Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blob47fc632954228febc4e3a5bac611dbc121137348
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_da_format.h"
26 #include "xfs_da_btree.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_bmap.h"
31 #include "xfs_bmap_util.h"
32 #include "xfs_error.h"
33 #include "xfs_dir2.h"
34 #include "xfs_dir2_priv.h"
35 #include "xfs_ioctl.h"
36 #include "xfs_trace.h"
37 #include "xfs_log.h"
38 #include "xfs_icache.h"
39 #include "xfs_pnfs.h"
41 #include <linux/dcache.h>
42 #include <linux/falloc.h>
43 #include <linux/pagevec.h>
44 #include <linux/backing-dev.h>
46 static const struct vm_operations_struct xfs_file_vm_ops;
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 static inline void
53 xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
57 if (type & XFS_IOLOCK_EXCL)
58 inode_lock(VFS_I(ip));
59 xfs_ilock(ip, type);
62 static inline void
63 xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 inode_unlock(VFS_I(ip));
72 static inline void
73 xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 inode_unlock(VFS_I(ip));
83 * xfs_iozero clears the specified range supplied via the page cache (except in
84 * the DAX case). Writes through the page cache will allocate blocks over holes,
85 * though the callers usually map the holes first and avoid them. If a block is
86 * not completely zeroed, then it will be read from disk before being partially
87 * zeroed.
89 * In the DAX case, we can just directly write to the underlying pages. This
90 * will not allocate blocks, but will avoid holes and unwritten extents and so
91 * not do unnecessary work.
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
99 struct page *page;
100 struct address_space *mapping;
101 int status = 0;
104 mapping = VFS_I(ip)->i_mapping;
105 do {
106 unsigned offset, bytes;
107 void *fsdata;
109 offset = (pos & (PAGE_SIZE -1)); /* Within page */
110 bytes = PAGE_SIZE - offset;
111 if (bytes > count)
112 bytes = count;
114 if (IS_DAX(VFS_I(ip))) {
115 status = dax_zero_page_range(VFS_I(ip), pos, bytes,
116 xfs_get_blocks_direct);
117 if (status)
118 break;
119 } else {
120 status = pagecache_write_begin(NULL, mapping, pos, bytes,
121 AOP_FLAG_UNINTERRUPTIBLE,
122 &page, &fsdata);
123 if (status)
124 break;
126 zero_user(page, offset, bytes);
128 status = pagecache_write_end(NULL, mapping, pos, bytes,
129 bytes, page, fsdata);
130 WARN_ON(status <= 0); /* can't return less than zero! */
131 status = 0;
133 pos += bytes;
134 count -= bytes;
135 } while (count);
137 return status;
141 xfs_update_prealloc_flags(
142 struct xfs_inode *ip,
143 enum xfs_prealloc_flags flags)
145 struct xfs_trans *tp;
146 int error;
148 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
149 0, 0, 0, &tp);
150 if (error)
151 return error;
153 xfs_ilock(ip, XFS_ILOCK_EXCL);
154 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
157 VFS_I(ip)->i_mode &= ~S_ISUID;
158 if (VFS_I(ip)->i_mode & S_IXGRP)
159 VFS_I(ip)->i_mode &= ~S_ISGID;
160 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
163 if (flags & XFS_PREALLOC_SET)
164 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
165 if (flags & XFS_PREALLOC_CLEAR)
166 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
168 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
169 if (flags & XFS_PREALLOC_SYNC)
170 xfs_trans_set_sync(tp);
171 return xfs_trans_commit(tp);
175 * Fsync operations on directories are much simpler than on regular files,
176 * as there is no file data to flush, and thus also no need for explicit
177 * cache flush operations, and there are no non-transaction metadata updates
178 * on directories either.
180 STATIC int
181 xfs_dir_fsync(
182 struct file *file,
183 loff_t start,
184 loff_t end,
185 int datasync)
187 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
188 struct xfs_mount *mp = ip->i_mount;
189 xfs_lsn_t lsn = 0;
191 trace_xfs_dir_fsync(ip);
193 xfs_ilock(ip, XFS_ILOCK_SHARED);
194 if (xfs_ipincount(ip))
195 lsn = ip->i_itemp->ili_last_lsn;
196 xfs_iunlock(ip, XFS_ILOCK_SHARED);
198 if (!lsn)
199 return 0;
200 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
203 STATIC int
204 xfs_file_fsync(
205 struct file *file,
206 loff_t start,
207 loff_t end,
208 int datasync)
210 struct inode *inode = file->f_mapping->host;
211 struct xfs_inode *ip = XFS_I(inode);
212 struct xfs_mount *mp = ip->i_mount;
213 int error = 0;
214 int log_flushed = 0;
215 xfs_lsn_t lsn = 0;
217 trace_xfs_file_fsync(ip);
219 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
220 if (error)
221 return error;
223 if (XFS_FORCED_SHUTDOWN(mp))
224 return -EIO;
226 xfs_iflags_clear(ip, XFS_ITRUNCATED);
228 if (mp->m_flags & XFS_MOUNT_BARRIER) {
230 * If we have an RT and/or log subvolume we need to make sure
231 * to flush the write cache the device used for file data
232 * first. This is to ensure newly written file data make
233 * it to disk before logging the new inode size in case of
234 * an extending write.
236 if (XFS_IS_REALTIME_INODE(ip))
237 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
238 else if (mp->m_logdev_targp != mp->m_ddev_targp)
239 xfs_blkdev_issue_flush(mp->m_ddev_targp);
243 * All metadata updates are logged, which means that we just have to
244 * flush the log up to the latest LSN that touched the inode. If we have
245 * concurrent fsync/fdatasync() calls, we need them to all block on the
246 * log force before we clear the ili_fsync_fields field. This ensures
247 * that we don't get a racing sync operation that does not wait for the
248 * metadata to hit the journal before returning. If we race with
249 * clearing the ili_fsync_fields, then all that will happen is the log
250 * force will do nothing as the lsn will already be on disk. We can't
251 * race with setting ili_fsync_fields because that is done under
252 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
253 * until after the ili_fsync_fields is cleared.
255 xfs_ilock(ip, XFS_ILOCK_SHARED);
256 if (xfs_ipincount(ip)) {
257 if (!datasync ||
258 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
259 lsn = ip->i_itemp->ili_last_lsn;
262 if (lsn) {
263 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
264 ip->i_itemp->ili_fsync_fields = 0;
266 xfs_iunlock(ip, XFS_ILOCK_SHARED);
269 * If we only have a single device, and the log force about was
270 * a no-op we might have to flush the data device cache here.
271 * This can only happen for fdatasync/O_DSYNC if we were overwriting
272 * an already allocated file and thus do not have any metadata to
273 * commit.
275 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
276 mp->m_logdev_targp == mp->m_ddev_targp &&
277 !XFS_IS_REALTIME_INODE(ip) &&
278 !log_flushed)
279 xfs_blkdev_issue_flush(mp->m_ddev_targp);
281 return error;
284 STATIC ssize_t
285 xfs_file_read_iter(
286 struct kiocb *iocb,
287 struct iov_iter *to)
289 struct file *file = iocb->ki_filp;
290 struct inode *inode = file->f_mapping->host;
291 struct xfs_inode *ip = XFS_I(inode);
292 struct xfs_mount *mp = ip->i_mount;
293 size_t size = iov_iter_count(to);
294 ssize_t ret = 0;
295 int ioflags = 0;
296 xfs_fsize_t n;
297 loff_t pos = iocb->ki_pos;
299 XFS_STATS_INC(mp, xs_read_calls);
301 if (unlikely(iocb->ki_flags & IOCB_DIRECT))
302 ioflags |= XFS_IO_ISDIRECT;
303 if (file->f_mode & FMODE_NOCMTIME)
304 ioflags |= XFS_IO_INVIS;
306 if ((ioflags & XFS_IO_ISDIRECT) && !IS_DAX(inode)) {
307 xfs_buftarg_t *target =
308 XFS_IS_REALTIME_INODE(ip) ?
309 mp->m_rtdev_targp : mp->m_ddev_targp;
310 /* DIO must be aligned to device logical sector size */
311 if ((pos | size) & target->bt_logical_sectormask) {
312 if (pos == i_size_read(inode))
313 return 0;
314 return -EINVAL;
318 n = mp->m_super->s_maxbytes - pos;
319 if (n <= 0 || size == 0)
320 return 0;
322 if (n < size)
323 size = n;
325 if (XFS_FORCED_SHUTDOWN(mp))
326 return -EIO;
329 * Locking is a bit tricky here. If we take an exclusive lock for direct
330 * IO, we effectively serialise all new concurrent read IO to this file
331 * and block it behind IO that is currently in progress because IO in
332 * progress holds the IO lock shared. We only need to hold the lock
333 * exclusive to blow away the page cache, so only take lock exclusively
334 * if the page cache needs invalidation. This allows the normal direct
335 * IO case of no page cache pages to proceeed concurrently without
336 * serialisation.
338 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
339 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
340 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
341 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
344 * The generic dio code only flushes the range of the particular
345 * I/O. Because we take an exclusive lock here, this whole
346 * sequence is considerably more expensive for us. This has a
347 * noticeable performance impact for any file with cached pages,
348 * even when outside of the range of the particular I/O.
350 * Hence, amortize the cost of the lock against a full file
351 * flush and reduce the chances of repeated iolock cycles going
352 * forward.
354 if (inode->i_mapping->nrpages) {
355 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
356 if (ret) {
357 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
358 return ret;
362 * Invalidate whole pages. This can return an error if
363 * we fail to invalidate a page, but this should never
364 * happen on XFS. Warn if it does fail.
366 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
367 WARN_ON_ONCE(ret);
368 ret = 0;
370 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
373 trace_xfs_file_read(ip, size, pos, ioflags);
375 ret = generic_file_read_iter(iocb, to);
376 if (ret > 0)
377 XFS_STATS_ADD(mp, xs_read_bytes, ret);
379 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
380 return ret;
383 STATIC ssize_t
384 xfs_file_splice_read(
385 struct file *infilp,
386 loff_t *ppos,
387 struct pipe_inode_info *pipe,
388 size_t count,
389 unsigned int flags)
391 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
392 int ioflags = 0;
393 ssize_t ret;
395 XFS_STATS_INC(ip->i_mount, xs_read_calls);
397 if (infilp->f_mode & FMODE_NOCMTIME)
398 ioflags |= XFS_IO_INVIS;
400 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
401 return -EIO;
403 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
406 * DAX inodes cannot ues the page cache for splice, so we have to push
407 * them through the VFS IO path. This means it goes through
408 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
409 * cannot lock the splice operation at this level for DAX inodes.
411 if (IS_DAX(VFS_I(ip))) {
412 ret = default_file_splice_read(infilp, ppos, pipe, count,
413 flags);
414 goto out;
417 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
418 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
419 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
420 out:
421 if (ret > 0)
422 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
423 return ret;
427 * This routine is called to handle zeroing any space in the last block of the
428 * file that is beyond the EOF. We do this since the size is being increased
429 * without writing anything to that block and we don't want to read the
430 * garbage on the disk.
432 STATIC int /* error (positive) */
433 xfs_zero_last_block(
434 struct xfs_inode *ip,
435 xfs_fsize_t offset,
436 xfs_fsize_t isize,
437 bool *did_zeroing)
439 struct xfs_mount *mp = ip->i_mount;
440 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
441 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
442 int zero_len;
443 int nimaps = 1;
444 int error = 0;
445 struct xfs_bmbt_irec imap;
447 xfs_ilock(ip, XFS_ILOCK_EXCL);
448 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
449 xfs_iunlock(ip, XFS_ILOCK_EXCL);
450 if (error)
451 return error;
453 ASSERT(nimaps > 0);
456 * If the block underlying isize is just a hole, then there
457 * is nothing to zero.
459 if (imap.br_startblock == HOLESTARTBLOCK)
460 return 0;
462 zero_len = mp->m_sb.sb_blocksize - zero_offset;
463 if (isize + zero_len > offset)
464 zero_len = offset - isize;
465 *did_zeroing = true;
466 return xfs_iozero(ip, isize, zero_len);
470 * Zero any on disk space between the current EOF and the new, larger EOF.
472 * This handles the normal case of zeroing the remainder of the last block in
473 * the file and the unusual case of zeroing blocks out beyond the size of the
474 * file. This second case only happens with fixed size extents and when the
475 * system crashes before the inode size was updated but after blocks were
476 * allocated.
478 * Expects the iolock to be held exclusive, and will take the ilock internally.
480 int /* error (positive) */
481 xfs_zero_eof(
482 struct xfs_inode *ip,
483 xfs_off_t offset, /* starting I/O offset */
484 xfs_fsize_t isize, /* current inode size */
485 bool *did_zeroing)
487 struct xfs_mount *mp = ip->i_mount;
488 xfs_fileoff_t start_zero_fsb;
489 xfs_fileoff_t end_zero_fsb;
490 xfs_fileoff_t zero_count_fsb;
491 xfs_fileoff_t last_fsb;
492 xfs_fileoff_t zero_off;
493 xfs_fsize_t zero_len;
494 int nimaps;
495 int error = 0;
496 struct xfs_bmbt_irec imap;
498 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
499 ASSERT(offset > isize);
501 trace_xfs_zero_eof(ip, isize, offset - isize);
504 * First handle zeroing the block on which isize resides.
506 * We only zero a part of that block so it is handled specially.
508 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
509 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
510 if (error)
511 return error;
515 * Calculate the range between the new size and the old where blocks
516 * needing to be zeroed may exist.
518 * To get the block where the last byte in the file currently resides,
519 * we need to subtract one from the size and truncate back to a block
520 * boundary. We subtract 1 in case the size is exactly on a block
521 * boundary.
523 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
524 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
525 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
526 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
527 if (last_fsb == end_zero_fsb) {
529 * The size was only incremented on its last block.
530 * We took care of that above, so just return.
532 return 0;
535 ASSERT(start_zero_fsb <= end_zero_fsb);
536 while (start_zero_fsb <= end_zero_fsb) {
537 nimaps = 1;
538 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
540 xfs_ilock(ip, XFS_ILOCK_EXCL);
541 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
542 &imap, &nimaps, 0);
543 xfs_iunlock(ip, XFS_ILOCK_EXCL);
544 if (error)
545 return error;
547 ASSERT(nimaps > 0);
549 if (imap.br_state == XFS_EXT_UNWRITTEN ||
550 imap.br_startblock == HOLESTARTBLOCK) {
551 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
552 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
553 continue;
557 * There are blocks we need to zero.
559 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
560 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
562 if ((zero_off + zero_len) > offset)
563 zero_len = offset - zero_off;
565 error = xfs_iozero(ip, zero_off, zero_len);
566 if (error)
567 return error;
569 *did_zeroing = true;
570 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
571 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
574 return 0;
578 * Common pre-write limit and setup checks.
580 * Called with the iolocked held either shared and exclusive according to
581 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
582 * if called for a direct write beyond i_size.
584 STATIC ssize_t
585 xfs_file_aio_write_checks(
586 struct kiocb *iocb,
587 struct iov_iter *from,
588 int *iolock)
590 struct file *file = iocb->ki_filp;
591 struct inode *inode = file->f_mapping->host;
592 struct xfs_inode *ip = XFS_I(inode);
593 ssize_t error = 0;
594 size_t count = iov_iter_count(from);
595 bool drained_dio = false;
597 restart:
598 error = generic_write_checks(iocb, from);
599 if (error <= 0)
600 return error;
602 error = xfs_break_layouts(inode, iolock, true);
603 if (error)
604 return error;
606 /* For changing security info in file_remove_privs() we need i_mutex */
607 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
608 xfs_rw_iunlock(ip, *iolock);
609 *iolock = XFS_IOLOCK_EXCL;
610 xfs_rw_ilock(ip, *iolock);
611 goto restart;
614 * If the offset is beyond the size of the file, we need to zero any
615 * blocks that fall between the existing EOF and the start of this
616 * write. If zeroing is needed and we are currently holding the
617 * iolock shared, we need to update it to exclusive which implies
618 * having to redo all checks before.
620 * We need to serialise against EOF updates that occur in IO
621 * completions here. We want to make sure that nobody is changing the
622 * size while we do this check until we have placed an IO barrier (i.e.
623 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
624 * The spinlock effectively forms a memory barrier once we have the
625 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
626 * and hence be able to correctly determine if we need to run zeroing.
628 spin_lock(&ip->i_flags_lock);
629 if (iocb->ki_pos > i_size_read(inode)) {
630 bool zero = false;
632 spin_unlock(&ip->i_flags_lock);
633 if (!drained_dio) {
634 if (*iolock == XFS_IOLOCK_SHARED) {
635 xfs_rw_iunlock(ip, *iolock);
636 *iolock = XFS_IOLOCK_EXCL;
637 xfs_rw_ilock(ip, *iolock);
638 iov_iter_reexpand(from, count);
641 * We now have an IO submission barrier in place, but
642 * AIO can do EOF updates during IO completion and hence
643 * we now need to wait for all of them to drain. Non-AIO
644 * DIO will have drained before we are given the
645 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
646 * no-op.
648 inode_dio_wait(inode);
649 drained_dio = true;
650 goto restart;
652 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
653 if (error)
654 return error;
655 } else
656 spin_unlock(&ip->i_flags_lock);
659 * Updating the timestamps will grab the ilock again from
660 * xfs_fs_dirty_inode, so we have to call it after dropping the
661 * lock above. Eventually we should look into a way to avoid
662 * the pointless lock roundtrip.
664 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
665 error = file_update_time(file);
666 if (error)
667 return error;
671 * If we're writing the file then make sure to clear the setuid and
672 * setgid bits if the process is not being run by root. This keeps
673 * people from modifying setuid and setgid binaries.
675 if (!IS_NOSEC(inode))
676 return file_remove_privs(file);
677 return 0;
681 * xfs_file_dio_aio_write - handle direct IO writes
683 * Lock the inode appropriately to prepare for and issue a direct IO write.
684 * By separating it from the buffered write path we remove all the tricky to
685 * follow locking changes and looping.
687 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
688 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
689 * pages are flushed out.
691 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
692 * allowing them to be done in parallel with reads and other direct IO writes.
693 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
694 * needs to do sub-block zeroing and that requires serialisation against other
695 * direct IOs to the same block. In this case we need to serialise the
696 * submission of the unaligned IOs so that we don't get racing block zeroing in
697 * the dio layer. To avoid the problem with aio, we also need to wait for
698 * outstanding IOs to complete so that unwritten extent conversion is completed
699 * before we try to map the overlapping block. This is currently implemented by
700 * hitting it with a big hammer (i.e. inode_dio_wait()).
702 * Returns with locks held indicated by @iolock and errors indicated by
703 * negative return values.
705 STATIC ssize_t
706 xfs_file_dio_aio_write(
707 struct kiocb *iocb,
708 struct iov_iter *from)
710 struct file *file = iocb->ki_filp;
711 struct address_space *mapping = file->f_mapping;
712 struct inode *inode = mapping->host;
713 struct xfs_inode *ip = XFS_I(inode);
714 struct xfs_mount *mp = ip->i_mount;
715 ssize_t ret = 0;
716 int unaligned_io = 0;
717 int iolock;
718 size_t count = iov_iter_count(from);
719 loff_t end;
720 struct iov_iter data;
721 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
722 mp->m_rtdev_targp : mp->m_ddev_targp;
724 /* DIO must be aligned to device logical sector size */
725 if (!IS_DAX(inode) &&
726 ((iocb->ki_pos | count) & target->bt_logical_sectormask))
727 return -EINVAL;
729 /* "unaligned" here means not aligned to a filesystem block */
730 if ((iocb->ki_pos & mp->m_blockmask) ||
731 ((iocb->ki_pos + count) & mp->m_blockmask))
732 unaligned_io = 1;
735 * We don't need to take an exclusive lock unless there page cache needs
736 * to be invalidated or unaligned IO is being executed. We don't need to
737 * consider the EOF extension case here because
738 * xfs_file_aio_write_checks() will relock the inode as necessary for
739 * EOF zeroing cases and fill out the new inode size as appropriate.
741 if (unaligned_io || mapping->nrpages)
742 iolock = XFS_IOLOCK_EXCL;
743 else
744 iolock = XFS_IOLOCK_SHARED;
745 xfs_rw_ilock(ip, iolock);
748 * Recheck if there are cached pages that need invalidate after we got
749 * the iolock to protect against other threads adding new pages while
750 * we were waiting for the iolock.
752 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
753 xfs_rw_iunlock(ip, iolock);
754 iolock = XFS_IOLOCK_EXCL;
755 xfs_rw_ilock(ip, iolock);
758 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
759 if (ret)
760 goto out;
761 count = iov_iter_count(from);
762 end = iocb->ki_pos + count - 1;
765 * See xfs_file_read_iter() for why we do a full-file flush here.
767 if (mapping->nrpages) {
768 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
769 if (ret)
770 goto out;
772 * Invalidate whole pages. This can return an error if we fail
773 * to invalidate a page, but this should never happen on XFS.
774 * Warn if it does fail.
776 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
777 WARN_ON_ONCE(ret);
778 ret = 0;
782 * If we are doing unaligned IO, wait for all other IO to drain,
783 * otherwise demote the lock if we had to flush cached pages
785 if (unaligned_io)
786 inode_dio_wait(inode);
787 else if (iolock == XFS_IOLOCK_EXCL) {
788 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
789 iolock = XFS_IOLOCK_SHARED;
792 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
794 data = *from;
795 ret = mapping->a_ops->direct_IO(iocb, &data);
797 /* see generic_file_direct_write() for why this is necessary */
798 if (mapping->nrpages) {
799 invalidate_inode_pages2_range(mapping,
800 iocb->ki_pos >> PAGE_SHIFT,
801 end >> PAGE_SHIFT);
804 if (ret > 0) {
805 iocb->ki_pos += ret;
806 iov_iter_advance(from, ret);
808 out:
809 xfs_rw_iunlock(ip, iolock);
812 * No fallback to buffered IO on errors for XFS. DAX can result in
813 * partial writes, but direct IO will either complete fully or fail.
815 ASSERT(ret < 0 || ret == count || IS_DAX(VFS_I(ip)));
816 return ret;
819 STATIC ssize_t
820 xfs_file_buffered_aio_write(
821 struct kiocb *iocb,
822 struct iov_iter *from)
824 struct file *file = iocb->ki_filp;
825 struct address_space *mapping = file->f_mapping;
826 struct inode *inode = mapping->host;
827 struct xfs_inode *ip = XFS_I(inode);
828 ssize_t ret;
829 int enospc = 0;
830 int iolock = XFS_IOLOCK_EXCL;
832 xfs_rw_ilock(ip, iolock);
834 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
835 if (ret)
836 goto out;
838 /* We can write back this queue in page reclaim */
839 current->backing_dev_info = inode_to_bdi(inode);
841 write_retry:
842 trace_xfs_file_buffered_write(ip, iov_iter_count(from),
843 iocb->ki_pos, 0);
844 ret = generic_perform_write(file, from, iocb->ki_pos);
845 if (likely(ret >= 0))
846 iocb->ki_pos += ret;
849 * If we hit a space limit, try to free up some lingering preallocated
850 * space before returning an error. In the case of ENOSPC, first try to
851 * write back all dirty inodes to free up some of the excess reserved
852 * metadata space. This reduces the chances that the eofblocks scan
853 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
854 * also behaves as a filter to prevent too many eofblocks scans from
855 * running at the same time.
857 if (ret == -EDQUOT && !enospc) {
858 enospc = xfs_inode_free_quota_eofblocks(ip);
859 if (enospc)
860 goto write_retry;
861 } else if (ret == -ENOSPC && !enospc) {
862 struct xfs_eofblocks eofb = {0};
864 enospc = 1;
865 xfs_flush_inodes(ip->i_mount);
866 eofb.eof_scan_owner = ip->i_ino; /* for locking */
867 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
868 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
869 goto write_retry;
872 current->backing_dev_info = NULL;
873 out:
874 xfs_rw_iunlock(ip, iolock);
875 return ret;
878 STATIC ssize_t
879 xfs_file_write_iter(
880 struct kiocb *iocb,
881 struct iov_iter *from)
883 struct file *file = iocb->ki_filp;
884 struct address_space *mapping = file->f_mapping;
885 struct inode *inode = mapping->host;
886 struct xfs_inode *ip = XFS_I(inode);
887 ssize_t ret;
888 size_t ocount = iov_iter_count(from);
890 XFS_STATS_INC(ip->i_mount, xs_write_calls);
892 if (ocount == 0)
893 return 0;
895 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
896 return -EIO;
898 if ((iocb->ki_flags & IOCB_DIRECT) || IS_DAX(inode))
899 ret = xfs_file_dio_aio_write(iocb, from);
900 else
901 ret = xfs_file_buffered_aio_write(iocb, from);
903 if (ret > 0) {
904 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
906 /* Handle various SYNC-type writes */
907 ret = generic_write_sync(iocb, ret);
909 return ret;
912 #define XFS_FALLOC_FL_SUPPORTED \
913 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
914 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
915 FALLOC_FL_INSERT_RANGE)
917 STATIC long
918 xfs_file_fallocate(
919 struct file *file,
920 int mode,
921 loff_t offset,
922 loff_t len)
924 struct inode *inode = file_inode(file);
925 struct xfs_inode *ip = XFS_I(inode);
926 long error;
927 enum xfs_prealloc_flags flags = 0;
928 uint iolock = XFS_IOLOCK_EXCL;
929 loff_t new_size = 0;
930 bool do_file_insert = 0;
932 if (!S_ISREG(inode->i_mode))
933 return -EINVAL;
934 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
935 return -EOPNOTSUPP;
937 xfs_ilock(ip, iolock);
938 error = xfs_break_layouts(inode, &iolock, false);
939 if (error)
940 goto out_unlock;
942 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
943 iolock |= XFS_MMAPLOCK_EXCL;
945 if (mode & FALLOC_FL_PUNCH_HOLE) {
946 error = xfs_free_file_space(ip, offset, len);
947 if (error)
948 goto out_unlock;
949 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
950 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
952 if (offset & blksize_mask || len & blksize_mask) {
953 error = -EINVAL;
954 goto out_unlock;
958 * There is no need to overlap collapse range with EOF,
959 * in which case it is effectively a truncate operation
961 if (offset + len >= i_size_read(inode)) {
962 error = -EINVAL;
963 goto out_unlock;
966 new_size = i_size_read(inode) - len;
968 error = xfs_collapse_file_space(ip, offset, len);
969 if (error)
970 goto out_unlock;
971 } else if (mode & FALLOC_FL_INSERT_RANGE) {
972 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
974 new_size = i_size_read(inode) + len;
975 if (offset & blksize_mask || len & blksize_mask) {
976 error = -EINVAL;
977 goto out_unlock;
980 /* check the new inode size does not wrap through zero */
981 if (new_size > inode->i_sb->s_maxbytes) {
982 error = -EFBIG;
983 goto out_unlock;
986 /* Offset should be less than i_size */
987 if (offset >= i_size_read(inode)) {
988 error = -EINVAL;
989 goto out_unlock;
991 do_file_insert = 1;
992 } else {
993 flags |= XFS_PREALLOC_SET;
995 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
996 offset + len > i_size_read(inode)) {
997 new_size = offset + len;
998 error = inode_newsize_ok(inode, new_size);
999 if (error)
1000 goto out_unlock;
1003 if (mode & FALLOC_FL_ZERO_RANGE)
1004 error = xfs_zero_file_space(ip, offset, len);
1005 else
1006 error = xfs_alloc_file_space(ip, offset, len,
1007 XFS_BMAPI_PREALLOC);
1008 if (error)
1009 goto out_unlock;
1012 if (file->f_flags & O_DSYNC)
1013 flags |= XFS_PREALLOC_SYNC;
1015 error = xfs_update_prealloc_flags(ip, flags);
1016 if (error)
1017 goto out_unlock;
1019 /* Change file size if needed */
1020 if (new_size) {
1021 struct iattr iattr;
1023 iattr.ia_valid = ATTR_SIZE;
1024 iattr.ia_size = new_size;
1025 error = xfs_setattr_size(ip, &iattr);
1026 if (error)
1027 goto out_unlock;
1031 * Perform hole insertion now that the file size has been
1032 * updated so that if we crash during the operation we don't
1033 * leave shifted extents past EOF and hence losing access to
1034 * the data that is contained within them.
1036 if (do_file_insert)
1037 error = xfs_insert_file_space(ip, offset, len);
1039 out_unlock:
1040 xfs_iunlock(ip, iolock);
1041 return error;
1045 STATIC int
1046 xfs_file_open(
1047 struct inode *inode,
1048 struct file *file)
1050 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1051 return -EFBIG;
1052 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1053 return -EIO;
1054 return 0;
1057 STATIC int
1058 xfs_dir_open(
1059 struct inode *inode,
1060 struct file *file)
1062 struct xfs_inode *ip = XFS_I(inode);
1063 int mode;
1064 int error;
1066 error = xfs_file_open(inode, file);
1067 if (error)
1068 return error;
1071 * If there are any blocks, read-ahead block 0 as we're almost
1072 * certain to have the next operation be a read there.
1074 mode = xfs_ilock_data_map_shared(ip);
1075 if (ip->i_d.di_nextents > 0)
1076 xfs_dir3_data_readahead(ip, 0, -1);
1077 xfs_iunlock(ip, mode);
1078 return 0;
1081 STATIC int
1082 xfs_file_release(
1083 struct inode *inode,
1084 struct file *filp)
1086 return xfs_release(XFS_I(inode));
1089 STATIC int
1090 xfs_file_readdir(
1091 struct file *file,
1092 struct dir_context *ctx)
1094 struct inode *inode = file_inode(file);
1095 xfs_inode_t *ip = XFS_I(inode);
1096 size_t bufsize;
1099 * The Linux API doesn't pass down the total size of the buffer
1100 * we read into down to the filesystem. With the filldir concept
1101 * it's not needed for correct information, but the XFS dir2 leaf
1102 * code wants an estimate of the buffer size to calculate it's
1103 * readahead window and size the buffers used for mapping to
1104 * physical blocks.
1106 * Try to give it an estimate that's good enough, maybe at some
1107 * point we can change the ->readdir prototype to include the
1108 * buffer size. For now we use the current glibc buffer size.
1110 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1112 return xfs_readdir(ip, ctx, bufsize);
1116 * This type is designed to indicate the type of offset we would like
1117 * to search from page cache for xfs_seek_hole_data().
1119 enum {
1120 HOLE_OFF = 0,
1121 DATA_OFF,
1125 * Lookup the desired type of offset from the given page.
1127 * On success, return true and the offset argument will point to the
1128 * start of the region that was found. Otherwise this function will
1129 * return false and keep the offset argument unchanged.
1131 STATIC bool
1132 xfs_lookup_buffer_offset(
1133 struct page *page,
1134 loff_t *offset,
1135 unsigned int type)
1137 loff_t lastoff = page_offset(page);
1138 bool found = false;
1139 struct buffer_head *bh, *head;
1141 bh = head = page_buffers(page);
1142 do {
1144 * Unwritten extents that have data in the page
1145 * cache covering them can be identified by the
1146 * BH_Unwritten state flag. Pages with multiple
1147 * buffers might have a mix of holes, data and
1148 * unwritten extents - any buffer with valid
1149 * data in it should have BH_Uptodate flag set
1150 * on it.
1152 if (buffer_unwritten(bh) ||
1153 buffer_uptodate(bh)) {
1154 if (type == DATA_OFF)
1155 found = true;
1156 } else {
1157 if (type == HOLE_OFF)
1158 found = true;
1161 if (found) {
1162 *offset = lastoff;
1163 break;
1165 lastoff += bh->b_size;
1166 } while ((bh = bh->b_this_page) != head);
1168 return found;
1172 * This routine is called to find out and return a data or hole offset
1173 * from the page cache for unwritten extents according to the desired
1174 * type for xfs_seek_hole_data().
1176 * The argument offset is used to tell where we start to search from the
1177 * page cache. Map is used to figure out the end points of the range to
1178 * lookup pages.
1180 * Return true if the desired type of offset was found, and the argument
1181 * offset is filled with that address. Otherwise, return false and keep
1182 * offset unchanged.
1184 STATIC bool
1185 xfs_find_get_desired_pgoff(
1186 struct inode *inode,
1187 struct xfs_bmbt_irec *map,
1188 unsigned int type,
1189 loff_t *offset)
1191 struct xfs_inode *ip = XFS_I(inode);
1192 struct xfs_mount *mp = ip->i_mount;
1193 struct pagevec pvec;
1194 pgoff_t index;
1195 pgoff_t end;
1196 loff_t endoff;
1197 loff_t startoff = *offset;
1198 loff_t lastoff = startoff;
1199 bool found = false;
1201 pagevec_init(&pvec, 0);
1203 index = startoff >> PAGE_SHIFT;
1204 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1205 end = endoff >> PAGE_SHIFT;
1206 do {
1207 int want;
1208 unsigned nr_pages;
1209 unsigned int i;
1211 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1212 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1213 want);
1215 * No page mapped into given range. If we are searching holes
1216 * and if this is the first time we got into the loop, it means
1217 * that the given offset is landed in a hole, return it.
1219 * If we have already stepped through some block buffers to find
1220 * holes but they all contains data. In this case, the last
1221 * offset is already updated and pointed to the end of the last
1222 * mapped page, if it does not reach the endpoint to search,
1223 * that means there should be a hole between them.
1225 if (nr_pages == 0) {
1226 /* Data search found nothing */
1227 if (type == DATA_OFF)
1228 break;
1230 ASSERT(type == HOLE_OFF);
1231 if (lastoff == startoff || lastoff < endoff) {
1232 found = true;
1233 *offset = lastoff;
1235 break;
1239 * At lease we found one page. If this is the first time we
1240 * step into the loop, and if the first page index offset is
1241 * greater than the given search offset, a hole was found.
1243 if (type == HOLE_OFF && lastoff == startoff &&
1244 lastoff < page_offset(pvec.pages[0])) {
1245 found = true;
1246 break;
1249 for (i = 0; i < nr_pages; i++) {
1250 struct page *page = pvec.pages[i];
1251 loff_t b_offset;
1254 * At this point, the page may be truncated or
1255 * invalidated (changing page->mapping to NULL),
1256 * or even swizzled back from swapper_space to tmpfs
1257 * file mapping. However, page->index will not change
1258 * because we have a reference on the page.
1260 * Searching done if the page index is out of range.
1261 * If the current offset is not reaches the end of
1262 * the specified search range, there should be a hole
1263 * between them.
1265 if (page->index > end) {
1266 if (type == HOLE_OFF && lastoff < endoff) {
1267 *offset = lastoff;
1268 found = true;
1270 goto out;
1273 lock_page(page);
1275 * Page truncated or invalidated(page->mapping == NULL).
1276 * We can freely skip it and proceed to check the next
1277 * page.
1279 if (unlikely(page->mapping != inode->i_mapping)) {
1280 unlock_page(page);
1281 continue;
1284 if (!page_has_buffers(page)) {
1285 unlock_page(page);
1286 continue;
1289 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1290 if (found) {
1292 * The found offset may be less than the start
1293 * point to search if this is the first time to
1294 * come here.
1296 *offset = max_t(loff_t, startoff, b_offset);
1297 unlock_page(page);
1298 goto out;
1302 * We either searching data but nothing was found, or
1303 * searching hole but found a data buffer. In either
1304 * case, probably the next page contains the desired
1305 * things, update the last offset to it so.
1307 lastoff = page_offset(page) + PAGE_SIZE;
1308 unlock_page(page);
1312 * The number of returned pages less than our desired, search
1313 * done. In this case, nothing was found for searching data,
1314 * but we found a hole behind the last offset.
1316 if (nr_pages < want) {
1317 if (type == HOLE_OFF) {
1318 *offset = lastoff;
1319 found = true;
1321 break;
1324 index = pvec.pages[i - 1]->index + 1;
1325 pagevec_release(&pvec);
1326 } while (index <= end);
1328 out:
1329 pagevec_release(&pvec);
1330 return found;
1334 * caller must lock inode with xfs_ilock_data_map_shared,
1335 * can we craft an appropriate ASSERT?
1337 * end is because the VFS-level lseek interface is defined such that any
1338 * offset past i_size shall return -ENXIO, but we use this for quota code
1339 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1341 loff_t
1342 __xfs_seek_hole_data(
1343 struct inode *inode,
1344 loff_t start,
1345 loff_t end,
1346 int whence)
1348 struct xfs_inode *ip = XFS_I(inode);
1349 struct xfs_mount *mp = ip->i_mount;
1350 loff_t uninitialized_var(offset);
1351 xfs_fileoff_t fsbno;
1352 xfs_filblks_t lastbno;
1353 int error;
1355 if (start >= end) {
1356 error = -ENXIO;
1357 goto out_error;
1361 * Try to read extents from the first block indicated
1362 * by fsbno to the end block of the file.
1364 fsbno = XFS_B_TO_FSBT(mp, start);
1365 lastbno = XFS_B_TO_FSB(mp, end);
1367 for (;;) {
1368 struct xfs_bmbt_irec map[2];
1369 int nmap = 2;
1370 unsigned int i;
1372 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
1373 XFS_BMAPI_ENTIRE);
1374 if (error)
1375 goto out_error;
1377 /* No extents at given offset, must be beyond EOF */
1378 if (nmap == 0) {
1379 error = -ENXIO;
1380 goto out_error;
1383 for (i = 0; i < nmap; i++) {
1384 offset = max_t(loff_t, start,
1385 XFS_FSB_TO_B(mp, map[i].br_startoff));
1387 /* Landed in the hole we wanted? */
1388 if (whence == SEEK_HOLE &&
1389 map[i].br_startblock == HOLESTARTBLOCK)
1390 goto out;
1392 /* Landed in the data extent we wanted? */
1393 if (whence == SEEK_DATA &&
1394 (map[i].br_startblock == DELAYSTARTBLOCK ||
1395 (map[i].br_state == XFS_EXT_NORM &&
1396 !isnullstartblock(map[i].br_startblock))))
1397 goto out;
1400 * Landed in an unwritten extent, try to search
1401 * for hole or data from page cache.
1403 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1404 if (xfs_find_get_desired_pgoff(inode, &map[i],
1405 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1406 &offset))
1407 goto out;
1412 * We only received one extent out of the two requested. This
1413 * means we've hit EOF and didn't find what we are looking for.
1415 if (nmap == 1) {
1417 * If we were looking for a hole, set offset to
1418 * the end of the file (i.e., there is an implicit
1419 * hole at the end of any file).
1421 if (whence == SEEK_HOLE) {
1422 offset = end;
1423 break;
1426 * If we were looking for data, it's nowhere to be found
1428 ASSERT(whence == SEEK_DATA);
1429 error = -ENXIO;
1430 goto out_error;
1433 ASSERT(i > 1);
1436 * Nothing was found, proceed to the next round of search
1437 * if the next reading offset is not at or beyond EOF.
1439 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1440 start = XFS_FSB_TO_B(mp, fsbno);
1441 if (start >= end) {
1442 if (whence == SEEK_HOLE) {
1443 offset = end;
1444 break;
1446 ASSERT(whence == SEEK_DATA);
1447 error = -ENXIO;
1448 goto out_error;
1452 out:
1454 * If at this point we have found the hole we wanted, the returned
1455 * offset may be bigger than the file size as it may be aligned to
1456 * page boundary for unwritten extents. We need to deal with this
1457 * situation in particular.
1459 if (whence == SEEK_HOLE)
1460 offset = min_t(loff_t, offset, end);
1462 return offset;
1464 out_error:
1465 return error;
1468 STATIC loff_t
1469 xfs_seek_hole_data(
1470 struct file *file,
1471 loff_t start,
1472 int whence)
1474 struct inode *inode = file->f_mapping->host;
1475 struct xfs_inode *ip = XFS_I(inode);
1476 struct xfs_mount *mp = ip->i_mount;
1477 uint lock;
1478 loff_t offset, end;
1479 int error = 0;
1481 if (XFS_FORCED_SHUTDOWN(mp))
1482 return -EIO;
1484 lock = xfs_ilock_data_map_shared(ip);
1486 end = i_size_read(inode);
1487 offset = __xfs_seek_hole_data(inode, start, end, whence);
1488 if (offset < 0) {
1489 error = offset;
1490 goto out_unlock;
1493 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1495 out_unlock:
1496 xfs_iunlock(ip, lock);
1498 if (error)
1499 return error;
1500 return offset;
1503 STATIC loff_t
1504 xfs_file_llseek(
1505 struct file *file,
1506 loff_t offset,
1507 int whence)
1509 switch (whence) {
1510 case SEEK_END:
1511 case SEEK_CUR:
1512 case SEEK_SET:
1513 return generic_file_llseek(file, offset, whence);
1514 case SEEK_HOLE:
1515 case SEEK_DATA:
1516 return xfs_seek_hole_data(file, offset, whence);
1517 default:
1518 return -EINVAL;
1523 * Locking for serialisation of IO during page faults. This results in a lock
1524 * ordering of:
1526 * mmap_sem (MM)
1527 * sb_start_pagefault(vfs, freeze)
1528 * i_mmaplock (XFS - truncate serialisation)
1529 * page_lock (MM)
1530 * i_lock (XFS - extent map serialisation)
1534 * mmap()d file has taken write protection fault and is being made writable. We
1535 * can set the page state up correctly for a writable page, which means we can
1536 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1537 * mapping.
1539 STATIC int
1540 xfs_filemap_page_mkwrite(
1541 struct vm_area_struct *vma,
1542 struct vm_fault *vmf)
1544 struct inode *inode = file_inode(vma->vm_file);
1545 int ret;
1547 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
1549 sb_start_pagefault(inode->i_sb);
1550 file_update_time(vma->vm_file);
1551 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1553 if (IS_DAX(inode)) {
1554 ret = __dax_mkwrite(vma, vmf, xfs_get_blocks_dax_fault);
1555 } else {
1556 ret = block_page_mkwrite(vma, vmf, xfs_get_blocks);
1557 ret = block_page_mkwrite_return(ret);
1560 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1561 sb_end_pagefault(inode->i_sb);
1563 return ret;
1566 STATIC int
1567 xfs_filemap_fault(
1568 struct vm_area_struct *vma,
1569 struct vm_fault *vmf)
1571 struct inode *inode = file_inode(vma->vm_file);
1572 int ret;
1574 trace_xfs_filemap_fault(XFS_I(inode));
1576 /* DAX can shortcut the normal fault path on write faults! */
1577 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
1578 return xfs_filemap_page_mkwrite(vma, vmf);
1580 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1581 if (IS_DAX(inode)) {
1583 * we do not want to trigger unwritten extent conversion on read
1584 * faults - that is unnecessary overhead and would also require
1585 * changes to xfs_get_blocks_direct() to map unwritten extent
1586 * ioend for conversion on read-only mappings.
1588 ret = __dax_fault(vma, vmf, xfs_get_blocks_dax_fault);
1589 } else
1590 ret = filemap_fault(vma, vmf);
1591 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1593 return ret;
1597 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1598 * both read and write faults. Hence we need to handle both cases. There is no
1599 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1600 * handle both cases here. @flags carries the information on the type of fault
1601 * occuring.
1603 STATIC int
1604 xfs_filemap_pmd_fault(
1605 struct vm_area_struct *vma,
1606 unsigned long addr,
1607 pmd_t *pmd,
1608 unsigned int flags)
1610 struct inode *inode = file_inode(vma->vm_file);
1611 struct xfs_inode *ip = XFS_I(inode);
1612 int ret;
1614 if (!IS_DAX(inode))
1615 return VM_FAULT_FALLBACK;
1617 trace_xfs_filemap_pmd_fault(ip);
1619 if (flags & FAULT_FLAG_WRITE) {
1620 sb_start_pagefault(inode->i_sb);
1621 file_update_time(vma->vm_file);
1624 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1625 ret = __dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
1626 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1628 if (flags & FAULT_FLAG_WRITE)
1629 sb_end_pagefault(inode->i_sb);
1631 return ret;
1635 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1636 * updates on write faults. In reality, it's need to serialise against
1637 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1638 * to ensure we serialise the fault barrier in place.
1640 static int
1641 xfs_filemap_pfn_mkwrite(
1642 struct vm_area_struct *vma,
1643 struct vm_fault *vmf)
1646 struct inode *inode = file_inode(vma->vm_file);
1647 struct xfs_inode *ip = XFS_I(inode);
1648 int ret = VM_FAULT_NOPAGE;
1649 loff_t size;
1651 trace_xfs_filemap_pfn_mkwrite(ip);
1653 sb_start_pagefault(inode->i_sb);
1654 file_update_time(vma->vm_file);
1656 /* check if the faulting page hasn't raced with truncate */
1657 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1658 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1659 if (vmf->pgoff >= size)
1660 ret = VM_FAULT_SIGBUS;
1661 else if (IS_DAX(inode))
1662 ret = dax_pfn_mkwrite(vma, vmf);
1663 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1664 sb_end_pagefault(inode->i_sb);
1665 return ret;
1669 static const struct vm_operations_struct xfs_file_vm_ops = {
1670 .fault = xfs_filemap_fault,
1671 .pmd_fault = xfs_filemap_pmd_fault,
1672 .map_pages = filemap_map_pages,
1673 .page_mkwrite = xfs_filemap_page_mkwrite,
1674 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1677 STATIC int
1678 xfs_file_mmap(
1679 struct file *filp,
1680 struct vm_area_struct *vma)
1682 file_accessed(filp);
1683 vma->vm_ops = &xfs_file_vm_ops;
1684 if (IS_DAX(file_inode(filp)))
1685 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1686 return 0;
1689 const struct file_operations xfs_file_operations = {
1690 .llseek = xfs_file_llseek,
1691 .read_iter = xfs_file_read_iter,
1692 .write_iter = xfs_file_write_iter,
1693 .splice_read = xfs_file_splice_read,
1694 .splice_write = iter_file_splice_write,
1695 .unlocked_ioctl = xfs_file_ioctl,
1696 #ifdef CONFIG_COMPAT
1697 .compat_ioctl = xfs_file_compat_ioctl,
1698 #endif
1699 .mmap = xfs_file_mmap,
1700 .open = xfs_file_open,
1701 .release = xfs_file_release,
1702 .fsync = xfs_file_fsync,
1703 .fallocate = xfs_file_fallocate,
1706 const struct file_operations xfs_dir_file_operations = {
1707 .open = xfs_dir_open,
1708 .read = generic_read_dir,
1709 .iterate_shared = xfs_file_readdir,
1710 .llseek = generic_file_llseek,
1711 .unlocked_ioctl = xfs_file_ioctl,
1712 #ifdef CONFIG_COMPAT
1713 .compat_ioctl = xfs_file_compat_ioctl,
1714 #endif
1715 .fsync = xfs_dir_fsync,