2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
44 * structure owned by writepages passed to individual writepage calls
46 struct xfs_writepage_ctx
{
47 struct xfs_bmbt_irec imap
;
50 struct xfs_ioend
*ioend
;
60 struct buffer_head
*bh
, *head
;
62 *delalloc
= *unwritten
= 0;
64 bh
= head
= page_buffers(page
);
66 if (buffer_unwritten(bh
))
68 else if (buffer_delay(bh
))
70 } while ((bh
= bh
->b_this_page
) != head
);
74 xfs_find_bdev_for_inode(
77 struct xfs_inode
*ip
= XFS_I(inode
);
78 struct xfs_mount
*mp
= ip
->i_mount
;
80 if (XFS_IS_REALTIME_INODE(ip
))
81 return mp
->m_rtdev_targp
->bt_bdev
;
83 return mp
->m_ddev_targp
->bt_bdev
;
87 * We're now finished for good with this page. Update the page state via the
88 * associated buffer_heads, paying attention to the start and end offsets that
89 * we need to process on the page.
92 xfs_finish_page_writeback(
97 unsigned int end
= bvec
->bv_offset
+ bvec
->bv_len
- 1;
98 struct buffer_head
*head
, *bh
;
101 ASSERT(bvec
->bv_offset
< PAGE_SIZE
);
102 ASSERT((bvec
->bv_offset
& ((1 << inode
->i_blkbits
) - 1)) == 0);
103 ASSERT(end
< PAGE_SIZE
);
104 ASSERT((bvec
->bv_len
& ((1 << inode
->i_blkbits
) - 1)) == 0);
106 bh
= head
= page_buffers(bvec
->bv_page
);
109 if (off
< bvec
->bv_offset
)
113 bh
->b_end_io(bh
, !error
);
116 } while ((bh
= bh
->b_this_page
) != head
);
120 * We're now finished for good with this ioend structure. Update the page
121 * state, release holds on bios, and finally free up memory. Do not use the
126 struct xfs_ioend
*ioend
,
129 struct inode
*inode
= ioend
->io_inode
;
130 struct bio
*last
= ioend
->io_bio
;
131 struct bio
*bio
, *next
;
133 for (bio
= &ioend
->io_inline_bio
; bio
; bio
= next
) {
134 struct bio_vec
*bvec
;
138 * For the last bio, bi_private points to the ioend, so we
139 * need to explicitly end the iteration here.
144 next
= bio
->bi_private
;
146 /* walk each page on bio, ending page IO on them */
147 bio_for_each_segment_all(bvec
, bio
, i
)
148 xfs_finish_page_writeback(inode
, bvec
, error
);
155 * Fast and loose check if this write could update the on-disk inode size.
157 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
159 return ioend
->io_offset
+ ioend
->io_size
>
160 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
164 xfs_setfilesize_trans_alloc(
165 struct xfs_ioend
*ioend
)
167 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
168 struct xfs_trans
*tp
;
171 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
175 ioend
->io_append_trans
= tp
;
178 * We may pass freeze protection with a transaction. So tell lockdep
181 __sb_writers_release(ioend
->io_inode
->i_sb
, SB_FREEZE_FS
);
183 * We hand off the transaction to the completion thread now, so
184 * clear the flag here.
186 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
191 * Update on-disk file size now that data has been written to disk.
195 struct xfs_inode
*ip
,
196 struct xfs_trans
*tp
,
202 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
203 isize
= xfs_new_eof(ip
, offset
+ size
);
205 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
206 xfs_trans_cancel(tp
);
210 trace_xfs_setfilesize(ip
, offset
, size
);
212 ip
->i_d
.di_size
= isize
;
213 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
214 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
216 return xfs_trans_commit(tp
);
220 xfs_setfilesize_ioend(
221 struct xfs_ioend
*ioend
,
224 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
225 struct xfs_trans
*tp
= ioend
->io_append_trans
;
228 * The transaction may have been allocated in the I/O submission thread,
229 * thus we need to mark ourselves as being in a transaction manually.
230 * Similarly for freeze protection.
232 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
233 __sb_writers_acquired(VFS_I(ip
)->i_sb
, SB_FREEZE_FS
);
235 /* we abort the update if there was an IO error */
237 xfs_trans_cancel(tp
);
241 return xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
245 * IO write completion.
249 struct work_struct
*work
)
251 struct xfs_ioend
*ioend
=
252 container_of(work
, struct xfs_ioend
, io_work
);
253 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
254 int error
= ioend
->io_bio
->bi_error
;
257 * Set an error if the mount has shut down and proceed with end I/O
258 * processing so it can perform whatever cleanups are necessary.
260 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
264 * For unwritten extents we need to issue transactions to convert a
265 * range to normal written extens after the data I/O has finished.
266 * Detecting and handling completion IO errors is done individually
267 * for each case as different cleanup operations need to be performed
270 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
273 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
275 } else if (ioend
->io_append_trans
) {
276 error
= xfs_setfilesize_ioend(ioend
, error
);
278 ASSERT(!xfs_ioend_is_append(ioend
));
282 xfs_destroy_ioend(ioend
, error
);
289 struct xfs_ioend
*ioend
= bio
->bi_private
;
290 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
292 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
293 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
294 else if (ioend
->io_append_trans
)
295 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
297 xfs_destroy_ioend(ioend
, bio
->bi_error
);
304 struct xfs_bmbt_irec
*imap
,
307 struct xfs_inode
*ip
= XFS_I(inode
);
308 struct xfs_mount
*mp
= ip
->i_mount
;
309 ssize_t count
= 1 << inode
->i_blkbits
;
310 xfs_fileoff_t offset_fsb
, end_fsb
;
312 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
315 if (XFS_FORCED_SHUTDOWN(mp
))
318 if (type
== XFS_IO_UNWRITTEN
)
319 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
321 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
322 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
323 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
324 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
326 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
327 count
= mp
->m_super
->s_maxbytes
- offset
;
328 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
329 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
330 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
331 imap
, &nimaps
, bmapi_flags
);
332 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
337 if (type
== XFS_IO_DELALLOC
&&
338 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
339 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
341 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
346 if (type
== XFS_IO_UNWRITTEN
) {
348 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
349 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
353 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
360 struct xfs_bmbt_irec
*imap
,
363 offset
>>= inode
->i_blkbits
;
365 return offset
>= imap
->br_startoff
&&
366 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
370 xfs_start_buffer_writeback(
371 struct buffer_head
*bh
)
373 ASSERT(buffer_mapped(bh
));
374 ASSERT(buffer_locked(bh
));
375 ASSERT(!buffer_delay(bh
));
376 ASSERT(!buffer_unwritten(bh
));
378 mark_buffer_async_write(bh
);
379 set_buffer_uptodate(bh
);
380 clear_buffer_dirty(bh
);
384 xfs_start_page_writeback(
388 ASSERT(PageLocked(page
));
389 ASSERT(!PageWriteback(page
));
392 * if the page was not fully cleaned, we need to ensure that the higher
393 * layers come back to it correctly. That means we need to keep the page
394 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
395 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
396 * write this page in this writeback sweep will be made.
399 clear_page_dirty_for_io(page
);
400 set_page_writeback(page
);
402 set_page_writeback_keepwrite(page
);
407 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
409 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
413 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
414 * it, and we submit that bio. The ioend may be used for multiple bio
415 * submissions, so we only want to allocate an append transaction for the ioend
416 * once. In the case of multiple bio submission, each bio will take an IO
417 * reference to the ioend to ensure that the ioend completion is only done once
418 * all bios have been submitted and the ioend is really done.
420 * If @fail is non-zero, it means that we have a situation where some part of
421 * the submission process has failed after we have marked paged for writeback
422 * and unlocked them. In this situation, we need to fail the bio and ioend
423 * rather than submit it to IO. This typically only happens on a filesystem
428 struct writeback_control
*wbc
,
429 struct xfs_ioend
*ioend
,
432 /* Reserve log space if we might write beyond the on-disk inode size. */
434 ioend
->io_type
!= XFS_IO_UNWRITTEN
&&
435 xfs_ioend_is_append(ioend
) &&
436 !ioend
->io_append_trans
)
437 status
= xfs_setfilesize_trans_alloc(ioend
);
439 ioend
->io_bio
->bi_private
= ioend
;
440 ioend
->io_bio
->bi_end_io
= xfs_end_bio
;
443 * If we are failing the IO now, just mark the ioend with an
444 * error and finish it. This will run IO completion immediately
445 * as there is only one reference to the ioend at this point in
449 ioend
->io_bio
->bi_error
= status
;
450 bio_endio(ioend
->io_bio
);
454 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
,
460 xfs_init_bio_from_bh(
462 struct buffer_head
*bh
)
464 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
465 bio
->bi_bdev
= bh
->b_bdev
;
468 static struct xfs_ioend
*
473 struct buffer_head
*bh
)
475 struct xfs_ioend
*ioend
;
478 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, xfs_ioend_bioset
);
479 xfs_init_bio_from_bh(bio
, bh
);
481 ioend
= container_of(bio
, struct xfs_ioend
, io_inline_bio
);
482 INIT_LIST_HEAD(&ioend
->io_list
);
483 ioend
->io_type
= type
;
484 ioend
->io_inode
= inode
;
486 ioend
->io_offset
= offset
;
487 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
488 ioend
->io_append_trans
= NULL
;
494 * Allocate a new bio, and chain the old bio to the new one.
496 * Note that we have to do perform the chaining in this unintuitive order
497 * so that the bi_private linkage is set up in the right direction for the
498 * traversal in xfs_destroy_ioend().
502 struct xfs_ioend
*ioend
,
503 struct writeback_control
*wbc
,
504 struct buffer_head
*bh
)
508 new = bio_alloc(GFP_NOFS
, BIO_MAX_PAGES
);
509 xfs_init_bio_from_bh(new, bh
);
511 bio_chain(ioend
->io_bio
, new);
512 bio_get(ioend
->io_bio
); /* for xfs_destroy_ioend */
513 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
,
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
522 * Return the ioend we finished off so that the caller can submit it
523 * once it has finished processing the dirty page.
528 struct buffer_head
*bh
,
530 struct xfs_writepage_ctx
*wpc
,
531 struct writeback_control
*wbc
,
532 struct list_head
*iolist
)
534 if (!wpc
->ioend
|| wpc
->io_type
!= wpc
->ioend
->io_type
||
535 bh
->b_blocknr
!= wpc
->last_block
+ 1 ||
536 offset
!= wpc
->ioend
->io_offset
+ wpc
->ioend
->io_size
) {
538 list_add(&wpc
->ioend
->io_list
, iolist
);
539 wpc
->ioend
= xfs_alloc_ioend(inode
, wpc
->io_type
, offset
, bh
);
543 * If the buffer doesn't fit into the bio we need to allocate a new
544 * one. This shouldn't happen more than once for a given buffer.
546 while (xfs_bio_add_buffer(wpc
->ioend
->io_bio
, bh
) != bh
->b_size
)
547 xfs_chain_bio(wpc
->ioend
, wbc
, bh
);
549 wpc
->ioend
->io_size
+= bh
->b_size
;
550 wpc
->last_block
= bh
->b_blocknr
;
551 xfs_start_buffer_writeback(bh
);
557 struct buffer_head
*bh
,
558 struct xfs_bmbt_irec
*imap
,
562 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
563 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
564 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
566 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
567 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
569 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
570 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
572 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
575 set_buffer_mapped(bh
);
581 struct buffer_head
*bh
,
582 struct xfs_bmbt_irec
*imap
,
585 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
586 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
588 xfs_map_buffer(inode
, bh
, imap
, offset
);
589 set_buffer_mapped(bh
);
590 clear_buffer_delay(bh
);
591 clear_buffer_unwritten(bh
);
595 * Test if a given page contains at least one buffer of a given @type.
596 * If @check_all_buffers is true, then we walk all the buffers in the page to
597 * try to find one of the type passed in. If it is not set, then the caller only
598 * needs to check the first buffer on the page for a match.
604 bool check_all_buffers
)
606 struct buffer_head
*bh
;
607 struct buffer_head
*head
;
609 if (PageWriteback(page
))
613 if (!page_has_buffers(page
))
616 bh
= head
= page_buffers(page
);
618 if (buffer_unwritten(bh
)) {
619 if (type
== XFS_IO_UNWRITTEN
)
621 } else if (buffer_delay(bh
)) {
622 if (type
== XFS_IO_DELALLOC
)
624 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
625 if (type
== XFS_IO_OVERWRITE
)
629 /* If we are only checking the first buffer, we are done now. */
630 if (!check_all_buffers
)
632 } while ((bh
= bh
->b_this_page
) != head
);
638 xfs_vm_invalidatepage(
643 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
645 block_invalidatepage(page
, offset
, length
);
649 * If the page has delalloc buffers on it, we need to punch them out before we
650 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
651 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
652 * is done on that same region - the delalloc extent is returned when none is
653 * supposed to be there.
655 * We prevent this by truncating away the delalloc regions on the page before
656 * invalidating it. Because they are delalloc, we can do this without needing a
657 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
658 * truncation without a transaction as there is no space left for block
659 * reservation (typically why we see a ENOSPC in writeback).
661 * This is not a performance critical path, so for now just do the punching a
662 * buffer head at a time.
665 xfs_aops_discard_page(
668 struct inode
*inode
= page
->mapping
->host
;
669 struct xfs_inode
*ip
= XFS_I(inode
);
670 struct buffer_head
*bh
, *head
;
671 loff_t offset
= page_offset(page
);
673 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
676 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
679 xfs_alert(ip
->i_mount
,
680 "page discard on page %p, inode 0x%llx, offset %llu.",
681 page
, ip
->i_ino
, offset
);
683 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
684 bh
= head
= page_buffers(page
);
687 xfs_fileoff_t start_fsb
;
689 if (!buffer_delay(bh
))
692 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
693 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
695 /* something screwed, just bail */
696 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
697 xfs_alert(ip
->i_mount
,
698 "page discard unable to remove delalloc mapping.");
703 offset
+= 1 << inode
->i_blkbits
;
705 } while ((bh
= bh
->b_this_page
) != head
);
707 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
709 xfs_vm_invalidatepage(page
, 0, PAGE_SIZE
);
714 * We implement an immediate ioend submission policy here to avoid needing to
715 * chain multiple ioends and hence nest mempool allocations which can violate
716 * forward progress guarantees we need to provide. The current ioend we are
717 * adding buffers to is cached on the writepage context, and if the new buffer
718 * does not append to the cached ioend it will create a new ioend and cache that
721 * If a new ioend is created and cached, the old ioend is returned and queued
722 * locally for submission once the entire page is processed or an error has been
723 * detected. While ioends are submitted immediately after they are completed,
724 * batching optimisations are provided by higher level block plugging.
726 * At the end of a writeback pass, there will be a cached ioend remaining on the
727 * writepage context that the caller will need to submit.
731 struct xfs_writepage_ctx
*wpc
,
732 struct writeback_control
*wbc
,
736 __uint64_t end_offset
)
738 LIST_HEAD(submit_list
);
739 struct xfs_ioend
*ioend
, *next
;
740 struct buffer_head
*bh
, *head
;
741 ssize_t len
= 1 << inode
->i_blkbits
;
746 bh
= head
= page_buffers(page
);
747 offset
= page_offset(page
);
749 if (offset
>= end_offset
)
751 if (!buffer_uptodate(bh
))
755 * set_page_dirty dirties all buffers in a page, independent
756 * of their state. The dirty state however is entirely
757 * meaningless for holes (!mapped && uptodate), so skip
758 * buffers covering holes here.
760 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
761 wpc
->imap_valid
= false;
765 if (buffer_unwritten(bh
)) {
766 if (wpc
->io_type
!= XFS_IO_UNWRITTEN
) {
767 wpc
->io_type
= XFS_IO_UNWRITTEN
;
768 wpc
->imap_valid
= false;
770 } else if (buffer_delay(bh
)) {
771 if (wpc
->io_type
!= XFS_IO_DELALLOC
) {
772 wpc
->io_type
= XFS_IO_DELALLOC
;
773 wpc
->imap_valid
= false;
775 } else if (buffer_uptodate(bh
)) {
776 if (wpc
->io_type
!= XFS_IO_OVERWRITE
) {
777 wpc
->io_type
= XFS_IO_OVERWRITE
;
778 wpc
->imap_valid
= false;
781 if (PageUptodate(page
))
782 ASSERT(buffer_mapped(bh
));
784 * This buffer is not uptodate and will not be
785 * written to disk. Ensure that we will put any
786 * subsequent writeable buffers into a new
789 wpc
->imap_valid
= false;
794 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
796 if (!wpc
->imap_valid
) {
797 error
= xfs_map_blocks(inode
, offset
, &wpc
->imap
,
801 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
804 if (wpc
->imap_valid
) {
806 if (wpc
->io_type
!= XFS_IO_OVERWRITE
)
807 xfs_map_at_offset(inode
, bh
, &wpc
->imap
, offset
);
808 xfs_add_to_ioend(inode
, bh
, offset
, wpc
, wbc
, &submit_list
);
812 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
814 if (uptodate
&& bh
== head
)
815 SetPageUptodate(page
);
817 ASSERT(wpc
->ioend
|| list_empty(&submit_list
));
821 * On error, we have to fail the ioend here because we have locked
822 * buffers in the ioend. If we don't do this, we'll deadlock
823 * invalidating the page as that tries to lock the buffers on the page.
824 * Also, because we may have set pages under writeback, we have to make
825 * sure we run IO completion to mark the error state of the IO
826 * appropriately, so we can't cancel the ioend directly here. That means
827 * we have to mark this page as under writeback if we included any
828 * buffers from it in the ioend chain so that completion treats it
831 * If we didn't include the page in the ioend, the on error we can
832 * simply discard and unlock it as there are no other users of the page
833 * or it's buffers right now. The caller will still need to trigger
834 * submission of outstanding ioends on the writepage context so they are
835 * treated correctly on error.
838 xfs_start_page_writeback(page
, !error
);
841 * Preserve the original error if there was one, otherwise catch
842 * submission errors here and propagate into subsequent ioend
845 list_for_each_entry_safe(ioend
, next
, &submit_list
, io_list
) {
848 list_del_init(&ioend
->io_list
);
849 error2
= xfs_submit_ioend(wbc
, ioend
, error
);
850 if (error2
&& !error
)
854 xfs_aops_discard_page(page
);
855 ClearPageUptodate(page
);
859 * We can end up here with no error and nothing to write if we
860 * race with a partial page truncate on a sub-page block sized
861 * filesystem. In that case we need to mark the page clean.
863 xfs_start_page_writeback(page
, 1);
864 end_page_writeback(page
);
867 mapping_set_error(page
->mapping
, error
);
872 * Write out a dirty page.
874 * For delalloc space on the page we need to allocate space and flush it.
875 * For unwritten space on the page we need to start the conversion to
876 * regular allocated space.
877 * For any other dirty buffer heads on the page we should flush them.
882 struct writeback_control
*wbc
,
885 struct xfs_writepage_ctx
*wpc
= data
;
886 struct inode
*inode
= page
->mapping
->host
;
888 __uint64_t end_offset
;
891 trace_xfs_writepage(inode
, page
, 0, 0);
893 ASSERT(page_has_buffers(page
));
896 * Refuse to write the page out if we are called from reclaim context.
898 * This avoids stack overflows when called from deeply used stacks in
899 * random callers for direct reclaim or memcg reclaim. We explicitly
900 * allow reclaim from kswapd as the stack usage there is relatively low.
902 * This should never happen except in the case of a VM regression so
905 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
910 * Given that we do not allow direct reclaim to call us, we should
911 * never be called while in a filesystem transaction.
913 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
917 * Is this page beyond the end of the file?
919 * The page index is less than the end_index, adjust the end_offset
920 * to the highest offset that this page should represent.
921 * -----------------------------------------------------
922 * | file mapping | <EOF> |
923 * -----------------------------------------------------
924 * | Page ... | Page N-2 | Page N-1 | Page N | |
925 * ^--------------------------------^----------|--------
926 * | desired writeback range | see else |
927 * ---------------------------------^------------------|
929 offset
= i_size_read(inode
);
930 end_index
= offset
>> PAGE_SHIFT
;
931 if (page
->index
< end_index
)
932 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_SHIFT
;
935 * Check whether the page to write out is beyond or straddles
937 * -------------------------------------------------------
938 * | file mapping | <EOF> |
939 * -------------------------------------------------------
940 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
941 * ^--------------------------------^-----------|---------
943 * ---------------------------------^-----------|--------|
945 unsigned offset_into_page
= offset
& (PAGE_SIZE
- 1);
948 * Skip the page if it is fully outside i_size, e.g. due to a
949 * truncate operation that is in progress. We must redirty the
950 * page so that reclaim stops reclaiming it. Otherwise
951 * xfs_vm_releasepage() is called on it and gets confused.
953 * Note that the end_index is unsigned long, it would overflow
954 * if the given offset is greater than 16TB on 32-bit system
955 * and if we do check the page is fully outside i_size or not
956 * via "if (page->index >= end_index + 1)" as "end_index + 1"
957 * will be evaluated to 0. Hence this page will be redirtied
958 * and be written out repeatedly which would result in an
959 * infinite loop, the user program that perform this operation
960 * will hang. Instead, we can verify this situation by checking
961 * if the page to write is totally beyond the i_size or if it's
962 * offset is just equal to the EOF.
964 if (page
->index
> end_index
||
965 (page
->index
== end_index
&& offset_into_page
== 0))
969 * The page straddles i_size. It must be zeroed out on each
970 * and every writepage invocation because it may be mmapped.
971 * "A file is mapped in multiples of the page size. For a file
972 * that is not a multiple of the page size, the remaining
973 * memory is zeroed when mapped, and writes to that region are
974 * not written out to the file."
976 zero_user_segment(page
, offset_into_page
, PAGE_SIZE
);
978 /* Adjust the end_offset to the end of file */
982 return xfs_writepage_map(wpc
, wbc
, inode
, page
, offset
, end_offset
);
985 redirty_page_for_writepage(wbc
, page
);
993 struct writeback_control
*wbc
)
995 struct xfs_writepage_ctx wpc
= {
996 .io_type
= XFS_IO_INVALID
,
1000 ret
= xfs_do_writepage(page
, wbc
, &wpc
);
1002 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1008 struct address_space
*mapping
,
1009 struct writeback_control
*wbc
)
1011 struct xfs_writepage_ctx wpc
= {
1012 .io_type
= XFS_IO_INVALID
,
1016 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1017 if (dax_mapping(mapping
))
1018 return dax_writeback_mapping_range(mapping
,
1019 xfs_find_bdev_for_inode(mapping
->host
), wbc
);
1021 ret
= write_cache_pages(mapping
, wbc
, xfs_do_writepage
, &wpc
);
1023 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1028 * Called to move a page into cleanable state - and from there
1029 * to be released. The page should already be clean. We always
1030 * have buffer heads in this call.
1032 * Returns 1 if the page is ok to release, 0 otherwise.
1039 int delalloc
, unwritten
;
1041 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1043 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1045 if (WARN_ON_ONCE(delalloc
))
1047 if (WARN_ON_ONCE(unwritten
))
1050 return try_to_free_buffers(page
);
1054 * When we map a DIO buffer, we may need to pass flags to
1055 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1057 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1058 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1059 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1060 * extending the file size. We won't know for sure until IO completion is run
1061 * and the actual max write offset is communicated to the IO completion
1066 struct inode
*inode
,
1067 struct buffer_head
*bh_result
,
1068 struct xfs_bmbt_irec
*imap
,
1071 uintptr_t *flags
= (uintptr_t *)&bh_result
->b_private
;
1072 xfs_off_t size
= bh_result
->b_size
;
1074 trace_xfs_get_blocks_map_direct(XFS_I(inode
), offset
, size
,
1075 ISUNWRITTEN(imap
) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE
, imap
);
1077 if (ISUNWRITTEN(imap
)) {
1078 *flags
|= XFS_DIO_FLAG_UNWRITTEN
;
1079 set_buffer_defer_completion(bh_result
);
1080 } else if (offset
+ size
> i_size_read(inode
) || offset
+ size
< 0) {
1081 *flags
|= XFS_DIO_FLAG_APPEND
;
1082 set_buffer_defer_completion(bh_result
);
1087 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1088 * is, so that we can avoid repeated get_blocks calls.
1090 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1091 * for blocks beyond EOF must be marked new so that sub block regions can be
1092 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1093 * was just allocated or is unwritten, otherwise the callers would overwrite
1094 * existing data with zeros. Hence we have to split the mapping into a range up
1095 * to and including EOF, and a second mapping for beyond EOF.
1099 struct inode
*inode
,
1101 struct buffer_head
*bh_result
,
1102 struct xfs_bmbt_irec
*imap
,
1106 xfs_off_t mapping_size
;
1108 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1109 mapping_size
<<= inode
->i_blkbits
;
1111 ASSERT(mapping_size
> 0);
1112 if (mapping_size
> size
)
1113 mapping_size
= size
;
1114 if (offset
< i_size_read(inode
) &&
1115 offset
+ mapping_size
>= i_size_read(inode
)) {
1116 /* limit mapping to block that spans EOF */
1117 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1118 1 << inode
->i_blkbits
);
1120 if (mapping_size
> LONG_MAX
)
1121 mapping_size
= LONG_MAX
;
1123 bh_result
->b_size
= mapping_size
;
1128 struct inode
*inode
,
1130 struct buffer_head
*bh_result
,
1135 struct xfs_inode
*ip
= XFS_I(inode
);
1136 struct xfs_mount
*mp
= ip
->i_mount
;
1137 xfs_fileoff_t offset_fsb
, end_fsb
;
1140 struct xfs_bmbt_irec imap
;
1146 if (XFS_FORCED_SHUTDOWN(mp
))
1149 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1150 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1151 size
= bh_result
->b_size
;
1153 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1157 * Direct I/O is usually done on preallocated files, so try getting
1158 * a block mapping without an exclusive lock first. For buffered
1159 * writes we already have the exclusive iolock anyway, so avoiding
1160 * a lock roundtrip here by taking the ilock exclusive from the
1161 * beginning is a useful micro optimization.
1163 if (create
&& !direct
) {
1164 lockmode
= XFS_ILOCK_EXCL
;
1165 xfs_ilock(ip
, lockmode
);
1167 lockmode
= xfs_ilock_data_map_shared(ip
);
1170 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1171 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1172 size
= mp
->m_super
->s_maxbytes
- offset
;
1173 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1174 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1176 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1177 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1181 /* for DAX, we convert unwritten extents directly */
1184 (imap
.br_startblock
== HOLESTARTBLOCK
||
1185 imap
.br_startblock
== DELAYSTARTBLOCK
) ||
1186 (IS_DAX(inode
) && ISUNWRITTEN(&imap
)))) {
1187 if (direct
|| xfs_get_extsz_hint(ip
)) {
1189 * xfs_iomap_write_direct() expects the shared lock. It
1190 * is unlocked on return.
1192 if (lockmode
== XFS_ILOCK_EXCL
)
1193 xfs_ilock_demote(ip
, lockmode
);
1195 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1203 * Delalloc reservations do not require a transaction,
1204 * we can go on without dropping the lock here. If we
1205 * are allocating a new delalloc block, make sure that
1206 * we set the new flag so that we mark the buffer new so
1207 * that we know that it is newly allocated if the write
1210 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1212 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1216 xfs_iunlock(ip
, lockmode
);
1218 trace_xfs_get_blocks_alloc(ip
, offset
, size
,
1219 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1220 : XFS_IO_DELALLOC
, &imap
);
1221 } else if (nimaps
) {
1222 trace_xfs_get_blocks_found(ip
, offset
, size
,
1223 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1224 : XFS_IO_OVERWRITE
, &imap
);
1225 xfs_iunlock(ip
, lockmode
);
1227 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1231 if (IS_DAX(inode
) && create
) {
1232 ASSERT(!ISUNWRITTEN(&imap
));
1233 /* zeroing is not needed at a higher layer */
1237 /* trim mapping down to size requested */
1238 if (direct
|| size
> (1 << inode
->i_blkbits
))
1239 xfs_map_trim_size(inode
, iblock
, bh_result
,
1240 &imap
, offset
, size
);
1243 * For unwritten extents do not report a disk address in the buffered
1244 * read case (treat as if we're reading into a hole).
1246 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1247 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1248 (create
|| !ISUNWRITTEN(&imap
))) {
1249 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1250 if (ISUNWRITTEN(&imap
))
1251 set_buffer_unwritten(bh_result
);
1252 /* direct IO needs special help */
1253 if (create
&& direct
) {
1255 ASSERT(!ISUNWRITTEN(&imap
));
1257 xfs_map_direct(inode
, bh_result
, &imap
, offset
);
1262 * If this is a realtime file, data may be on a different device.
1263 * to that pointed to from the buffer_head b_bdev currently.
1265 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1268 * If we previously allocated a block out beyond eof and we are now
1269 * coming back to use it then we will need to flag it as new even if it
1270 * has a disk address.
1272 * With sub-block writes into unwritten extents we also need to mark
1273 * the buffer as new so that the unwritten parts of the buffer gets
1277 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1278 (offset
>= i_size_read(inode
)) ||
1279 (new || ISUNWRITTEN(&imap
))))
1280 set_buffer_new(bh_result
);
1282 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1285 set_buffer_uptodate(bh_result
);
1286 set_buffer_mapped(bh_result
);
1287 set_buffer_delay(bh_result
);
1294 xfs_iunlock(ip
, lockmode
);
1300 struct inode
*inode
,
1302 struct buffer_head
*bh_result
,
1305 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, false, false);
1309 xfs_get_blocks_direct(
1310 struct inode
*inode
,
1312 struct buffer_head
*bh_result
,
1315 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, false);
1319 xfs_get_blocks_dax_fault(
1320 struct inode
*inode
,
1322 struct buffer_head
*bh_result
,
1325 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, true);
1329 * Complete a direct I/O write request.
1331 * xfs_map_direct passes us some flags in the private data to tell us what to
1332 * do. If no flags are set, then the write IO is an overwrite wholly within
1333 * the existing allocated file size and so there is nothing for us to do.
1335 * Note that in this case the completion can be called in interrupt context,
1336 * whereas if we have flags set we will always be called in task context
1337 * (i.e. from a workqueue).
1340 xfs_end_io_direct_write(
1346 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1347 struct xfs_inode
*ip
= XFS_I(inode
);
1348 struct xfs_mount
*mp
= ip
->i_mount
;
1349 uintptr_t flags
= (uintptr_t)private;
1352 trace_xfs_end_io_direct_write(ip
, offset
, size
);
1354 if (XFS_FORCED_SHUTDOWN(mp
))
1361 * The flags tell us whether we are doing unwritten extent conversions
1362 * or an append transaction that updates the on-disk file size. These
1363 * cases are the only cases where we should *potentially* be needing
1364 * to update the VFS inode size.
1367 ASSERT(offset
+ size
<= i_size_read(inode
));
1372 * We need to update the in-core inode size here so that we don't end up
1373 * with the on-disk inode size being outside the in-core inode size. We
1374 * have no other method of updating EOF for AIO, so always do it here
1377 * We need to lock the test/set EOF update as we can be racing with
1378 * other IO completions here to update the EOF. Failing to serialise
1379 * here can result in EOF moving backwards and Bad Things Happen when
1382 spin_lock(&ip
->i_flags_lock
);
1383 if (offset
+ size
> i_size_read(inode
))
1384 i_size_write(inode
, offset
+ size
);
1385 spin_unlock(&ip
->i_flags_lock
);
1387 if (flags
& XFS_DIO_FLAG_UNWRITTEN
) {
1388 trace_xfs_end_io_direct_write_unwritten(ip
, offset
, size
);
1390 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
1391 } else if (flags
& XFS_DIO_FLAG_APPEND
) {
1392 struct xfs_trans
*tp
;
1394 trace_xfs_end_io_direct_write_append(ip
, offset
, size
);
1396 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0,
1399 error
= xfs_setfilesize(ip
, tp
, offset
, size
);
1408 struct iov_iter
*iter
)
1410 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1411 dio_iodone_t
*endio
= NULL
;
1413 struct block_device
*bdev
;
1415 if (iov_iter_rw(iter
) == WRITE
) {
1416 endio
= xfs_end_io_direct_write
;
1417 flags
= DIO_ASYNC_EXTEND
;
1420 if (IS_DAX(inode
)) {
1421 return dax_do_io(iocb
, inode
, iter
,
1422 xfs_get_blocks_direct
, endio
, 0);
1425 bdev
= xfs_find_bdev_for_inode(inode
);
1426 return __blockdev_direct_IO(iocb
, inode
, bdev
, iter
,
1427 xfs_get_blocks_direct
, endio
, NULL
, flags
);
1431 * Punch out the delalloc blocks we have already allocated.
1433 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1434 * as the page is still locked at this point.
1437 xfs_vm_kill_delalloc_range(
1438 struct inode
*inode
,
1442 struct xfs_inode
*ip
= XFS_I(inode
);
1443 xfs_fileoff_t start_fsb
;
1444 xfs_fileoff_t end_fsb
;
1447 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1448 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1449 if (end_fsb
<= start_fsb
)
1452 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1453 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1454 end_fsb
- start_fsb
);
1456 /* something screwed, just bail */
1457 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1458 xfs_alert(ip
->i_mount
,
1459 "xfs_vm_write_failed: unable to clean up ino %lld",
1463 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1467 xfs_vm_write_failed(
1468 struct inode
*inode
,
1473 loff_t block_offset
;
1476 loff_t from
= pos
& (PAGE_SIZE
- 1);
1477 loff_t to
= from
+ len
;
1478 struct buffer_head
*bh
, *head
;
1479 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
1482 * The request pos offset might be 32 or 64 bit, this is all fine
1483 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1484 * platform, the high 32-bit will be masked off if we evaluate the
1485 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1486 * 0xfffff000 as an unsigned long, hence the result is incorrect
1487 * which could cause the following ASSERT failed in most cases.
1488 * In order to avoid this, we can evaluate the block_offset of the
1489 * start of the page by using shifts rather than masks the mismatch
1492 block_offset
= (pos
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1494 ASSERT(block_offset
+ from
== pos
);
1496 head
= page_buffers(page
);
1498 for (bh
= head
; bh
!= head
|| !block_start
;
1499 bh
= bh
->b_this_page
, block_start
= block_end
,
1500 block_offset
+= bh
->b_size
) {
1501 block_end
= block_start
+ bh
->b_size
;
1503 /* skip buffers before the write */
1504 if (block_end
<= from
)
1507 /* if the buffer is after the write, we're done */
1508 if (block_start
>= to
)
1512 * Process delalloc and unwritten buffers beyond EOF. We can
1513 * encounter unwritten buffers in the event that a file has
1514 * post-EOF unwritten extents and an extending write happens to
1515 * fail (e.g., an unaligned write that also involves a delalloc
1516 * to the same page).
1518 if (!buffer_delay(bh
) && !buffer_unwritten(bh
))
1521 if (!xfs_mp_fail_writes(mp
) && !buffer_new(bh
) &&
1522 block_offset
< i_size_read(inode
))
1525 if (buffer_delay(bh
))
1526 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1527 block_offset
+ bh
->b_size
);
1530 * This buffer does not contain data anymore. make sure anyone
1531 * who finds it knows that for certain.
1533 clear_buffer_delay(bh
);
1534 clear_buffer_uptodate(bh
);
1535 clear_buffer_mapped(bh
);
1536 clear_buffer_new(bh
);
1537 clear_buffer_dirty(bh
);
1538 clear_buffer_unwritten(bh
);
1544 * This used to call block_write_begin(), but it unlocks and releases the page
1545 * on error, and we need that page to be able to punch stale delalloc blocks out
1546 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1547 * the appropriate point.
1552 struct address_space
*mapping
,
1556 struct page
**pagep
,
1559 pgoff_t index
= pos
>> PAGE_SHIFT
;
1562 struct xfs_mount
*mp
= XFS_I(mapping
->host
)->i_mount
;
1564 ASSERT(len
<= PAGE_SIZE
);
1566 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1570 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1571 if (xfs_mp_fail_writes(mp
))
1573 if (unlikely(status
)) {
1574 struct inode
*inode
= mapping
->host
;
1575 size_t isize
= i_size_read(inode
);
1577 xfs_vm_write_failed(inode
, page
, pos
, len
);
1581 * If the write is beyond EOF, we only want to kill blocks
1582 * allocated in this write, not blocks that were previously
1583 * written successfully.
1585 if (xfs_mp_fail_writes(mp
))
1587 if (pos
+ len
> isize
) {
1588 ssize_t start
= max_t(ssize_t
, pos
, isize
);
1590 truncate_pagecache_range(inode
, start
, pos
+ len
);
1602 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1603 * this specific write because they will never be written. Previous writes
1604 * beyond EOF where block allocation succeeded do not need to be trashed, so
1605 * only new blocks from this write should be trashed. For blocks within
1606 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1607 * written with all the other valid data.
1612 struct address_space
*mapping
,
1621 ASSERT(len
<= PAGE_SIZE
);
1623 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1624 if (unlikely(ret
< len
)) {
1625 struct inode
*inode
= mapping
->host
;
1626 size_t isize
= i_size_read(inode
);
1627 loff_t to
= pos
+ len
;
1630 /* only kill blocks in this write beyond EOF */
1633 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1634 truncate_pagecache_range(inode
, isize
, to
);
1642 struct address_space
*mapping
,
1645 struct inode
*inode
= (struct inode
*)mapping
->host
;
1646 struct xfs_inode
*ip
= XFS_I(inode
);
1648 trace_xfs_vm_bmap(XFS_I(inode
));
1649 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1650 filemap_write_and_wait(mapping
);
1651 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1652 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1657 struct file
*unused
,
1660 trace_xfs_vm_readpage(page
->mapping
->host
, 1);
1661 return mpage_readpage(page
, xfs_get_blocks
);
1666 struct file
*unused
,
1667 struct address_space
*mapping
,
1668 struct list_head
*pages
,
1671 trace_xfs_vm_readpages(mapping
->host
, nr_pages
);
1672 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1676 * This is basically a copy of __set_page_dirty_buffers() with one
1677 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1678 * dirty, we'll never be able to clean them because we don't write buffers
1679 * beyond EOF, and that means we can't invalidate pages that span EOF
1680 * that have been marked dirty. Further, the dirty state can leak into
1681 * the file interior if the file is extended, resulting in all sorts of
1682 * bad things happening as the state does not match the underlying data.
1684 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1685 * this only exist because of bufferheads and how the generic code manages them.
1688 xfs_vm_set_page_dirty(
1691 struct address_space
*mapping
= page
->mapping
;
1692 struct inode
*inode
= mapping
->host
;
1697 if (unlikely(!mapping
))
1698 return !TestSetPageDirty(page
);
1700 end_offset
= i_size_read(inode
);
1701 offset
= page_offset(page
);
1703 spin_lock(&mapping
->private_lock
);
1704 if (page_has_buffers(page
)) {
1705 struct buffer_head
*head
= page_buffers(page
);
1706 struct buffer_head
*bh
= head
;
1709 if (offset
< end_offset
)
1710 set_buffer_dirty(bh
);
1711 bh
= bh
->b_this_page
;
1712 offset
+= 1 << inode
->i_blkbits
;
1713 } while (bh
!= head
);
1716 * Lock out page->mem_cgroup migration to keep PageDirty
1717 * synchronized with per-memcg dirty page counters.
1719 lock_page_memcg(page
);
1720 newly_dirty
= !TestSetPageDirty(page
);
1721 spin_unlock(&mapping
->private_lock
);
1724 /* sigh - __set_page_dirty() is static, so copy it here, too */
1725 unsigned long flags
;
1727 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1728 if (page
->mapping
) { /* Race with truncate? */
1729 WARN_ON_ONCE(!PageUptodate(page
));
1730 account_page_dirtied(page
, mapping
);
1731 radix_tree_tag_set(&mapping
->page_tree
,
1732 page_index(page
), PAGECACHE_TAG_DIRTY
);
1734 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1736 unlock_page_memcg(page
);
1738 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1742 const struct address_space_operations xfs_address_space_operations
= {
1743 .readpage
= xfs_vm_readpage
,
1744 .readpages
= xfs_vm_readpages
,
1745 .writepage
= xfs_vm_writepage
,
1746 .writepages
= xfs_vm_writepages
,
1747 .set_page_dirty
= xfs_vm_set_page_dirty
,
1748 .releasepage
= xfs_vm_releasepage
,
1749 .invalidatepage
= xfs_vm_invalidatepage
,
1750 .write_begin
= xfs_vm_write_begin
,
1751 .write_end
= xfs_vm_write_end
,
1752 .bmap
= xfs_vm_bmap
,
1753 .direct_IO
= xfs_vm_direct_IO
,
1754 .migratepage
= buffer_migrate_page
,
1755 .is_partially_uptodate
= block_is_partially_uptodate
,
1756 .error_remove_page
= generic_error_remove_page
,