress=%s"},
326 {Opt_compress_force
, "compress-force"},
327 {Opt_compress_force_type
, "compress-force=%s"},
329 {Opt_ssd_spread
, "ssd_spread"},
330 {Opt_nossd
, "nossd"},
332 {Opt_noacl
, "noacl"},
333 {Opt_notreelog
, "notreelog"},
334 {Opt_treelog
, "treelog"},
335 {Opt_nologreplay
, "nologreplay"},
336 {Opt_norecovery
, "norecovery"},
337 {Opt_flushoncommit
, "flushoncommit"},
338 {Opt_noflushoncommit
, "noflushoncommit"},
339 {Opt_ratio
, "metadata_ratio=%d"},
340 {Opt_discard
, "discard"},
341 {Opt_nodiscard
, "nodiscard"},
342 {Opt_space_cache
, "space_cache"},
343 {Opt_space_cache_version
, "space_cache=%s"},
344 {Opt_clear_cache
, "clear_cache"},
345 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
346 {Opt_enospc_debug
, "enospc_debug"},
347 {Opt_noenospc_debug
, "noenospc_debug"},
348 {Opt_subvolrootid
, "subvolrootid=%d"},
349 {Opt_defrag
, "autodefrag"},
350 {Opt_nodefrag
, "noautodefrag"},
351 {Opt_inode_cache
, "inode_cache"},
352 {Opt_noinode_cache
, "noinode_cache"},
353 {Opt_no_space_cache
, "nospace_cache"},
354 {Opt_recovery
, "recovery"}, /* deprecated */
355 {Opt_usebackuproot
, "usebackuproot"},
356 {Opt_skip_balance
, "skip_balance"},
357 {Opt_check_integrity
, "check_int"},
358 {Opt_check_integrity_including_extent_data
, "check_int_data"},
359 {Opt_check_integrity_print_mask
, "check_int_print_mask=%d"},
360 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
361 {Opt_fatal_errors
, "fatal_errors=%s"},
362 {Opt_commit_interval
, "commit=%d"},
363 #ifdef CONFIG_BTRFS_DEBUG
364 {Opt_fragment_data
, "fragment=data"},
365 {Opt_fragment_metadata
, "fragment=metadata"},
366 {Opt_fragment_all
, "fragment=all"},
372 * Regular mount options parser. Everything that is needed only when
373 * reading in a new superblock is parsed here.
374 * XXX JDM: This needs to be cleaned up for remount.
376 int btrfs_parse_options(struct btrfs_root
*root
, char *options
,
377 unsigned long new_flags
)
379 struct btrfs_fs_info
*info
= root
->fs_info
;
380 substring_t args
[MAX_OPT_ARGS
];
381 char *p
, *num
, *orig
= NULL
;
386 bool compress_force
= false;
387 enum btrfs_compression_type saved_compress_type
;
388 bool saved_compress_force
;
391 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
392 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
))
393 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
395 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
398 * Even the options are empty, we still need to do extra check
405 * strsep changes the string, duplicate it because parse_options
408 options
= kstrdup(options
, GFP_NOFS
);
414 while ((p
= strsep(&options
, ",")) != NULL
) {
419 token
= match_token(p
, tokens
, args
);
422 btrfs_info(root
->fs_info
, "allowing degraded mounts");
423 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
427 case Opt_subvolrootid
:
430 * These are parsed by btrfs_parse_early_options
431 * and can be happily ignored here.
435 btrfs_set_and_info(root
, NODATASUM
,
436 "setting nodatasum");
439 if (btrfs_test_opt(root
, NODATASUM
)) {
440 if (btrfs_test_opt(root
, NODATACOW
))
441 btrfs_info(root
->fs_info
, "setting datasum, datacow enabled");
443 btrfs_info(root
->fs_info
, "setting datasum");
445 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
446 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
449 if (!btrfs_test_opt(root
, NODATACOW
)) {
450 if (!btrfs_test_opt(root
, COMPRESS
) ||
451 !btrfs_test_opt(root
, FORCE_COMPRESS
)) {
452 btrfs_info(root
->fs_info
,
453 "setting nodatacow, compression disabled");
455 btrfs_info(root
->fs_info
, "setting nodatacow");
458 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
459 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
460 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
461 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
464 btrfs_clear_and_info(root
, NODATACOW
,
467 case Opt_compress_force
:
468 case Opt_compress_force_type
:
469 compress_force
= true;
472 case Opt_compress_type
:
473 saved_compress_type
= btrfs_test_opt(root
, COMPRESS
) ?
474 info
->compress_type
: BTRFS_COMPRESS_NONE
;
475 saved_compress_force
=
476 btrfs_test_opt(root
, FORCE_COMPRESS
);
477 if (token
== Opt_compress
||
478 token
== Opt_compress_force
||
479 strcmp(args
[0].from
, "zlib") == 0) {
480 compress_type
= "zlib";
481 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
482 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
483 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
484 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
486 } else if (strcmp(args
[0].from
, "lzo") == 0) {
487 compress_type
= "lzo";
488 info
->compress_type
= BTRFS_COMPRESS_LZO
;
489 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
490 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
491 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
492 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
494 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
495 compress_type
= "no";
496 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
497 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
498 compress_force
= false;
505 if (compress_force
) {
506 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
509 * If we remount from compress-force=xxx to
510 * compress=xxx, we need clear FORCE_COMPRESS
511 * flag, otherwise, there is no way for users
512 * to disable forcible compression separately.
514 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
516 if ((btrfs_test_opt(root
, COMPRESS
) &&
517 (info
->compress_type
!= saved_compress_type
||
518 compress_force
!= saved_compress_force
)) ||
519 (!btrfs_test_opt(root
, COMPRESS
) &&
521 btrfs_info(root
->fs_info
,
523 (compress_force
) ? "force" : "use",
526 compress_force
= false;
529 btrfs_set_and_info(root
, SSD
,
530 "use ssd allocation scheme");
533 btrfs_set_and_info(root
, SSD_SPREAD
,
534 "use spread ssd allocation scheme");
535 btrfs_set_opt(info
->mount_opt
, SSD
);
538 btrfs_set_and_info(root
, NOSSD
,
539 "not using ssd allocation scheme");
540 btrfs_clear_opt(info
->mount_opt
, SSD
);
543 btrfs_clear_and_info(root
, NOBARRIER
,
544 "turning on barriers");
547 btrfs_set_and_info(root
, NOBARRIER
,
548 "turning off barriers");
550 case Opt_thread_pool
:
551 ret
= match_int(&args
[0], &intarg
);
554 } else if (intarg
> 0) {
555 info
->thread_pool_size
= intarg
;
562 num
= match_strdup(&args
[0]);
564 info
->max_inline
= memparse(num
, NULL
);
567 if (info
->max_inline
) {
568 info
->max_inline
= min_t(u64
,
572 btrfs_info(root
->fs_info
, "max_inline at %llu",
579 case Opt_alloc_start
:
580 num
= match_strdup(&args
[0]);
582 mutex_lock(&info
->chunk_mutex
);
583 info
->alloc_start
= memparse(num
, NULL
);
584 mutex_unlock(&info
->chunk_mutex
);
586 btrfs_info(root
->fs_info
, "allocations start at %llu",
594 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
595 root
->fs_info
->sb
->s_flags
|= MS_POSIXACL
;
598 btrfs_err(root
->fs_info
,
599 "support for ACL not compiled in!");
604 root
->fs_info
->sb
->s_flags
&= ~MS_POSIXACL
;
607 btrfs_set_and_info(root
, NOTREELOG
,
608 "disabling tree log");
611 btrfs_clear_and_info(root
, NOTREELOG
,
612 "enabling tree log");
615 case Opt_nologreplay
:
616 btrfs_set_and_info(root
, NOLOGREPLAY
,
617 "disabling log replay at mount time");
619 case Opt_flushoncommit
:
620 btrfs_set_and_info(root
, FLUSHONCOMMIT
,
621 "turning on flush-on-commit");
623 case Opt_noflushoncommit
:
624 btrfs_clear_and_info(root
, FLUSHONCOMMIT
,
625 "turning off flush-on-commit");
628 ret
= match_int(&args
[0], &intarg
);
631 } else if (intarg
>= 0) {
632 info
->metadata_ratio
= intarg
;
633 btrfs_info(root
->fs_info
, "metadata ratio %d",
634 info
->metadata_ratio
);
641 btrfs_set_and_info(root
, DISCARD
,
642 "turning on discard");
645 btrfs_clear_and_info(root
, DISCARD
,
646 "turning off discard");
648 case Opt_space_cache
:
649 case Opt_space_cache_version
:
650 if (token
== Opt_space_cache
||
651 strcmp(args
[0].from
, "v1") == 0) {
652 btrfs_clear_opt(root
->fs_info
->mount_opt
,
654 btrfs_set_and_info(root
, SPACE_CACHE
,
655 "enabling disk space caching");
656 } else if (strcmp(args
[0].from
, "v2") == 0) {
657 btrfs_clear_opt(root
->fs_info
->mount_opt
,
659 btrfs_set_and_info(root
, FREE_SPACE_TREE
,
660 "enabling free space tree");
666 case Opt_rescan_uuid_tree
:
667 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
669 case Opt_no_space_cache
:
670 if (btrfs_test_opt(root
, SPACE_CACHE
)) {
671 btrfs_clear_and_info(root
, SPACE_CACHE
,
672 "disabling disk space caching");
674 if (btrfs_test_opt(root
, FREE_SPACE_TREE
)) {
675 btrfs_clear_and_info(root
, FREE_SPACE_TREE
,
676 "disabling free space tree");
679 case Opt_inode_cache
:
680 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
681 "enabling inode map caching");
683 case Opt_noinode_cache
:
684 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
685 "disabling inode map caching");
687 case Opt_clear_cache
:
688 btrfs_set_and_info(root
, CLEAR_CACHE
,
689 "force clearing of disk cache");
691 case Opt_user_subvol_rm_allowed
:
692 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
694 case Opt_enospc_debug
:
695 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
697 case Opt_noenospc_debug
:
698 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
701 btrfs_set_and_info(root
, AUTO_DEFRAG
,
702 "enabling auto defrag");
705 btrfs_clear_and_info(root
, AUTO_DEFRAG
,
706 "disabling auto defrag");
709 btrfs_warn(root
->fs_info
,
710 "'recovery' is deprecated, use 'usebackuproot' instead");
711 case Opt_usebackuproot
:
712 btrfs_info(root
->fs_info
,
713 "trying to use backup root at mount time");
714 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
716 case Opt_skip_balance
:
717 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
719 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
720 case Opt_check_integrity_including_extent_data
:
721 btrfs_info(root
->fs_info
,
722 "enabling check integrity including extent data");
723 btrfs_set_opt(info
->mount_opt
,
724 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
725 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
727 case Opt_check_integrity
:
728 btrfs_info(root
->fs_info
, "enabling check integrity");
729 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
731 case Opt_check_integrity_print_mask
:
732 ret
= match_int(&args
[0], &intarg
);
735 } else if (intarg
>= 0) {
736 info
->check_integrity_print_mask
= intarg
;
737 btrfs_info(root
->fs_info
, "check_integrity_print_mask 0x%x",
738 info
->check_integrity_print_mask
);
745 case Opt_check_integrity_including_extent_data
:
746 case Opt_check_integrity
:
747 case Opt_check_integrity_print_mask
:
748 btrfs_err(root
->fs_info
,
749 "support for check_integrity* not compiled in!");
753 case Opt_fatal_errors
:
754 if (strcmp(args
[0].from
, "panic") == 0)
755 btrfs_set_opt(info
->mount_opt
,
756 PANIC_ON_FATAL_ERROR
);
757 else if (strcmp(args
[0].from
, "bug") == 0)
758 btrfs_clear_opt(info
->mount_opt
,
759 PANIC_ON_FATAL_ERROR
);
765 case Opt_commit_interval
:
767 ret
= match_int(&args
[0], &intarg
);
769 btrfs_err(root
->fs_info
, "invalid commit interval");
775 btrfs_warn(root
->fs_info
, "excessive commit interval %d",
778 info
->commit_interval
= intarg
;
780 btrfs_info(root
->fs_info
, "using default commit interval %ds",
781 BTRFS_DEFAULT_COMMIT_INTERVAL
);
782 info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
785 #ifdef CONFIG_BTRFS_DEBUG
786 case Opt_fragment_all
:
787 btrfs_info(root
->fs_info
, "fragmenting all space");
788 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
789 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
791 case Opt_fragment_metadata
:
792 btrfs_info(root
->fs_info
, "fragmenting metadata");
793 btrfs_set_opt(info
->mount_opt
,
796 case Opt_fragment_data
:
797 btrfs_info(root
->fs_info
, "fragmenting data");
798 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
802 btrfs_info(root
->fs_info
, "unrecognized mount option '%s'", p
);
811 * Extra check for current option against current flag
813 if (btrfs_test_opt(root
, NOLOGREPLAY
) && !(new_flags
& MS_RDONLY
)) {
814 btrfs_err(root
->fs_info
,
815 "nologreplay must be used with ro mount option");
819 if (btrfs_fs_compat_ro(root
->fs_info
, FREE_SPACE_TREE
) &&
820 !btrfs_test_opt(root
, FREE_SPACE_TREE
) &&
821 !btrfs_test_opt(root
, CLEAR_CACHE
)) {
822 btrfs_err(root
->fs_info
, "cannot disable free space tree");
826 if (!ret
&& btrfs_test_opt(root
, SPACE_CACHE
))
827 btrfs_info(root
->fs_info
, "disk space caching is enabled");
828 if (!ret
&& btrfs_test_opt(root
, FREE_SPACE_TREE
))
829 btrfs_info(root
->fs_info
, "using free space tree");
835 * Parse mount options that are required early in the mount process.
837 * All other options will be parsed on much later in the mount process and
838 * only when we need to allocate a new super block.
840 static int btrfs_parse_early_options(const char *options
, fmode_t flags
,
841 void *holder
, char **subvol_name
, u64
*subvol_objectid
,
842 struct btrfs_fs_devices
**fs_devices
)
844 substring_t args
[MAX_OPT_ARGS
];
845 char *device_name
, *opts
, *orig
, *p
;
853 * strsep changes the string, duplicate it because parse_options
856 opts
= kstrdup(options
, GFP_KERNEL
);
861 while ((p
= strsep(&opts
, ",")) != NULL
) {
866 token
= match_token(p
, tokens
, args
);
870 *subvol_name
= match_strdup(&args
[0]);
877 num
= match_strdup(&args
[0]);
879 *subvol_objectid
= memparse(num
, NULL
);
881 /* we want the original fs_tree */
882 if (!*subvol_objectid
)
884 BTRFS_FS_TREE_OBJECTID
;
890 case Opt_subvolrootid
:
892 "BTRFS: 'subvolrootid' mount option is deprecated and has "
896 device_name
= match_strdup(&args
[0]);
901 error
= btrfs_scan_one_device(device_name
,
902 flags
, holder
, fs_devices
);
917 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
920 struct btrfs_root
*root
= fs_info
->tree_root
;
921 struct btrfs_root
*fs_root
;
922 struct btrfs_root_ref
*root_ref
;
923 struct btrfs_inode_ref
*inode_ref
;
924 struct btrfs_key key
;
925 struct btrfs_path
*path
= NULL
;
926 char *name
= NULL
, *ptr
;
931 path
= btrfs_alloc_path();
936 path
->leave_spinning
= 1;
938 name
= kmalloc(PATH_MAX
, GFP_NOFS
);
943 ptr
= name
+ PATH_MAX
- 1;
947 * Walk up the subvolume trees in the tree of tree roots by root
948 * backrefs until we hit the top-level subvolume.
950 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
951 key
.objectid
= subvol_objectid
;
952 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
953 key
.offset
= (u64
)-1;
955 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
958 } else if (ret
> 0) {
959 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
960 BTRFS_ROOT_BACKREF_KEY
);
963 } else if (ret
> 0) {
969 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
970 subvol_objectid
= key
.offset
;
972 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
973 struct btrfs_root_ref
);
974 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
980 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
981 (unsigned long)(root_ref
+ 1), len
);
983 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
984 btrfs_release_path(path
);
986 key
.objectid
= subvol_objectid
;
987 key
.type
= BTRFS_ROOT_ITEM_KEY
;
988 key
.offset
= (u64
)-1;
989 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
990 if (IS_ERR(fs_root
)) {
991 ret
= PTR_ERR(fs_root
);
996 * Walk up the filesystem tree by inode refs until we hit the
999 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1000 key
.objectid
= dirid
;
1001 key
.type
= BTRFS_INODE_REF_KEY
;
1002 key
.offset
= (u64
)-1;
1004 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1007 } else if (ret
> 0) {
1008 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1009 BTRFS_INODE_REF_KEY
);
1012 } else if (ret
> 0) {
1018 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1021 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1023 struct btrfs_inode_ref
);
1024 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1028 ret
= -ENAMETOOLONG
;
1031 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1032 (unsigned long)(inode_ref
+ 1), len
);
1034 btrfs_release_path(path
);
1038 btrfs_free_path(path
);
1039 if (ptr
== name
+ PATH_MAX
- 1) {
1043 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1048 btrfs_free_path(path
);
1050 return ERR_PTR(ret
);
1053 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1055 struct btrfs_root
*root
= fs_info
->tree_root
;
1056 struct btrfs_dir_item
*di
;
1057 struct btrfs_path
*path
;
1058 struct btrfs_key location
;
1061 path
= btrfs_alloc_path();
1064 path
->leave_spinning
= 1;
1067 * Find the "default" dir item which points to the root item that we
1068 * will mount by default if we haven't been given a specific subvolume
1071 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1072 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1074 btrfs_free_path(path
);
1079 * Ok the default dir item isn't there. This is weird since
1080 * it's always been there, but don't freak out, just try and
1081 * mount the top-level subvolume.
1083 btrfs_free_path(path
);
1084 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1088 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1089 btrfs_free_path(path
);
1090 *objectid
= location
.objectid
;
1094 static int btrfs_fill_super(struct super_block
*sb
,
1095 struct btrfs_fs_devices
*fs_devices
,
1096 void *data
, int silent
)
1098 struct inode
*inode
;
1099 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1100 struct btrfs_key key
;
1103 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1104 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1105 sb
->s_op
= &btrfs_super_ops
;
1106 sb
->s_d_op
= &btrfs_dentry_operations
;
1107 sb
->s_export_op
= &btrfs_export_ops
;
1108 sb
->s_xattr
= btrfs_xattr_handlers
;
1109 sb
->s_time_gran
= 1;
1110 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1111 sb
->s_flags
|= MS_POSIXACL
;
1113 sb
->s_flags
|= MS_I_VERSION
;
1114 sb
->s_iflags
|= SB_I_CGROUPWB
;
1115 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1117 printk(KERN_ERR
"BTRFS: open_ctree failed\n");
1121 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1122 key
.type
= BTRFS_INODE_ITEM_KEY
;
1124 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1125 if (IS_ERR(inode
)) {
1126 err
= PTR_ERR(inode
);
1130 sb
->s_root
= d_make_root(inode
);
1136 save_mount_options(sb
, data
);
1137 cleancache_init_fs(sb
);
1138 sb
->s_flags
|= MS_ACTIVE
;
1142 close_ctree(fs_info
->tree_root
);
1146 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1148 struct btrfs_trans_handle
*trans
;
1149 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1150 struct btrfs_root
*root
= fs_info
->tree_root
;
1152 trace_btrfs_sync_fs(wait
);
1155 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1159 btrfs_wait_ordered_roots(fs_info
, -1, 0, (u64
)-1);
1161 trans
= btrfs_attach_transaction_barrier(root
);
1162 if (IS_ERR(trans
)) {
1163 /* no transaction, don't bother */
1164 if (PTR_ERR(trans
) == -ENOENT
) {
1166 * Exit unless we have some pending changes
1167 * that need to go through commit
1169 if (fs_info
->pending_changes
== 0)
1172 * A non-blocking test if the fs is frozen. We must not
1173 * start a new transaction here otherwise a deadlock
1174 * happens. The pending operations are delayed to the
1175 * next commit after thawing.
1177 if (__sb_start_write(sb
, SB_FREEZE_WRITE
, false))
1178 __sb_end_write(sb
, SB_FREEZE_WRITE
);
1181 trans
= btrfs_start_transaction(root
, 0);
1184 return PTR_ERR(trans
);
1186 return btrfs_commit_transaction(trans
, root
);
1189 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1191 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1192 struct btrfs_root
*root
= info
->tree_root
;
1193 char *compress_type
;
1195 if (btrfs_test_opt(root
, DEGRADED
))
1196 seq_puts(seq
, ",degraded");
1197 if (btrfs_test_opt(root
, NODATASUM
))
1198 seq_puts(seq
, ",nodatasum");
1199 if (btrfs_test_opt(root
, NODATACOW
))
1200 seq_puts(seq
, ",nodatacow");
1201 if (btrfs_test_opt(root
, NOBARRIER
))
1202 seq_puts(seq
, ",nobarrier");
1203 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1204 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1205 if (info
->alloc_start
!= 0)
1206 seq_printf(seq
, ",alloc_start=%llu", info
->alloc_start
);
1207 if (info
->thread_pool_size
!= min_t(unsigned long,
1208 num_online_cpus() + 2, 8))
1209 seq_printf(seq
, ",thread_pool=%d", info
->thread_pool_size
);
1210 if (btrfs_test_opt(root
, COMPRESS
)) {
1211 if (info
->compress_type
== BTRFS_COMPRESS_ZLIB
)
1212 compress_type
= "zlib";
1214 compress_type
= "lzo";
1215 if (btrfs_test_opt(root
, FORCE_COMPRESS
))
1216 seq_printf(seq
, ",compress-force=%s", compress_type
);
1218 seq_printf(seq
, ",compress=%s", compress_type
);
1220 if (btrfs_test_opt(root
, NOSSD
))
1221 seq_puts(seq
, ",nossd");
1222 if (btrfs_test_opt(root
, SSD_SPREAD
))
1223 seq_puts(seq
, ",ssd_spread");
1224 else if (btrfs_test_opt(root
, SSD
))
1225 seq_puts(seq
, ",ssd");
1226 if (btrfs_test_opt(root
, NOTREELOG
))
1227 seq_puts(seq
, ",notreelog");
1228 if (btrfs_test_opt(root
, NOLOGREPLAY
))
1229 seq_puts(seq
, ",nologreplay");
1230 if (btrfs_test_opt(root
, FLUSHONCOMMIT
))
1231 seq_puts(seq
, ",flushoncommit");
1232 if (btrfs_test_opt(root
, DISCARD
))
1233 seq_puts(seq
, ",discard");
1234 if (!(root
->fs_info
->sb
->s_flags
& MS_POSIXACL
))
1235 seq_puts(seq
, ",noacl");
1236 if (btrfs_test_opt(root
, SPACE_CACHE
))
1237 seq_puts(seq
, ",space_cache");
1238 else if (btrfs_test_opt(root
, FREE_SPACE_TREE
))
1239 seq_puts(seq
, ",space_cache=v2");
1241 seq_puts(seq
, ",nospace_cache");
1242 if (btrfs_test_opt(root
, RESCAN_UUID_TREE
))
1243 seq_puts(seq
, ",rescan_uuid_tree");
1244 if (btrfs_test_opt(root
, CLEAR_CACHE
))
1245 seq_puts(seq
, ",clear_cache");
1246 if (btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
1247 seq_puts(seq
, ",user_subvol_rm_allowed");
1248 if (btrfs_test_opt(root
, ENOSPC_DEBUG
))
1249 seq_puts(seq
, ",enospc_debug");
1250 if (btrfs_test_opt(root
, AUTO_DEFRAG
))
1251 seq_puts(seq
, ",autodefrag");
1252 if (btrfs_test_opt(root
, INODE_MAP_CACHE
))
1253 seq_puts(seq
, ",inode_cache");
1254 if (btrfs_test_opt(root
, SKIP_BALANCE
))
1255 seq_puts(seq
, ",skip_balance");
1256 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1257 if (btrfs_test_opt(root
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1258 seq_puts(seq
, ",check_int_data");
1259 else if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
1260 seq_puts(seq
, ",check_int");
1261 if (info
->check_integrity_print_mask
)
1262 seq_printf(seq
, ",check_int_print_mask=%d",
1263 info
->check_integrity_print_mask
);
1265 if (info
->metadata_ratio
)
1266 seq_printf(seq
, ",metadata_ratio=%d",
1267 info
->metadata_ratio
);
1268 if (btrfs_test_opt(root
, PANIC_ON_FATAL_ERROR
))
1269 seq_puts(seq
, ",fatal_errors=panic");
1270 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1271 seq_printf(seq
, ",commit=%d", info
->commit_interval
);
1272 #ifdef CONFIG_BTRFS_DEBUG
1273 if (btrfs_test_opt(root
, FRAGMENT_DATA
))
1274 seq_puts(seq
, ",fragment=data");
1275 if (btrfs_test_opt(root
, FRAGMENT_METADATA
))
1276 seq_puts(seq
, ",fragment=metadata");
1278 seq_printf(seq
, ",subvolid=%llu",
1279 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1280 seq_puts(seq
, ",subvol=");
1281 seq_dentry(seq
, dentry
, " \t\n\\");
1285 static int btrfs_test_super(struct super_block
*s
, void *data
)
1287 struct btrfs_fs_info
*p
= data
;
1288 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1290 return fs_info
->fs_devices
== p
->fs_devices
;
1293 static int btrfs_set_super(struct super_block
*s
, void *data
)
1295 int err
= set_anon_super(s
, data
);
1297 s
->s_fs_info
= data
;
1302 * subvolumes are identified by ino 256
1304 static inline int is_subvolume_inode(struct inode
*inode
)
1306 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1312 * This will add subvolid=0 to the argument string while removing any subvol=
1313 * and subvolid= arguments to make sure we get the top-level root for path
1314 * walking to the subvol we want.
1316 static char *setup_root_args(char *args
)
1318 char *buf
, *dst
, *sep
;
1321 return kstrdup("subvolid=0", GFP_NOFS
);
1323 /* The worst case is that we add ",subvolid=0" to the end. */
1324 buf
= dst
= kmalloc(strlen(args
) + strlen(",subvolid=0") + 1, GFP_NOFS
);
1329 sep
= strchrnul(args
, ',');
1330 if (!strstarts(args
, "subvol=") &&
1331 !strstarts(args
, "subvolid=")) {
1332 memcpy(dst
, args
, sep
- args
);
1341 strcpy(dst
, "subvolid=0");
1346 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1347 int flags
, const char *device_name
,
1350 struct dentry
*root
;
1351 struct vfsmount
*mnt
= NULL
;
1355 newargs
= setup_root_args(data
);
1357 root
= ERR_PTR(-ENOMEM
);
1361 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
, device_name
, newargs
);
1362 if (PTR_ERR_OR_ZERO(mnt
) == -EBUSY
) {
1363 if (flags
& MS_RDONLY
) {
1364 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
& ~MS_RDONLY
,
1365 device_name
, newargs
);
1367 mnt
= vfs_kern_mount(&btrfs_fs_type
, flags
| MS_RDONLY
,
1368 device_name
, newargs
);
1370 root
= ERR_CAST(mnt
);
1375 down_write(&mnt
->mnt_sb
->s_umount
);
1376 ret
= btrfs_remount(mnt
->mnt_sb
, &flags
, NULL
);
1377 up_write(&mnt
->mnt_sb
->s_umount
);
1379 root
= ERR_PTR(ret
);
1385 root
= ERR_CAST(mnt
);
1391 if (!subvol_objectid
) {
1392 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1395 root
= ERR_PTR(ret
);
1399 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1401 if (IS_ERR(subvol_name
)) {
1402 root
= ERR_CAST(subvol_name
);
1409 root
= mount_subtree(mnt
, subvol_name
);
1410 /* mount_subtree() drops our reference on the vfsmount. */
1413 if (!IS_ERR(root
)) {
1414 struct super_block
*s
= root
->d_sb
;
1415 struct inode
*root_inode
= d_inode(root
);
1416 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1419 if (!is_subvolume_inode(root_inode
)) {
1420 pr_err("BTRFS: '%s' is not a valid subvolume\n",
1424 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1426 * This will also catch a race condition where a
1427 * subvolume which was passed by ID is renamed and
1428 * another subvolume is renamed over the old location.
1430 pr_err("BTRFS: subvol '%s' does not match subvolid %llu\n",
1431 subvol_name
, subvol_objectid
);
1436 root
= ERR_PTR(ret
);
1437 deactivate_locked_super(s
);
1448 static int parse_security_options(char *orig_opts
,
1449 struct security_mnt_opts
*sec_opts
)
1451 char *secdata
= NULL
;
1454 secdata
= alloc_secdata();
1457 ret
= security_sb_copy_data(orig_opts
, secdata
);
1459 free_secdata(secdata
);
1462 ret
= security_sb_parse_opts_str(secdata
, sec_opts
);
1463 free_secdata(secdata
);
1467 static int setup_security_options(struct btrfs_fs_info
*fs_info
,
1468 struct super_block
*sb
,
1469 struct security_mnt_opts
*sec_opts
)
1474 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1477 ret
= security_sb_set_mnt_opts(sb
, sec_opts
, 0, NULL
);
1481 #ifdef CONFIG_SECURITY
1482 if (!fs_info
->security_opts
.num_mnt_opts
) {
1483 /* first time security setup, copy sec_opts to fs_info */
1484 memcpy(&fs_info
->security_opts
, sec_opts
, sizeof(*sec_opts
));
1487 * Since SELinux (the only one supporting security_mnt_opts)
1488 * does NOT support changing context during remount/mount of
1489 * the same sb, this must be the same or part of the same
1490 * security options, just free it.
1492 security_free_mnt_opts(sec_opts
);
1499 * Find a superblock for the given device / mount point.
1501 * Note: This is based on get_sb_bdev from fs/super.c with a few additions
1502 * for multiple device setup. Make sure to keep it in sync.
1504 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1505 const char *device_name
, void *data
)
1507 struct block_device
*bdev
= NULL
;
1508 struct super_block
*s
;
1509 struct btrfs_fs_devices
*fs_devices
= NULL
;
1510 struct btrfs_fs_info
*fs_info
= NULL
;
1511 struct security_mnt_opts new_sec_opts
;
1512 fmode_t mode
= FMODE_READ
;
1513 char *subvol_name
= NULL
;
1514 u64 subvol_objectid
= 0;
1517 if (!(flags
& MS_RDONLY
))
1518 mode
|= FMODE_WRITE
;
1520 error
= btrfs_parse_early_options(data
, mode
, fs_type
,
1521 &subvol_name
, &subvol_objectid
,
1525 return ERR_PTR(error
);
1528 if (subvol_name
|| subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1529 /* mount_subvol() will free subvol_name. */
1530 return mount_subvol(subvol_name
, subvol_objectid
, flags
,
1534 security_init_mnt_opts(&new_sec_opts
);
1536 error
= parse_security_options(data
, &new_sec_opts
);
1538 return ERR_PTR(error
);
1541 error
= btrfs_scan_one_device(device_name
, mode
, fs_type
, &fs_devices
);
1543 goto error_sec_opts
;
1546 * Setup a dummy root and fs_info for test/set super. This is because
1547 * we don't actually fill this stuff out until open_ctree, but we need
1548 * it for searching for existing supers, so this lets us do that and
1549 * then open_ctree will properly initialize everything later.
1551 fs_info
= kzalloc(sizeof(struct btrfs_fs_info
), GFP_NOFS
);
1554 goto error_sec_opts
;
1557 fs_info
->fs_devices
= fs_devices
;
1559 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1560 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_NOFS
);
1561 security_init_mnt_opts(&fs_info
->security_opts
);
1562 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1567 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1571 if (!(flags
& MS_RDONLY
) && fs_devices
->rw_devices
== 0) {
1573 goto error_close_devices
;
1576 bdev
= fs_devices
->latest_bdev
;
1577 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| MS_NOSEC
,
1581 goto error_close_devices
;
1585 btrfs_close_devices(fs_devices
);
1586 free_fs_info(fs_info
);
1587 if ((flags
^ s
->s_flags
) & MS_RDONLY
)
1590 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1591 btrfs_sb(s
)->bdev_holder
= fs_type
;
1592 error
= btrfs_fill_super(s
, fs_devices
, data
,
1593 flags
& MS_SILENT
? 1 : 0);
1596 deactivate_locked_super(s
);
1597 goto error_sec_opts
;
1600 fs_info
= btrfs_sb(s
);
1601 error
= setup_security_options(fs_info
, s
, &new_sec_opts
);
1603 deactivate_locked_super(s
);
1604 goto error_sec_opts
;
1607 return dget(s
->s_root
);
1609 error_close_devices
:
1610 btrfs_close_devices(fs_devices
);
1612 free_fs_info(fs_info
);
1614 security_free_mnt_opts(&new_sec_opts
);
1615 return ERR_PTR(error
);
1618 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1619 int new_pool_size
, int old_pool_size
)
1621 if (new_pool_size
== old_pool_size
)
1624 fs_info
->thread_pool_size
= new_pool_size
;
1626 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1627 old_pool_size
, new_pool_size
);
1629 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1630 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1631 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1632 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1633 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1634 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1635 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1637 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1638 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1639 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1640 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1641 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1645 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1647 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1650 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1651 unsigned long old_opts
, int flags
)
1653 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1654 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1655 (flags
& MS_RDONLY
))) {
1656 /* wait for any defraggers to finish */
1657 wait_event(fs_info
->transaction_wait
,
1658 (atomic_read(&fs_info
->defrag_running
) == 0));
1659 if (flags
& MS_RDONLY
)
1660 sync_filesystem(fs_info
->sb
);
1664 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1665 unsigned long old_opts
)
1668 * We need to cleanup all defragable inodes if the autodefragment is
1669 * close or the filesystem is read only.
1671 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1672 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1673 (fs_info
->sb
->s_flags
& MS_RDONLY
))) {
1674 btrfs_cleanup_defrag_inodes(fs_info
);
1677 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1680 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1682 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1683 struct btrfs_root
*root
= fs_info
->tree_root
;
1684 unsigned old_flags
= sb
->s_flags
;
1685 unsigned long old_opts
= fs_info
->mount_opt
;
1686 unsigned long old_compress_type
= fs_info
->compress_type
;
1687 u64 old_max_inline
= fs_info
->max_inline
;
1688 u64 old_alloc_start
= fs_info
->alloc_start
;
1689 int old_thread_pool_size
= fs_info
->thread_pool_size
;
1690 unsigned int old_metadata_ratio
= fs_info
->metadata_ratio
;
1693 sync_filesystem(sb
);
1694 btrfs_remount_prepare(fs_info
);
1697 struct security_mnt_opts new_sec_opts
;
1699 security_init_mnt_opts(&new_sec_opts
);
1700 ret
= parse_security_options(data
, &new_sec_opts
);
1703 ret
= setup_security_options(fs_info
, sb
,
1706 security_free_mnt_opts(&new_sec_opts
);
1711 ret
= btrfs_parse_options(root
, data
, *flags
);
1717 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1718 btrfs_resize_thread_pool(fs_info
,
1719 fs_info
->thread_pool_size
, old_thread_pool_size
);
1721 if ((*flags
& MS_RDONLY
) == (sb
->s_flags
& MS_RDONLY
))
1724 if (*flags
& MS_RDONLY
) {
1726 * this also happens on 'umount -rf' or on shutdown, when
1727 * the filesystem is busy.
1729 cancel_work_sync(&fs_info
->async_reclaim_work
);
1731 /* wait for the uuid_scan task to finish */
1732 down(&fs_info
->uuid_tree_rescan_sem
);
1733 /* avoid complains from lockdep et al. */
1734 up(&fs_info
->uuid_tree_rescan_sem
);
1736 sb
->s_flags
|= MS_RDONLY
;
1739 * Setting MS_RDONLY will put the cleaner thread to
1740 * sleep at the next loop if it's already active.
1741 * If it's already asleep, we'll leave unused block
1742 * groups on disk until we're mounted read-write again
1743 * unless we clean them up here.
1745 btrfs_delete_unused_bgs(fs_info
);
1747 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1748 btrfs_scrub_cancel(fs_info
);
1749 btrfs_pause_balance(fs_info
);
1751 ret
= btrfs_commit_super(root
);
1755 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
1757 "Remounting read-write after error is not allowed");
1761 if (fs_info
->fs_devices
->rw_devices
== 0) {
1766 if (fs_info
->fs_devices
->missing_devices
>
1767 fs_info
->num_tolerated_disk_barrier_failures
&&
1768 !(*flags
& MS_RDONLY
)) {
1770 "too many missing devices, writeable remount is not allowed");
1775 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1780 ret
= btrfs_cleanup_fs_roots(fs_info
);
1784 /* recover relocation */
1785 mutex_lock(&fs_info
->cleaner_mutex
);
1786 ret
= btrfs_recover_relocation(root
);
1787 mutex_unlock(&fs_info
->cleaner_mutex
);
1791 ret
= btrfs_resume_balance_async(fs_info
);
1795 ret
= btrfs_resume_dev_replace_async(fs_info
);
1797 btrfs_warn(fs_info
, "failed to resume dev_replace");
1801 if (!fs_info
->uuid_root
) {
1802 btrfs_info(fs_info
, "creating UUID tree");
1803 ret
= btrfs_create_uuid_tree(fs_info
);
1805 btrfs_warn(fs_info
, "failed to create the UUID tree %d", ret
);
1809 sb
->s_flags
&= ~MS_RDONLY
;
1812 wake_up_process(fs_info
->transaction_kthread
);
1813 btrfs_remount_cleanup(fs_info
, old_opts
);
1817 /* We've hit an error - don't reset MS_RDONLY */
1818 if (sb
->s_flags
& MS_RDONLY
)
1819 old_flags
|= MS_RDONLY
;
1820 sb
->s_flags
= old_flags
;
1821 fs_info
->mount_opt
= old_opts
;
1822 fs_info
->compress_type
= old_compress_type
;
1823 fs_info
->max_inline
= old_max_inline
;
1824 mutex_lock(&fs_info
->chunk_mutex
);
1825 fs_info
->alloc_start
= old_alloc_start
;
1826 mutex_unlock(&fs_info
->chunk_mutex
);
1827 btrfs_resize_thread_pool(fs_info
,
1828 old_thread_pool_size
, fs_info
->thread_pool_size
);
1829 fs_info
->metadata_ratio
= old_metadata_ratio
;
1830 btrfs_remount_cleanup(fs_info
, old_opts
);
1834 /* Used to sort the devices by max_avail(descending sort) */
1835 static int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1836 const void *dev_info2
)
1838 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1839 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1841 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1842 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1849 * sort the devices by max_avail, in which max free extent size of each device
1850 * is stored.(Descending Sort)
1852 static inline void btrfs_descending_sort_devices(
1853 struct btrfs_device_info
*devices
,
1856 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1857 btrfs_cmp_device_free_bytes
, NULL
);
1861 * The helper to calc the free space on the devices that can be used to store
1864 static int btrfs_calc_avail_data_space(struct btrfs_root
*root
, u64
*free_bytes
)
1866 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1867 struct btrfs_device_info
*devices_info
;
1868 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1869 struct btrfs_device
*device
;
1874 u64 min_stripe_size
;
1875 int min_stripes
= 1, num_stripes
= 1;
1876 int i
= 0, nr_devices
;
1880 * We aren't under the device list lock, so this is racy-ish, but good
1881 * enough for our purposes.
1883 nr_devices
= fs_info
->fs_devices
->open_devices
;
1886 nr_devices
= fs_info
->fs_devices
->open_devices
;
1894 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1899 /* calc min stripe number for data space allocation */
1900 type
= btrfs_get_alloc_profile(root
, 1);
1901 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1903 num_stripes
= nr_devices
;
1904 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1907 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1912 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1913 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1915 min_stripe_size
= BTRFS_STRIPE_LEN
;
1917 if (fs_info
->alloc_start
)
1918 mutex_lock(&fs_devices
->device_list_mutex
);
1920 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1921 if (!device
->in_fs_metadata
|| !device
->bdev
||
1922 device
->is_tgtdev_for_dev_replace
)
1925 if (i
>= nr_devices
)
1928 avail_space
= device
->total_bytes
- device
->bytes_used
;
1930 /* align with stripe_len */
1931 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
1932 avail_space
*= BTRFS_STRIPE_LEN
;
1935 * In order to avoid overwriting the superblock on the drive,
1936 * btrfs starts at an offset of at least 1MB when doing chunk
1941 /* user can set the offset in fs_info->alloc_start. */
1942 if (fs_info
->alloc_start
&&
1943 fs_info
->alloc_start
+ BTRFS_STRIPE_LEN
<=
1944 device
->total_bytes
) {
1946 skip_space
= max(fs_info
->alloc_start
, skip_space
);
1949 * btrfs can not use the free space in
1950 * [0, skip_space - 1], we must subtract it from the
1951 * total. In order to implement it, we account the used
1952 * space in this range first.
1954 ret
= btrfs_account_dev_extents_size(device
, 0,
1958 kfree(devices_info
);
1959 mutex_unlock(&fs_devices
->device_list_mutex
);
1965 /* calc the free space in [0, skip_space - 1] */
1966 skip_space
-= used_space
;
1970 * we can use the free space in [0, skip_space - 1], subtract
1971 * it from the total.
1973 if (avail_space
&& avail_space
>= skip_space
)
1974 avail_space
-= skip_space
;
1978 if (avail_space
< min_stripe_size
)
1981 devices_info
[i
].dev
= device
;
1982 devices_info
[i
].max_avail
= avail_space
;
1987 if (fs_info
->alloc_start
)
1988 mutex_unlock(&fs_devices
->device_list_mutex
);
1992 btrfs_descending_sort_devices(devices_info
, nr_devices
);
1996 while (nr_devices
>= min_stripes
) {
1997 if (num_stripes
> nr_devices
)
1998 num_stripes
= nr_devices
;
2000 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2004 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2005 alloc_size
= devices_info
[i
].max_avail
;
2006 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2007 devices_info
[j
].max_avail
-= alloc_size
;
2013 kfree(devices_info
);
2014 *free_bytes
= avail_space
;
2019 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2021 * If there's a redundant raid level at DATA block groups, use the respective
2022 * multiplier to scale the sizes.
2024 * Unused device space usage is based on simulating the chunk allocator
2025 * algorithm that respects the device sizes, order of allocations and the
2026 * 'alloc_start' value, this is a close approximation of the actual use but
2027 * there are other factors that may change the result (like a new metadata
2030 * If metadata is exhausted, f_bavail will be 0.
2032 * FIXME: not accurate for mixed block groups, total and free/used are ok,
2033 * available appears slightly larger.
2035 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2037 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2038 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2039 struct list_head
*head
= &fs_info
->space_info
;
2040 struct btrfs_space_info
*found
;
2042 u64 total_free_data
= 0;
2043 u64 total_free_meta
= 0;
2044 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2045 __be32
*fsid
= (__be32
*)fs_info
->fsid
;
2046 unsigned factor
= 1;
2047 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2053 * holding chunk_mutex to avoid allocating new chunks, holding
2054 * device_list_mutex to avoid the device being removed
2057 list_for_each_entry_rcu(found
, head
, list
) {
2058 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2061 total_free_data
+= found
->disk_total
- found
->disk_used
;
2063 btrfs_account_ro_block_groups_free_space(found
);
2065 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2066 if (!list_empty(&found
->block_groups
[i
])) {
2068 case BTRFS_RAID_DUP
:
2069 case BTRFS_RAID_RAID1
:
2070 case BTRFS_RAID_RAID10
:
2078 * Metadata in mixed block goup profiles are accounted in data
2080 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2081 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2084 total_free_meta
+= found
->disk_total
-
2088 total_used
+= found
->disk_used
;
2093 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2094 buf
->f_blocks
>>= bits
;
2095 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2097 /* Account global block reserve as used, it's in logical size already */
2098 spin_lock(&block_rsv
->lock
);
2099 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2100 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2101 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2104 spin_unlock(&block_rsv
->lock
);
2106 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2107 ret
= btrfs_calc_avail_data_space(fs_info
->tree_root
, &total_free_data
);
2110 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2111 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2114 * We calculate the remaining metadata space minus global reserve. If
2115 * this is (supposedly) smaller than zero, there's no space. But this
2116 * does not hold in practice, the exhausted state happens where's still
2117 * some positive delta. So we apply some guesswork and compare the
2118 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2120 * We probably cannot calculate the exact threshold value because this
2121 * depends on the internal reservations requested by various
2122 * operations, so some operations that consume a few metadata will
2123 * succeed even if the Avail is zero. But this is better than the other
2126 thresh
= 4 * 1024 * 1024;
2128 if (!mixed
&& total_free_meta
- thresh
< block_rsv
->size
)
2131 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2132 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2133 buf
->f_namelen
= BTRFS_NAME_LEN
;
2135 /* We treat it as constant endianness (it doesn't matter _which_)
2136 because we want the fsid to come out the same whether mounted
2137 on a big-endian or little-endian host */
2138 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2139 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2140 /* Mask in the root object ID too, to disambiguate subvols */
2141 buf
->f_fsid
.val
[0] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
>> 32;
2142 buf
->f_fsid
.val
[1] ^= BTRFS_I(d_inode(dentry
))->root
->objectid
;
2147 static void btrfs_kill_super(struct super_block
*sb
)
2149 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2150 kill_anon_super(sb
);
2151 free_fs_info(fs_info
);
2154 static struct file_system_type btrfs_fs_type
= {
2155 .owner
= THIS_MODULE
,
2157 .mount
= btrfs_mount
,
2158 .kill_sb
= btrfs_kill_super
,
2159 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2161 MODULE_ALIAS_FS("btrfs");
2163 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2166 * The control file's private_data is used to hold the
2167 * transaction when it is started and is used to keep
2168 * track of whether a transaction is already in progress.
2170 file
->private_data
= NULL
;
2175 * used by btrfsctl to scan devices when no FS is mounted
2177 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2180 struct btrfs_ioctl_vol_args
*vol
;
2181 struct btrfs_fs_devices
*fs_devices
;
2184 if (!capable(CAP_SYS_ADMIN
))
2187 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2189 return PTR_ERR(vol
);
2192 case BTRFS_IOC_SCAN_DEV
:
2193 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2194 &btrfs_fs_type
, &fs_devices
);
2196 case BTRFS_IOC_DEVICES_READY
:
2197 ret
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2198 &btrfs_fs_type
, &fs_devices
);
2201 ret
= !(fs_devices
->num_devices
== fs_devices
->total_devices
);
2203 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2204 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2212 static int btrfs_freeze(struct super_block
*sb
)
2214 struct btrfs_trans_handle
*trans
;
2215 struct btrfs_root
*root
= btrfs_sb(sb
)->tree_root
;
2217 trans
= btrfs_attach_transaction_barrier(root
);
2218 if (IS_ERR(trans
)) {
2219 /* no transaction, don't bother */
2220 if (PTR_ERR(trans
) == -ENOENT
)
2222 return PTR_ERR(trans
);
2224 return btrfs_commit_transaction(trans
, root
);
2227 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2229 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2230 struct btrfs_fs_devices
*cur_devices
;
2231 struct btrfs_device
*dev
, *first_dev
= NULL
;
2232 struct list_head
*head
;
2233 struct rcu_string
*name
;
2235 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2236 cur_devices
= fs_info
->fs_devices
;
2237 while (cur_devices
) {
2238 head
= &cur_devices
->devices
;
2239 list_for_each_entry(dev
, head
, dev_list
) {
2244 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2247 cur_devices
= cur_devices
->seed
;
2252 name
= rcu_dereference(first_dev
->name
);
2253 seq_escape(m
, name
->str
, " \t\n\\");
2258 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2262 static const struct super_operations btrfs_super_ops
= {
2263 .drop_inode
= btrfs_drop_inode
,
2264 .evict_inode
= btrfs_evict_inode
,
2265 .put_super
= btrfs_put_super
,
2266 .sync_fs
= btrfs_sync_fs
,
2267 .show_options
= btrfs_show_options
,
2268 .show_devname
= btrfs_show_devname
,
2269 .write_inode
= btrfs_write_inode
,
2270 .alloc_inode
= btrfs_alloc_inode
,
2271 .destroy_inode
= btrfs_destroy_inode
,
2272 .statfs
= btrfs_statfs
,
2273 .remount_fs
= btrfs_remount
,
2274 .freeze_fs
= btrfs_freeze
,
2277 static const struct file_operations btrfs_ctl_fops
= {
2278 .open
= btrfs_control_open
,
2279 .unlocked_ioctl
= btrfs_control_ioctl
,
2280 .compat_ioctl
= btrfs_control_ioctl
,
2281 .owner
= THIS_MODULE
,
2282 .llseek
= noop_llseek
,
2285 static struct miscdevice btrfs_misc
= {
2286 .minor
= BTRFS_MINOR
,
2287 .name
= "btrfs-control",
2288 .fops
= &btrfs_ctl_fops
2291 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2292 MODULE_ALIAS("devname:btrfs-control");
2294 static int btrfs_interface_init(void)
2296 return misc_register(&btrfs_misc
);
2299 static void btrfs_interface_exit(void)
2301 misc_deregister(&btrfs_misc
);
2304 static void btrfs_print_mod_info(void)
2306 printk(KERN_INFO
"Btrfs loaded"
2307 #ifdef CONFIG_BTRFS_DEBUG
2310 #ifdef CONFIG_BTRFS_ASSERT
2313 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2314 ", integrity-checker=on"
2319 static int btrfs_run_sanity_tests(void)
2323 ret
= btrfs_init_test_fs();
2327 ret
= btrfs_test_free_space_cache();
2330 ret
= btrfs_test_extent_buffer_operations();
2333 ret
= btrfs_test_extent_io();
2336 ret
= btrfs_test_inodes();
2339 ret
= btrfs_test_qgroups();
2342 ret
= btrfs_test_free_space_tree();
2344 btrfs_destroy_test_fs();
2348 static int __init
init_btrfs_fs(void)
2352 err
= btrfs_hash_init();
2358 err
= btrfs_init_sysfs();
2362 btrfs_init_compress();
2364 err
= btrfs_init_cachep();
2368 err
= extent_io_init();
2372 err
= extent_map_init();
2374 goto free_extent_io
;
2376 err
= ordered_data_init();
2378 goto free_extent_map
;
2380 err
= btrfs_delayed_inode_init();
2382 goto free_ordered_data
;
2384 err
= btrfs_auto_defrag_init();
2386 goto free_delayed_inode
;
2388 err
= btrfs_delayed_ref_init();
2390 goto free_auto_defrag
;
2392 err
= btrfs_prelim_ref_init();
2394 goto free_delayed_ref
;
2396 err
= btrfs_end_io_wq_init();
2398 goto free_prelim_ref
;
2400 err
= btrfs_interface_init();
2402 goto free_end_io_wq
;
2404 btrfs_init_lockdep();
2406 btrfs_print_mod_info();
2408 err
= btrfs_run_sanity_tests();
2410 goto unregister_ioctl
;
2412 err
= register_filesystem(&btrfs_fs_type
);
2414 goto unregister_ioctl
;
2419 btrfs_interface_exit();
2421 btrfs_end_io_wq_exit();
2423 btrfs_prelim_ref_exit();
2425 btrfs_delayed_ref_exit();
2427 btrfs_auto_defrag_exit();
2429 btrfs_delayed_inode_exit();
2431 ordered_data_exit();
2437 btrfs_destroy_cachep();
2439 btrfs_exit_compress();
2446 static void __exit
exit_btrfs_fs(void)
2448 btrfs_destroy_cachep();
2449 btrfs_delayed_ref_exit();
2450 btrfs_auto_defrag_exit();
2451 btrfs_delayed_inode_exit();
2452 btrfs_prelim_ref_exit();
2453 ordered_data_exit();
2456 btrfs_interface_exit();
2457 btrfs_end_io_wq_exit();
2458 unregister_filesystem(&btrfs_fs_type
);
2460 btrfs_cleanup_fs_uuids();
2461 btrfs_exit_compress();
2465 late_initcall(init_btrfs_fs
);
2466 module_exit(exit_btrfs_fs
)
2468 MODULE_LICENSE("GPL");