Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / xfs / libxfs / xfs_inode_buf.c
blob9d9559eb2835a33621e568392fab2c1074022da3
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_cksum.h"
28 #include "xfs_icache.h"
29 #include "xfs_trans.h"
30 #include "xfs_ialloc.h"
33 * Check that none of the inode's in the buffer have a next
34 * unlinked field of 0.
36 #if defined(DEBUG)
37 void
38 xfs_inobp_check(
39 xfs_mount_t *mp,
40 xfs_buf_t *bp)
42 int i;
43 int j;
44 xfs_dinode_t *dip;
46 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
48 for (i = 0; i < j; i++) {
49 dip = xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize);
50 if (!dip->di_next_unlinked) {
51 xfs_alert(mp,
52 "Detected bogus zero next_unlinked field in inode %d buffer 0x%llx.",
53 i, (long long)bp->b_bn);
57 #endif
60 * If we are doing readahead on an inode buffer, we might be in log recovery
61 * reading an inode allocation buffer that hasn't yet been replayed, and hence
62 * has not had the inode cores stamped into it. Hence for readahead, the buffer
63 * may be potentially invalid.
65 * If the readahead buffer is invalid, we need to mark it with an error and
66 * clear the DONE status of the buffer so that a followup read will re-read it
67 * from disk. We don't report the error otherwise to avoid warnings during log
68 * recovery and we don't get unnecssary panics on debug kernels. We use EIO here
69 * because all we want to do is say readahead failed; there is no-one to report
70 * the error to, so this will distinguish it from a non-ra verifier failure.
71 * Changes to this readahead error behavour also need to be reflected in
72 * xfs_dquot_buf_readahead_verify().
74 static void
75 xfs_inode_buf_verify(
76 struct xfs_buf *bp,
77 bool readahead)
79 struct xfs_mount *mp = bp->b_target->bt_mount;
80 int i;
81 int ni;
84 * Validate the magic number and version of every inode in the buffer
86 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
87 for (i = 0; i < ni; i++) {
88 int di_ok;
89 xfs_dinode_t *dip;
91 dip = xfs_buf_offset(bp, (i << mp->m_sb.sb_inodelog));
92 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
93 XFS_DINODE_GOOD_VERSION(dip->di_version);
94 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
95 XFS_ERRTAG_ITOBP_INOTOBP,
96 XFS_RANDOM_ITOBP_INOTOBP))) {
97 if (readahead) {
98 bp->b_flags &= ~XBF_DONE;
99 xfs_buf_ioerror(bp, -EIO);
100 return;
103 xfs_buf_ioerror(bp, -EFSCORRUPTED);
104 xfs_verifier_error(bp);
105 #ifdef DEBUG
106 xfs_alert(mp,
107 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
108 (unsigned long long)bp->b_bn, i,
109 be16_to_cpu(dip->di_magic));
110 #endif
113 xfs_inobp_check(mp, bp);
117 static void
118 xfs_inode_buf_read_verify(
119 struct xfs_buf *bp)
121 xfs_inode_buf_verify(bp, false);
124 static void
125 xfs_inode_buf_readahead_verify(
126 struct xfs_buf *bp)
128 xfs_inode_buf_verify(bp, true);
131 static void
132 xfs_inode_buf_write_verify(
133 struct xfs_buf *bp)
135 xfs_inode_buf_verify(bp, false);
138 const struct xfs_buf_ops xfs_inode_buf_ops = {
139 .name = "xfs_inode",
140 .verify_read = xfs_inode_buf_read_verify,
141 .verify_write = xfs_inode_buf_write_verify,
144 const struct xfs_buf_ops xfs_inode_buf_ra_ops = {
145 .name = "xxfs_inode_ra",
146 .verify_read = xfs_inode_buf_readahead_verify,
147 .verify_write = xfs_inode_buf_write_verify,
152 * This routine is called to map an inode to the buffer containing the on-disk
153 * version of the inode. It returns a pointer to the buffer containing the
154 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
155 * pointer to the on-disk inode within that buffer.
157 * If a non-zero error is returned, then the contents of bpp and dipp are
158 * undefined.
161 xfs_imap_to_bp(
162 struct xfs_mount *mp,
163 struct xfs_trans *tp,
164 struct xfs_imap *imap,
165 struct xfs_dinode **dipp,
166 struct xfs_buf **bpp,
167 uint buf_flags,
168 uint iget_flags)
170 struct xfs_buf *bp;
171 int error;
173 buf_flags |= XBF_UNMAPPED;
174 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
175 (int)imap->im_len, buf_flags, &bp,
176 &xfs_inode_buf_ops);
177 if (error) {
178 if (error == -EAGAIN) {
179 ASSERT(buf_flags & XBF_TRYLOCK);
180 return error;
183 if (error == -EFSCORRUPTED &&
184 (iget_flags & XFS_IGET_UNTRUSTED))
185 return -EINVAL;
187 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
188 __func__, error);
189 return error;
192 *bpp = bp;
193 *dipp = xfs_buf_offset(bp, imap->im_boffset);
194 return 0;
197 void
198 xfs_inode_from_disk(
199 struct xfs_inode *ip,
200 struct xfs_dinode *from)
202 struct xfs_icdinode *to = &ip->i_d;
203 struct inode *inode = VFS_I(ip);
207 * Convert v1 inodes immediately to v2 inode format as this is the
208 * minimum inode version format we support in the rest of the code.
210 to->di_version = from->di_version;
211 if (to->di_version == 1) {
212 set_nlink(inode, be16_to_cpu(from->di_onlink));
213 to->di_projid_lo = 0;
214 to->di_projid_hi = 0;
215 to->di_version = 2;
216 } else {
217 set_nlink(inode, be32_to_cpu(from->di_nlink));
218 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
219 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
222 to->di_format = from->di_format;
223 to->di_uid = be32_to_cpu(from->di_uid);
224 to->di_gid = be32_to_cpu(from->di_gid);
225 to->di_flushiter = be16_to_cpu(from->di_flushiter);
228 * Time is signed, so need to convert to signed 32 bit before
229 * storing in inode timestamp which may be 64 bit. Otherwise
230 * a time before epoch is converted to a time long after epoch
231 * on 64 bit systems.
233 inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec);
234 inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec);
235 inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec);
236 inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
237 inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
238 inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
239 inode->i_generation = be32_to_cpu(from->di_gen);
240 inode->i_mode = be16_to_cpu(from->di_mode);
242 to->di_size = be64_to_cpu(from->di_size);
243 to->di_nblocks = be64_to_cpu(from->di_nblocks);
244 to->di_extsize = be32_to_cpu(from->di_extsize);
245 to->di_nextents = be32_to_cpu(from->di_nextents);
246 to->di_anextents = be16_to_cpu(from->di_anextents);
247 to->di_forkoff = from->di_forkoff;
248 to->di_aformat = from->di_aformat;
249 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
250 to->di_dmstate = be16_to_cpu(from->di_dmstate);
251 to->di_flags = be16_to_cpu(from->di_flags);
253 if (to->di_version == 3) {
254 inode->i_version = be64_to_cpu(from->di_changecount);
255 to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
256 to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
257 to->di_flags2 = be64_to_cpu(from->di_flags2);
261 void
262 xfs_inode_to_disk(
263 struct xfs_inode *ip,
264 struct xfs_dinode *to,
265 xfs_lsn_t lsn)
267 struct xfs_icdinode *from = &ip->i_d;
268 struct inode *inode = VFS_I(ip);
270 to->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
271 to->di_onlink = 0;
273 to->di_version = from->di_version;
274 to->di_format = from->di_format;
275 to->di_uid = cpu_to_be32(from->di_uid);
276 to->di_gid = cpu_to_be32(from->di_gid);
277 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
278 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
280 memset(to->di_pad, 0, sizeof(to->di_pad));
281 to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec);
282 to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec);
283 to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec);
284 to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
285 to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
286 to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
287 to->di_nlink = cpu_to_be32(inode->i_nlink);
288 to->di_gen = cpu_to_be32(inode->i_generation);
289 to->di_mode = cpu_to_be16(inode->i_mode);
291 to->di_size = cpu_to_be64(from->di_size);
292 to->di_nblocks = cpu_to_be64(from->di_nblocks);
293 to->di_extsize = cpu_to_be32(from->di_extsize);
294 to->di_nextents = cpu_to_be32(from->di_nextents);
295 to->di_anextents = cpu_to_be16(from->di_anextents);
296 to->di_forkoff = from->di_forkoff;
297 to->di_aformat = from->di_aformat;
298 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
299 to->di_dmstate = cpu_to_be16(from->di_dmstate);
300 to->di_flags = cpu_to_be16(from->di_flags);
302 if (from->di_version == 3) {
303 to->di_changecount = cpu_to_be64(inode->i_version);
304 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
305 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
306 to->di_flags2 = cpu_to_be64(from->di_flags2);
308 to->di_ino = cpu_to_be64(ip->i_ino);
309 to->di_lsn = cpu_to_be64(lsn);
310 memset(to->di_pad2, 0, sizeof(to->di_pad2));
311 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
312 to->di_flushiter = 0;
313 } else {
314 to->di_flushiter = cpu_to_be16(from->di_flushiter);
318 void
319 xfs_log_dinode_to_disk(
320 struct xfs_log_dinode *from,
321 struct xfs_dinode *to)
323 to->di_magic = cpu_to_be16(from->di_magic);
324 to->di_mode = cpu_to_be16(from->di_mode);
325 to->di_version = from->di_version;
326 to->di_format = from->di_format;
327 to->di_onlink = 0;
328 to->di_uid = cpu_to_be32(from->di_uid);
329 to->di_gid = cpu_to_be32(from->di_gid);
330 to->di_nlink = cpu_to_be32(from->di_nlink);
331 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
332 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
333 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
335 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
336 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
337 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
338 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
339 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
340 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
342 to->di_size = cpu_to_be64(from->di_size);
343 to->di_nblocks = cpu_to_be64(from->di_nblocks);
344 to->di_extsize = cpu_to_be32(from->di_extsize);
345 to->di_nextents = cpu_to_be32(from->di_nextents);
346 to->di_anextents = cpu_to_be16(from->di_anextents);
347 to->di_forkoff = from->di_forkoff;
348 to->di_aformat = from->di_aformat;
349 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
350 to->di_dmstate = cpu_to_be16(from->di_dmstate);
351 to->di_flags = cpu_to_be16(from->di_flags);
352 to->di_gen = cpu_to_be32(from->di_gen);
354 if (from->di_version == 3) {
355 to->di_changecount = cpu_to_be64(from->di_changecount);
356 to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
357 to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
358 to->di_flags2 = cpu_to_be64(from->di_flags2);
359 to->di_ino = cpu_to_be64(from->di_ino);
360 to->di_lsn = cpu_to_be64(from->di_lsn);
361 memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
362 uuid_copy(&to->di_uuid, &from->di_uuid);
363 to->di_flushiter = 0;
364 } else {
365 to->di_flushiter = cpu_to_be16(from->di_flushiter);
369 static bool
370 xfs_dinode_verify(
371 struct xfs_mount *mp,
372 struct xfs_inode *ip,
373 struct xfs_dinode *dip)
375 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
376 return false;
378 /* only version 3 or greater inodes are extensively verified here */
379 if (dip->di_version < 3)
380 return true;
382 if (!xfs_sb_version_hascrc(&mp->m_sb))
383 return false;
384 if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
385 XFS_DINODE_CRC_OFF))
386 return false;
387 if (be64_to_cpu(dip->di_ino) != ip->i_ino)
388 return false;
389 if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_meta_uuid))
390 return false;
391 return true;
394 void
395 xfs_dinode_calc_crc(
396 struct xfs_mount *mp,
397 struct xfs_dinode *dip)
399 __uint32_t crc;
401 if (dip->di_version < 3)
402 return;
404 ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
405 crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
406 XFS_DINODE_CRC_OFF);
407 dip->di_crc = xfs_end_cksum(crc);
411 * Read the disk inode attributes into the in-core inode structure.
413 * For version 5 superblocks, if we are initialising a new inode and we are not
414 * utilising the XFS_MOUNT_IKEEP inode cluster mode, we can simple build the new
415 * inode core with a random generation number. If we are keeping inodes around,
416 * we need to read the inode cluster to get the existing generation number off
417 * disk. Further, if we are using version 4 superblocks (i.e. v1/v2 inode
418 * format) then log recovery is dependent on the di_flushiter field being
419 * initialised from the current on-disk value and hence we must also read the
420 * inode off disk.
423 xfs_iread(
424 xfs_mount_t *mp,
425 xfs_trans_t *tp,
426 xfs_inode_t *ip,
427 uint iget_flags)
429 xfs_buf_t *bp;
430 xfs_dinode_t *dip;
431 int error;
434 * Fill in the location information in the in-core inode.
436 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
437 if (error)
438 return error;
440 /* shortcut IO on inode allocation if possible */
441 if ((iget_flags & XFS_IGET_CREATE) &&
442 xfs_sb_version_hascrc(&mp->m_sb) &&
443 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
444 /* initialise the on-disk inode core */
445 memset(&ip->i_d, 0, sizeof(ip->i_d));
446 VFS_I(ip)->i_generation = prandom_u32();
447 if (xfs_sb_version_hascrc(&mp->m_sb))
448 ip->i_d.di_version = 3;
449 else
450 ip->i_d.di_version = 2;
451 return 0;
455 * Get pointers to the on-disk inode and the buffer containing it.
457 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
458 if (error)
459 return error;
461 /* even unallocated inodes are verified */
462 if (!xfs_dinode_verify(mp, ip, dip)) {
463 xfs_alert(mp, "%s: validation failed for inode %lld failed",
464 __func__, ip->i_ino);
466 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
467 error = -EFSCORRUPTED;
468 goto out_brelse;
472 * If the on-disk inode is already linked to a directory
473 * entry, copy all of the inode into the in-core inode.
474 * xfs_iformat_fork() handles copying in the inode format
475 * specific information.
476 * Otherwise, just get the truly permanent information.
478 if (dip->di_mode) {
479 xfs_inode_from_disk(ip, dip);
480 error = xfs_iformat_fork(ip, dip);
481 if (error) {
482 #ifdef DEBUG
483 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
484 __func__, error);
485 #endif /* DEBUG */
486 goto out_brelse;
488 } else {
490 * Partial initialisation of the in-core inode. Just the bits
491 * that xfs_ialloc won't overwrite or relies on being correct.
493 ip->i_d.di_version = dip->di_version;
494 VFS_I(ip)->i_generation = be32_to_cpu(dip->di_gen);
495 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
498 * Make sure to pull in the mode here as well in
499 * case the inode is released without being used.
500 * This ensures that xfs_inactive() will see that
501 * the inode is already free and not try to mess
502 * with the uninitialized part of it.
504 VFS_I(ip)->i_mode = 0;
507 ASSERT(ip->i_d.di_version >= 2);
508 ip->i_delayed_blks = 0;
511 * Mark the buffer containing the inode as something to keep
512 * around for a while. This helps to keep recently accessed
513 * meta-data in-core longer.
515 xfs_buf_set_ref(bp, XFS_INO_REF);
518 * Use xfs_trans_brelse() to release the buffer containing the on-disk
519 * inode, because it was acquired with xfs_trans_read_buf() in
520 * xfs_imap_to_bp() above. If tp is NULL, this is just a normal
521 * brelse(). If we're within a transaction, then xfs_trans_brelse()
522 * will only release the buffer if it is not dirty within the
523 * transaction. It will be OK to release the buffer in this case,
524 * because inodes on disk are never destroyed and we will be locking the
525 * new in-core inode before putting it in the cache where other
526 * processes can find it. Thus we don't have to worry about the inode
527 * being changed just because we released the buffer.
529 out_brelse:
530 xfs_trans_brelse(tp, bp);
531 return error;