Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blobee6799e0476f397b0aba305fee9f7cddef188b8e
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_inode.h"
29 #include "xfs_da_format.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_dir2.h"
32 #include "xfs_attr_sf.h"
33 #include "xfs_attr.h"
34 #include "xfs_trans_space.h"
35 #include "xfs_trans.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_inode_item.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_bmap_util.h"
41 #include "xfs_error.h"
42 #include "xfs_quota.h"
43 #include "xfs_filestream.h"
44 #include "xfs_cksum.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_symlink.h"
48 #include "xfs_trans_priv.h"
49 #include "xfs_log.h"
50 #include "xfs_bmap_btree.h"
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
61 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
62 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
65 * helper function to extract extent size hint from inode
67 xfs_extlen_t
68 xfs_get_extsz_hint(
69 struct xfs_inode *ip)
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
93 uint
94 xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
97 uint lock_mode = XFS_ILOCK_SHARED;
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101 lock_mode = XFS_ILOCK_EXCL;
102 xfs_ilock(ip, lock_mode);
103 return lock_mode;
106 uint
107 xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
110 uint lock_mode = XFS_ILOCK_SHARED;
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
127 * Basic locking order:
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
131 * mmap_sem locking order:
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
149 void
150 xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
198 xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
235 goto out_undo_mmaplock;
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
238 goto out_undo_mmaplock;
240 return 1;
242 out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247 out_undo_iolock:
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
252 out:
253 return 0;
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
268 void
269 xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
285 ASSERT(lock_flags != 0);
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
309 void
310 xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
328 #if defined(DEBUG) || defined(XFS_WARN)
330 xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
352 ASSERT(0);
353 return 0;
355 #endif
357 #ifdef DEBUG
358 int xfs_locked_n;
359 int xfs_small_retries;
360 int xfs_middle_retries;
361 int xfs_lots_retries;
362 int xfs_lock_delays;
363 #endif
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
371 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
372 static bool
373 xfs_lockdep_subclass_ok(
374 int subclass)
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
378 #else
379 #define xfs_lockdep_subclass_ok(subclass) (true)
380 #endif
383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
388 static inline int
389 xfs_lock_inumorder(int lock_mode, int subclass)
391 int class = 0;
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
395 ASSERT(xfs_lockdep_subclass_ok(subclass));
397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
434 void
435 xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
450 ASSERT(ips && inodes >= 2 && inodes <= 5);
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
467 try_lock = 0;
468 i = 0;
469 again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
474 continue;
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
484 try_lock++;
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
518 xfs_iunlock(ips[j], lock_mode);
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
523 #ifdef DEBUG
524 xfs_lock_delays++;
525 #endif
527 i = 0;
528 try_lock = 0;
529 goto again;
532 #ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
540 #endif
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
549 void
550 xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 ASSERT(ip0->i_ino != ip1->i_ino);
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
595 void
596 __xfs_iflock(
597 struct xfs_inode *ip)
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
608 finish_wait(wq, &wait.wait);
611 STATIC uint
612 _xfs_dic2xflags(
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
617 uint flags = 0;
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
621 flags |= FS_XFLAG_REALTIME;
622 if (di_flags & XFS_DIFLAG_PREALLOC)
623 flags |= FS_XFLAG_PREALLOC;
624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
625 flags |= FS_XFLAG_IMMUTABLE;
626 if (di_flags & XFS_DIFLAG_APPEND)
627 flags |= FS_XFLAG_APPEND;
628 if (di_flags & XFS_DIFLAG_SYNC)
629 flags |= FS_XFLAG_SYNC;
630 if (di_flags & XFS_DIFLAG_NOATIME)
631 flags |= FS_XFLAG_NOATIME;
632 if (di_flags & XFS_DIFLAG_NODUMP)
633 flags |= FS_XFLAG_NODUMP;
634 if (di_flags & XFS_DIFLAG_RTINHERIT)
635 flags |= FS_XFLAG_RTINHERIT;
636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
637 flags |= FS_XFLAG_PROJINHERIT;
638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
639 flags |= FS_XFLAG_NOSYMLINKS;
640 if (di_flags & XFS_DIFLAG_EXTSIZE)
641 flags |= FS_XFLAG_EXTSIZE;
642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
643 flags |= FS_XFLAG_EXTSZINHERIT;
644 if (di_flags & XFS_DIFLAG_NODEFRAG)
645 flags |= FS_XFLAG_NODEFRAG;
646 if (di_flags & XFS_DIFLAG_FILESTREAM)
647 flags |= FS_XFLAG_FILESTREAM;
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
658 return flags;
661 uint
662 xfs_ip2xflags(
663 struct xfs_inode *ip)
665 struct xfs_icdinode *dic = &ip->i_d;
667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
670 uint
671 xfs_dic2xflags(
672 struct xfs_dinode *dip)
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
685 xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
691 xfs_ino_t inum;
692 int error;
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 return -EIO;
699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
701 if (error)
702 goto out_unlock;
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
709 return 0;
711 out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
714 out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
716 *ipp = NULL;
717 return error;
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
752 xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
755 umode_t mode,
756 xfs_nlink_t nlink,
757 xfs_dev_t rdev,
758 prid_t prid,
759 int okalloc,
760 xfs_buf_t **ialloc_context,
761 xfs_inode_t **ipp)
763 struct xfs_mount *mp = tp->t_mountp;
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
766 uint flags;
767 int error;
768 struct timespec tv;
769 struct inode *inode;
772 * Call the space management code to pick
773 * the on-disk inode to be allocated.
775 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
776 ialloc_context, &ino);
777 if (error)
778 return error;
779 if (*ialloc_context || ino == NULLFSINO) {
780 *ipp = NULL;
781 return 0;
783 ASSERT(*ialloc_context == NULL);
786 * Get the in-core inode with the lock held exclusively.
787 * This is because we're setting fields here we need
788 * to prevent others from looking at until we're done.
790 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
791 XFS_ILOCK_EXCL, &ip);
792 if (error)
793 return error;
794 ASSERT(ip != NULL);
795 inode = VFS_I(ip);
798 * We always convert v1 inodes to v2 now - we only support filesystems
799 * with >= v2 inode capability, so there is no reason for ever leaving
800 * an inode in v1 format.
802 if (ip->i_d.di_version == 1)
803 ip->i_d.di_version = 2;
805 inode->i_mode = mode;
806 set_nlink(inode, nlink);
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
809 xfs_set_projid(ip, prid);
811 if (pip && XFS_INHERIT_GID(pip)) {
812 ip->i_d.di_gid = pip->i_d.di_gid;
813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 inode->i_mode |= S_ISGID;
818 * If the group ID of the new file does not match the effective group
819 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
820 * (and only if the irix_sgid_inherit compatibility variable is set).
822 if ((irix_sgid_inherit) &&
823 (inode->i_mode & S_ISGID) &&
824 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
825 inode->i_mode &= ~S_ISGID;
827 ip->i_d.di_size = 0;
828 ip->i_d.di_nextents = 0;
829 ASSERT(ip->i_d.di_nblocks == 0);
831 tv = current_fs_time(mp->m_super);
832 inode->i_mtime = tv;
833 inode->i_atime = tv;
834 inode->i_ctime = tv;
836 ip->i_d.di_extsize = 0;
837 ip->i_d.di_dmevmask = 0;
838 ip->i_d.di_dmstate = 0;
839 ip->i_d.di_flags = 0;
841 if (ip->i_d.di_version == 3) {
842 inode->i_version = 1;
843 ip->i_d.di_flags2 = 0;
844 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
845 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
849 flags = XFS_ILOG_CORE;
850 switch (mode & S_IFMT) {
851 case S_IFIFO:
852 case S_IFCHR:
853 case S_IFBLK:
854 case S_IFSOCK:
855 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
856 ip->i_df.if_u2.if_rdev = rdev;
857 ip->i_df.if_flags = 0;
858 flags |= XFS_ILOG_DEV;
859 break;
860 case S_IFREG:
861 case S_IFDIR:
862 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
863 uint64_t di_flags2 = 0;
864 uint di_flags = 0;
866 if (S_ISDIR(mode)) {
867 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
868 di_flags |= XFS_DIFLAG_RTINHERIT;
869 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
870 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
871 ip->i_d.di_extsize = pip->i_d.di_extsize;
873 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
874 di_flags |= XFS_DIFLAG_PROJINHERIT;
875 } else if (S_ISREG(mode)) {
876 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
877 di_flags |= XFS_DIFLAG_REALTIME;
878 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
879 di_flags |= XFS_DIFLAG_EXTSIZE;
880 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
884 xfs_inherit_noatime)
885 di_flags |= XFS_DIFLAG_NOATIME;
886 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
887 xfs_inherit_nodump)
888 di_flags |= XFS_DIFLAG_NODUMP;
889 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
890 xfs_inherit_sync)
891 di_flags |= XFS_DIFLAG_SYNC;
892 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
893 xfs_inherit_nosymlinks)
894 di_flags |= XFS_DIFLAG_NOSYMLINKS;
895 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
896 xfs_inherit_nodefrag)
897 di_flags |= XFS_DIFLAG_NODEFRAG;
898 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
899 di_flags |= XFS_DIFLAG_FILESTREAM;
900 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
901 di_flags2 |= XFS_DIFLAG2_DAX;
903 ip->i_d.di_flags |= di_flags;
904 ip->i_d.di_flags2 |= di_flags2;
906 /* FALLTHROUGH */
907 case S_IFLNK:
908 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
909 ip->i_df.if_flags = XFS_IFEXTENTS;
910 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
911 ip->i_df.if_u1.if_extents = NULL;
912 break;
913 default:
914 ASSERT(0);
917 * Attribute fork settings for new inode.
919 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
920 ip->i_d.di_anextents = 0;
923 * Log the new values stuffed into the inode.
925 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
926 xfs_trans_log_inode(tp, ip, flags);
928 /* now that we have an i_mode we can setup the inode structure */
929 xfs_setup_inode(ip);
931 *ipp = ip;
932 return 0;
936 * Allocates a new inode from disk and return a pointer to the
937 * incore copy. This routine will internally commit the current
938 * transaction and allocate a new one if the Space Manager needed
939 * to do an allocation to replenish the inode free-list.
941 * This routine is designed to be called from xfs_create and
942 * xfs_create_dir.
946 xfs_dir_ialloc(
947 xfs_trans_t **tpp, /* input: current transaction;
948 output: may be a new transaction. */
949 xfs_inode_t *dp, /* directory within whose allocate
950 the inode. */
951 umode_t mode,
952 xfs_nlink_t nlink,
953 xfs_dev_t rdev,
954 prid_t prid, /* project id */
955 int okalloc, /* ok to allocate new space */
956 xfs_inode_t **ipp, /* pointer to inode; it will be
957 locked. */
958 int *committed)
961 xfs_trans_t *tp;
962 xfs_inode_t *ip;
963 xfs_buf_t *ialloc_context = NULL;
964 int code;
965 void *dqinfo;
966 uint tflags;
968 tp = *tpp;
969 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
972 * xfs_ialloc will return a pointer to an incore inode if
973 * the Space Manager has an available inode on the free
974 * list. Otherwise, it will do an allocation and replenish
975 * the freelist. Since we can only do one allocation per
976 * transaction without deadlocks, we will need to commit the
977 * current transaction and start a new one. We will then
978 * need to call xfs_ialloc again to get the inode.
980 * If xfs_ialloc did an allocation to replenish the freelist,
981 * it returns the bp containing the head of the freelist as
982 * ialloc_context. We will hold a lock on it across the
983 * transaction commit so that no other process can steal
984 * the inode(s) that we've just allocated.
986 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
987 &ialloc_context, &ip);
990 * Return an error if we were unable to allocate a new inode.
991 * This should only happen if we run out of space on disk or
992 * encounter a disk error.
994 if (code) {
995 *ipp = NULL;
996 return code;
998 if (!ialloc_context && !ip) {
999 *ipp = NULL;
1000 return -ENOSPC;
1004 * If the AGI buffer is non-NULL, then we were unable to get an
1005 * inode in one operation. We need to commit the current
1006 * transaction and call xfs_ialloc() again. It is guaranteed
1007 * to succeed the second time.
1009 if (ialloc_context) {
1011 * Normally, xfs_trans_commit releases all the locks.
1012 * We call bhold to hang on to the ialloc_context across
1013 * the commit. Holding this buffer prevents any other
1014 * processes from doing any allocations in this
1015 * allocation group.
1017 xfs_trans_bhold(tp, ialloc_context);
1020 * We want the quota changes to be associated with the next
1021 * transaction, NOT this one. So, detach the dqinfo from this
1022 * and attach it to the next transaction.
1024 dqinfo = NULL;
1025 tflags = 0;
1026 if (tp->t_dqinfo) {
1027 dqinfo = (void *)tp->t_dqinfo;
1028 tp->t_dqinfo = NULL;
1029 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1033 code = xfs_trans_roll(&tp, NULL);
1034 if (committed != NULL)
1035 *committed = 1;
1038 * Re-attach the quota info that we detached from prev trx.
1040 if (dqinfo) {
1041 tp->t_dqinfo = dqinfo;
1042 tp->t_flags |= tflags;
1045 if (code) {
1046 xfs_buf_relse(ialloc_context);
1047 *tpp = tp;
1048 *ipp = NULL;
1049 return code;
1051 xfs_trans_bjoin(tp, ialloc_context);
1054 * Call ialloc again. Since we've locked out all
1055 * other allocations in this allocation group,
1056 * this call should always succeed.
1058 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059 okalloc, &ialloc_context, &ip);
1062 * If we get an error at this point, return to the caller
1063 * so that the current transaction can be aborted.
1065 if (code) {
1066 *tpp = tp;
1067 *ipp = NULL;
1068 return code;
1070 ASSERT(!ialloc_context && ip);
1072 } else {
1073 if (committed != NULL)
1074 *committed = 0;
1077 *ipp = ip;
1078 *tpp = tp;
1080 return 0;
1084 * Decrement the link count on an inode & log the change. If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1088 int /* error */
1089 xfs_droplink(
1090 xfs_trans_t *tp,
1091 xfs_inode_t *ip)
1093 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1095 drop_nlink(VFS_I(ip));
1096 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1098 if (VFS_I(ip)->i_nlink)
1099 return 0;
1101 return xfs_iunlink(tp, ip);
1105 * Increment the link count on an inode & log the change.
1108 xfs_bumplink(
1109 xfs_trans_t *tp,
1110 xfs_inode_t *ip)
1112 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1114 ASSERT(ip->i_d.di_version > 1);
1115 inc_nlink(VFS_I(ip));
1116 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117 return 0;
1121 xfs_create(
1122 xfs_inode_t *dp,
1123 struct xfs_name *name,
1124 umode_t mode,
1125 xfs_dev_t rdev,
1126 xfs_inode_t **ipp)
1128 int is_dir = S_ISDIR(mode);
1129 struct xfs_mount *mp = dp->i_mount;
1130 struct xfs_inode *ip = NULL;
1131 struct xfs_trans *tp = NULL;
1132 int error;
1133 xfs_bmap_free_t free_list;
1134 xfs_fsblock_t first_block;
1135 bool unlock_dp_on_error = false;
1136 prid_t prid;
1137 struct xfs_dquot *udqp = NULL;
1138 struct xfs_dquot *gdqp = NULL;
1139 struct xfs_dquot *pdqp = NULL;
1140 struct xfs_trans_res *tres;
1141 uint resblks;
1143 trace_xfs_create(dp, name);
1145 if (XFS_FORCED_SHUTDOWN(mp))
1146 return -EIO;
1148 prid = xfs_get_initial_prid(dp);
1151 * Make sure that we have allocated dquot(s) on disk.
1153 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154 xfs_kgid_to_gid(current_fsgid()), prid,
1155 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156 &udqp, &gdqp, &pdqp);
1157 if (error)
1158 return error;
1160 if (is_dir) {
1161 rdev = 0;
1162 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163 tres = &M_RES(mp)->tr_mkdir;
1164 } else {
1165 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1166 tres = &M_RES(mp)->tr_create;
1170 * Initially assume that the file does not exist and
1171 * reserve the resources for that case. If that is not
1172 * the case we'll drop the one we have and get a more
1173 * appropriate transaction later.
1175 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1176 if (error == -ENOSPC) {
1177 /* flush outstanding delalloc blocks and retry */
1178 xfs_flush_inodes(mp);
1179 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1181 if (error == -ENOSPC) {
1182 /* No space at all so try a "no-allocation" reservation */
1183 resblks = 0;
1184 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1186 if (error)
1187 goto out_release_inode;
1189 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1190 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1191 unlock_dp_on_error = true;
1193 xfs_bmap_init(&free_list, &first_block);
1196 * Reserve disk quota and the inode.
1198 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1199 pdqp, resblks, 1, 0);
1200 if (error)
1201 goto out_trans_cancel;
1203 if (!resblks) {
1204 error = xfs_dir_canenter(tp, dp, name);
1205 if (error)
1206 goto out_trans_cancel;
1210 * A newly created regular or special file just has one directory
1211 * entry pointing to them, but a directory also the "." entry
1212 * pointing to itself.
1214 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1215 prid, resblks > 0, &ip, NULL);
1216 if (error)
1217 goto out_trans_cancel;
1220 * Now we join the directory inode to the transaction. We do not do it
1221 * earlier because xfs_dir_ialloc might commit the previous transaction
1222 * (and release all the locks). An error from here on will result in
1223 * the transaction cancel unlocking dp so don't do it explicitly in the
1224 * error path.
1226 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1227 unlock_dp_on_error = false;
1229 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1230 &first_block, &free_list, resblks ?
1231 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1232 if (error) {
1233 ASSERT(error != -ENOSPC);
1234 goto out_trans_cancel;
1236 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1237 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1239 if (is_dir) {
1240 error = xfs_dir_init(tp, ip, dp);
1241 if (error)
1242 goto out_bmap_cancel;
1244 error = xfs_bumplink(tp, dp);
1245 if (error)
1246 goto out_bmap_cancel;
1250 * If this is a synchronous mount, make sure that the
1251 * create transaction goes to disk before returning to
1252 * the user.
1254 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1255 xfs_trans_set_sync(tp);
1258 * Attach the dquot(s) to the inodes and modify them incore.
1259 * These ids of the inode couldn't have changed since the new
1260 * inode has been locked ever since it was created.
1262 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1264 error = xfs_bmap_finish(&tp, &free_list, NULL);
1265 if (error)
1266 goto out_bmap_cancel;
1268 error = xfs_trans_commit(tp);
1269 if (error)
1270 goto out_release_inode;
1272 xfs_qm_dqrele(udqp);
1273 xfs_qm_dqrele(gdqp);
1274 xfs_qm_dqrele(pdqp);
1276 *ipp = ip;
1277 return 0;
1279 out_bmap_cancel:
1280 xfs_bmap_cancel(&free_list);
1281 out_trans_cancel:
1282 xfs_trans_cancel(tp);
1283 out_release_inode:
1285 * Wait until after the current transaction is aborted to finish the
1286 * setup of the inode and release the inode. This prevents recursive
1287 * transactions and deadlocks from xfs_inactive.
1289 if (ip) {
1290 xfs_finish_inode_setup(ip);
1291 IRELE(ip);
1294 xfs_qm_dqrele(udqp);
1295 xfs_qm_dqrele(gdqp);
1296 xfs_qm_dqrele(pdqp);
1298 if (unlock_dp_on_error)
1299 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1300 return error;
1304 xfs_create_tmpfile(
1305 struct xfs_inode *dp,
1306 struct dentry *dentry,
1307 umode_t mode,
1308 struct xfs_inode **ipp)
1310 struct xfs_mount *mp = dp->i_mount;
1311 struct xfs_inode *ip = NULL;
1312 struct xfs_trans *tp = NULL;
1313 int error;
1314 prid_t prid;
1315 struct xfs_dquot *udqp = NULL;
1316 struct xfs_dquot *gdqp = NULL;
1317 struct xfs_dquot *pdqp = NULL;
1318 struct xfs_trans_res *tres;
1319 uint resblks;
1321 if (XFS_FORCED_SHUTDOWN(mp))
1322 return -EIO;
1324 prid = xfs_get_initial_prid(dp);
1327 * Make sure that we have allocated dquot(s) on disk.
1329 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1330 xfs_kgid_to_gid(current_fsgid()), prid,
1331 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1332 &udqp, &gdqp, &pdqp);
1333 if (error)
1334 return error;
1336 resblks = XFS_IALLOC_SPACE_RES(mp);
1337 tres = &M_RES(mp)->tr_create_tmpfile;
1339 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1340 if (error == -ENOSPC) {
1341 /* No space at all so try a "no-allocation" reservation */
1342 resblks = 0;
1343 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1345 if (error)
1346 goto out_release_inode;
1348 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1349 pdqp, resblks, 1, 0);
1350 if (error)
1351 goto out_trans_cancel;
1353 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1354 prid, resblks > 0, &ip, NULL);
1355 if (error)
1356 goto out_trans_cancel;
1358 if (mp->m_flags & XFS_MOUNT_WSYNC)
1359 xfs_trans_set_sync(tp);
1362 * Attach the dquot(s) to the inodes and modify them incore.
1363 * These ids of the inode couldn't have changed since the new
1364 * inode has been locked ever since it was created.
1366 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1368 error = xfs_iunlink(tp, ip);
1369 if (error)
1370 goto out_trans_cancel;
1372 error = xfs_trans_commit(tp);
1373 if (error)
1374 goto out_release_inode;
1376 xfs_qm_dqrele(udqp);
1377 xfs_qm_dqrele(gdqp);
1378 xfs_qm_dqrele(pdqp);
1380 *ipp = ip;
1381 return 0;
1383 out_trans_cancel:
1384 xfs_trans_cancel(tp);
1385 out_release_inode:
1387 * Wait until after the current transaction is aborted to finish the
1388 * setup of the inode and release the inode. This prevents recursive
1389 * transactions and deadlocks from xfs_inactive.
1391 if (ip) {
1392 xfs_finish_inode_setup(ip);
1393 IRELE(ip);
1396 xfs_qm_dqrele(udqp);
1397 xfs_qm_dqrele(gdqp);
1398 xfs_qm_dqrele(pdqp);
1400 return error;
1404 xfs_link(
1405 xfs_inode_t *tdp,
1406 xfs_inode_t *sip,
1407 struct xfs_name *target_name)
1409 xfs_mount_t *mp = tdp->i_mount;
1410 xfs_trans_t *tp;
1411 int error;
1412 xfs_bmap_free_t free_list;
1413 xfs_fsblock_t first_block;
1414 int resblks;
1416 trace_xfs_link(tdp, target_name);
1418 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1420 if (XFS_FORCED_SHUTDOWN(mp))
1421 return -EIO;
1423 error = xfs_qm_dqattach(sip, 0);
1424 if (error)
1425 goto std_return;
1427 error = xfs_qm_dqattach(tdp, 0);
1428 if (error)
1429 goto std_return;
1431 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1432 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1433 if (error == -ENOSPC) {
1434 resblks = 0;
1435 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1437 if (error)
1438 goto std_return;
1440 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1441 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1443 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1444 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1447 * If we are using project inheritance, we only allow hard link
1448 * creation in our tree when the project IDs are the same; else
1449 * the tree quota mechanism could be circumvented.
1451 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1452 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1453 error = -EXDEV;
1454 goto error_return;
1457 if (!resblks) {
1458 error = xfs_dir_canenter(tp, tdp, target_name);
1459 if (error)
1460 goto error_return;
1463 xfs_bmap_init(&free_list, &first_block);
1466 * Handle initial link state of O_TMPFILE inode
1468 if (VFS_I(sip)->i_nlink == 0) {
1469 error = xfs_iunlink_remove(tp, sip);
1470 if (error)
1471 goto error_return;
1474 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1475 &first_block, &free_list, resblks);
1476 if (error)
1477 goto error_return;
1478 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1479 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1481 error = xfs_bumplink(tp, sip);
1482 if (error)
1483 goto error_return;
1486 * If this is a synchronous mount, make sure that the
1487 * link transaction goes to disk before returning to
1488 * the user.
1490 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1491 xfs_trans_set_sync(tp);
1493 error = xfs_bmap_finish(&tp, &free_list, NULL);
1494 if (error) {
1495 xfs_bmap_cancel(&free_list);
1496 goto error_return;
1499 return xfs_trans_commit(tp);
1501 error_return:
1502 xfs_trans_cancel(tp);
1503 std_return:
1504 return error;
1508 * Free up the underlying blocks past new_size. The new size must be smaller
1509 * than the current size. This routine can be used both for the attribute and
1510 * data fork, and does not modify the inode size, which is left to the caller.
1512 * The transaction passed to this routine must have made a permanent log
1513 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1514 * given transaction and start new ones, so make sure everything involved in
1515 * the transaction is tidy before calling here. Some transaction will be
1516 * returned to the caller to be committed. The incoming transaction must
1517 * already include the inode, and both inode locks must be held exclusively.
1518 * The inode must also be "held" within the transaction. On return the inode
1519 * will be "held" within the returned transaction. This routine does NOT
1520 * require any disk space to be reserved for it within the transaction.
1522 * If we get an error, we must return with the inode locked and linked into the
1523 * current transaction. This keeps things simple for the higher level code,
1524 * because it always knows that the inode is locked and held in the transaction
1525 * that returns to it whether errors occur or not. We don't mark the inode
1526 * dirty on error so that transactions can be easily aborted if possible.
1529 xfs_itruncate_extents(
1530 struct xfs_trans **tpp,
1531 struct xfs_inode *ip,
1532 int whichfork,
1533 xfs_fsize_t new_size)
1535 struct xfs_mount *mp = ip->i_mount;
1536 struct xfs_trans *tp = *tpp;
1537 xfs_bmap_free_t free_list;
1538 xfs_fsblock_t first_block;
1539 xfs_fileoff_t first_unmap_block;
1540 xfs_fileoff_t last_block;
1541 xfs_filblks_t unmap_len;
1542 int error = 0;
1543 int done = 0;
1545 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1546 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1547 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1548 ASSERT(new_size <= XFS_ISIZE(ip));
1549 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1550 ASSERT(ip->i_itemp != NULL);
1551 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1552 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1554 trace_xfs_itruncate_extents_start(ip, new_size);
1557 * Since it is possible for space to become allocated beyond
1558 * the end of the file (in a crash where the space is allocated
1559 * but the inode size is not yet updated), simply remove any
1560 * blocks which show up between the new EOF and the maximum
1561 * possible file size. If the first block to be removed is
1562 * beyond the maximum file size (ie it is the same as last_block),
1563 * then there is nothing to do.
1565 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1566 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1567 if (first_unmap_block == last_block)
1568 return 0;
1570 ASSERT(first_unmap_block < last_block);
1571 unmap_len = last_block - first_unmap_block + 1;
1572 while (!done) {
1573 xfs_bmap_init(&free_list, &first_block);
1574 error = xfs_bunmapi(tp, ip,
1575 first_unmap_block, unmap_len,
1576 xfs_bmapi_aflag(whichfork),
1577 XFS_ITRUNC_MAX_EXTENTS,
1578 &first_block, &free_list,
1579 &done);
1580 if (error)
1581 goto out_bmap_cancel;
1584 * Duplicate the transaction that has the permanent
1585 * reservation and commit the old transaction.
1587 error = xfs_bmap_finish(&tp, &free_list, ip);
1588 if (error)
1589 goto out_bmap_cancel;
1591 error = xfs_trans_roll(&tp, ip);
1592 if (error)
1593 goto out;
1597 * Always re-log the inode so that our permanent transaction can keep
1598 * on rolling it forward in the log.
1600 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1602 trace_xfs_itruncate_extents_end(ip, new_size);
1604 out:
1605 *tpp = tp;
1606 return error;
1607 out_bmap_cancel:
1609 * If the bunmapi call encounters an error, return to the caller where
1610 * the transaction can be properly aborted. We just need to make sure
1611 * we're not holding any resources that we were not when we came in.
1613 xfs_bmap_cancel(&free_list);
1614 goto out;
1618 xfs_release(
1619 xfs_inode_t *ip)
1621 xfs_mount_t *mp = ip->i_mount;
1622 int error;
1624 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1625 return 0;
1627 /* If this is a read-only mount, don't do this (would generate I/O) */
1628 if (mp->m_flags & XFS_MOUNT_RDONLY)
1629 return 0;
1631 if (!XFS_FORCED_SHUTDOWN(mp)) {
1632 int truncated;
1635 * If we previously truncated this file and removed old data
1636 * in the process, we want to initiate "early" writeout on
1637 * the last close. This is an attempt to combat the notorious
1638 * NULL files problem which is particularly noticeable from a
1639 * truncate down, buffered (re-)write (delalloc), followed by
1640 * a crash. What we are effectively doing here is
1641 * significantly reducing the time window where we'd otherwise
1642 * be exposed to that problem.
1644 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1645 if (truncated) {
1646 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1647 if (ip->i_delayed_blks > 0) {
1648 error = filemap_flush(VFS_I(ip)->i_mapping);
1649 if (error)
1650 return error;
1655 if (VFS_I(ip)->i_nlink == 0)
1656 return 0;
1658 if (xfs_can_free_eofblocks(ip, false)) {
1661 * If we can't get the iolock just skip truncating the blocks
1662 * past EOF because we could deadlock with the mmap_sem
1663 * otherwise. We'll get another chance to drop them once the
1664 * last reference to the inode is dropped, so we'll never leak
1665 * blocks permanently.
1667 * Further, check if the inode is being opened, written and
1668 * closed frequently and we have delayed allocation blocks
1669 * outstanding (e.g. streaming writes from the NFS server),
1670 * truncating the blocks past EOF will cause fragmentation to
1671 * occur.
1673 * In this case don't do the truncation, either, but we have to
1674 * be careful how we detect this case. Blocks beyond EOF show
1675 * up as i_delayed_blks even when the inode is clean, so we
1676 * need to truncate them away first before checking for a dirty
1677 * release. Hence on the first dirty close we will still remove
1678 * the speculative allocation, but after that we will leave it
1679 * in place.
1681 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1682 return 0;
1684 error = xfs_free_eofblocks(mp, ip, true);
1685 if (error && error != -EAGAIN)
1686 return error;
1688 /* delalloc blocks after truncation means it really is dirty */
1689 if (ip->i_delayed_blks)
1690 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1692 return 0;
1696 * xfs_inactive_truncate
1698 * Called to perform a truncate when an inode becomes unlinked.
1700 STATIC int
1701 xfs_inactive_truncate(
1702 struct xfs_inode *ip)
1704 struct xfs_mount *mp = ip->i_mount;
1705 struct xfs_trans *tp;
1706 int error;
1708 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1709 if (error) {
1710 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1711 return error;
1714 xfs_ilock(ip, XFS_ILOCK_EXCL);
1715 xfs_trans_ijoin(tp, ip, 0);
1718 * Log the inode size first to prevent stale data exposure in the event
1719 * of a system crash before the truncate completes. See the related
1720 * comment in xfs_setattr_size() for details.
1722 ip->i_d.di_size = 0;
1723 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1725 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1726 if (error)
1727 goto error_trans_cancel;
1729 ASSERT(ip->i_d.di_nextents == 0);
1731 error = xfs_trans_commit(tp);
1732 if (error)
1733 goto error_unlock;
1735 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1736 return 0;
1738 error_trans_cancel:
1739 xfs_trans_cancel(tp);
1740 error_unlock:
1741 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1742 return error;
1746 * xfs_inactive_ifree()
1748 * Perform the inode free when an inode is unlinked.
1750 STATIC int
1751 xfs_inactive_ifree(
1752 struct xfs_inode *ip)
1754 xfs_bmap_free_t free_list;
1755 xfs_fsblock_t first_block;
1756 struct xfs_mount *mp = ip->i_mount;
1757 struct xfs_trans *tp;
1758 int error;
1761 * The ifree transaction might need to allocate blocks for record
1762 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1763 * allow ifree to dip into the reserved block pool if necessary.
1765 * Freeing large sets of inodes generally means freeing inode chunks,
1766 * directory and file data blocks, so this should be relatively safe.
1767 * Only under severe circumstances should it be possible to free enough
1768 * inodes to exhaust the reserve block pool via finobt expansion while
1769 * at the same time not creating free space in the filesystem.
1771 * Send a warning if the reservation does happen to fail, as the inode
1772 * now remains allocated and sits on the unlinked list until the fs is
1773 * repaired.
1775 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1776 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1777 if (error) {
1778 if (error == -ENOSPC) {
1779 xfs_warn_ratelimited(mp,
1780 "Failed to remove inode(s) from unlinked list. "
1781 "Please free space, unmount and run xfs_repair.");
1782 } else {
1783 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1785 return error;
1788 xfs_ilock(ip, XFS_ILOCK_EXCL);
1789 xfs_trans_ijoin(tp, ip, 0);
1791 xfs_bmap_init(&free_list, &first_block);
1792 error = xfs_ifree(tp, ip, &free_list);
1793 if (error) {
1795 * If we fail to free the inode, shut down. The cancel
1796 * might do that, we need to make sure. Otherwise the
1797 * inode might be lost for a long time or forever.
1799 if (!XFS_FORCED_SHUTDOWN(mp)) {
1800 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1801 __func__, error);
1802 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1804 xfs_trans_cancel(tp);
1805 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1806 return error;
1810 * Credit the quota account(s). The inode is gone.
1812 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1815 * Just ignore errors at this point. There is nothing we can do except
1816 * to try to keep going. Make sure it's not a silent error.
1818 error = xfs_bmap_finish(&tp, &free_list, NULL);
1819 if (error) {
1820 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1821 __func__, error);
1822 xfs_bmap_cancel(&free_list);
1824 error = xfs_trans_commit(tp);
1825 if (error)
1826 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827 __func__, error);
1829 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1830 return 0;
1834 * xfs_inactive
1836 * This is called when the vnode reference count for the vnode
1837 * goes to zero. If the file has been unlinked, then it must
1838 * now be truncated. Also, we clear all of the read-ahead state
1839 * kept for the inode here since the file is now closed.
1841 void
1842 xfs_inactive(
1843 xfs_inode_t *ip)
1845 struct xfs_mount *mp;
1846 int error;
1847 int truncate = 0;
1850 * If the inode is already free, then there can be nothing
1851 * to clean up here.
1853 if (VFS_I(ip)->i_mode == 0) {
1854 ASSERT(ip->i_df.if_real_bytes == 0);
1855 ASSERT(ip->i_df.if_broot_bytes == 0);
1856 return;
1859 mp = ip->i_mount;
1861 /* If this is a read-only mount, don't do this (would generate I/O) */
1862 if (mp->m_flags & XFS_MOUNT_RDONLY)
1863 return;
1865 if (VFS_I(ip)->i_nlink != 0) {
1867 * force is true because we are evicting an inode from the
1868 * cache. Post-eof blocks must be freed, lest we end up with
1869 * broken free space accounting.
1871 if (xfs_can_free_eofblocks(ip, true))
1872 xfs_free_eofblocks(mp, ip, false);
1874 return;
1877 if (S_ISREG(VFS_I(ip)->i_mode) &&
1878 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1879 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1880 truncate = 1;
1882 error = xfs_qm_dqattach(ip, 0);
1883 if (error)
1884 return;
1886 if (S_ISLNK(VFS_I(ip)->i_mode))
1887 error = xfs_inactive_symlink(ip);
1888 else if (truncate)
1889 error = xfs_inactive_truncate(ip);
1890 if (error)
1891 return;
1894 * If there are attributes associated with the file then blow them away
1895 * now. The code calls a routine that recursively deconstructs the
1896 * attribute fork. If also blows away the in-core attribute fork.
1898 if (XFS_IFORK_Q(ip)) {
1899 error = xfs_attr_inactive(ip);
1900 if (error)
1901 return;
1904 ASSERT(!ip->i_afp);
1905 ASSERT(ip->i_d.di_anextents == 0);
1906 ASSERT(ip->i_d.di_forkoff == 0);
1909 * Free the inode.
1911 error = xfs_inactive_ifree(ip);
1912 if (error)
1913 return;
1916 * Release the dquots held by inode, if any.
1918 xfs_qm_dqdetach(ip);
1922 * This is called when the inode's link count goes to 0 or we are creating a
1923 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1924 * set to true as the link count is dropped to zero by the VFS after we've
1925 * created the file successfully, so we have to add it to the unlinked list
1926 * while the link count is non-zero.
1928 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1929 * list when the inode is freed.
1931 STATIC int
1932 xfs_iunlink(
1933 struct xfs_trans *tp,
1934 struct xfs_inode *ip)
1936 xfs_mount_t *mp = tp->t_mountp;
1937 xfs_agi_t *agi;
1938 xfs_dinode_t *dip;
1939 xfs_buf_t *agibp;
1940 xfs_buf_t *ibp;
1941 xfs_agino_t agino;
1942 short bucket_index;
1943 int offset;
1944 int error;
1946 ASSERT(VFS_I(ip)->i_mode != 0);
1949 * Get the agi buffer first. It ensures lock ordering
1950 * on the list.
1952 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1953 if (error)
1954 return error;
1955 agi = XFS_BUF_TO_AGI(agibp);
1958 * Get the index into the agi hash table for the
1959 * list this inode will go on.
1961 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1962 ASSERT(agino != 0);
1963 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1964 ASSERT(agi->agi_unlinked[bucket_index]);
1965 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1967 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1969 * There is already another inode in the bucket we need
1970 * to add ourselves to. Add us at the front of the list.
1971 * Here we put the head pointer into our next pointer,
1972 * and then we fall through to point the head at us.
1974 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1975 0, 0);
1976 if (error)
1977 return error;
1979 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1980 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1981 offset = ip->i_imap.im_boffset +
1982 offsetof(xfs_dinode_t, di_next_unlinked);
1984 /* need to recalc the inode CRC if appropriate */
1985 xfs_dinode_calc_crc(mp, dip);
1987 xfs_trans_inode_buf(tp, ibp);
1988 xfs_trans_log_buf(tp, ibp, offset,
1989 (offset + sizeof(xfs_agino_t) - 1));
1990 xfs_inobp_check(mp, ibp);
1994 * Point the bucket head pointer at the inode being inserted.
1996 ASSERT(agino != 0);
1997 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1998 offset = offsetof(xfs_agi_t, agi_unlinked) +
1999 (sizeof(xfs_agino_t) * bucket_index);
2000 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2001 xfs_trans_log_buf(tp, agibp, offset,
2002 (offset + sizeof(xfs_agino_t) - 1));
2003 return 0;
2007 * Pull the on-disk inode from the AGI unlinked list.
2009 STATIC int
2010 xfs_iunlink_remove(
2011 xfs_trans_t *tp,
2012 xfs_inode_t *ip)
2014 xfs_ino_t next_ino;
2015 xfs_mount_t *mp;
2016 xfs_agi_t *agi;
2017 xfs_dinode_t *dip;
2018 xfs_buf_t *agibp;
2019 xfs_buf_t *ibp;
2020 xfs_agnumber_t agno;
2021 xfs_agino_t agino;
2022 xfs_agino_t next_agino;
2023 xfs_buf_t *last_ibp;
2024 xfs_dinode_t *last_dip = NULL;
2025 short bucket_index;
2026 int offset, last_offset = 0;
2027 int error;
2029 mp = tp->t_mountp;
2030 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2033 * Get the agi buffer first. It ensures lock ordering
2034 * on the list.
2036 error = xfs_read_agi(mp, tp, agno, &agibp);
2037 if (error)
2038 return error;
2040 agi = XFS_BUF_TO_AGI(agibp);
2043 * Get the index into the agi hash table for the
2044 * list this inode will go on.
2046 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2047 ASSERT(agino != 0);
2048 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2049 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2050 ASSERT(agi->agi_unlinked[bucket_index]);
2052 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2054 * We're at the head of the list. Get the inode's on-disk
2055 * buffer to see if there is anyone after us on the list.
2056 * Only modify our next pointer if it is not already NULLAGINO.
2057 * This saves us the overhead of dealing with the buffer when
2058 * there is no need to change it.
2060 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2061 0, 0);
2062 if (error) {
2063 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2064 __func__, error);
2065 return error;
2067 next_agino = be32_to_cpu(dip->di_next_unlinked);
2068 ASSERT(next_agino != 0);
2069 if (next_agino != NULLAGINO) {
2070 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2071 offset = ip->i_imap.im_boffset +
2072 offsetof(xfs_dinode_t, di_next_unlinked);
2074 /* need to recalc the inode CRC if appropriate */
2075 xfs_dinode_calc_crc(mp, dip);
2077 xfs_trans_inode_buf(tp, ibp);
2078 xfs_trans_log_buf(tp, ibp, offset,
2079 (offset + sizeof(xfs_agino_t) - 1));
2080 xfs_inobp_check(mp, ibp);
2081 } else {
2082 xfs_trans_brelse(tp, ibp);
2085 * Point the bucket head pointer at the next inode.
2087 ASSERT(next_agino != 0);
2088 ASSERT(next_agino != agino);
2089 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2090 offset = offsetof(xfs_agi_t, agi_unlinked) +
2091 (sizeof(xfs_agino_t) * bucket_index);
2092 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2093 xfs_trans_log_buf(tp, agibp, offset,
2094 (offset + sizeof(xfs_agino_t) - 1));
2095 } else {
2097 * We need to search the list for the inode being freed.
2099 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2100 last_ibp = NULL;
2101 while (next_agino != agino) {
2102 struct xfs_imap imap;
2104 if (last_ibp)
2105 xfs_trans_brelse(tp, last_ibp);
2107 imap.im_blkno = 0;
2108 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2110 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2111 if (error) {
2112 xfs_warn(mp,
2113 "%s: xfs_imap returned error %d.",
2114 __func__, error);
2115 return error;
2118 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2119 &last_ibp, 0, 0);
2120 if (error) {
2121 xfs_warn(mp,
2122 "%s: xfs_imap_to_bp returned error %d.",
2123 __func__, error);
2124 return error;
2127 last_offset = imap.im_boffset;
2128 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2129 ASSERT(next_agino != NULLAGINO);
2130 ASSERT(next_agino != 0);
2134 * Now last_ibp points to the buffer previous to us on the
2135 * unlinked list. Pull us from the list.
2137 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2138 0, 0);
2139 if (error) {
2140 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2141 __func__, error);
2142 return error;
2144 next_agino = be32_to_cpu(dip->di_next_unlinked);
2145 ASSERT(next_agino != 0);
2146 ASSERT(next_agino != agino);
2147 if (next_agino != NULLAGINO) {
2148 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2149 offset = ip->i_imap.im_boffset +
2150 offsetof(xfs_dinode_t, di_next_unlinked);
2152 /* need to recalc the inode CRC if appropriate */
2153 xfs_dinode_calc_crc(mp, dip);
2155 xfs_trans_inode_buf(tp, ibp);
2156 xfs_trans_log_buf(tp, ibp, offset,
2157 (offset + sizeof(xfs_agino_t) - 1));
2158 xfs_inobp_check(mp, ibp);
2159 } else {
2160 xfs_trans_brelse(tp, ibp);
2163 * Point the previous inode on the list to the next inode.
2165 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2166 ASSERT(next_agino != 0);
2167 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2169 /* need to recalc the inode CRC if appropriate */
2170 xfs_dinode_calc_crc(mp, last_dip);
2172 xfs_trans_inode_buf(tp, last_ibp);
2173 xfs_trans_log_buf(tp, last_ibp, offset,
2174 (offset + sizeof(xfs_agino_t) - 1));
2175 xfs_inobp_check(mp, last_ibp);
2177 return 0;
2181 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2182 * inodes that are in memory - they all must be marked stale and attached to
2183 * the cluster buffer.
2185 STATIC int
2186 xfs_ifree_cluster(
2187 xfs_inode_t *free_ip,
2188 xfs_trans_t *tp,
2189 struct xfs_icluster *xic)
2191 xfs_mount_t *mp = free_ip->i_mount;
2192 int blks_per_cluster;
2193 int inodes_per_cluster;
2194 int nbufs;
2195 int i, j;
2196 int ioffset;
2197 xfs_daddr_t blkno;
2198 xfs_buf_t *bp;
2199 xfs_inode_t *ip;
2200 xfs_inode_log_item_t *iip;
2201 xfs_log_item_t *lip;
2202 struct xfs_perag *pag;
2203 xfs_ino_t inum;
2205 inum = xic->first_ino;
2206 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2207 blks_per_cluster = xfs_icluster_size_fsb(mp);
2208 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2209 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2211 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2213 * The allocation bitmap tells us which inodes of the chunk were
2214 * physically allocated. Skip the cluster if an inode falls into
2215 * a sparse region.
2217 ioffset = inum - xic->first_ino;
2218 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2219 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2220 continue;
2223 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2224 XFS_INO_TO_AGBNO(mp, inum));
2227 * We obtain and lock the backing buffer first in the process
2228 * here, as we have to ensure that any dirty inode that we
2229 * can't get the flush lock on is attached to the buffer.
2230 * If we scan the in-memory inodes first, then buffer IO can
2231 * complete before we get a lock on it, and hence we may fail
2232 * to mark all the active inodes on the buffer stale.
2234 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2235 mp->m_bsize * blks_per_cluster,
2236 XBF_UNMAPPED);
2238 if (!bp)
2239 return -ENOMEM;
2242 * This buffer may not have been correctly initialised as we
2243 * didn't read it from disk. That's not important because we are
2244 * only using to mark the buffer as stale in the log, and to
2245 * attach stale cached inodes on it. That means it will never be
2246 * dispatched for IO. If it is, we want to know about it, and we
2247 * want it to fail. We can acheive this by adding a write
2248 * verifier to the buffer.
2250 bp->b_ops = &xfs_inode_buf_ops;
2253 * Walk the inodes already attached to the buffer and mark them
2254 * stale. These will all have the flush locks held, so an
2255 * in-memory inode walk can't lock them. By marking them all
2256 * stale first, we will not attempt to lock them in the loop
2257 * below as the XFS_ISTALE flag will be set.
2259 lip = bp->b_fspriv;
2260 while (lip) {
2261 if (lip->li_type == XFS_LI_INODE) {
2262 iip = (xfs_inode_log_item_t *)lip;
2263 ASSERT(iip->ili_logged == 1);
2264 lip->li_cb = xfs_istale_done;
2265 xfs_trans_ail_copy_lsn(mp->m_ail,
2266 &iip->ili_flush_lsn,
2267 &iip->ili_item.li_lsn);
2268 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2270 lip = lip->li_bio_list;
2275 * For each inode in memory attempt to add it to the inode
2276 * buffer and set it up for being staled on buffer IO
2277 * completion. This is safe as we've locked out tail pushing
2278 * and flushing by locking the buffer.
2280 * We have already marked every inode that was part of a
2281 * transaction stale above, which means there is no point in
2282 * even trying to lock them.
2284 for (i = 0; i < inodes_per_cluster; i++) {
2285 retry:
2286 rcu_read_lock();
2287 ip = radix_tree_lookup(&pag->pag_ici_root,
2288 XFS_INO_TO_AGINO(mp, (inum + i)));
2290 /* Inode not in memory, nothing to do */
2291 if (!ip) {
2292 rcu_read_unlock();
2293 continue;
2297 * because this is an RCU protected lookup, we could
2298 * find a recently freed or even reallocated inode
2299 * during the lookup. We need to check under the
2300 * i_flags_lock for a valid inode here. Skip it if it
2301 * is not valid, the wrong inode or stale.
2303 spin_lock(&ip->i_flags_lock);
2304 if (ip->i_ino != inum + i ||
2305 __xfs_iflags_test(ip, XFS_ISTALE)) {
2306 spin_unlock(&ip->i_flags_lock);
2307 rcu_read_unlock();
2308 continue;
2310 spin_unlock(&ip->i_flags_lock);
2313 * Don't try to lock/unlock the current inode, but we
2314 * _cannot_ skip the other inodes that we did not find
2315 * in the list attached to the buffer and are not
2316 * already marked stale. If we can't lock it, back off
2317 * and retry.
2319 if (ip != free_ip &&
2320 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2321 rcu_read_unlock();
2322 delay(1);
2323 goto retry;
2325 rcu_read_unlock();
2327 xfs_iflock(ip);
2328 xfs_iflags_set(ip, XFS_ISTALE);
2331 * we don't need to attach clean inodes or those only
2332 * with unlogged changes (which we throw away, anyway).
2334 iip = ip->i_itemp;
2335 if (!iip || xfs_inode_clean(ip)) {
2336 ASSERT(ip != free_ip);
2337 xfs_ifunlock(ip);
2338 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2339 continue;
2342 iip->ili_last_fields = iip->ili_fields;
2343 iip->ili_fields = 0;
2344 iip->ili_fsync_fields = 0;
2345 iip->ili_logged = 1;
2346 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2347 &iip->ili_item.li_lsn);
2349 xfs_buf_attach_iodone(bp, xfs_istale_done,
2350 &iip->ili_item);
2352 if (ip != free_ip)
2353 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2356 xfs_trans_stale_inode_buf(tp, bp);
2357 xfs_trans_binval(tp, bp);
2360 xfs_perag_put(pag);
2361 return 0;
2365 * This is called to return an inode to the inode free list.
2366 * The inode should already be truncated to 0 length and have
2367 * no pages associated with it. This routine also assumes that
2368 * the inode is already a part of the transaction.
2370 * The on-disk copy of the inode will have been added to the list
2371 * of unlinked inodes in the AGI. We need to remove the inode from
2372 * that list atomically with respect to freeing it here.
2375 xfs_ifree(
2376 xfs_trans_t *tp,
2377 xfs_inode_t *ip,
2378 xfs_bmap_free_t *flist)
2380 int error;
2381 struct xfs_icluster xic = { 0 };
2383 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2384 ASSERT(VFS_I(ip)->i_nlink == 0);
2385 ASSERT(ip->i_d.di_nextents == 0);
2386 ASSERT(ip->i_d.di_anextents == 0);
2387 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2388 ASSERT(ip->i_d.di_nblocks == 0);
2391 * Pull the on-disk inode from the AGI unlinked list.
2393 error = xfs_iunlink_remove(tp, ip);
2394 if (error)
2395 return error;
2397 error = xfs_difree(tp, ip->i_ino, flist, &xic);
2398 if (error)
2399 return error;
2401 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2402 ip->i_d.di_flags = 0;
2403 ip->i_d.di_dmevmask = 0;
2404 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2405 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2406 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2408 * Bump the generation count so no one will be confused
2409 * by reincarnations of this inode.
2411 VFS_I(ip)->i_generation++;
2412 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2414 if (xic.deleted)
2415 error = xfs_ifree_cluster(ip, tp, &xic);
2417 return error;
2421 * This is called to unpin an inode. The caller must have the inode locked
2422 * in at least shared mode so that the buffer cannot be subsequently pinned
2423 * once someone is waiting for it to be unpinned.
2425 static void
2426 xfs_iunpin(
2427 struct xfs_inode *ip)
2429 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2431 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2433 /* Give the log a push to start the unpinning I/O */
2434 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2438 static void
2439 __xfs_iunpin_wait(
2440 struct xfs_inode *ip)
2442 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2443 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2445 xfs_iunpin(ip);
2447 do {
2448 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2449 if (xfs_ipincount(ip))
2450 io_schedule();
2451 } while (xfs_ipincount(ip));
2452 finish_wait(wq, &wait.wait);
2455 void
2456 xfs_iunpin_wait(
2457 struct xfs_inode *ip)
2459 if (xfs_ipincount(ip))
2460 __xfs_iunpin_wait(ip);
2464 * Removing an inode from the namespace involves removing the directory entry
2465 * and dropping the link count on the inode. Removing the directory entry can
2466 * result in locking an AGF (directory blocks were freed) and removing a link
2467 * count can result in placing the inode on an unlinked list which results in
2468 * locking an AGI.
2470 * The big problem here is that we have an ordering constraint on AGF and AGI
2471 * locking - inode allocation locks the AGI, then can allocate a new extent for
2472 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2473 * removes the inode from the unlinked list, requiring that we lock the AGI
2474 * first, and then freeing the inode can result in an inode chunk being freed
2475 * and hence freeing disk space requiring that we lock an AGF.
2477 * Hence the ordering that is imposed by other parts of the code is AGI before
2478 * AGF. This means we cannot remove the directory entry before we drop the inode
2479 * reference count and put it on the unlinked list as this results in a lock
2480 * order of AGF then AGI, and this can deadlock against inode allocation and
2481 * freeing. Therefore we must drop the link counts before we remove the
2482 * directory entry.
2484 * This is still safe from a transactional point of view - it is not until we
2485 * get to xfs_bmap_finish() that we have the possibility of multiple
2486 * transactions in this operation. Hence as long as we remove the directory
2487 * entry and drop the link count in the first transaction of the remove
2488 * operation, there are no transactional constraints on the ordering here.
2491 xfs_remove(
2492 xfs_inode_t *dp,
2493 struct xfs_name *name,
2494 xfs_inode_t *ip)
2496 xfs_mount_t *mp = dp->i_mount;
2497 xfs_trans_t *tp = NULL;
2498 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2499 int error = 0;
2500 xfs_bmap_free_t free_list;
2501 xfs_fsblock_t first_block;
2502 uint resblks;
2504 trace_xfs_remove(dp, name);
2506 if (XFS_FORCED_SHUTDOWN(mp))
2507 return -EIO;
2509 error = xfs_qm_dqattach(dp, 0);
2510 if (error)
2511 goto std_return;
2513 error = xfs_qm_dqattach(ip, 0);
2514 if (error)
2515 goto std_return;
2518 * We try to get the real space reservation first,
2519 * allowing for directory btree deletion(s) implying
2520 * possible bmap insert(s). If we can't get the space
2521 * reservation then we use 0 instead, and avoid the bmap
2522 * btree insert(s) in the directory code by, if the bmap
2523 * insert tries to happen, instead trimming the LAST
2524 * block from the directory.
2526 resblks = XFS_REMOVE_SPACE_RES(mp);
2527 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2528 if (error == -ENOSPC) {
2529 resblks = 0;
2530 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2531 &tp);
2533 if (error) {
2534 ASSERT(error != -ENOSPC);
2535 goto std_return;
2538 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2539 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2541 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2542 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2545 * If we're removing a directory perform some additional validation.
2547 if (is_dir) {
2548 ASSERT(VFS_I(ip)->i_nlink >= 2);
2549 if (VFS_I(ip)->i_nlink != 2) {
2550 error = -ENOTEMPTY;
2551 goto out_trans_cancel;
2553 if (!xfs_dir_isempty(ip)) {
2554 error = -ENOTEMPTY;
2555 goto out_trans_cancel;
2558 /* Drop the link from ip's "..". */
2559 error = xfs_droplink(tp, dp);
2560 if (error)
2561 goto out_trans_cancel;
2563 /* Drop the "." link from ip to self. */
2564 error = xfs_droplink(tp, ip);
2565 if (error)
2566 goto out_trans_cancel;
2567 } else {
2569 * When removing a non-directory we need to log the parent
2570 * inode here. For a directory this is done implicitly
2571 * by the xfs_droplink call for the ".." entry.
2573 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2575 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2577 /* Drop the link from dp to ip. */
2578 error = xfs_droplink(tp, ip);
2579 if (error)
2580 goto out_trans_cancel;
2582 xfs_bmap_init(&free_list, &first_block);
2583 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2584 &first_block, &free_list, resblks);
2585 if (error) {
2586 ASSERT(error != -ENOENT);
2587 goto out_bmap_cancel;
2591 * If this is a synchronous mount, make sure that the
2592 * remove transaction goes to disk before returning to
2593 * the user.
2595 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2596 xfs_trans_set_sync(tp);
2598 error = xfs_bmap_finish(&tp, &free_list, NULL);
2599 if (error)
2600 goto out_bmap_cancel;
2602 error = xfs_trans_commit(tp);
2603 if (error)
2604 goto std_return;
2606 if (is_dir && xfs_inode_is_filestream(ip))
2607 xfs_filestream_deassociate(ip);
2609 return 0;
2611 out_bmap_cancel:
2612 xfs_bmap_cancel(&free_list);
2613 out_trans_cancel:
2614 xfs_trans_cancel(tp);
2615 std_return:
2616 return error;
2620 * Enter all inodes for a rename transaction into a sorted array.
2622 #define __XFS_SORT_INODES 5
2623 STATIC void
2624 xfs_sort_for_rename(
2625 struct xfs_inode *dp1, /* in: old (source) directory inode */
2626 struct xfs_inode *dp2, /* in: new (target) directory inode */
2627 struct xfs_inode *ip1, /* in: inode of old entry */
2628 struct xfs_inode *ip2, /* in: inode of new entry */
2629 struct xfs_inode *wip, /* in: whiteout inode */
2630 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2631 int *num_inodes) /* in/out: inodes in array */
2633 int i, j;
2635 ASSERT(*num_inodes == __XFS_SORT_INODES);
2636 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2639 * i_tab contains a list of pointers to inodes. We initialize
2640 * the table here & we'll sort it. We will then use it to
2641 * order the acquisition of the inode locks.
2643 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2645 i = 0;
2646 i_tab[i++] = dp1;
2647 i_tab[i++] = dp2;
2648 i_tab[i++] = ip1;
2649 if (ip2)
2650 i_tab[i++] = ip2;
2651 if (wip)
2652 i_tab[i++] = wip;
2653 *num_inodes = i;
2656 * Sort the elements via bubble sort. (Remember, there are at
2657 * most 5 elements to sort, so this is adequate.)
2659 for (i = 0; i < *num_inodes; i++) {
2660 for (j = 1; j < *num_inodes; j++) {
2661 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2662 struct xfs_inode *temp = i_tab[j];
2663 i_tab[j] = i_tab[j-1];
2664 i_tab[j-1] = temp;
2670 static int
2671 xfs_finish_rename(
2672 struct xfs_trans *tp,
2673 struct xfs_bmap_free *free_list)
2675 int error;
2678 * If this is a synchronous mount, make sure that the rename transaction
2679 * goes to disk before returning to the user.
2681 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2682 xfs_trans_set_sync(tp);
2684 error = xfs_bmap_finish(&tp, free_list, NULL);
2685 if (error) {
2686 xfs_bmap_cancel(free_list);
2687 xfs_trans_cancel(tp);
2688 return error;
2691 return xfs_trans_commit(tp);
2695 * xfs_cross_rename()
2697 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2699 STATIC int
2700 xfs_cross_rename(
2701 struct xfs_trans *tp,
2702 struct xfs_inode *dp1,
2703 struct xfs_name *name1,
2704 struct xfs_inode *ip1,
2705 struct xfs_inode *dp2,
2706 struct xfs_name *name2,
2707 struct xfs_inode *ip2,
2708 struct xfs_bmap_free *free_list,
2709 xfs_fsblock_t *first_block,
2710 int spaceres)
2712 int error = 0;
2713 int ip1_flags = 0;
2714 int ip2_flags = 0;
2715 int dp2_flags = 0;
2717 /* Swap inode number for dirent in first parent */
2718 error = xfs_dir_replace(tp, dp1, name1,
2719 ip2->i_ino,
2720 first_block, free_list, spaceres);
2721 if (error)
2722 goto out_trans_abort;
2724 /* Swap inode number for dirent in second parent */
2725 error = xfs_dir_replace(tp, dp2, name2,
2726 ip1->i_ino,
2727 first_block, free_list, spaceres);
2728 if (error)
2729 goto out_trans_abort;
2732 * If we're renaming one or more directories across different parents,
2733 * update the respective ".." entries (and link counts) to match the new
2734 * parents.
2736 if (dp1 != dp2) {
2737 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2739 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2740 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2741 dp1->i_ino, first_block,
2742 free_list, spaceres);
2743 if (error)
2744 goto out_trans_abort;
2746 /* transfer ip2 ".." reference to dp1 */
2747 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2748 error = xfs_droplink(tp, dp2);
2749 if (error)
2750 goto out_trans_abort;
2751 error = xfs_bumplink(tp, dp1);
2752 if (error)
2753 goto out_trans_abort;
2757 * Although ip1 isn't changed here, userspace needs
2758 * to be warned about the change, so that applications
2759 * relying on it (like backup ones), will properly
2760 * notify the change
2762 ip1_flags |= XFS_ICHGTIME_CHG;
2763 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2766 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2767 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2768 dp2->i_ino, first_block,
2769 free_list, spaceres);
2770 if (error)
2771 goto out_trans_abort;
2773 /* transfer ip1 ".." reference to dp2 */
2774 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2775 error = xfs_droplink(tp, dp1);
2776 if (error)
2777 goto out_trans_abort;
2778 error = xfs_bumplink(tp, dp2);
2779 if (error)
2780 goto out_trans_abort;
2784 * Although ip2 isn't changed here, userspace needs
2785 * to be warned about the change, so that applications
2786 * relying on it (like backup ones), will properly
2787 * notify the change
2789 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2790 ip2_flags |= XFS_ICHGTIME_CHG;
2794 if (ip1_flags) {
2795 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2796 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2798 if (ip2_flags) {
2799 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2800 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2802 if (dp2_flags) {
2803 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2804 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2806 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2807 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2808 return xfs_finish_rename(tp, free_list);
2810 out_trans_abort:
2811 xfs_bmap_cancel(free_list);
2812 xfs_trans_cancel(tp);
2813 return error;
2817 * xfs_rename_alloc_whiteout()
2819 * Return a referenced, unlinked, unlocked inode that that can be used as a
2820 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2821 * crash between allocating the inode and linking it into the rename transaction
2822 * recovery will free the inode and we won't leak it.
2824 static int
2825 xfs_rename_alloc_whiteout(
2826 struct xfs_inode *dp,
2827 struct xfs_inode **wip)
2829 struct xfs_inode *tmpfile;
2830 int error;
2832 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2833 if (error)
2834 return error;
2837 * Prepare the tmpfile inode as if it were created through the VFS.
2838 * Otherwise, the link increment paths will complain about nlink 0->1.
2839 * Drop the link count as done by d_tmpfile(), complete the inode setup
2840 * and flag it as linkable.
2842 drop_nlink(VFS_I(tmpfile));
2843 xfs_setup_iops(tmpfile);
2844 xfs_finish_inode_setup(tmpfile);
2845 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2847 *wip = tmpfile;
2848 return 0;
2852 * xfs_rename
2855 xfs_rename(
2856 struct xfs_inode *src_dp,
2857 struct xfs_name *src_name,
2858 struct xfs_inode *src_ip,
2859 struct xfs_inode *target_dp,
2860 struct xfs_name *target_name,
2861 struct xfs_inode *target_ip,
2862 unsigned int flags)
2864 struct xfs_mount *mp = src_dp->i_mount;
2865 struct xfs_trans *tp;
2866 struct xfs_bmap_free free_list;
2867 xfs_fsblock_t first_block;
2868 struct xfs_inode *wip = NULL; /* whiteout inode */
2869 struct xfs_inode *inodes[__XFS_SORT_INODES];
2870 int num_inodes = __XFS_SORT_INODES;
2871 bool new_parent = (src_dp != target_dp);
2872 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2873 int spaceres;
2874 int error;
2876 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2878 if ((flags & RENAME_EXCHANGE) && !target_ip)
2879 return -EINVAL;
2882 * If we are doing a whiteout operation, allocate the whiteout inode
2883 * we will be placing at the target and ensure the type is set
2884 * appropriately.
2886 if (flags & RENAME_WHITEOUT) {
2887 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2888 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2889 if (error)
2890 return error;
2892 /* setup target dirent info as whiteout */
2893 src_name->type = XFS_DIR3_FT_CHRDEV;
2896 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2897 inodes, &num_inodes);
2899 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2900 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2901 if (error == -ENOSPC) {
2902 spaceres = 0;
2903 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2904 &tp);
2906 if (error)
2907 goto out_release_wip;
2910 * Attach the dquots to the inodes
2912 error = xfs_qm_vop_rename_dqattach(inodes);
2913 if (error)
2914 goto out_trans_cancel;
2917 * Lock all the participating inodes. Depending upon whether
2918 * the target_name exists in the target directory, and
2919 * whether the target directory is the same as the source
2920 * directory, we can lock from 2 to 4 inodes.
2922 if (!new_parent)
2923 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2924 else
2925 xfs_lock_two_inodes(src_dp, target_dp,
2926 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2928 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2931 * Join all the inodes to the transaction. From this point on,
2932 * we can rely on either trans_commit or trans_cancel to unlock
2933 * them.
2935 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2936 if (new_parent)
2937 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2938 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2939 if (target_ip)
2940 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2941 if (wip)
2942 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2945 * If we are using project inheritance, we only allow renames
2946 * into our tree when the project IDs are the same; else the
2947 * tree quota mechanism would be circumvented.
2949 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2950 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2951 error = -EXDEV;
2952 goto out_trans_cancel;
2955 xfs_bmap_init(&free_list, &first_block);
2957 /* RENAME_EXCHANGE is unique from here on. */
2958 if (flags & RENAME_EXCHANGE)
2959 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2960 target_dp, target_name, target_ip,
2961 &free_list, &first_block, spaceres);
2964 * Set up the target.
2966 if (target_ip == NULL) {
2968 * If there's no space reservation, check the entry will
2969 * fit before actually inserting it.
2971 if (!spaceres) {
2972 error = xfs_dir_canenter(tp, target_dp, target_name);
2973 if (error)
2974 goto out_trans_cancel;
2977 * If target does not exist and the rename crosses
2978 * directories, adjust the target directory link count
2979 * to account for the ".." reference from the new entry.
2981 error = xfs_dir_createname(tp, target_dp, target_name,
2982 src_ip->i_ino, &first_block,
2983 &free_list, spaceres);
2984 if (error)
2985 goto out_bmap_cancel;
2987 xfs_trans_ichgtime(tp, target_dp,
2988 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2990 if (new_parent && src_is_directory) {
2991 error = xfs_bumplink(tp, target_dp);
2992 if (error)
2993 goto out_bmap_cancel;
2995 } else { /* target_ip != NULL */
2997 * If target exists and it's a directory, check that both
2998 * target and source are directories and that target can be
2999 * destroyed, or that neither is a directory.
3001 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3003 * Make sure target dir is empty.
3005 if (!(xfs_dir_isempty(target_ip)) ||
3006 (VFS_I(target_ip)->i_nlink > 2)) {
3007 error = -EEXIST;
3008 goto out_trans_cancel;
3013 * Link the source inode under the target name.
3014 * If the source inode is a directory and we are moving
3015 * it across directories, its ".." entry will be
3016 * inconsistent until we replace that down below.
3018 * In case there is already an entry with the same
3019 * name at the destination directory, remove it first.
3021 error = xfs_dir_replace(tp, target_dp, target_name,
3022 src_ip->i_ino,
3023 &first_block, &free_list, spaceres);
3024 if (error)
3025 goto out_bmap_cancel;
3027 xfs_trans_ichgtime(tp, target_dp,
3028 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3031 * Decrement the link count on the target since the target
3032 * dir no longer points to it.
3034 error = xfs_droplink(tp, target_ip);
3035 if (error)
3036 goto out_bmap_cancel;
3038 if (src_is_directory) {
3040 * Drop the link from the old "." entry.
3042 error = xfs_droplink(tp, target_ip);
3043 if (error)
3044 goto out_bmap_cancel;
3046 } /* target_ip != NULL */
3049 * Remove the source.
3051 if (new_parent && src_is_directory) {
3053 * Rewrite the ".." entry to point to the new
3054 * directory.
3056 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3057 target_dp->i_ino,
3058 &first_block, &free_list, spaceres);
3059 ASSERT(error != -EEXIST);
3060 if (error)
3061 goto out_bmap_cancel;
3065 * We always want to hit the ctime on the source inode.
3067 * This isn't strictly required by the standards since the source
3068 * inode isn't really being changed, but old unix file systems did
3069 * it and some incremental backup programs won't work without it.
3071 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3072 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3075 * Adjust the link count on src_dp. This is necessary when
3076 * renaming a directory, either within one parent when
3077 * the target existed, or across two parent directories.
3079 if (src_is_directory && (new_parent || target_ip != NULL)) {
3082 * Decrement link count on src_directory since the
3083 * entry that's moved no longer points to it.
3085 error = xfs_droplink(tp, src_dp);
3086 if (error)
3087 goto out_bmap_cancel;
3091 * For whiteouts, we only need to update the source dirent with the
3092 * inode number of the whiteout inode rather than removing it
3093 * altogether.
3095 if (wip) {
3096 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3097 &first_block, &free_list, spaceres);
3098 } else
3099 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3100 &first_block, &free_list, spaceres);
3101 if (error)
3102 goto out_bmap_cancel;
3105 * For whiteouts, we need to bump the link count on the whiteout inode.
3106 * This means that failures all the way up to this point leave the inode
3107 * on the unlinked list and so cleanup is a simple matter of dropping
3108 * the remaining reference to it. If we fail here after bumping the link
3109 * count, we're shutting down the filesystem so we'll never see the
3110 * intermediate state on disk.
3112 if (wip) {
3113 ASSERT(VFS_I(wip)->i_nlink == 0);
3114 error = xfs_bumplink(tp, wip);
3115 if (error)
3116 goto out_bmap_cancel;
3117 error = xfs_iunlink_remove(tp, wip);
3118 if (error)
3119 goto out_bmap_cancel;
3120 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3123 * Now we have a real link, clear the "I'm a tmpfile" state
3124 * flag from the inode so it doesn't accidentally get misused in
3125 * future.
3127 VFS_I(wip)->i_state &= ~I_LINKABLE;
3130 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3131 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3132 if (new_parent)
3133 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3135 error = xfs_finish_rename(tp, &free_list);
3136 if (wip)
3137 IRELE(wip);
3138 return error;
3140 out_bmap_cancel:
3141 xfs_bmap_cancel(&free_list);
3142 out_trans_cancel:
3143 xfs_trans_cancel(tp);
3144 out_release_wip:
3145 if (wip)
3146 IRELE(wip);
3147 return error;
3150 STATIC int
3151 xfs_iflush_cluster(
3152 struct xfs_inode *ip,
3153 struct xfs_buf *bp)
3155 struct xfs_mount *mp = ip->i_mount;
3156 struct xfs_perag *pag;
3157 unsigned long first_index, mask;
3158 unsigned long inodes_per_cluster;
3159 int cilist_size;
3160 struct xfs_inode **cilist;
3161 struct xfs_inode *cip;
3162 int nr_found;
3163 int clcount = 0;
3164 int bufwasdelwri;
3165 int i;
3167 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3169 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3170 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3171 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3172 if (!cilist)
3173 goto out_put;
3175 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3176 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3177 rcu_read_lock();
3178 /* really need a gang lookup range call here */
3179 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3180 first_index, inodes_per_cluster);
3181 if (nr_found == 0)
3182 goto out_free;
3184 for (i = 0; i < nr_found; i++) {
3185 cip = cilist[i];
3186 if (cip == ip)
3187 continue;
3190 * because this is an RCU protected lookup, we could find a
3191 * recently freed or even reallocated inode during the lookup.
3192 * We need to check under the i_flags_lock for a valid inode
3193 * here. Skip it if it is not valid or the wrong inode.
3195 spin_lock(&cip->i_flags_lock);
3196 if (!cip->i_ino ||
3197 __xfs_iflags_test(cip, XFS_ISTALE)) {
3198 spin_unlock(&cip->i_flags_lock);
3199 continue;
3203 * Once we fall off the end of the cluster, no point checking
3204 * any more inodes in the list because they will also all be
3205 * outside the cluster.
3207 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3208 spin_unlock(&cip->i_flags_lock);
3209 break;
3211 spin_unlock(&cip->i_flags_lock);
3214 * Do an un-protected check to see if the inode is dirty and
3215 * is a candidate for flushing. These checks will be repeated
3216 * later after the appropriate locks are acquired.
3218 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3219 continue;
3222 * Try to get locks. If any are unavailable or it is pinned,
3223 * then this inode cannot be flushed and is skipped.
3226 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3227 continue;
3228 if (!xfs_iflock_nowait(cip)) {
3229 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3230 continue;
3232 if (xfs_ipincount(cip)) {
3233 xfs_ifunlock(cip);
3234 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3235 continue;
3240 * Check the inode number again, just to be certain we are not
3241 * racing with freeing in xfs_reclaim_inode(). See the comments
3242 * in that function for more information as to why the initial
3243 * check is not sufficient.
3245 if (!cip->i_ino) {
3246 xfs_ifunlock(cip);
3247 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3248 continue;
3252 * arriving here means that this inode can be flushed. First
3253 * re-check that it's dirty before flushing.
3255 if (!xfs_inode_clean(cip)) {
3256 int error;
3257 error = xfs_iflush_int(cip, bp);
3258 if (error) {
3259 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3260 goto cluster_corrupt_out;
3262 clcount++;
3263 } else {
3264 xfs_ifunlock(cip);
3266 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3269 if (clcount) {
3270 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3271 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3274 out_free:
3275 rcu_read_unlock();
3276 kmem_free(cilist);
3277 out_put:
3278 xfs_perag_put(pag);
3279 return 0;
3282 cluster_corrupt_out:
3284 * Corruption detected in the clustering loop. Invalidate the
3285 * inode buffer and shut down the filesystem.
3287 rcu_read_unlock();
3289 * Clean up the buffer. If it was delwri, just release it --
3290 * brelse can handle it with no problems. If not, shut down the
3291 * filesystem before releasing the buffer.
3293 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3294 if (bufwasdelwri)
3295 xfs_buf_relse(bp);
3297 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3299 if (!bufwasdelwri) {
3301 * Just like incore_relse: if we have b_iodone functions,
3302 * mark the buffer as an error and call them. Otherwise
3303 * mark it as stale and brelse.
3305 if (bp->b_iodone) {
3306 bp->b_flags &= ~XBF_DONE;
3307 xfs_buf_stale(bp);
3308 xfs_buf_ioerror(bp, -EIO);
3309 xfs_buf_ioend(bp);
3310 } else {
3311 xfs_buf_stale(bp);
3312 xfs_buf_relse(bp);
3317 * Unlocks the flush lock
3319 xfs_iflush_abort(cip, false);
3320 kmem_free(cilist);
3321 xfs_perag_put(pag);
3322 return -EFSCORRUPTED;
3326 * Flush dirty inode metadata into the backing buffer.
3328 * The caller must have the inode lock and the inode flush lock held. The
3329 * inode lock will still be held upon return to the caller, and the inode
3330 * flush lock will be released after the inode has reached the disk.
3332 * The caller must write out the buffer returned in *bpp and release it.
3335 xfs_iflush(
3336 struct xfs_inode *ip,
3337 struct xfs_buf **bpp)
3339 struct xfs_mount *mp = ip->i_mount;
3340 struct xfs_buf *bp = NULL;
3341 struct xfs_dinode *dip;
3342 int error;
3344 XFS_STATS_INC(mp, xs_iflush_count);
3346 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3347 ASSERT(xfs_isiflocked(ip));
3348 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3349 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3351 *bpp = NULL;
3353 xfs_iunpin_wait(ip);
3356 * For stale inodes we cannot rely on the backing buffer remaining
3357 * stale in cache for the remaining life of the stale inode and so
3358 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3359 * inodes below. We have to check this after ensuring the inode is
3360 * unpinned so that it is safe to reclaim the stale inode after the
3361 * flush call.
3363 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3364 xfs_ifunlock(ip);
3365 return 0;
3369 * This may have been unpinned because the filesystem is shutting
3370 * down forcibly. If that's the case we must not write this inode
3371 * to disk, because the log record didn't make it to disk.
3373 * We also have to remove the log item from the AIL in this case,
3374 * as we wait for an empty AIL as part of the unmount process.
3376 if (XFS_FORCED_SHUTDOWN(mp)) {
3377 error = -EIO;
3378 goto abort_out;
3382 * Get the buffer containing the on-disk inode. We are doing a try-lock
3383 * operation here, so we may get an EAGAIN error. In that case, we
3384 * simply want to return with the inode still dirty.
3386 * If we get any other error, we effectively have a corruption situation
3387 * and we cannot flush the inode, so we treat it the same as failing
3388 * xfs_iflush_int().
3390 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3392 if (error == -EAGAIN) {
3393 xfs_ifunlock(ip);
3394 return error;
3396 if (error)
3397 goto corrupt_out;
3400 * First flush out the inode that xfs_iflush was called with.
3402 error = xfs_iflush_int(ip, bp);
3403 if (error)
3404 goto corrupt_out;
3407 * If the buffer is pinned then push on the log now so we won't
3408 * get stuck waiting in the write for too long.
3410 if (xfs_buf_ispinned(bp))
3411 xfs_log_force(mp, 0);
3414 * inode clustering:
3415 * see if other inodes can be gathered into this write
3417 error = xfs_iflush_cluster(ip, bp);
3418 if (error)
3419 goto cluster_corrupt_out;
3421 *bpp = bp;
3422 return 0;
3424 corrupt_out:
3425 if (bp)
3426 xfs_buf_relse(bp);
3427 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3428 cluster_corrupt_out:
3429 error = -EFSCORRUPTED;
3430 abort_out:
3432 * Unlocks the flush lock
3434 xfs_iflush_abort(ip, false);
3435 return error;
3438 STATIC int
3439 xfs_iflush_int(
3440 struct xfs_inode *ip,
3441 struct xfs_buf *bp)
3443 struct xfs_inode_log_item *iip = ip->i_itemp;
3444 struct xfs_dinode *dip;
3445 struct xfs_mount *mp = ip->i_mount;
3447 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3448 ASSERT(xfs_isiflocked(ip));
3449 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3450 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3451 ASSERT(iip != NULL && iip->ili_fields != 0);
3452 ASSERT(ip->i_d.di_version > 1);
3454 /* set *dip = inode's place in the buffer */
3455 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3457 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3458 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3459 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3460 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3461 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3462 goto corrupt_out;
3464 if (S_ISREG(VFS_I(ip)->i_mode)) {
3465 if (XFS_TEST_ERROR(
3466 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3467 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3468 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3469 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3470 "%s: Bad regular inode %Lu, ptr 0x%p",
3471 __func__, ip->i_ino, ip);
3472 goto corrupt_out;
3474 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3475 if (XFS_TEST_ERROR(
3476 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3477 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3478 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3479 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 "%s: Bad directory inode %Lu, ptr 0x%p",
3482 __func__, ip->i_ino, ip);
3483 goto corrupt_out;
3486 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3487 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3488 XFS_RANDOM_IFLUSH_5)) {
3489 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3490 "%s: detected corrupt incore inode %Lu, "
3491 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3492 __func__, ip->i_ino,
3493 ip->i_d.di_nextents + ip->i_d.di_anextents,
3494 ip->i_d.di_nblocks, ip);
3495 goto corrupt_out;
3497 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3498 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3499 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3500 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3501 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3502 goto corrupt_out;
3506 * Inode item log recovery for v2 inodes are dependent on the
3507 * di_flushiter count for correct sequencing. We bump the flush
3508 * iteration count so we can detect flushes which postdate a log record
3509 * during recovery. This is redundant as we now log every change and
3510 * hence this can't happen but we need to still do it to ensure
3511 * backwards compatibility with old kernels that predate logging all
3512 * inode changes.
3514 if (ip->i_d.di_version < 3)
3515 ip->i_d.di_flushiter++;
3518 * Copy the dirty parts of the inode into the on-disk inode. We always
3519 * copy out the core of the inode, because if the inode is dirty at all
3520 * the core must be.
3522 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3524 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3525 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3526 ip->i_d.di_flushiter = 0;
3528 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3529 if (XFS_IFORK_Q(ip))
3530 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3531 xfs_inobp_check(mp, bp);
3534 * We've recorded everything logged in the inode, so we'd like to clear
3535 * the ili_fields bits so we don't log and flush things unnecessarily.
3536 * However, we can't stop logging all this information until the data
3537 * we've copied into the disk buffer is written to disk. If we did we
3538 * might overwrite the copy of the inode in the log with all the data
3539 * after re-logging only part of it, and in the face of a crash we
3540 * wouldn't have all the data we need to recover.
3542 * What we do is move the bits to the ili_last_fields field. When
3543 * logging the inode, these bits are moved back to the ili_fields field.
3544 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3545 * know that the information those bits represent is permanently on
3546 * disk. As long as the flush completes before the inode is logged
3547 * again, then both ili_fields and ili_last_fields will be cleared.
3549 * We can play with the ili_fields bits here, because the inode lock
3550 * must be held exclusively in order to set bits there and the flush
3551 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3552 * done routine can tell whether or not to look in the AIL. Also, store
3553 * the current LSN of the inode so that we can tell whether the item has
3554 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3555 * need the AIL lock, because it is a 64 bit value that cannot be read
3556 * atomically.
3558 iip->ili_last_fields = iip->ili_fields;
3559 iip->ili_fields = 0;
3560 iip->ili_fsync_fields = 0;
3561 iip->ili_logged = 1;
3563 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3564 &iip->ili_item.li_lsn);
3567 * Attach the function xfs_iflush_done to the inode's
3568 * buffer. This will remove the inode from the AIL
3569 * and unlock the inode's flush lock when the inode is
3570 * completely written to disk.
3572 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3574 /* generate the checksum. */
3575 xfs_dinode_calc_crc(mp, dip);
3577 ASSERT(bp->b_fspriv != NULL);
3578 ASSERT(bp->b_iodone != NULL);
3579 return 0;
3581 corrupt_out:
3582 return -EFSCORRUPTED;