Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blobf6e24cb423aed0c78316b983d3687d07bb2ae1ec
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
99 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 spin_lock(&tree->lock);
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
123 cond_resched_lock(&tree->lock);
125 spin_unlock(&tree->lock);
128 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
131 struct btrfs_root *root, *tmp;
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
158 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
165 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
172 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
178 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 return atomic_read(&trans->num_extwriters);
184 * either allocate a new transaction or hop into the existing one
186 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
191 spin_lock(&fs_info->trans_lock);
192 loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
215 spin_unlock(&fs_info->trans_lock);
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
282 spin_lock_init(&cur_trans->delayed_refs.lock);
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
304 return 0;
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
332 smp_wmb();
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 return 0;
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
348 * this transaction.
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
368 return 0;
372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
375 struct btrfs_transaction *cur_trans = trans->transaction;
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 return 0;
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 * and barriers
400 smp_rmb();
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 return 0;
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
409 return 0;
412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
416 !trans->aborted);
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
423 static void wait_current_trans(struct btrfs_root *root)
425 struct btrfs_transaction *cur_trans;
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 cur_trans->aborted);
436 btrfs_put_transaction(cur_trans);
437 } else {
438 spin_unlock(&root->fs_info->trans_lock);
442 static int may_wait_transaction(struct btrfs_root *root, int type)
444 if (root->fs_info->log_root_recovering)
445 return 0;
447 if (type == TRANS_USERSPACE)
448 return 1;
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
452 return 1;
454 return 0;
457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 root->reloc_root)
463 return false;
465 return true;
468 static struct btrfs_trans_handle *
469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
474 u64 num_bytes = 0;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
477 int ret;
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
488 h->use_count++;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
491 h->block_rsv = NULL;
492 goto got_it;
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 if (ret)
503 return ERR_PTR(ret);
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
507 * Do the reservation for the relocation root creation
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
516 num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
520 again:
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 if (!h) {
523 ret = -ENOMEM;
524 goto alloc_fail;
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
543 do {
544 ret = join_transaction(root, type);
545 if (ret == -EBUSY) {
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
548 ret = -ENOENT;
550 } while (ret == -EBUSY);
552 if (ret < 0) {
553 /* We must get the transaction if we are JOIN_NOLOCK. */
554 BUG_ON(type == TRANS_JOIN_NOLOCK);
555 goto join_fail;
558 cur_trans = root->fs_info->running_transaction;
560 h->transid = cur_trans->transid;
561 h->transaction = cur_trans;
562 h->root = root;
563 h->use_count = 1;
565 h->type = type;
566 h->can_flush_pending_bgs = true;
567 INIT_LIST_HEAD(&h->qgroup_ref_list);
568 INIT_LIST_HEAD(&h->new_bgs);
570 smp_mb();
571 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
572 may_wait_transaction(root, type)) {
573 current->journal_info = h;
574 btrfs_commit_transaction(h, root);
575 goto again;
578 if (num_bytes) {
579 trace_btrfs_space_reservation(root->fs_info, "transaction",
580 h->transid, num_bytes, 1);
581 h->block_rsv = &root->fs_info->trans_block_rsv;
582 h->bytes_reserved = num_bytes;
583 h->reloc_reserved = reloc_reserved;
586 got_it:
587 btrfs_record_root_in_trans(h, root);
589 if (!current->journal_info && type != TRANS_USERSPACE)
590 current->journal_info = h;
591 return h;
593 join_fail:
594 if (type & __TRANS_FREEZABLE)
595 sb_end_intwrite(root->fs_info->sb);
596 kmem_cache_free(btrfs_trans_handle_cachep, h);
597 alloc_fail:
598 if (num_bytes)
599 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
600 num_bytes);
601 reserve_fail:
602 btrfs_qgroup_free_meta(root, qgroup_reserved);
603 return ERR_PTR(ret);
606 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
607 unsigned int num_items)
609 return start_transaction(root, num_items, TRANS_START,
610 BTRFS_RESERVE_FLUSH_ALL);
612 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
613 struct btrfs_root *root,
614 unsigned int num_items,
615 int min_factor)
617 struct btrfs_trans_handle *trans;
618 u64 num_bytes;
619 int ret;
621 trans = btrfs_start_transaction(root, num_items);
622 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
623 return trans;
625 trans = btrfs_start_transaction(root, 0);
626 if (IS_ERR(trans))
627 return trans;
629 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
630 ret = btrfs_cond_migrate_bytes(root->fs_info,
631 &root->fs_info->trans_block_rsv,
632 num_bytes,
633 min_factor);
634 if (ret) {
635 btrfs_end_transaction(trans, root);
636 return ERR_PTR(ret);
639 trans->block_rsv = &root->fs_info->trans_block_rsv;
640 trans->bytes_reserved = num_bytes;
641 trace_btrfs_space_reservation(root->fs_info, "transaction",
642 trans->transid, num_bytes, 1);
644 return trans;
647 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
648 struct btrfs_root *root,
649 unsigned int num_items)
651 return start_transaction(root, num_items, TRANS_START,
652 BTRFS_RESERVE_FLUSH_LIMIT);
655 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
657 return start_transaction(root, 0, TRANS_JOIN,
658 BTRFS_RESERVE_NO_FLUSH);
661 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
663 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
664 BTRFS_RESERVE_NO_FLUSH);
667 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
669 return start_transaction(root, 0, TRANS_USERSPACE,
670 BTRFS_RESERVE_NO_FLUSH);
674 * btrfs_attach_transaction() - catch the running transaction
676 * It is used when we want to commit the current the transaction, but
677 * don't want to start a new one.
679 * Note: If this function return -ENOENT, it just means there is no
680 * running transaction. But it is possible that the inactive transaction
681 * is still in the memory, not fully on disk. If you hope there is no
682 * inactive transaction in the fs when -ENOENT is returned, you should
683 * invoke
684 * btrfs_attach_transaction_barrier()
686 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
688 return start_transaction(root, 0, TRANS_ATTACH,
689 BTRFS_RESERVE_NO_FLUSH);
693 * btrfs_attach_transaction_barrier() - catch the running transaction
695 * It is similar to the above function, the differentia is this one
696 * will wait for all the inactive transactions until they fully
697 * complete.
699 struct btrfs_trans_handle *
700 btrfs_attach_transaction_barrier(struct btrfs_root *root)
702 struct btrfs_trans_handle *trans;
704 trans = start_transaction(root, 0, TRANS_ATTACH,
705 BTRFS_RESERVE_NO_FLUSH);
706 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
707 btrfs_wait_for_commit(root, 0);
709 return trans;
712 /* wait for a transaction commit to be fully complete */
713 static noinline void wait_for_commit(struct btrfs_root *root,
714 struct btrfs_transaction *commit)
716 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
719 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
721 struct btrfs_transaction *cur_trans = NULL, *t;
722 int ret = 0;
724 if (transid) {
725 if (transid <= root->fs_info->last_trans_committed)
726 goto out;
728 /* find specified transaction */
729 spin_lock(&root->fs_info->trans_lock);
730 list_for_each_entry(t, &root->fs_info->trans_list, list) {
731 if (t->transid == transid) {
732 cur_trans = t;
733 atomic_inc(&cur_trans->use_count);
734 ret = 0;
735 break;
737 if (t->transid > transid) {
738 ret = 0;
739 break;
742 spin_unlock(&root->fs_info->trans_lock);
745 * The specified transaction doesn't exist, or we
746 * raced with btrfs_commit_transaction
748 if (!cur_trans) {
749 if (transid > root->fs_info->last_trans_committed)
750 ret = -EINVAL;
751 goto out;
753 } else {
754 /* find newest transaction that is committing | committed */
755 spin_lock(&root->fs_info->trans_lock);
756 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
757 list) {
758 if (t->state >= TRANS_STATE_COMMIT_START) {
759 if (t->state == TRANS_STATE_COMPLETED)
760 break;
761 cur_trans = t;
762 atomic_inc(&cur_trans->use_count);
763 break;
766 spin_unlock(&root->fs_info->trans_lock);
767 if (!cur_trans)
768 goto out; /* nothing committing|committed */
771 wait_for_commit(root, cur_trans);
772 btrfs_put_transaction(cur_trans);
773 out:
774 return ret;
777 void btrfs_throttle(struct btrfs_root *root)
779 if (!atomic_read(&root->fs_info->open_ioctl_trans))
780 wait_current_trans(root);
783 static int should_end_transaction(struct btrfs_trans_handle *trans,
784 struct btrfs_root *root)
786 if (root->fs_info->global_block_rsv.space_info->full &&
787 btrfs_check_space_for_delayed_refs(trans, root))
788 return 1;
790 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
793 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
794 struct btrfs_root *root)
796 struct btrfs_transaction *cur_trans = trans->transaction;
797 int updates;
798 int err;
800 smp_mb();
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
803 return 1;
805 updates = trans->delayed_ref_updates;
806 trans->delayed_ref_updates = 0;
807 if (updates) {
808 err = btrfs_run_delayed_refs(trans, root, updates * 2);
809 if (err) /* Error code will also eval true */
810 return err;
813 return should_end_transaction(trans, root);
816 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
817 struct btrfs_root *root, int throttle)
819 struct btrfs_transaction *cur_trans = trans->transaction;
820 struct btrfs_fs_info *info = root->fs_info;
821 unsigned long cur = trans->delayed_ref_updates;
822 int lock = (trans->type != TRANS_JOIN_NOLOCK);
823 int err = 0;
824 int must_run_delayed_refs = 0;
826 if (trans->use_count > 1) {
827 trans->use_count--;
828 trans->block_rsv = trans->orig_rsv;
829 return 0;
832 btrfs_trans_release_metadata(trans, root);
833 trans->block_rsv = NULL;
835 if (!list_empty(&trans->new_bgs))
836 btrfs_create_pending_block_groups(trans, root);
838 trans->delayed_ref_updates = 0;
839 if (!trans->sync) {
840 must_run_delayed_refs =
841 btrfs_should_throttle_delayed_refs(trans, root);
842 cur = max_t(unsigned long, cur, 32);
845 * don't make the caller wait if they are from a NOLOCK
846 * or ATTACH transaction, it will deadlock with commit
848 if (must_run_delayed_refs == 1 &&
849 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
850 must_run_delayed_refs = 2;
853 btrfs_trans_release_metadata(trans, root);
854 trans->block_rsv = NULL;
856 if (!list_empty(&trans->new_bgs))
857 btrfs_create_pending_block_groups(trans, root);
859 btrfs_trans_release_chunk_metadata(trans);
861 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
862 should_end_transaction(trans, root) &&
863 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
864 spin_lock(&info->trans_lock);
865 if (cur_trans->state == TRANS_STATE_RUNNING)
866 cur_trans->state = TRANS_STATE_BLOCKED;
867 spin_unlock(&info->trans_lock);
870 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
871 if (throttle)
872 return btrfs_commit_transaction(trans, root);
873 else
874 wake_up_process(info->transaction_kthread);
877 if (trans->type & __TRANS_FREEZABLE)
878 sb_end_intwrite(root->fs_info->sb);
880 WARN_ON(cur_trans != info->running_transaction);
881 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
882 atomic_dec(&cur_trans->num_writers);
883 extwriter_counter_dec(cur_trans, trans->type);
886 * Make sure counter is updated before we wake up waiters.
888 smp_mb();
889 if (waitqueue_active(&cur_trans->writer_wait))
890 wake_up(&cur_trans->writer_wait);
891 btrfs_put_transaction(cur_trans);
893 if (current->journal_info == trans)
894 current->journal_info = NULL;
896 if (throttle)
897 btrfs_run_delayed_iputs(root);
899 if (trans->aborted ||
900 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
901 wake_up_process(info->transaction_kthread);
902 err = -EIO;
904 assert_qgroups_uptodate(trans);
906 kmem_cache_free(btrfs_trans_handle_cachep, trans);
907 if (must_run_delayed_refs) {
908 btrfs_async_run_delayed_refs(root, cur,
909 must_run_delayed_refs == 1);
911 return err;
914 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
915 struct btrfs_root *root)
917 return __btrfs_end_transaction(trans, root, 0);
920 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
921 struct btrfs_root *root)
923 return __btrfs_end_transaction(trans, root, 1);
927 * when btree blocks are allocated, they have some corresponding bits set for
928 * them in one of two extent_io trees. This is used to make sure all of
929 * those extents are sent to disk but does not wait on them
931 int btrfs_write_marked_extents(struct btrfs_root *root,
932 struct extent_io_tree *dirty_pages, int mark)
934 int err = 0;
935 int werr = 0;
936 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
937 struct extent_state *cached_state = NULL;
938 u64 start = 0;
939 u64 end;
941 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
942 mark, &cached_state)) {
943 bool wait_writeback = false;
945 err = convert_extent_bit(dirty_pages, start, end,
946 EXTENT_NEED_WAIT,
947 mark, &cached_state);
949 * convert_extent_bit can return -ENOMEM, which is most of the
950 * time a temporary error. So when it happens, ignore the error
951 * and wait for writeback of this range to finish - because we
952 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
953 * to btrfs_wait_marked_extents() would not know that writeback
954 * for this range started and therefore wouldn't wait for it to
955 * finish - we don't want to commit a superblock that points to
956 * btree nodes/leafs for which writeback hasn't finished yet
957 * (and without errors).
958 * We cleanup any entries left in the io tree when committing
959 * the transaction (through clear_btree_io_tree()).
961 if (err == -ENOMEM) {
962 err = 0;
963 wait_writeback = true;
965 if (!err)
966 err = filemap_fdatawrite_range(mapping, start, end);
967 if (err)
968 werr = err;
969 else if (wait_writeback)
970 werr = filemap_fdatawait_range(mapping, start, end);
971 free_extent_state(cached_state);
972 cached_state = NULL;
973 cond_resched();
974 start = end + 1;
976 return werr;
980 * when btree blocks are allocated, they have some corresponding bits set for
981 * them in one of two extent_io trees. This is used to make sure all of
982 * those extents are on disk for transaction or log commit. We wait
983 * on all the pages and clear them from the dirty pages state tree
985 int btrfs_wait_marked_extents(struct btrfs_root *root,
986 struct extent_io_tree *dirty_pages, int mark)
988 int err = 0;
989 int werr = 0;
990 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
991 struct extent_state *cached_state = NULL;
992 u64 start = 0;
993 u64 end;
994 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
995 bool errors = false;
997 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
998 EXTENT_NEED_WAIT, &cached_state)) {
1000 * Ignore -ENOMEM errors returned by clear_extent_bit().
1001 * When committing the transaction, we'll remove any entries
1002 * left in the io tree. For a log commit, we don't remove them
1003 * after committing the log because the tree can be accessed
1004 * concurrently - we do it only at transaction commit time when
1005 * it's safe to do it (through clear_btree_io_tree()).
1007 err = clear_extent_bit(dirty_pages, start, end,
1008 EXTENT_NEED_WAIT,
1009 0, 0, &cached_state, GFP_NOFS);
1010 if (err == -ENOMEM)
1011 err = 0;
1012 if (!err)
1013 err = filemap_fdatawait_range(mapping, start, end);
1014 if (err)
1015 werr = err;
1016 free_extent_state(cached_state);
1017 cached_state = NULL;
1018 cond_resched();
1019 start = end + 1;
1021 if (err)
1022 werr = err;
1024 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1025 if ((mark & EXTENT_DIRTY) &&
1026 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1027 &btree_ino->runtime_flags))
1028 errors = true;
1030 if ((mark & EXTENT_NEW) &&
1031 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1032 &btree_ino->runtime_flags))
1033 errors = true;
1034 } else {
1035 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1036 &btree_ino->runtime_flags))
1037 errors = true;
1040 if (errors && !werr)
1041 werr = -EIO;
1043 return werr;
1047 * when btree blocks are allocated, they have some corresponding bits set for
1048 * them in one of two extent_io trees. This is used to make sure all of
1049 * those extents are on disk for transaction or log commit
1051 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1052 struct extent_io_tree *dirty_pages, int mark)
1054 int ret;
1055 int ret2;
1056 struct blk_plug plug;
1058 blk_start_plug(&plug);
1059 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1060 blk_finish_plug(&plug);
1061 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1063 if (ret)
1064 return ret;
1065 if (ret2)
1066 return ret2;
1067 return 0;
1070 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root)
1073 int ret;
1075 ret = btrfs_write_and_wait_marked_extents(root,
1076 &trans->transaction->dirty_pages,
1077 EXTENT_DIRTY);
1078 clear_btree_io_tree(&trans->transaction->dirty_pages);
1080 return ret;
1084 * this is used to update the root pointer in the tree of tree roots.
1086 * But, in the case of the extent allocation tree, updating the root
1087 * pointer may allocate blocks which may change the root of the extent
1088 * allocation tree.
1090 * So, this loops and repeats and makes sure the cowonly root didn't
1091 * change while the root pointer was being updated in the metadata.
1093 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root)
1096 int ret;
1097 u64 old_root_bytenr;
1098 u64 old_root_used;
1099 struct btrfs_root *tree_root = root->fs_info->tree_root;
1101 old_root_used = btrfs_root_used(&root->root_item);
1103 while (1) {
1104 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1105 if (old_root_bytenr == root->node->start &&
1106 old_root_used == btrfs_root_used(&root->root_item))
1107 break;
1109 btrfs_set_root_node(&root->root_item, root->node);
1110 ret = btrfs_update_root(trans, tree_root,
1111 &root->root_key,
1112 &root->root_item);
1113 if (ret)
1114 return ret;
1116 old_root_used = btrfs_root_used(&root->root_item);
1119 return 0;
1123 * update all the cowonly tree roots on disk
1125 * The error handling in this function may not be obvious. Any of the
1126 * failures will cause the file system to go offline. We still need
1127 * to clean up the delayed refs.
1129 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1130 struct btrfs_root *root)
1132 struct btrfs_fs_info *fs_info = root->fs_info;
1133 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1134 struct list_head *io_bgs = &trans->transaction->io_bgs;
1135 struct list_head *next;
1136 struct extent_buffer *eb;
1137 int ret;
1139 eb = btrfs_lock_root_node(fs_info->tree_root);
1140 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1141 0, &eb);
1142 btrfs_tree_unlock(eb);
1143 free_extent_buffer(eb);
1145 if (ret)
1146 return ret;
1148 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1149 if (ret)
1150 return ret;
1152 ret = btrfs_run_dev_stats(trans, root->fs_info);
1153 if (ret)
1154 return ret;
1155 ret = btrfs_run_dev_replace(trans, root->fs_info);
1156 if (ret)
1157 return ret;
1158 ret = btrfs_run_qgroups(trans, root->fs_info);
1159 if (ret)
1160 return ret;
1162 ret = btrfs_setup_space_cache(trans, root);
1163 if (ret)
1164 return ret;
1166 /* run_qgroups might have added some more refs */
1167 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1168 if (ret)
1169 return ret;
1170 again:
1171 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1172 next = fs_info->dirty_cowonly_roots.next;
1173 list_del_init(next);
1174 root = list_entry(next, struct btrfs_root, dirty_list);
1175 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1177 if (root != fs_info->extent_root)
1178 list_add_tail(&root->dirty_list,
1179 &trans->transaction->switch_commits);
1180 ret = update_cowonly_root(trans, root);
1181 if (ret)
1182 return ret;
1183 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1184 if (ret)
1185 return ret;
1188 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1189 ret = btrfs_write_dirty_block_groups(trans, root);
1190 if (ret)
1191 return ret;
1192 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1197 if (!list_empty(&fs_info->dirty_cowonly_roots))
1198 goto again;
1200 list_add_tail(&fs_info->extent_root->dirty_list,
1201 &trans->transaction->switch_commits);
1202 btrfs_after_dev_replace_commit(fs_info);
1204 return 0;
1208 * dead roots are old snapshots that need to be deleted. This allocates
1209 * a dirty root struct and adds it into the list of dead roots that need to
1210 * be deleted
1212 void btrfs_add_dead_root(struct btrfs_root *root)
1214 spin_lock(&root->fs_info->trans_lock);
1215 if (list_empty(&root->root_list))
1216 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1217 spin_unlock(&root->fs_info->trans_lock);
1221 * update all the cowonly tree roots on disk
1223 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1224 struct btrfs_root *root)
1226 struct btrfs_root *gang[8];
1227 struct btrfs_fs_info *fs_info = root->fs_info;
1228 int i;
1229 int ret;
1230 int err = 0;
1232 spin_lock(&fs_info->fs_roots_radix_lock);
1233 while (1) {
1234 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1235 (void **)gang, 0,
1236 ARRAY_SIZE(gang),
1237 BTRFS_ROOT_TRANS_TAG);
1238 if (ret == 0)
1239 break;
1240 for (i = 0; i < ret; i++) {
1241 root = gang[i];
1242 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1243 (unsigned long)root->root_key.objectid,
1244 BTRFS_ROOT_TRANS_TAG);
1245 spin_unlock(&fs_info->fs_roots_radix_lock);
1247 btrfs_free_log(trans, root);
1248 btrfs_update_reloc_root(trans, root);
1249 btrfs_orphan_commit_root(trans, root);
1251 btrfs_save_ino_cache(root, trans);
1253 /* see comments in should_cow_block() */
1254 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1255 smp_mb__after_atomic();
1257 if (root->commit_root != root->node) {
1258 list_add_tail(&root->dirty_list,
1259 &trans->transaction->switch_commits);
1260 btrfs_set_root_node(&root->root_item,
1261 root->node);
1264 err = btrfs_update_root(trans, fs_info->tree_root,
1265 &root->root_key,
1266 &root->root_item);
1267 spin_lock(&fs_info->fs_roots_radix_lock);
1268 if (err)
1269 break;
1270 btrfs_qgroup_free_meta_all(root);
1273 spin_unlock(&fs_info->fs_roots_radix_lock);
1274 return err;
1278 * defrag a given btree.
1279 * Every leaf in the btree is read and defragged.
1281 int btrfs_defrag_root(struct btrfs_root *root)
1283 struct btrfs_fs_info *info = root->fs_info;
1284 struct btrfs_trans_handle *trans;
1285 int ret;
1287 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1288 return 0;
1290 while (1) {
1291 trans = btrfs_start_transaction(root, 0);
1292 if (IS_ERR(trans))
1293 return PTR_ERR(trans);
1295 ret = btrfs_defrag_leaves(trans, root);
1297 btrfs_end_transaction(trans, root);
1298 btrfs_btree_balance_dirty(info->tree_root);
1299 cond_resched();
1301 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1302 break;
1304 if (btrfs_defrag_cancelled(root->fs_info)) {
1305 pr_debug("BTRFS: defrag_root cancelled\n");
1306 ret = -EAGAIN;
1307 break;
1310 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1311 return ret;
1314 /* Bisesctability fixup, remove in 4.8 */
1315 #ifndef btrfs_std_error
1316 #define btrfs_std_error btrfs_handle_fs_error
1317 #endif
1320 * Do all special snapshot related qgroup dirty hack.
1322 * Will do all needed qgroup inherit and dirty hack like switch commit
1323 * roots inside one transaction and write all btree into disk, to make
1324 * qgroup works.
1326 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *src,
1328 struct btrfs_root *parent,
1329 struct btrfs_qgroup_inherit *inherit,
1330 u64 dst_objectid)
1332 struct btrfs_fs_info *fs_info = src->fs_info;
1333 int ret;
1336 * Save some performance in the case that qgroups are not
1337 * enabled. If this check races with the ioctl, rescan will
1338 * kick in anyway.
1340 mutex_lock(&fs_info->qgroup_ioctl_lock);
1341 if (!fs_info->quota_enabled) {
1342 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1343 return 0;
1345 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1348 * We are going to commit transaction, see btrfs_commit_transaction()
1349 * comment for reason locking tree_log_mutex
1351 mutex_lock(&fs_info->tree_log_mutex);
1353 ret = commit_fs_roots(trans, src);
1354 if (ret)
1355 goto out;
1356 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1357 if (ret < 0)
1358 goto out;
1359 ret = btrfs_qgroup_account_extents(trans, fs_info);
1360 if (ret < 0)
1361 goto out;
1363 /* Now qgroup are all updated, we can inherit it to new qgroups */
1364 ret = btrfs_qgroup_inherit(trans, fs_info,
1365 src->root_key.objectid, dst_objectid,
1366 inherit);
1367 if (ret < 0)
1368 goto out;
1371 * Now we do a simplified commit transaction, which will:
1372 * 1) commit all subvolume and extent tree
1373 * To ensure all subvolume and extent tree have a valid
1374 * commit_root to accounting later insert_dir_item()
1375 * 2) write all btree blocks onto disk
1376 * This is to make sure later btree modification will be cowed
1377 * Or commit_root can be populated and cause wrong qgroup numbers
1378 * In this simplified commit, we don't really care about other trees
1379 * like chunk and root tree, as they won't affect qgroup.
1380 * And we don't write super to avoid half committed status.
1382 ret = commit_cowonly_roots(trans, src);
1383 if (ret)
1384 goto out;
1385 switch_commit_roots(trans->transaction, fs_info);
1386 ret = btrfs_write_and_wait_transaction(trans, src);
1387 if (ret)
1388 btrfs_std_error(fs_info, ret,
1389 "Error while writing out transaction for qgroup");
1391 out:
1392 mutex_unlock(&fs_info->tree_log_mutex);
1395 * Force parent root to be updated, as we recorded it before so its
1396 * last_trans == cur_transid.
1397 * Or it won't be committed again onto disk after later
1398 * insert_dir_item()
1400 if (!ret)
1401 record_root_in_trans(trans, parent, 1);
1402 return ret;
1406 * new snapshots need to be created at a very specific time in the
1407 * transaction commit. This does the actual creation.
1409 * Note:
1410 * If the error which may affect the commitment of the current transaction
1411 * happens, we should return the error number. If the error which just affect
1412 * the creation of the pending snapshots, just return 0.
1414 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1415 struct btrfs_fs_info *fs_info,
1416 struct btrfs_pending_snapshot *pending)
1418 struct btrfs_key key;
1419 struct btrfs_root_item *new_root_item;
1420 struct btrfs_root *tree_root = fs_info->tree_root;
1421 struct btrfs_root *root = pending->root;
1422 struct btrfs_root *parent_root;
1423 struct btrfs_block_rsv *rsv;
1424 struct inode *parent_inode;
1425 struct btrfs_path *path;
1426 struct btrfs_dir_item *dir_item;
1427 struct dentry *dentry;
1428 struct extent_buffer *tmp;
1429 struct extent_buffer *old;
1430 struct timespec cur_time;
1431 int ret = 0;
1432 u64 to_reserve = 0;
1433 u64 index = 0;
1434 u64 objectid;
1435 u64 root_flags;
1436 uuid_le new_uuid;
1438 ASSERT(pending->path);
1439 path = pending->path;
1441 ASSERT(pending->root_item);
1442 new_root_item = pending->root_item;
1444 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1445 if (pending->error)
1446 goto no_free_objectid;
1449 * Make qgroup to skip current new snapshot's qgroupid, as it is
1450 * accounted by later btrfs_qgroup_inherit().
1452 btrfs_set_skip_qgroup(trans, objectid);
1454 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1456 if (to_reserve > 0) {
1457 pending->error = btrfs_block_rsv_add(root,
1458 &pending->block_rsv,
1459 to_reserve,
1460 BTRFS_RESERVE_NO_FLUSH);
1461 if (pending->error)
1462 goto clear_skip_qgroup;
1465 key.objectid = objectid;
1466 key.offset = (u64)-1;
1467 key.type = BTRFS_ROOT_ITEM_KEY;
1469 rsv = trans->block_rsv;
1470 trans->block_rsv = &pending->block_rsv;
1471 trans->bytes_reserved = trans->block_rsv->reserved;
1472 trace_btrfs_space_reservation(root->fs_info, "transaction",
1473 trans->transid,
1474 trans->bytes_reserved, 1);
1475 dentry = pending->dentry;
1476 parent_inode = pending->dir;
1477 parent_root = BTRFS_I(parent_inode)->root;
1478 record_root_in_trans(trans, parent_root, 0);
1480 cur_time = current_fs_time(parent_inode->i_sb);
1483 * insert the directory item
1485 ret = btrfs_set_inode_index(parent_inode, &index);
1486 BUG_ON(ret); /* -ENOMEM */
1488 /* check if there is a file/dir which has the same name. */
1489 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1490 btrfs_ino(parent_inode),
1491 dentry->d_name.name,
1492 dentry->d_name.len, 0);
1493 if (dir_item != NULL && !IS_ERR(dir_item)) {
1494 pending->error = -EEXIST;
1495 goto dir_item_existed;
1496 } else if (IS_ERR(dir_item)) {
1497 ret = PTR_ERR(dir_item);
1498 btrfs_abort_transaction(trans, root, ret);
1499 goto fail;
1501 btrfs_release_path(path);
1504 * pull in the delayed directory update
1505 * and the delayed inode item
1506 * otherwise we corrupt the FS during
1507 * snapshot
1509 ret = btrfs_run_delayed_items(trans, root);
1510 if (ret) { /* Transaction aborted */
1511 btrfs_abort_transaction(trans, root, ret);
1512 goto fail;
1515 record_root_in_trans(trans, root, 0);
1516 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1517 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1518 btrfs_check_and_init_root_item(new_root_item);
1520 root_flags = btrfs_root_flags(new_root_item);
1521 if (pending->readonly)
1522 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1523 else
1524 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1525 btrfs_set_root_flags(new_root_item, root_flags);
1527 btrfs_set_root_generation_v2(new_root_item,
1528 trans->transid);
1529 uuid_le_gen(&new_uuid);
1530 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1531 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1532 BTRFS_UUID_SIZE);
1533 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1534 memset(new_root_item->received_uuid, 0,
1535 sizeof(new_root_item->received_uuid));
1536 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1537 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1538 btrfs_set_root_stransid(new_root_item, 0);
1539 btrfs_set_root_rtransid(new_root_item, 0);
1541 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1542 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1543 btrfs_set_root_otransid(new_root_item, trans->transid);
1545 old = btrfs_lock_root_node(root);
1546 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1547 if (ret) {
1548 btrfs_tree_unlock(old);
1549 free_extent_buffer(old);
1550 btrfs_abort_transaction(trans, root, ret);
1551 goto fail;
1554 btrfs_set_lock_blocking(old);
1556 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1557 /* clean up in any case */
1558 btrfs_tree_unlock(old);
1559 free_extent_buffer(old);
1560 if (ret) {
1561 btrfs_abort_transaction(trans, root, ret);
1562 goto fail;
1564 /* see comments in should_cow_block() */
1565 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1566 smp_wmb();
1568 btrfs_set_root_node(new_root_item, tmp);
1569 /* record when the snapshot was created in key.offset */
1570 key.offset = trans->transid;
1571 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1572 btrfs_tree_unlock(tmp);
1573 free_extent_buffer(tmp);
1574 if (ret) {
1575 btrfs_abort_transaction(trans, root, ret);
1576 goto fail;
1580 * insert root back/forward references
1582 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1583 parent_root->root_key.objectid,
1584 btrfs_ino(parent_inode), index,
1585 dentry->d_name.name, dentry->d_name.len);
1586 if (ret) {
1587 btrfs_abort_transaction(trans, root, ret);
1588 goto fail;
1591 key.offset = (u64)-1;
1592 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1593 if (IS_ERR(pending->snap)) {
1594 ret = PTR_ERR(pending->snap);
1595 btrfs_abort_transaction(trans, root, ret);
1596 goto fail;
1599 ret = btrfs_reloc_post_snapshot(trans, pending);
1600 if (ret) {
1601 btrfs_abort_transaction(trans, root, ret);
1602 goto fail;
1605 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1606 if (ret) {
1607 btrfs_abort_transaction(trans, root, ret);
1608 goto fail;
1612 * Do special qgroup accounting for snapshot, as we do some qgroup
1613 * snapshot hack to do fast snapshot.
1614 * To co-operate with that hack, we do hack again.
1615 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1617 ret = qgroup_account_snapshot(trans, root, parent_root,
1618 pending->inherit, objectid);
1619 if (ret < 0)
1620 goto fail;
1622 ret = btrfs_insert_dir_item(trans, parent_root,
1623 dentry->d_name.name, dentry->d_name.len,
1624 parent_inode, &key,
1625 BTRFS_FT_DIR, index);
1626 /* We have check then name at the beginning, so it is impossible. */
1627 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1628 if (ret) {
1629 btrfs_abort_transaction(trans, root, ret);
1630 goto fail;
1633 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1634 dentry->d_name.len * 2);
1635 parent_inode->i_mtime = parent_inode->i_ctime =
1636 current_fs_time(parent_inode->i_sb);
1637 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1638 if (ret) {
1639 btrfs_abort_transaction(trans, root, ret);
1640 goto fail;
1642 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1643 BTRFS_UUID_KEY_SUBVOL, objectid);
1644 if (ret) {
1645 btrfs_abort_transaction(trans, root, ret);
1646 goto fail;
1648 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1649 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1650 new_root_item->received_uuid,
1651 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1652 objectid);
1653 if (ret && ret != -EEXIST) {
1654 btrfs_abort_transaction(trans, root, ret);
1655 goto fail;
1659 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1660 if (ret) {
1661 btrfs_abort_transaction(trans, root, ret);
1662 goto fail;
1665 fail:
1666 pending->error = ret;
1667 dir_item_existed:
1668 trans->block_rsv = rsv;
1669 trans->bytes_reserved = 0;
1670 clear_skip_qgroup:
1671 btrfs_clear_skip_qgroup(trans);
1672 no_free_objectid:
1673 kfree(new_root_item);
1674 pending->root_item = NULL;
1675 btrfs_free_path(path);
1676 pending->path = NULL;
1678 return ret;
1682 * create all the snapshots we've scheduled for creation
1684 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1685 struct btrfs_fs_info *fs_info)
1687 struct btrfs_pending_snapshot *pending, *next;
1688 struct list_head *head = &trans->transaction->pending_snapshots;
1689 int ret = 0;
1691 list_for_each_entry_safe(pending, next, head, list) {
1692 list_del(&pending->list);
1693 ret = create_pending_snapshot(trans, fs_info, pending);
1694 if (ret)
1695 break;
1697 return ret;
1700 static void update_super_roots(struct btrfs_root *root)
1702 struct btrfs_root_item *root_item;
1703 struct btrfs_super_block *super;
1705 super = root->fs_info->super_copy;
1707 root_item = &root->fs_info->chunk_root->root_item;
1708 super->chunk_root = root_item->bytenr;
1709 super->chunk_root_generation = root_item->generation;
1710 super->chunk_root_level = root_item->level;
1712 root_item = &root->fs_info->tree_root->root_item;
1713 super->root = root_item->bytenr;
1714 super->generation = root_item->generation;
1715 super->root_level = root_item->level;
1716 if (btrfs_test_opt(root, SPACE_CACHE))
1717 super->cache_generation = root_item->generation;
1718 if (root->fs_info->update_uuid_tree_gen)
1719 super->uuid_tree_generation = root_item->generation;
1722 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1724 struct btrfs_transaction *trans;
1725 int ret = 0;
1727 spin_lock(&info->trans_lock);
1728 trans = info->running_transaction;
1729 if (trans)
1730 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1731 spin_unlock(&info->trans_lock);
1732 return ret;
1735 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1737 struct btrfs_transaction *trans;
1738 int ret = 0;
1740 spin_lock(&info->trans_lock);
1741 trans = info->running_transaction;
1742 if (trans)
1743 ret = is_transaction_blocked(trans);
1744 spin_unlock(&info->trans_lock);
1745 return ret;
1749 * wait for the current transaction commit to start and block subsequent
1750 * transaction joins
1752 static void wait_current_trans_commit_start(struct btrfs_root *root,
1753 struct btrfs_transaction *trans)
1755 wait_event(root->fs_info->transaction_blocked_wait,
1756 trans->state >= TRANS_STATE_COMMIT_START ||
1757 trans->aborted);
1761 * wait for the current transaction to start and then become unblocked.
1762 * caller holds ref.
1764 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1765 struct btrfs_transaction *trans)
1767 wait_event(root->fs_info->transaction_wait,
1768 trans->state >= TRANS_STATE_UNBLOCKED ||
1769 trans->aborted);
1773 * commit transactions asynchronously. once btrfs_commit_transaction_async
1774 * returns, any subsequent transaction will not be allowed to join.
1776 struct btrfs_async_commit {
1777 struct btrfs_trans_handle *newtrans;
1778 struct btrfs_root *root;
1779 struct work_struct work;
1782 static void do_async_commit(struct work_struct *work)
1784 struct btrfs_async_commit *ac =
1785 container_of(work, struct btrfs_async_commit, work);
1788 * We've got freeze protection passed with the transaction.
1789 * Tell lockdep about it.
1791 if (ac->newtrans->type & __TRANS_FREEZABLE)
1792 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1794 current->journal_info = ac->newtrans;
1796 btrfs_commit_transaction(ac->newtrans, ac->root);
1797 kfree(ac);
1800 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 int wait_for_unblock)
1804 struct btrfs_async_commit *ac;
1805 struct btrfs_transaction *cur_trans;
1807 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1808 if (!ac)
1809 return -ENOMEM;
1811 INIT_WORK(&ac->work, do_async_commit);
1812 ac->root = root;
1813 ac->newtrans = btrfs_join_transaction(root);
1814 if (IS_ERR(ac->newtrans)) {
1815 int err = PTR_ERR(ac->newtrans);
1816 kfree(ac);
1817 return err;
1820 /* take transaction reference */
1821 cur_trans = trans->transaction;
1822 atomic_inc(&cur_trans->use_count);
1824 btrfs_end_transaction(trans, root);
1827 * Tell lockdep we've released the freeze rwsem, since the
1828 * async commit thread will be the one to unlock it.
1830 if (ac->newtrans->type & __TRANS_FREEZABLE)
1831 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1833 schedule_work(&ac->work);
1835 /* wait for transaction to start and unblock */
1836 if (wait_for_unblock)
1837 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1838 else
1839 wait_current_trans_commit_start(root, cur_trans);
1841 if (current->journal_info == trans)
1842 current->journal_info = NULL;
1844 btrfs_put_transaction(cur_trans);
1845 return 0;
1849 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1850 struct btrfs_root *root, int err)
1852 struct btrfs_transaction *cur_trans = trans->transaction;
1853 DEFINE_WAIT(wait);
1855 WARN_ON(trans->use_count > 1);
1857 btrfs_abort_transaction(trans, root, err);
1859 spin_lock(&root->fs_info->trans_lock);
1862 * If the transaction is removed from the list, it means this
1863 * transaction has been committed successfully, so it is impossible
1864 * to call the cleanup function.
1866 BUG_ON(list_empty(&cur_trans->list));
1868 list_del_init(&cur_trans->list);
1869 if (cur_trans == root->fs_info->running_transaction) {
1870 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1871 spin_unlock(&root->fs_info->trans_lock);
1872 wait_event(cur_trans->writer_wait,
1873 atomic_read(&cur_trans->num_writers) == 1);
1875 spin_lock(&root->fs_info->trans_lock);
1877 spin_unlock(&root->fs_info->trans_lock);
1879 btrfs_cleanup_one_transaction(trans->transaction, root);
1881 spin_lock(&root->fs_info->trans_lock);
1882 if (cur_trans == root->fs_info->running_transaction)
1883 root->fs_info->running_transaction = NULL;
1884 spin_unlock(&root->fs_info->trans_lock);
1886 if (trans->type & __TRANS_FREEZABLE)
1887 sb_end_intwrite(root->fs_info->sb);
1888 btrfs_put_transaction(cur_trans);
1889 btrfs_put_transaction(cur_trans);
1891 trace_btrfs_transaction_commit(root);
1893 if (current->journal_info == trans)
1894 current->journal_info = NULL;
1895 btrfs_scrub_cancel(root->fs_info);
1897 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1900 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1902 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1903 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1904 return 0;
1907 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1909 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1910 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1913 static inline void
1914 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1916 wait_event(cur_trans->pending_wait,
1917 atomic_read(&cur_trans->pending_ordered) == 0);
1920 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1921 struct btrfs_root *root)
1923 struct btrfs_transaction *cur_trans = trans->transaction;
1924 struct btrfs_transaction *prev_trans = NULL;
1925 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1926 int ret;
1928 /* Stop the commit early if ->aborted is set */
1929 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1930 ret = cur_trans->aborted;
1931 btrfs_end_transaction(trans, root);
1932 return ret;
1935 /* make a pass through all the delayed refs we have so far
1936 * any runnings procs may add more while we are here
1938 ret = btrfs_run_delayed_refs(trans, root, 0);
1939 if (ret) {
1940 btrfs_end_transaction(trans, root);
1941 return ret;
1944 btrfs_trans_release_metadata(trans, root);
1945 trans->block_rsv = NULL;
1947 cur_trans = trans->transaction;
1950 * set the flushing flag so procs in this transaction have to
1951 * start sending their work down.
1953 cur_trans->delayed_refs.flushing = 1;
1954 smp_wmb();
1956 if (!list_empty(&trans->new_bgs))
1957 btrfs_create_pending_block_groups(trans, root);
1959 ret = btrfs_run_delayed_refs(trans, root, 0);
1960 if (ret) {
1961 btrfs_end_transaction(trans, root);
1962 return ret;
1965 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1966 int run_it = 0;
1968 /* this mutex is also taken before trying to set
1969 * block groups readonly. We need to make sure
1970 * that nobody has set a block group readonly
1971 * after a extents from that block group have been
1972 * allocated for cache files. btrfs_set_block_group_ro
1973 * will wait for the transaction to commit if it
1974 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1976 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1977 * only one process starts all the block group IO. It wouldn't
1978 * hurt to have more than one go through, but there's no
1979 * real advantage to it either.
1981 mutex_lock(&root->fs_info->ro_block_group_mutex);
1982 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1983 &cur_trans->flags))
1984 run_it = 1;
1985 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1987 if (run_it)
1988 ret = btrfs_start_dirty_block_groups(trans, root);
1990 if (ret) {
1991 btrfs_end_transaction(trans, root);
1992 return ret;
1995 spin_lock(&root->fs_info->trans_lock);
1996 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1997 spin_unlock(&root->fs_info->trans_lock);
1998 atomic_inc(&cur_trans->use_count);
1999 ret = btrfs_end_transaction(trans, root);
2001 wait_for_commit(root, cur_trans);
2003 if (unlikely(cur_trans->aborted))
2004 ret = cur_trans->aborted;
2006 btrfs_put_transaction(cur_trans);
2008 return ret;
2011 cur_trans->state = TRANS_STATE_COMMIT_START;
2012 wake_up(&root->fs_info->transaction_blocked_wait);
2014 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2015 prev_trans = list_entry(cur_trans->list.prev,
2016 struct btrfs_transaction, list);
2017 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2018 atomic_inc(&prev_trans->use_count);
2019 spin_unlock(&root->fs_info->trans_lock);
2021 wait_for_commit(root, prev_trans);
2022 ret = prev_trans->aborted;
2024 btrfs_put_transaction(prev_trans);
2025 if (ret)
2026 goto cleanup_transaction;
2027 } else {
2028 spin_unlock(&root->fs_info->trans_lock);
2030 } else {
2031 spin_unlock(&root->fs_info->trans_lock);
2034 extwriter_counter_dec(cur_trans, trans->type);
2036 ret = btrfs_start_delalloc_flush(root->fs_info);
2037 if (ret)
2038 goto cleanup_transaction;
2040 ret = btrfs_run_delayed_items(trans, root);
2041 if (ret)
2042 goto cleanup_transaction;
2044 wait_event(cur_trans->writer_wait,
2045 extwriter_counter_read(cur_trans) == 0);
2047 /* some pending stuffs might be added after the previous flush. */
2048 ret = btrfs_run_delayed_items(trans, root);
2049 if (ret)
2050 goto cleanup_transaction;
2052 btrfs_wait_delalloc_flush(root->fs_info);
2054 btrfs_wait_pending_ordered(cur_trans);
2056 btrfs_scrub_pause(root);
2058 * Ok now we need to make sure to block out any other joins while we
2059 * commit the transaction. We could have started a join before setting
2060 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2062 spin_lock(&root->fs_info->trans_lock);
2063 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2064 spin_unlock(&root->fs_info->trans_lock);
2065 wait_event(cur_trans->writer_wait,
2066 atomic_read(&cur_trans->num_writers) == 1);
2068 /* ->aborted might be set after the previous check, so check it */
2069 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2070 ret = cur_trans->aborted;
2071 goto scrub_continue;
2074 * the reloc mutex makes sure that we stop
2075 * the balancing code from coming in and moving
2076 * extents around in the middle of the commit
2078 mutex_lock(&root->fs_info->reloc_mutex);
2081 * We needn't worry about the delayed items because we will
2082 * deal with them in create_pending_snapshot(), which is the
2083 * core function of the snapshot creation.
2085 ret = create_pending_snapshots(trans, root->fs_info);
2086 if (ret) {
2087 mutex_unlock(&root->fs_info->reloc_mutex);
2088 goto scrub_continue;
2092 * We insert the dir indexes of the snapshots and update the inode
2093 * of the snapshots' parents after the snapshot creation, so there
2094 * are some delayed items which are not dealt with. Now deal with
2095 * them.
2097 * We needn't worry that this operation will corrupt the snapshots,
2098 * because all the tree which are snapshoted will be forced to COW
2099 * the nodes and leaves.
2101 ret = btrfs_run_delayed_items(trans, root);
2102 if (ret) {
2103 mutex_unlock(&root->fs_info->reloc_mutex);
2104 goto scrub_continue;
2107 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2108 if (ret) {
2109 mutex_unlock(&root->fs_info->reloc_mutex);
2110 goto scrub_continue;
2113 /* Reocrd old roots for later qgroup accounting */
2114 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2115 if (ret) {
2116 mutex_unlock(&root->fs_info->reloc_mutex);
2117 goto scrub_continue;
2121 * make sure none of the code above managed to slip in a
2122 * delayed item
2124 btrfs_assert_delayed_root_empty(root);
2126 WARN_ON(cur_trans != trans->transaction);
2128 /* btrfs_commit_tree_roots is responsible for getting the
2129 * various roots consistent with each other. Every pointer
2130 * in the tree of tree roots has to point to the most up to date
2131 * root for every subvolume and other tree. So, we have to keep
2132 * the tree logging code from jumping in and changing any
2133 * of the trees.
2135 * At this point in the commit, there can't be any tree-log
2136 * writers, but a little lower down we drop the trans mutex
2137 * and let new people in. By holding the tree_log_mutex
2138 * from now until after the super is written, we avoid races
2139 * with the tree-log code.
2141 mutex_lock(&root->fs_info->tree_log_mutex);
2143 ret = commit_fs_roots(trans, root);
2144 if (ret) {
2145 mutex_unlock(&root->fs_info->tree_log_mutex);
2146 mutex_unlock(&root->fs_info->reloc_mutex);
2147 goto scrub_continue;
2151 * Since the transaction is done, we can apply the pending changes
2152 * before the next transaction.
2154 btrfs_apply_pending_changes(root->fs_info);
2156 /* commit_fs_roots gets rid of all the tree log roots, it is now
2157 * safe to free the root of tree log roots
2159 btrfs_free_log_root_tree(trans, root->fs_info);
2162 * Since fs roots are all committed, we can get a quite accurate
2163 * new_roots. So let's do quota accounting.
2165 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2166 if (ret < 0) {
2167 mutex_unlock(&root->fs_info->tree_log_mutex);
2168 mutex_unlock(&root->fs_info->reloc_mutex);
2169 goto scrub_continue;
2172 ret = commit_cowonly_roots(trans, root);
2173 if (ret) {
2174 mutex_unlock(&root->fs_info->tree_log_mutex);
2175 mutex_unlock(&root->fs_info->reloc_mutex);
2176 goto scrub_continue;
2180 * The tasks which save the space cache and inode cache may also
2181 * update ->aborted, check it.
2183 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2184 ret = cur_trans->aborted;
2185 mutex_unlock(&root->fs_info->tree_log_mutex);
2186 mutex_unlock(&root->fs_info->reloc_mutex);
2187 goto scrub_continue;
2190 btrfs_prepare_extent_commit(trans, root);
2192 cur_trans = root->fs_info->running_transaction;
2194 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2195 root->fs_info->tree_root->node);
2196 list_add_tail(&root->fs_info->tree_root->dirty_list,
2197 &cur_trans->switch_commits);
2199 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2200 root->fs_info->chunk_root->node);
2201 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2202 &cur_trans->switch_commits);
2204 switch_commit_roots(cur_trans, root->fs_info);
2206 assert_qgroups_uptodate(trans);
2207 ASSERT(list_empty(&cur_trans->dirty_bgs));
2208 ASSERT(list_empty(&cur_trans->io_bgs));
2209 update_super_roots(root);
2211 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2212 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2213 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2214 sizeof(*root->fs_info->super_copy));
2216 btrfs_update_commit_device_size(root->fs_info);
2217 btrfs_update_commit_device_bytes_used(root, cur_trans);
2219 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2220 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2222 btrfs_trans_release_chunk_metadata(trans);
2224 spin_lock(&root->fs_info->trans_lock);
2225 cur_trans->state = TRANS_STATE_UNBLOCKED;
2226 root->fs_info->running_transaction = NULL;
2227 spin_unlock(&root->fs_info->trans_lock);
2228 mutex_unlock(&root->fs_info->reloc_mutex);
2230 wake_up(&root->fs_info->transaction_wait);
2232 ret = btrfs_write_and_wait_transaction(trans, root);
2233 if (ret) {
2234 btrfs_handle_fs_error(root->fs_info, ret,
2235 "Error while writing out transaction");
2236 mutex_unlock(&root->fs_info->tree_log_mutex);
2237 goto scrub_continue;
2240 ret = write_ctree_super(trans, root, 0);
2241 if (ret) {
2242 mutex_unlock(&root->fs_info->tree_log_mutex);
2243 goto scrub_continue;
2247 * the super is written, we can safely allow the tree-loggers
2248 * to go about their business
2250 mutex_unlock(&root->fs_info->tree_log_mutex);
2252 btrfs_finish_extent_commit(trans, root);
2254 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2255 btrfs_clear_space_info_full(root->fs_info);
2257 root->fs_info->last_trans_committed = cur_trans->transid;
2259 * We needn't acquire the lock here because there is no other task
2260 * which can change it.
2262 cur_trans->state = TRANS_STATE_COMPLETED;
2263 wake_up(&cur_trans->commit_wait);
2265 spin_lock(&root->fs_info->trans_lock);
2266 list_del_init(&cur_trans->list);
2267 spin_unlock(&root->fs_info->trans_lock);
2269 btrfs_put_transaction(cur_trans);
2270 btrfs_put_transaction(cur_trans);
2272 if (trans->type & __TRANS_FREEZABLE)
2273 sb_end_intwrite(root->fs_info->sb);
2275 trace_btrfs_transaction_commit(root);
2277 btrfs_scrub_continue(root);
2279 if (current->journal_info == trans)
2280 current->journal_info = NULL;
2282 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2284 if (current != root->fs_info->transaction_kthread &&
2285 current != root->fs_info->cleaner_kthread)
2286 btrfs_run_delayed_iputs(root);
2288 return ret;
2290 scrub_continue:
2291 btrfs_scrub_continue(root);
2292 cleanup_transaction:
2293 btrfs_trans_release_metadata(trans, root);
2294 btrfs_trans_release_chunk_metadata(trans);
2295 trans->block_rsv = NULL;
2296 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2297 if (current->journal_info == trans)
2298 current->journal_info = NULL;
2299 cleanup_transaction(trans, root, ret);
2301 return ret;
2305 * return < 0 if error
2306 * 0 if there are no more dead_roots at the time of call
2307 * 1 there are more to be processed, call me again
2309 * The return value indicates there are certainly more snapshots to delete, but
2310 * if there comes a new one during processing, it may return 0. We don't mind,
2311 * because btrfs_commit_super will poke cleaner thread and it will process it a
2312 * few seconds later.
2314 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2316 int ret;
2317 struct btrfs_fs_info *fs_info = root->fs_info;
2319 spin_lock(&fs_info->trans_lock);
2320 if (list_empty(&fs_info->dead_roots)) {
2321 spin_unlock(&fs_info->trans_lock);
2322 return 0;
2324 root = list_first_entry(&fs_info->dead_roots,
2325 struct btrfs_root, root_list);
2326 list_del_init(&root->root_list);
2327 spin_unlock(&fs_info->trans_lock);
2329 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2331 btrfs_kill_all_delayed_nodes(root);
2333 if (btrfs_header_backref_rev(root->node) <
2334 BTRFS_MIXED_BACKREF_REV)
2335 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2336 else
2337 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2339 return (ret < 0) ? 0 : 1;
2342 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2344 unsigned long prev;
2345 unsigned long bit;
2347 prev = xchg(&fs_info->pending_changes, 0);
2348 if (!prev)
2349 return;
2351 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2352 if (prev & bit)
2353 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2354 prev &= ~bit;
2356 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2357 if (prev & bit)
2358 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2359 prev &= ~bit;
2361 bit = 1 << BTRFS_PENDING_COMMIT;
2362 if (prev & bit)
2363 btrfs_debug(fs_info, "pending commit done");
2364 prev &= ~bit;
2366 if (prev)
2367 btrfs_warn(fs_info,
2368 "unknown pending changes left 0x%lx, ignoring", prev);