Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / xfs / xfs_aops.c
blob4c463b99fe574341043cb1f6ab612a59df881d31
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
31 #include "xfs_bmap.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
44 * structure owned by writepages passed to individual writepage calls
46 struct xfs_writepage_ctx {
47 struct xfs_bmbt_irec imap;
48 bool imap_valid;
49 unsigned int io_type;
50 struct xfs_ioend *ioend;
51 sector_t last_block;
54 void
55 xfs_count_page_state(
56 struct page *page,
57 int *delalloc,
58 int *unwritten)
60 struct buffer_head *bh, *head;
62 *delalloc = *unwritten = 0;
64 bh = head = page_buffers(page);
65 do {
66 if (buffer_unwritten(bh))
67 (*unwritten) = 1;
68 else if (buffer_delay(bh))
69 (*delalloc) = 1;
70 } while ((bh = bh->b_this_page) != head);
73 struct block_device *
74 xfs_find_bdev_for_inode(
75 struct inode *inode)
77 struct xfs_inode *ip = XFS_I(inode);
78 struct xfs_mount *mp = ip->i_mount;
80 if (XFS_IS_REALTIME_INODE(ip))
81 return mp->m_rtdev_targp->bt_bdev;
82 else
83 return mp->m_ddev_targp->bt_bdev;
87 * We're now finished for good with this page. Update the page state via the
88 * associated buffer_heads, paying attention to the start and end offsets that
89 * we need to process on the page.
91 static void
92 xfs_finish_page_writeback(
93 struct inode *inode,
94 struct bio_vec *bvec,
95 int error)
97 unsigned int end = bvec->bv_offset + bvec->bv_len - 1;
98 struct buffer_head *head, *bh;
99 unsigned int off = 0;
101 ASSERT(bvec->bv_offset < PAGE_SIZE);
102 ASSERT((bvec->bv_offset & ((1 << inode->i_blkbits) - 1)) == 0);
103 ASSERT(end < PAGE_SIZE);
104 ASSERT((bvec->bv_len & ((1 << inode->i_blkbits) - 1)) == 0);
106 bh = head = page_buffers(bvec->bv_page);
108 do {
109 if (off < bvec->bv_offset)
110 goto next_bh;
111 if (off > end)
112 break;
113 bh->b_end_io(bh, !error);
114 next_bh:
115 off += bh->b_size;
116 } while ((bh = bh->b_this_page) != head);
120 * We're now finished for good with this ioend structure. Update the page
121 * state, release holds on bios, and finally free up memory. Do not use the
122 * ioend after this.
124 STATIC void
125 xfs_destroy_ioend(
126 struct xfs_ioend *ioend,
127 int error)
129 struct inode *inode = ioend->io_inode;
130 struct bio *last = ioend->io_bio;
131 struct bio *bio, *next;
133 for (bio = &ioend->io_inline_bio; bio; bio = next) {
134 struct bio_vec *bvec;
135 int i;
138 * For the last bio, bi_private points to the ioend, so we
139 * need to explicitly end the iteration here.
141 if (bio == last)
142 next = NULL;
143 else
144 next = bio->bi_private;
146 /* walk each page on bio, ending page IO on them */
147 bio_for_each_segment_all(bvec, bio, i)
148 xfs_finish_page_writeback(inode, bvec, error);
150 bio_put(bio);
155 * Fast and loose check if this write could update the on-disk inode size.
157 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
159 return ioend->io_offset + ioend->io_size >
160 XFS_I(ioend->io_inode)->i_d.di_size;
163 STATIC int
164 xfs_setfilesize_trans_alloc(
165 struct xfs_ioend *ioend)
167 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
168 struct xfs_trans *tp;
169 int error;
171 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
172 if (error)
173 return error;
175 ioend->io_append_trans = tp;
178 * We may pass freeze protection with a transaction. So tell lockdep
179 * we released it.
181 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
183 * We hand off the transaction to the completion thread now, so
184 * clear the flag here.
186 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
187 return 0;
191 * Update on-disk file size now that data has been written to disk.
193 STATIC int
194 xfs_setfilesize(
195 struct xfs_inode *ip,
196 struct xfs_trans *tp,
197 xfs_off_t offset,
198 size_t size)
200 xfs_fsize_t isize;
202 xfs_ilock(ip, XFS_ILOCK_EXCL);
203 isize = xfs_new_eof(ip, offset + size);
204 if (!isize) {
205 xfs_iunlock(ip, XFS_ILOCK_EXCL);
206 xfs_trans_cancel(tp);
207 return 0;
210 trace_xfs_setfilesize(ip, offset, size);
212 ip->i_d.di_size = isize;
213 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
214 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
216 return xfs_trans_commit(tp);
219 STATIC int
220 xfs_setfilesize_ioend(
221 struct xfs_ioend *ioend,
222 int error)
224 struct xfs_inode *ip = XFS_I(ioend->io_inode);
225 struct xfs_trans *tp = ioend->io_append_trans;
228 * The transaction may have been allocated in the I/O submission thread,
229 * thus we need to mark ourselves as being in a transaction manually.
230 * Similarly for freeze protection.
232 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
233 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
235 /* we abort the update if there was an IO error */
236 if (error) {
237 xfs_trans_cancel(tp);
238 return error;
241 return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
245 * IO write completion.
247 STATIC void
248 xfs_end_io(
249 struct work_struct *work)
251 struct xfs_ioend *ioend =
252 container_of(work, struct xfs_ioend, io_work);
253 struct xfs_inode *ip = XFS_I(ioend->io_inode);
254 int error = ioend->io_bio->bi_error;
257 * Set an error if the mount has shut down and proceed with end I/O
258 * processing so it can perform whatever cleanups are necessary.
260 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
261 error = -EIO;
264 * For unwritten extents we need to issue transactions to convert a
265 * range to normal written extens after the data I/O has finished.
266 * Detecting and handling completion IO errors is done individually
267 * for each case as different cleanup operations need to be performed
268 * on error.
270 if (ioend->io_type == XFS_IO_UNWRITTEN) {
271 if (error)
272 goto done;
273 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
274 ioend->io_size);
275 } else if (ioend->io_append_trans) {
276 error = xfs_setfilesize_ioend(ioend, error);
277 } else {
278 ASSERT(!xfs_ioend_is_append(ioend));
281 done:
282 xfs_destroy_ioend(ioend, error);
285 STATIC void
286 xfs_end_bio(
287 struct bio *bio)
289 struct xfs_ioend *ioend = bio->bi_private;
290 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
292 if (ioend->io_type == XFS_IO_UNWRITTEN)
293 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
294 else if (ioend->io_append_trans)
295 queue_work(mp->m_data_workqueue, &ioend->io_work);
296 else
297 xfs_destroy_ioend(ioend, bio->bi_error);
300 STATIC int
301 xfs_map_blocks(
302 struct inode *inode,
303 loff_t offset,
304 struct xfs_bmbt_irec *imap,
305 int type)
307 struct xfs_inode *ip = XFS_I(inode);
308 struct xfs_mount *mp = ip->i_mount;
309 ssize_t count = 1 << inode->i_blkbits;
310 xfs_fileoff_t offset_fsb, end_fsb;
311 int error = 0;
312 int bmapi_flags = XFS_BMAPI_ENTIRE;
313 int nimaps = 1;
315 if (XFS_FORCED_SHUTDOWN(mp))
316 return -EIO;
318 if (type == XFS_IO_UNWRITTEN)
319 bmapi_flags |= XFS_BMAPI_IGSTATE;
321 xfs_ilock(ip, XFS_ILOCK_SHARED);
322 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
323 (ip->i_df.if_flags & XFS_IFEXTENTS));
324 ASSERT(offset <= mp->m_super->s_maxbytes);
326 if (offset + count > mp->m_super->s_maxbytes)
327 count = mp->m_super->s_maxbytes - offset;
328 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
329 offset_fsb = XFS_B_TO_FSBT(mp, offset);
330 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
331 imap, &nimaps, bmapi_flags);
332 xfs_iunlock(ip, XFS_ILOCK_SHARED);
334 if (error)
335 return error;
337 if (type == XFS_IO_DELALLOC &&
338 (!nimaps || isnullstartblock(imap->br_startblock))) {
339 error = xfs_iomap_write_allocate(ip, offset, imap);
340 if (!error)
341 trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
342 return error;
345 #ifdef DEBUG
346 if (type == XFS_IO_UNWRITTEN) {
347 ASSERT(nimaps);
348 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
349 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
351 #endif
352 if (nimaps)
353 trace_xfs_map_blocks_found(ip, offset, count, type, imap);
354 return 0;
357 STATIC bool
358 xfs_imap_valid(
359 struct inode *inode,
360 struct xfs_bmbt_irec *imap,
361 xfs_off_t offset)
363 offset >>= inode->i_blkbits;
365 return offset >= imap->br_startoff &&
366 offset < imap->br_startoff + imap->br_blockcount;
369 STATIC void
370 xfs_start_buffer_writeback(
371 struct buffer_head *bh)
373 ASSERT(buffer_mapped(bh));
374 ASSERT(buffer_locked(bh));
375 ASSERT(!buffer_delay(bh));
376 ASSERT(!buffer_unwritten(bh));
378 mark_buffer_async_write(bh);
379 set_buffer_uptodate(bh);
380 clear_buffer_dirty(bh);
383 STATIC void
384 xfs_start_page_writeback(
385 struct page *page,
386 int clear_dirty)
388 ASSERT(PageLocked(page));
389 ASSERT(!PageWriteback(page));
392 * if the page was not fully cleaned, we need to ensure that the higher
393 * layers come back to it correctly. That means we need to keep the page
394 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
395 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
396 * write this page in this writeback sweep will be made.
398 if (clear_dirty) {
399 clear_page_dirty_for_io(page);
400 set_page_writeback(page);
401 } else
402 set_page_writeback_keepwrite(page);
404 unlock_page(page);
407 static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
409 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
413 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
414 * it, and we submit that bio. The ioend may be used for multiple bio
415 * submissions, so we only want to allocate an append transaction for the ioend
416 * once. In the case of multiple bio submission, each bio will take an IO
417 * reference to the ioend to ensure that the ioend completion is only done once
418 * all bios have been submitted and the ioend is really done.
420 * If @fail is non-zero, it means that we have a situation where some part of
421 * the submission process has failed after we have marked paged for writeback
422 * and unlocked them. In this situation, we need to fail the bio and ioend
423 * rather than submit it to IO. This typically only happens on a filesystem
424 * shutdown.
426 STATIC int
427 xfs_submit_ioend(
428 struct writeback_control *wbc,
429 struct xfs_ioend *ioend,
430 int status)
432 /* Reserve log space if we might write beyond the on-disk inode size. */
433 if (!status &&
434 ioend->io_type != XFS_IO_UNWRITTEN &&
435 xfs_ioend_is_append(ioend) &&
436 !ioend->io_append_trans)
437 status = xfs_setfilesize_trans_alloc(ioend);
439 ioend->io_bio->bi_private = ioend;
440 ioend->io_bio->bi_end_io = xfs_end_bio;
443 * If we are failing the IO now, just mark the ioend with an
444 * error and finish it. This will run IO completion immediately
445 * as there is only one reference to the ioend at this point in
446 * time.
448 if (status) {
449 ioend->io_bio->bi_error = status;
450 bio_endio(ioend->io_bio);
451 return status;
454 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
455 ioend->io_bio);
456 return 0;
459 static void
460 xfs_init_bio_from_bh(
461 struct bio *bio,
462 struct buffer_head *bh)
464 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
465 bio->bi_bdev = bh->b_bdev;
468 static struct xfs_ioend *
469 xfs_alloc_ioend(
470 struct inode *inode,
471 unsigned int type,
472 xfs_off_t offset,
473 struct buffer_head *bh)
475 struct xfs_ioend *ioend;
476 struct bio *bio;
478 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, xfs_ioend_bioset);
479 xfs_init_bio_from_bh(bio, bh);
481 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
482 INIT_LIST_HEAD(&ioend->io_list);
483 ioend->io_type = type;
484 ioend->io_inode = inode;
485 ioend->io_size = 0;
486 ioend->io_offset = offset;
487 INIT_WORK(&ioend->io_work, xfs_end_io);
488 ioend->io_append_trans = NULL;
489 ioend->io_bio = bio;
490 return ioend;
494 * Allocate a new bio, and chain the old bio to the new one.
496 * Note that we have to do perform the chaining in this unintuitive order
497 * so that the bi_private linkage is set up in the right direction for the
498 * traversal in xfs_destroy_ioend().
500 static void
501 xfs_chain_bio(
502 struct xfs_ioend *ioend,
503 struct writeback_control *wbc,
504 struct buffer_head *bh)
506 struct bio *new;
508 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
509 xfs_init_bio_from_bh(new, bh);
511 bio_chain(ioend->io_bio, new);
512 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
513 submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE,
514 ioend->io_bio);
515 ioend->io_bio = new;
519 * Test to see if we've been building up a completion structure for
520 * earlier buffers -- if so, we try to append to this ioend if we
521 * can, otherwise we finish off any current ioend and start another.
522 * Return the ioend we finished off so that the caller can submit it
523 * once it has finished processing the dirty page.
525 STATIC void
526 xfs_add_to_ioend(
527 struct inode *inode,
528 struct buffer_head *bh,
529 xfs_off_t offset,
530 struct xfs_writepage_ctx *wpc,
531 struct writeback_control *wbc,
532 struct list_head *iolist)
534 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
535 bh->b_blocknr != wpc->last_block + 1 ||
536 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
537 if (wpc->ioend)
538 list_add(&wpc->ioend->io_list, iolist);
539 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset, bh);
543 * If the buffer doesn't fit into the bio we need to allocate a new
544 * one. This shouldn't happen more than once for a given buffer.
546 while (xfs_bio_add_buffer(wpc->ioend->io_bio, bh) != bh->b_size)
547 xfs_chain_bio(wpc->ioend, wbc, bh);
549 wpc->ioend->io_size += bh->b_size;
550 wpc->last_block = bh->b_blocknr;
551 xfs_start_buffer_writeback(bh);
554 STATIC void
555 xfs_map_buffer(
556 struct inode *inode,
557 struct buffer_head *bh,
558 struct xfs_bmbt_irec *imap,
559 xfs_off_t offset)
561 sector_t bn;
562 struct xfs_mount *m = XFS_I(inode)->i_mount;
563 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
564 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
566 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
567 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
569 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
570 ((offset - iomap_offset) >> inode->i_blkbits);
572 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
574 bh->b_blocknr = bn;
575 set_buffer_mapped(bh);
578 STATIC void
579 xfs_map_at_offset(
580 struct inode *inode,
581 struct buffer_head *bh,
582 struct xfs_bmbt_irec *imap,
583 xfs_off_t offset)
585 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
586 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
588 xfs_map_buffer(inode, bh, imap, offset);
589 set_buffer_mapped(bh);
590 clear_buffer_delay(bh);
591 clear_buffer_unwritten(bh);
595 * Test if a given page contains at least one buffer of a given @type.
596 * If @check_all_buffers is true, then we walk all the buffers in the page to
597 * try to find one of the type passed in. If it is not set, then the caller only
598 * needs to check the first buffer on the page for a match.
600 STATIC bool
601 xfs_check_page_type(
602 struct page *page,
603 unsigned int type,
604 bool check_all_buffers)
606 struct buffer_head *bh;
607 struct buffer_head *head;
609 if (PageWriteback(page))
610 return false;
611 if (!page->mapping)
612 return false;
613 if (!page_has_buffers(page))
614 return false;
616 bh = head = page_buffers(page);
617 do {
618 if (buffer_unwritten(bh)) {
619 if (type == XFS_IO_UNWRITTEN)
620 return true;
621 } else if (buffer_delay(bh)) {
622 if (type == XFS_IO_DELALLOC)
623 return true;
624 } else if (buffer_dirty(bh) && buffer_mapped(bh)) {
625 if (type == XFS_IO_OVERWRITE)
626 return true;
629 /* If we are only checking the first buffer, we are done now. */
630 if (!check_all_buffers)
631 break;
632 } while ((bh = bh->b_this_page) != head);
634 return false;
637 STATIC void
638 xfs_vm_invalidatepage(
639 struct page *page,
640 unsigned int offset,
641 unsigned int length)
643 trace_xfs_invalidatepage(page->mapping->host, page, offset,
644 length);
645 block_invalidatepage(page, offset, length);
649 * If the page has delalloc buffers on it, we need to punch them out before we
650 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
651 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
652 * is done on that same region - the delalloc extent is returned when none is
653 * supposed to be there.
655 * We prevent this by truncating away the delalloc regions on the page before
656 * invalidating it. Because they are delalloc, we can do this without needing a
657 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
658 * truncation without a transaction as there is no space left for block
659 * reservation (typically why we see a ENOSPC in writeback).
661 * This is not a performance critical path, so for now just do the punching a
662 * buffer head at a time.
664 STATIC void
665 xfs_aops_discard_page(
666 struct page *page)
668 struct inode *inode = page->mapping->host;
669 struct xfs_inode *ip = XFS_I(inode);
670 struct buffer_head *bh, *head;
671 loff_t offset = page_offset(page);
673 if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
674 goto out_invalidate;
676 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
677 goto out_invalidate;
679 xfs_alert(ip->i_mount,
680 "page discard on page %p, inode 0x%llx, offset %llu.",
681 page, ip->i_ino, offset);
683 xfs_ilock(ip, XFS_ILOCK_EXCL);
684 bh = head = page_buffers(page);
685 do {
686 int error;
687 xfs_fileoff_t start_fsb;
689 if (!buffer_delay(bh))
690 goto next_buffer;
692 start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
693 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
694 if (error) {
695 /* something screwed, just bail */
696 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
697 xfs_alert(ip->i_mount,
698 "page discard unable to remove delalloc mapping.");
700 break;
702 next_buffer:
703 offset += 1 << inode->i_blkbits;
705 } while ((bh = bh->b_this_page) != head);
707 xfs_iunlock(ip, XFS_ILOCK_EXCL);
708 out_invalidate:
709 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
710 return;
714 * We implement an immediate ioend submission policy here to avoid needing to
715 * chain multiple ioends and hence nest mempool allocations which can violate
716 * forward progress guarantees we need to provide. The current ioend we are
717 * adding buffers to is cached on the writepage context, and if the new buffer
718 * does not append to the cached ioend it will create a new ioend and cache that
719 * instead.
721 * If a new ioend is created and cached, the old ioend is returned and queued
722 * locally for submission once the entire page is processed or an error has been
723 * detected. While ioends are submitted immediately after they are completed,
724 * batching optimisations are provided by higher level block plugging.
726 * At the end of a writeback pass, there will be a cached ioend remaining on the
727 * writepage context that the caller will need to submit.
729 static int
730 xfs_writepage_map(
731 struct xfs_writepage_ctx *wpc,
732 struct writeback_control *wbc,
733 struct inode *inode,
734 struct page *page,
735 loff_t offset,
736 __uint64_t end_offset)
738 LIST_HEAD(submit_list);
739 struct xfs_ioend *ioend, *next;
740 struct buffer_head *bh, *head;
741 ssize_t len = 1 << inode->i_blkbits;
742 int error = 0;
743 int count = 0;
744 int uptodate = 1;
746 bh = head = page_buffers(page);
747 offset = page_offset(page);
748 do {
749 if (offset >= end_offset)
750 break;
751 if (!buffer_uptodate(bh))
752 uptodate = 0;
755 * set_page_dirty dirties all buffers in a page, independent
756 * of their state. The dirty state however is entirely
757 * meaningless for holes (!mapped && uptodate), so skip
758 * buffers covering holes here.
760 if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
761 wpc->imap_valid = false;
762 continue;
765 if (buffer_unwritten(bh)) {
766 if (wpc->io_type != XFS_IO_UNWRITTEN) {
767 wpc->io_type = XFS_IO_UNWRITTEN;
768 wpc->imap_valid = false;
770 } else if (buffer_delay(bh)) {
771 if (wpc->io_type != XFS_IO_DELALLOC) {
772 wpc->io_type = XFS_IO_DELALLOC;
773 wpc->imap_valid = false;
775 } else if (buffer_uptodate(bh)) {
776 if (wpc->io_type != XFS_IO_OVERWRITE) {
777 wpc->io_type = XFS_IO_OVERWRITE;
778 wpc->imap_valid = false;
780 } else {
781 if (PageUptodate(page))
782 ASSERT(buffer_mapped(bh));
784 * This buffer is not uptodate and will not be
785 * written to disk. Ensure that we will put any
786 * subsequent writeable buffers into a new
787 * ioend.
789 wpc->imap_valid = false;
790 continue;
793 if (wpc->imap_valid)
794 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
795 offset);
796 if (!wpc->imap_valid) {
797 error = xfs_map_blocks(inode, offset, &wpc->imap,
798 wpc->io_type);
799 if (error)
800 goto out;
801 wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
802 offset);
804 if (wpc->imap_valid) {
805 lock_buffer(bh);
806 if (wpc->io_type != XFS_IO_OVERWRITE)
807 xfs_map_at_offset(inode, bh, &wpc->imap, offset);
808 xfs_add_to_ioend(inode, bh, offset, wpc, wbc, &submit_list);
809 count++;
812 } while (offset += len, ((bh = bh->b_this_page) != head));
814 if (uptodate && bh == head)
815 SetPageUptodate(page);
817 ASSERT(wpc->ioend || list_empty(&submit_list));
819 out:
821 * On error, we have to fail the ioend here because we have locked
822 * buffers in the ioend. If we don't do this, we'll deadlock
823 * invalidating the page as that tries to lock the buffers on the page.
824 * Also, because we may have set pages under writeback, we have to make
825 * sure we run IO completion to mark the error state of the IO
826 * appropriately, so we can't cancel the ioend directly here. That means
827 * we have to mark this page as under writeback if we included any
828 * buffers from it in the ioend chain so that completion treats it
829 * correctly.
831 * If we didn't include the page in the ioend, the on error we can
832 * simply discard and unlock it as there are no other users of the page
833 * or it's buffers right now. The caller will still need to trigger
834 * submission of outstanding ioends on the writepage context so they are
835 * treated correctly on error.
837 if (count) {
838 xfs_start_page_writeback(page, !error);
841 * Preserve the original error if there was one, otherwise catch
842 * submission errors here and propagate into subsequent ioend
843 * submissions.
845 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
846 int error2;
848 list_del_init(&ioend->io_list);
849 error2 = xfs_submit_ioend(wbc, ioend, error);
850 if (error2 && !error)
851 error = error2;
853 } else if (error) {
854 xfs_aops_discard_page(page);
855 ClearPageUptodate(page);
856 unlock_page(page);
857 } else {
859 * We can end up here with no error and nothing to write if we
860 * race with a partial page truncate on a sub-page block sized
861 * filesystem. In that case we need to mark the page clean.
863 xfs_start_page_writeback(page, 1);
864 end_page_writeback(page);
867 mapping_set_error(page->mapping, error);
868 return error;
872 * Write out a dirty page.
874 * For delalloc space on the page we need to allocate space and flush it.
875 * For unwritten space on the page we need to start the conversion to
876 * regular allocated space.
877 * For any other dirty buffer heads on the page we should flush them.
879 STATIC int
880 xfs_do_writepage(
881 struct page *page,
882 struct writeback_control *wbc,
883 void *data)
885 struct xfs_writepage_ctx *wpc = data;
886 struct inode *inode = page->mapping->host;
887 loff_t offset;
888 __uint64_t end_offset;
889 pgoff_t end_index;
891 trace_xfs_writepage(inode, page, 0, 0);
893 ASSERT(page_has_buffers(page));
896 * Refuse to write the page out if we are called from reclaim context.
898 * This avoids stack overflows when called from deeply used stacks in
899 * random callers for direct reclaim or memcg reclaim. We explicitly
900 * allow reclaim from kswapd as the stack usage there is relatively low.
902 * This should never happen except in the case of a VM regression so
903 * warn about it.
905 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
906 PF_MEMALLOC))
907 goto redirty;
910 * Given that we do not allow direct reclaim to call us, we should
911 * never be called while in a filesystem transaction.
913 if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
914 goto redirty;
917 * Is this page beyond the end of the file?
919 * The page index is less than the end_index, adjust the end_offset
920 * to the highest offset that this page should represent.
921 * -----------------------------------------------------
922 * | file mapping | <EOF> |
923 * -----------------------------------------------------
924 * | Page ... | Page N-2 | Page N-1 | Page N | |
925 * ^--------------------------------^----------|--------
926 * | desired writeback range | see else |
927 * ---------------------------------^------------------|
929 offset = i_size_read(inode);
930 end_index = offset >> PAGE_SHIFT;
931 if (page->index < end_index)
932 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
933 else {
935 * Check whether the page to write out is beyond or straddles
936 * i_size or not.
937 * -------------------------------------------------------
938 * | file mapping | <EOF> |
939 * -------------------------------------------------------
940 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
941 * ^--------------------------------^-----------|---------
942 * | | Straddles |
943 * ---------------------------------^-----------|--------|
945 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
948 * Skip the page if it is fully outside i_size, e.g. due to a
949 * truncate operation that is in progress. We must redirty the
950 * page so that reclaim stops reclaiming it. Otherwise
951 * xfs_vm_releasepage() is called on it and gets confused.
953 * Note that the end_index is unsigned long, it would overflow
954 * if the given offset is greater than 16TB on 32-bit system
955 * and if we do check the page is fully outside i_size or not
956 * via "if (page->index >= end_index + 1)" as "end_index + 1"
957 * will be evaluated to 0. Hence this page will be redirtied
958 * and be written out repeatedly which would result in an
959 * infinite loop, the user program that perform this operation
960 * will hang. Instead, we can verify this situation by checking
961 * if the page to write is totally beyond the i_size or if it's
962 * offset is just equal to the EOF.
964 if (page->index > end_index ||
965 (page->index == end_index && offset_into_page == 0))
966 goto redirty;
969 * The page straddles i_size. It must be zeroed out on each
970 * and every writepage invocation because it may be mmapped.
971 * "A file is mapped in multiples of the page size. For a file
972 * that is not a multiple of the page size, the remaining
973 * memory is zeroed when mapped, and writes to that region are
974 * not written out to the file."
976 zero_user_segment(page, offset_into_page, PAGE_SIZE);
978 /* Adjust the end_offset to the end of file */
979 end_offset = offset;
982 return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
984 redirty:
985 redirty_page_for_writepage(wbc, page);
986 unlock_page(page);
987 return 0;
990 STATIC int
991 xfs_vm_writepage(
992 struct page *page,
993 struct writeback_control *wbc)
995 struct xfs_writepage_ctx wpc = {
996 .io_type = XFS_IO_INVALID,
998 int ret;
1000 ret = xfs_do_writepage(page, wbc, &wpc);
1001 if (wpc.ioend)
1002 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1003 return ret;
1006 STATIC int
1007 xfs_vm_writepages(
1008 struct address_space *mapping,
1009 struct writeback_control *wbc)
1011 struct xfs_writepage_ctx wpc = {
1012 .io_type = XFS_IO_INVALID,
1014 int ret;
1016 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1017 if (dax_mapping(mapping))
1018 return dax_writeback_mapping_range(mapping,
1019 xfs_find_bdev_for_inode(mapping->host), wbc);
1021 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
1022 if (wpc.ioend)
1023 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
1024 return ret;
1028 * Called to move a page into cleanable state - and from there
1029 * to be released. The page should already be clean. We always
1030 * have buffer heads in this call.
1032 * Returns 1 if the page is ok to release, 0 otherwise.
1034 STATIC int
1035 xfs_vm_releasepage(
1036 struct page *page,
1037 gfp_t gfp_mask)
1039 int delalloc, unwritten;
1041 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1043 xfs_count_page_state(page, &delalloc, &unwritten);
1045 if (WARN_ON_ONCE(delalloc))
1046 return 0;
1047 if (WARN_ON_ONCE(unwritten))
1048 return 0;
1050 return try_to_free_buffers(page);
1054 * When we map a DIO buffer, we may need to pass flags to
1055 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1057 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1058 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1059 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1060 * extending the file size. We won't know for sure until IO completion is run
1061 * and the actual max write offset is communicated to the IO completion
1062 * routine.
1064 static void
1065 xfs_map_direct(
1066 struct inode *inode,
1067 struct buffer_head *bh_result,
1068 struct xfs_bmbt_irec *imap,
1069 xfs_off_t offset)
1071 uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
1072 xfs_off_t size = bh_result->b_size;
1074 trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
1075 ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
1077 if (ISUNWRITTEN(imap)) {
1078 *flags |= XFS_DIO_FLAG_UNWRITTEN;
1079 set_buffer_defer_completion(bh_result);
1080 } else if (offset + size > i_size_read(inode) || offset + size < 0) {
1081 *flags |= XFS_DIO_FLAG_APPEND;
1082 set_buffer_defer_completion(bh_result);
1087 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1088 * is, so that we can avoid repeated get_blocks calls.
1090 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1091 * for blocks beyond EOF must be marked new so that sub block regions can be
1092 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1093 * was just allocated or is unwritten, otherwise the callers would overwrite
1094 * existing data with zeros. Hence we have to split the mapping into a range up
1095 * to and including EOF, and a second mapping for beyond EOF.
1097 static void
1098 xfs_map_trim_size(
1099 struct inode *inode,
1100 sector_t iblock,
1101 struct buffer_head *bh_result,
1102 struct xfs_bmbt_irec *imap,
1103 xfs_off_t offset,
1104 ssize_t size)
1106 xfs_off_t mapping_size;
1108 mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1109 mapping_size <<= inode->i_blkbits;
1111 ASSERT(mapping_size > 0);
1112 if (mapping_size > size)
1113 mapping_size = size;
1114 if (offset < i_size_read(inode) &&
1115 offset + mapping_size >= i_size_read(inode)) {
1116 /* limit mapping to block that spans EOF */
1117 mapping_size = roundup_64(i_size_read(inode) - offset,
1118 1 << inode->i_blkbits);
1120 if (mapping_size > LONG_MAX)
1121 mapping_size = LONG_MAX;
1123 bh_result->b_size = mapping_size;
1126 STATIC int
1127 __xfs_get_blocks(
1128 struct inode *inode,
1129 sector_t iblock,
1130 struct buffer_head *bh_result,
1131 int create,
1132 bool direct,
1133 bool dax_fault)
1135 struct xfs_inode *ip = XFS_I(inode);
1136 struct xfs_mount *mp = ip->i_mount;
1137 xfs_fileoff_t offset_fsb, end_fsb;
1138 int error = 0;
1139 int lockmode = 0;
1140 struct xfs_bmbt_irec imap;
1141 int nimaps = 1;
1142 xfs_off_t offset;
1143 ssize_t size;
1144 int new = 0;
1146 if (XFS_FORCED_SHUTDOWN(mp))
1147 return -EIO;
1149 offset = (xfs_off_t)iblock << inode->i_blkbits;
1150 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1151 size = bh_result->b_size;
1153 if (!create && direct && offset >= i_size_read(inode))
1154 return 0;
1157 * Direct I/O is usually done on preallocated files, so try getting
1158 * a block mapping without an exclusive lock first. For buffered
1159 * writes we already have the exclusive iolock anyway, so avoiding
1160 * a lock roundtrip here by taking the ilock exclusive from the
1161 * beginning is a useful micro optimization.
1163 if (create && !direct) {
1164 lockmode = XFS_ILOCK_EXCL;
1165 xfs_ilock(ip, lockmode);
1166 } else {
1167 lockmode = xfs_ilock_data_map_shared(ip);
1170 ASSERT(offset <= mp->m_super->s_maxbytes);
1171 if (offset + size > mp->m_super->s_maxbytes)
1172 size = mp->m_super->s_maxbytes - offset;
1173 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1174 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1176 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1177 &imap, &nimaps, XFS_BMAPI_ENTIRE);
1178 if (error)
1179 goto out_unlock;
1181 /* for DAX, we convert unwritten extents directly */
1182 if (create &&
1183 (!nimaps ||
1184 (imap.br_startblock == HOLESTARTBLOCK ||
1185 imap.br_startblock == DELAYSTARTBLOCK) ||
1186 (IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
1187 if (direct || xfs_get_extsz_hint(ip)) {
1189 * xfs_iomap_write_direct() expects the shared lock. It
1190 * is unlocked on return.
1192 if (lockmode == XFS_ILOCK_EXCL)
1193 xfs_ilock_demote(ip, lockmode);
1195 error = xfs_iomap_write_direct(ip, offset, size,
1196 &imap, nimaps);
1197 if (error)
1198 return error;
1199 new = 1;
1201 } else {
1203 * Delalloc reservations do not require a transaction,
1204 * we can go on without dropping the lock here. If we
1205 * are allocating a new delalloc block, make sure that
1206 * we set the new flag so that we mark the buffer new so
1207 * that we know that it is newly allocated if the write
1208 * fails.
1210 if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1211 new = 1;
1212 error = xfs_iomap_write_delay(ip, offset, size, &imap);
1213 if (error)
1214 goto out_unlock;
1216 xfs_iunlock(ip, lockmode);
1218 trace_xfs_get_blocks_alloc(ip, offset, size,
1219 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1220 : XFS_IO_DELALLOC, &imap);
1221 } else if (nimaps) {
1222 trace_xfs_get_blocks_found(ip, offset, size,
1223 ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1224 : XFS_IO_OVERWRITE, &imap);
1225 xfs_iunlock(ip, lockmode);
1226 } else {
1227 trace_xfs_get_blocks_notfound(ip, offset, size);
1228 goto out_unlock;
1231 if (IS_DAX(inode) && create) {
1232 ASSERT(!ISUNWRITTEN(&imap));
1233 /* zeroing is not needed at a higher layer */
1234 new = 0;
1237 /* trim mapping down to size requested */
1238 if (direct || size > (1 << inode->i_blkbits))
1239 xfs_map_trim_size(inode, iblock, bh_result,
1240 &imap, offset, size);
1243 * For unwritten extents do not report a disk address in the buffered
1244 * read case (treat as if we're reading into a hole).
1246 if (imap.br_startblock != HOLESTARTBLOCK &&
1247 imap.br_startblock != DELAYSTARTBLOCK &&
1248 (create || !ISUNWRITTEN(&imap))) {
1249 xfs_map_buffer(inode, bh_result, &imap, offset);
1250 if (ISUNWRITTEN(&imap))
1251 set_buffer_unwritten(bh_result);
1252 /* direct IO needs special help */
1253 if (create && direct) {
1254 if (dax_fault)
1255 ASSERT(!ISUNWRITTEN(&imap));
1256 else
1257 xfs_map_direct(inode, bh_result, &imap, offset);
1262 * If this is a realtime file, data may be on a different device.
1263 * to that pointed to from the buffer_head b_bdev currently.
1265 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1268 * If we previously allocated a block out beyond eof and we are now
1269 * coming back to use it then we will need to flag it as new even if it
1270 * has a disk address.
1272 * With sub-block writes into unwritten extents we also need to mark
1273 * the buffer as new so that the unwritten parts of the buffer gets
1274 * correctly zeroed.
1276 if (create &&
1277 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1278 (offset >= i_size_read(inode)) ||
1279 (new || ISUNWRITTEN(&imap))))
1280 set_buffer_new(bh_result);
1282 if (imap.br_startblock == DELAYSTARTBLOCK) {
1283 BUG_ON(direct);
1284 if (create) {
1285 set_buffer_uptodate(bh_result);
1286 set_buffer_mapped(bh_result);
1287 set_buffer_delay(bh_result);
1291 return 0;
1293 out_unlock:
1294 xfs_iunlock(ip, lockmode);
1295 return error;
1299 xfs_get_blocks(
1300 struct inode *inode,
1301 sector_t iblock,
1302 struct buffer_head *bh_result,
1303 int create)
1305 return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
1309 xfs_get_blocks_direct(
1310 struct inode *inode,
1311 sector_t iblock,
1312 struct buffer_head *bh_result,
1313 int create)
1315 return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
1319 xfs_get_blocks_dax_fault(
1320 struct inode *inode,
1321 sector_t iblock,
1322 struct buffer_head *bh_result,
1323 int create)
1325 return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
1329 * Complete a direct I/O write request.
1331 * xfs_map_direct passes us some flags in the private data to tell us what to
1332 * do. If no flags are set, then the write IO is an overwrite wholly within
1333 * the existing allocated file size and so there is nothing for us to do.
1335 * Note that in this case the completion can be called in interrupt context,
1336 * whereas if we have flags set we will always be called in task context
1337 * (i.e. from a workqueue).
1339 STATIC int
1340 xfs_end_io_direct_write(
1341 struct kiocb *iocb,
1342 loff_t offset,
1343 ssize_t size,
1344 void *private)
1346 struct inode *inode = file_inode(iocb->ki_filp);
1347 struct xfs_inode *ip = XFS_I(inode);
1348 struct xfs_mount *mp = ip->i_mount;
1349 uintptr_t flags = (uintptr_t)private;
1350 int error = 0;
1352 trace_xfs_end_io_direct_write(ip, offset, size);
1354 if (XFS_FORCED_SHUTDOWN(mp))
1355 return -EIO;
1357 if (size <= 0)
1358 return size;
1361 * The flags tell us whether we are doing unwritten extent conversions
1362 * or an append transaction that updates the on-disk file size. These
1363 * cases are the only cases where we should *potentially* be needing
1364 * to update the VFS inode size.
1366 if (flags == 0) {
1367 ASSERT(offset + size <= i_size_read(inode));
1368 return 0;
1372 * We need to update the in-core inode size here so that we don't end up
1373 * with the on-disk inode size being outside the in-core inode size. We
1374 * have no other method of updating EOF for AIO, so always do it here
1375 * if necessary.
1377 * We need to lock the test/set EOF update as we can be racing with
1378 * other IO completions here to update the EOF. Failing to serialise
1379 * here can result in EOF moving backwards and Bad Things Happen when
1380 * that occurs.
1382 spin_lock(&ip->i_flags_lock);
1383 if (offset + size > i_size_read(inode))
1384 i_size_write(inode, offset + size);
1385 spin_unlock(&ip->i_flags_lock);
1387 if (flags & XFS_DIO_FLAG_UNWRITTEN) {
1388 trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
1390 error = xfs_iomap_write_unwritten(ip, offset, size);
1391 } else if (flags & XFS_DIO_FLAG_APPEND) {
1392 struct xfs_trans *tp;
1394 trace_xfs_end_io_direct_write_append(ip, offset, size);
1396 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0,
1397 &tp);
1398 if (!error)
1399 error = xfs_setfilesize(ip, tp, offset, size);
1402 return error;
1405 STATIC ssize_t
1406 xfs_vm_direct_IO(
1407 struct kiocb *iocb,
1408 struct iov_iter *iter)
1410 struct inode *inode = iocb->ki_filp->f_mapping->host;
1411 dio_iodone_t *endio = NULL;
1412 int flags = 0;
1413 struct block_device *bdev;
1415 if (iov_iter_rw(iter) == WRITE) {
1416 endio = xfs_end_io_direct_write;
1417 flags = DIO_ASYNC_EXTEND;
1420 if (IS_DAX(inode)) {
1421 return dax_do_io(iocb, inode, iter,
1422 xfs_get_blocks_direct, endio, 0);
1425 bdev = xfs_find_bdev_for_inode(inode);
1426 return __blockdev_direct_IO(iocb, inode, bdev, iter,
1427 xfs_get_blocks_direct, endio, NULL, flags);
1431 * Punch out the delalloc blocks we have already allocated.
1433 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1434 * as the page is still locked at this point.
1436 STATIC void
1437 xfs_vm_kill_delalloc_range(
1438 struct inode *inode,
1439 loff_t start,
1440 loff_t end)
1442 struct xfs_inode *ip = XFS_I(inode);
1443 xfs_fileoff_t start_fsb;
1444 xfs_fileoff_t end_fsb;
1445 int error;
1447 start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1448 end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1449 if (end_fsb <= start_fsb)
1450 return;
1452 xfs_ilock(ip, XFS_ILOCK_EXCL);
1453 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1454 end_fsb - start_fsb);
1455 if (error) {
1456 /* something screwed, just bail */
1457 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1458 xfs_alert(ip->i_mount,
1459 "xfs_vm_write_failed: unable to clean up ino %lld",
1460 ip->i_ino);
1463 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1466 STATIC void
1467 xfs_vm_write_failed(
1468 struct inode *inode,
1469 struct page *page,
1470 loff_t pos,
1471 unsigned len)
1473 loff_t block_offset;
1474 loff_t block_start;
1475 loff_t block_end;
1476 loff_t from = pos & (PAGE_SIZE - 1);
1477 loff_t to = from + len;
1478 struct buffer_head *bh, *head;
1479 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1482 * The request pos offset might be 32 or 64 bit, this is all fine
1483 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1484 * platform, the high 32-bit will be masked off if we evaluate the
1485 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1486 * 0xfffff000 as an unsigned long, hence the result is incorrect
1487 * which could cause the following ASSERT failed in most cases.
1488 * In order to avoid this, we can evaluate the block_offset of the
1489 * start of the page by using shifts rather than masks the mismatch
1490 * problem.
1492 block_offset = (pos >> PAGE_SHIFT) << PAGE_SHIFT;
1494 ASSERT(block_offset + from == pos);
1496 head = page_buffers(page);
1497 block_start = 0;
1498 for (bh = head; bh != head || !block_start;
1499 bh = bh->b_this_page, block_start = block_end,
1500 block_offset += bh->b_size) {
1501 block_end = block_start + bh->b_size;
1503 /* skip buffers before the write */
1504 if (block_end <= from)
1505 continue;
1507 /* if the buffer is after the write, we're done */
1508 if (block_start >= to)
1509 break;
1512 * Process delalloc and unwritten buffers beyond EOF. We can
1513 * encounter unwritten buffers in the event that a file has
1514 * post-EOF unwritten extents and an extending write happens to
1515 * fail (e.g., an unaligned write that also involves a delalloc
1516 * to the same page).
1518 if (!buffer_delay(bh) && !buffer_unwritten(bh))
1519 continue;
1521 if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
1522 block_offset < i_size_read(inode))
1523 continue;
1525 if (buffer_delay(bh))
1526 xfs_vm_kill_delalloc_range(inode, block_offset,
1527 block_offset + bh->b_size);
1530 * This buffer does not contain data anymore. make sure anyone
1531 * who finds it knows that for certain.
1533 clear_buffer_delay(bh);
1534 clear_buffer_uptodate(bh);
1535 clear_buffer_mapped(bh);
1536 clear_buffer_new(bh);
1537 clear_buffer_dirty(bh);
1538 clear_buffer_unwritten(bh);
1544 * This used to call block_write_begin(), but it unlocks and releases the page
1545 * on error, and we need that page to be able to punch stale delalloc blocks out
1546 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1547 * the appropriate point.
1549 STATIC int
1550 xfs_vm_write_begin(
1551 struct file *file,
1552 struct address_space *mapping,
1553 loff_t pos,
1554 unsigned len,
1555 unsigned flags,
1556 struct page **pagep,
1557 void **fsdata)
1559 pgoff_t index = pos >> PAGE_SHIFT;
1560 struct page *page;
1561 int status;
1562 struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
1564 ASSERT(len <= PAGE_SIZE);
1566 page = grab_cache_page_write_begin(mapping, index, flags);
1567 if (!page)
1568 return -ENOMEM;
1570 status = __block_write_begin(page, pos, len, xfs_get_blocks);
1571 if (xfs_mp_fail_writes(mp))
1572 status = -EIO;
1573 if (unlikely(status)) {
1574 struct inode *inode = mapping->host;
1575 size_t isize = i_size_read(inode);
1577 xfs_vm_write_failed(inode, page, pos, len);
1578 unlock_page(page);
1581 * If the write is beyond EOF, we only want to kill blocks
1582 * allocated in this write, not blocks that were previously
1583 * written successfully.
1585 if (xfs_mp_fail_writes(mp))
1586 isize = 0;
1587 if (pos + len > isize) {
1588 ssize_t start = max_t(ssize_t, pos, isize);
1590 truncate_pagecache_range(inode, start, pos + len);
1593 put_page(page);
1594 page = NULL;
1597 *pagep = page;
1598 return status;
1602 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1603 * this specific write because they will never be written. Previous writes
1604 * beyond EOF where block allocation succeeded do not need to be trashed, so
1605 * only new blocks from this write should be trashed. For blocks within
1606 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1607 * written with all the other valid data.
1609 STATIC int
1610 xfs_vm_write_end(
1611 struct file *file,
1612 struct address_space *mapping,
1613 loff_t pos,
1614 unsigned len,
1615 unsigned copied,
1616 struct page *page,
1617 void *fsdata)
1619 int ret;
1621 ASSERT(len <= PAGE_SIZE);
1623 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1624 if (unlikely(ret < len)) {
1625 struct inode *inode = mapping->host;
1626 size_t isize = i_size_read(inode);
1627 loff_t to = pos + len;
1629 if (to > isize) {
1630 /* only kill blocks in this write beyond EOF */
1631 if (pos > isize)
1632 isize = pos;
1633 xfs_vm_kill_delalloc_range(inode, isize, to);
1634 truncate_pagecache_range(inode, isize, to);
1637 return ret;
1640 STATIC sector_t
1641 xfs_vm_bmap(
1642 struct address_space *mapping,
1643 sector_t block)
1645 struct inode *inode = (struct inode *)mapping->host;
1646 struct xfs_inode *ip = XFS_I(inode);
1648 trace_xfs_vm_bmap(XFS_I(inode));
1649 xfs_ilock(ip, XFS_IOLOCK_SHARED);
1650 filemap_write_and_wait(mapping);
1651 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1652 return generic_block_bmap(mapping, block, xfs_get_blocks);
1655 STATIC int
1656 xfs_vm_readpage(
1657 struct file *unused,
1658 struct page *page)
1660 trace_xfs_vm_readpage(page->mapping->host, 1);
1661 return mpage_readpage(page, xfs_get_blocks);
1664 STATIC int
1665 xfs_vm_readpages(
1666 struct file *unused,
1667 struct address_space *mapping,
1668 struct list_head *pages,
1669 unsigned nr_pages)
1671 trace_xfs_vm_readpages(mapping->host, nr_pages);
1672 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1676 * This is basically a copy of __set_page_dirty_buffers() with one
1677 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1678 * dirty, we'll never be able to clean them because we don't write buffers
1679 * beyond EOF, and that means we can't invalidate pages that span EOF
1680 * that have been marked dirty. Further, the dirty state can leak into
1681 * the file interior if the file is extended, resulting in all sorts of
1682 * bad things happening as the state does not match the underlying data.
1684 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1685 * this only exist because of bufferheads and how the generic code manages them.
1687 STATIC int
1688 xfs_vm_set_page_dirty(
1689 struct page *page)
1691 struct address_space *mapping = page->mapping;
1692 struct inode *inode = mapping->host;
1693 loff_t end_offset;
1694 loff_t offset;
1695 int newly_dirty;
1697 if (unlikely(!mapping))
1698 return !TestSetPageDirty(page);
1700 end_offset = i_size_read(inode);
1701 offset = page_offset(page);
1703 spin_lock(&mapping->private_lock);
1704 if (page_has_buffers(page)) {
1705 struct buffer_head *head = page_buffers(page);
1706 struct buffer_head *bh = head;
1708 do {
1709 if (offset < end_offset)
1710 set_buffer_dirty(bh);
1711 bh = bh->b_this_page;
1712 offset += 1 << inode->i_blkbits;
1713 } while (bh != head);
1716 * Lock out page->mem_cgroup migration to keep PageDirty
1717 * synchronized with per-memcg dirty page counters.
1719 lock_page_memcg(page);
1720 newly_dirty = !TestSetPageDirty(page);
1721 spin_unlock(&mapping->private_lock);
1723 if (newly_dirty) {
1724 /* sigh - __set_page_dirty() is static, so copy it here, too */
1725 unsigned long flags;
1727 spin_lock_irqsave(&mapping->tree_lock, flags);
1728 if (page->mapping) { /* Race with truncate? */
1729 WARN_ON_ONCE(!PageUptodate(page));
1730 account_page_dirtied(page, mapping);
1731 radix_tree_tag_set(&mapping->page_tree,
1732 page_index(page), PAGECACHE_TAG_DIRTY);
1734 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1736 unlock_page_memcg(page);
1737 if (newly_dirty)
1738 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1739 return newly_dirty;
1742 const struct address_space_operations xfs_address_space_operations = {
1743 .readpage = xfs_vm_readpage,
1744 .readpages = xfs_vm_readpages,
1745 .writepage = xfs_vm_writepage,
1746 .writepages = xfs_vm_writepages,
1747 .set_page_dirty = xfs_vm_set_page_dirty,
1748 .releasepage = xfs_vm_releasepage,
1749 .invalidatepage = xfs_vm_invalidatepage,
1750 .write_begin = xfs_vm_write_begin,
1751 .write_end = xfs_vm_write_end,
1752 .bmap = xfs_vm_bmap,
1753 .direct_IO = xfs_vm_direct_IO,
1754 .migratepage = buffer_migrate_page,
1755 .is_partially_uptodate = block_is_partially_uptodate,
1756 .error_remove_page = generic_error_remove_page,