2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
47 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
54 xlog_clear_stale_blocks(
59 xlog_recover_check_summary(
62 #define xlog_recover_check_summary(log)
65 xlog_do_recovery_pass(
66 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
69 * This structure is used during recovery to record the buf log items which
70 * have been canceled and should not be replayed.
72 struct xfs_buf_cancel
{
76 struct list_head bc_list
;
80 * Sector aligned buffer routines for buffer create/read/write/access
84 * Verify the given count of basic blocks is valid number of blocks
85 * to specify for an operation involving the given XFS log buffer.
86 * Returns nonzero if the count is valid, 0 otherwise.
90 xlog_buf_bbcount_valid(
94 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
98 * Allocate a buffer to hold log data. The buffer needs to be able
99 * to map to a range of nbblks basic blocks at any valid (basic
100 * block) offset within the log.
109 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
110 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
112 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
117 * We do log I/O in units of log sectors (a power-of-2
118 * multiple of the basic block size), so we round up the
119 * requested size to accommodate the basic blocks required
120 * for complete log sectors.
122 * In addition, the buffer may be used for a non-sector-
123 * aligned block offset, in which case an I/O of the
124 * requested size could extend beyond the end of the
125 * buffer. If the requested size is only 1 basic block it
126 * will never straddle a sector boundary, so this won't be
127 * an issue. Nor will this be a problem if the log I/O is
128 * done in basic blocks (sector size 1). But otherwise we
129 * extend the buffer by one extra log sector to ensure
130 * there's space to accommodate this possibility.
132 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
133 nbblks
+= log
->l_sectBBsize
;
134 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
136 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
150 * Return the address of the start of the given block number's data
151 * in a log buffer. The buffer covers a log sector-aligned region.
160 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
162 ASSERT(offset
+ nbblks
<= bp
->b_length
);
163 return bp
->b_addr
+ BBTOB(offset
);
168 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
179 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
180 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
182 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
183 return -EFSCORRUPTED
;
186 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
187 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
190 ASSERT(nbblks
<= bp
->b_length
);
192 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
193 bp
->b_flags
|= XBF_READ
;
194 bp
->b_io_length
= nbblks
;
197 error
= xfs_buf_submit_wait(bp
);
198 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
199 xfs_buf_ioerror_alert(bp
, __func__
);
213 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
217 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
222 * Read at an offset into the buffer. Returns with the buffer in it's original
223 * state regardless of the result of the read.
228 xfs_daddr_t blk_no
, /* block to read from */
229 int nbblks
, /* blocks to read */
233 char *orig_offset
= bp
->b_addr
;
234 int orig_len
= BBTOB(bp
->b_length
);
237 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
241 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
243 /* must reset buffer pointer even on error */
244 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
251 * Write out the buffer at the given block for the given number of blocks.
252 * The buffer is kept locked across the write and is returned locked.
253 * This can only be used for synchronous log writes.
264 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
265 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
267 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
268 return -EFSCORRUPTED
;
271 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
272 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
275 ASSERT(nbblks
<= bp
->b_length
);
277 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
280 bp
->b_io_length
= nbblks
;
283 error
= xfs_bwrite(bp
);
285 xfs_buf_ioerror_alert(bp
, __func__
);
292 * dump debug superblock and log record information
295 xlog_header_check_dump(
297 xlog_rec_header_t
*head
)
299 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
300 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
301 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
302 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
305 #define xlog_header_check_dump(mp, head)
309 * check log record header for recovery
312 xlog_header_check_recover(
314 xlog_rec_header_t
*head
)
316 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
319 * IRIX doesn't write the h_fmt field and leaves it zeroed
320 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
321 * a dirty log created in IRIX.
323 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
325 "dirty log written in incompatible format - can't recover");
326 xlog_header_check_dump(mp
, head
);
327 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
328 XFS_ERRLEVEL_HIGH
, mp
);
329 return -EFSCORRUPTED
;
330 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
332 "dirty log entry has mismatched uuid - can't recover");
333 xlog_header_check_dump(mp
, head
);
334 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
335 XFS_ERRLEVEL_HIGH
, mp
);
336 return -EFSCORRUPTED
;
342 * read the head block of the log and check the header
345 xlog_header_check_mount(
347 xlog_rec_header_t
*head
)
349 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
351 if (uuid_is_nil(&head
->h_fs_uuid
)) {
353 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
354 * h_fs_uuid is nil, we assume this log was last mounted
355 * by IRIX and continue.
357 xfs_warn(mp
, "nil uuid in log - IRIX style log");
358 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
359 xfs_warn(mp
, "log has mismatched uuid - can't recover");
360 xlog_header_check_dump(mp
, head
);
361 XFS_ERROR_REPORT("xlog_header_check_mount",
362 XFS_ERRLEVEL_HIGH
, mp
);
363 return -EFSCORRUPTED
;
374 * We're not going to bother about retrying
375 * this during recovery. One strike!
377 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
378 xfs_buf_ioerror_alert(bp
, __func__
);
379 xfs_force_shutdown(bp
->b_target
->bt_mount
,
380 SHUTDOWN_META_IO_ERROR
);
388 * This routine finds (to an approximation) the first block in the physical
389 * log which contains the given cycle. It uses a binary search algorithm.
390 * Note that the algorithm can not be perfect because the disk will not
391 * necessarily be perfect.
394 xlog_find_cycle_start(
397 xfs_daddr_t first_blk
,
398 xfs_daddr_t
*last_blk
,
408 mid_blk
= BLK_AVG(first_blk
, end_blk
);
409 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
410 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
413 mid_cycle
= xlog_get_cycle(offset
);
414 if (mid_cycle
== cycle
)
415 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
417 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
418 mid_blk
= BLK_AVG(first_blk
, end_blk
);
420 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
421 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
429 * Check that a range of blocks does not contain stop_on_cycle_no.
430 * Fill in *new_blk with the block offset where such a block is
431 * found, or with -1 (an invalid block number) if there is no such
432 * block in the range. The scan needs to occur from front to back
433 * and the pointer into the region must be updated since a later
434 * routine will need to perform another test.
437 xlog_find_verify_cycle(
439 xfs_daddr_t start_blk
,
441 uint stop_on_cycle_no
,
442 xfs_daddr_t
*new_blk
)
452 * Greedily allocate a buffer big enough to handle the full
453 * range of basic blocks we'll be examining. If that fails,
454 * try a smaller size. We need to be able to read at least
455 * a log sector, or we're out of luck.
457 bufblks
= 1 << ffs(nbblks
);
458 while (bufblks
> log
->l_logBBsize
)
460 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
462 if (bufblks
< log
->l_sectBBsize
)
466 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
469 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
471 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
475 for (j
= 0; j
< bcount
; j
++) {
476 cycle
= xlog_get_cycle(buf
);
477 if (cycle
== stop_on_cycle_no
) {
494 * Potentially backup over partial log record write.
496 * In the typical case, last_blk is the number of the block directly after
497 * a good log record. Therefore, we subtract one to get the block number
498 * of the last block in the given buffer. extra_bblks contains the number
499 * of blocks we would have read on a previous read. This happens when the
500 * last log record is split over the end of the physical log.
502 * extra_bblks is the number of blocks potentially verified on a previous
503 * call to this routine.
506 xlog_find_verify_log_record(
508 xfs_daddr_t start_blk
,
509 xfs_daddr_t
*last_blk
,
515 xlog_rec_header_t
*head
= NULL
;
518 int num_blks
= *last_blk
- start_blk
;
521 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
523 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
524 if (!(bp
= xlog_get_bp(log
, 1)))
528 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
531 offset
+= ((num_blks
- 1) << BBSHIFT
);
534 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
536 /* valid log record not found */
538 "Log inconsistent (didn't find previous header)");
545 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
550 head
= (xlog_rec_header_t
*)offset
;
552 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
560 * We hit the beginning of the physical log & still no header. Return
561 * to caller. If caller can handle a return of -1, then this routine
562 * will be called again for the end of the physical log.
570 * We have the final block of the good log (the first block
571 * of the log record _before_ the head. So we check the uuid.
573 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
577 * We may have found a log record header before we expected one.
578 * last_blk will be the 1st block # with a given cycle #. We may end
579 * up reading an entire log record. In this case, we don't want to
580 * reset last_blk. Only when last_blk points in the middle of a log
581 * record do we update last_blk.
583 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
584 uint h_size
= be32_to_cpu(head
->h_size
);
586 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
587 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
593 if (*last_blk
- i
+ extra_bblks
!=
594 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
603 * Head is defined to be the point of the log where the next log write
604 * could go. This means that incomplete LR writes at the end are
605 * eliminated when calculating the head. We aren't guaranteed that previous
606 * LR have complete transactions. We only know that a cycle number of
607 * current cycle number -1 won't be present in the log if we start writing
608 * from our current block number.
610 * last_blk contains the block number of the first block with a given
613 * Return: zero if normal, non-zero if error.
618 xfs_daddr_t
*return_head_blk
)
622 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
624 uint first_half_cycle
, last_half_cycle
;
626 int error
, log_bbnum
= log
->l_logBBsize
;
628 /* Is the end of the log device zeroed? */
629 error
= xlog_find_zeroed(log
, &first_blk
);
631 xfs_warn(log
->l_mp
, "empty log check failed");
635 *return_head_blk
= first_blk
;
637 /* Is the whole lot zeroed? */
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
643 xfs_warn(log
->l_mp
, "totally zeroed log");
649 first_blk
= 0; /* get cycle # of 1st block */
650 bp
= xlog_get_bp(log
, 1);
654 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
658 first_half_cycle
= xlog_get_cycle(offset
);
660 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
661 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
665 last_half_cycle
= xlog_get_cycle(offset
);
666 ASSERT(last_half_cycle
!= 0);
669 * If the 1st half cycle number is equal to the last half cycle number,
670 * then the entire log is stamped with the same cycle number. In this
671 * case, head_blk can't be set to zero (which makes sense). The below
672 * math doesn't work out properly with head_blk equal to zero. Instead,
673 * we set it to log_bbnum which is an invalid block number, but this
674 * value makes the math correct. If head_blk doesn't changed through
675 * all the tests below, *head_blk is set to zero at the very end rather
676 * than log_bbnum. In a sense, log_bbnum and zero are the same block
677 * in a circular file.
679 if (first_half_cycle
== last_half_cycle
) {
681 * In this case we believe that the entire log should have
682 * cycle number last_half_cycle. We need to scan backwards
683 * from the end verifying that there are no holes still
684 * containing last_half_cycle - 1. If we find such a hole,
685 * then the start of that hole will be the new head. The
686 * simple case looks like
687 * x | x ... | x - 1 | x
688 * Another case that fits this picture would be
689 * x | x + 1 | x ... | x
690 * In this case the head really is somewhere at the end of the
691 * log, as one of the latest writes at the beginning was
694 * x | x + 1 | x ... | x - 1 | x
695 * This is really the combination of the above two cases, and
696 * the head has to end up at the start of the x-1 hole at the
699 * In the 256k log case, we will read from the beginning to the
700 * end of the log and search for cycle numbers equal to x-1.
701 * We don't worry about the x+1 blocks that we encounter,
702 * because we know that they cannot be the head since the log
705 head_blk
= log_bbnum
;
706 stop_on_cycle
= last_half_cycle
- 1;
709 * In this case we want to find the first block with cycle
710 * number matching last_half_cycle. We expect the log to be
712 * x + 1 ... | x ... | x
713 * The first block with cycle number x (last_half_cycle) will
714 * be where the new head belongs. First we do a binary search
715 * for the first occurrence of last_half_cycle. The binary
716 * search may not be totally accurate, so then we scan back
717 * from there looking for occurrences of last_half_cycle before
718 * us. If that backwards scan wraps around the beginning of
719 * the log, then we look for occurrences of last_half_cycle - 1
720 * at the end of the log. The cases we're looking for look
722 * v binary search stopped here
723 * x + 1 ... | x | x + 1 | x ... | x
724 * ^ but we want to locate this spot
726 * <---------> less than scan distance
727 * x + 1 ... | x ... | x - 1 | x
728 * ^ we want to locate this spot
730 stop_on_cycle
= last_half_cycle
;
731 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
732 &head_blk
, last_half_cycle
)))
737 * Now validate the answer. Scan back some number of maximum possible
738 * blocks and make sure each one has the expected cycle number. The
739 * maximum is determined by the total possible amount of buffering
740 * in the in-core log. The following number can be made tighter if
741 * we actually look at the block size of the filesystem.
743 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
744 if (head_blk
>= num_scan_bblks
) {
746 * We are guaranteed that the entire check can be performed
749 start_blk
= head_blk
- num_scan_bblks
;
750 if ((error
= xlog_find_verify_cycle(log
,
751 start_blk
, num_scan_bblks
,
752 stop_on_cycle
, &new_blk
)))
756 } else { /* need to read 2 parts of log */
758 * We are going to scan backwards in the log in two parts.
759 * First we scan the physical end of the log. In this part
760 * of the log, we are looking for blocks with cycle number
761 * last_half_cycle - 1.
762 * If we find one, then we know that the log starts there, as
763 * we've found a hole that didn't get written in going around
764 * the end of the physical log. The simple case for this is
765 * x + 1 ... | x ... | x - 1 | x
766 * <---------> less than scan distance
767 * If all of the blocks at the end of the log have cycle number
768 * last_half_cycle, then we check the blocks at the start of
769 * the log looking for occurrences of last_half_cycle. If we
770 * find one, then our current estimate for the location of the
771 * first occurrence of last_half_cycle is wrong and we move
772 * back to the hole we've found. This case looks like
773 * x + 1 ... | x | x + 1 | x ...
774 * ^ binary search stopped here
775 * Another case we need to handle that only occurs in 256k
777 * x + 1 ... | x ... | x+1 | x ...
778 * ^ binary search stops here
779 * In a 256k log, the scan at the end of the log will see the
780 * x + 1 blocks. We need to skip past those since that is
781 * certainly not the head of the log. By searching for
782 * last_half_cycle-1 we accomplish that.
784 ASSERT(head_blk
<= INT_MAX
&&
785 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
786 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
787 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
788 num_scan_bblks
- (int)head_blk
,
789 (stop_on_cycle
- 1), &new_blk
)))
797 * Scan beginning of log now. The last part of the physical
798 * log is good. This scan needs to verify that it doesn't find
799 * the last_half_cycle.
802 ASSERT(head_blk
<= INT_MAX
);
803 if ((error
= xlog_find_verify_cycle(log
,
804 start_blk
, (int)head_blk
,
805 stop_on_cycle
, &new_blk
)))
813 * Now we need to make sure head_blk is not pointing to a block in
814 * the middle of a log record.
816 num_scan_bblks
= XLOG_REC_SHIFT(log
);
817 if (head_blk
>= num_scan_bblks
) {
818 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
820 /* start ptr at last block ptr before head_blk */
821 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
828 ASSERT(head_blk
<= INT_MAX
);
829 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
833 /* We hit the beginning of the log during our search */
834 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
836 ASSERT(start_blk
<= INT_MAX
&&
837 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
838 ASSERT(head_blk
<= INT_MAX
);
839 error
= xlog_find_verify_log_record(log
, start_blk
,
840 &new_blk
, (int)head_blk
);
845 if (new_blk
!= log_bbnum
)
852 if (head_blk
== log_bbnum
)
853 *return_head_blk
= 0;
855 *return_head_blk
= head_blk
;
857 * When returning here, we have a good block number. Bad block
858 * means that during a previous crash, we didn't have a clean break
859 * from cycle number N to cycle number N-1. In this case, we need
860 * to find the first block with cycle number N-1.
868 xfs_warn(log
->l_mp
, "failed to find log head");
873 * Seek backwards in the log for log record headers.
875 * Given a starting log block, walk backwards until we find the provided number
876 * of records or hit the provided tail block. The return value is the number of
877 * records encountered or a negative error code. The log block and buffer
878 * pointer of the last record seen are returned in rblk and rhead respectively.
881 xlog_rseek_logrec_hdr(
883 xfs_daddr_t head_blk
,
884 xfs_daddr_t tail_blk
,
888 struct xlog_rec_header
**rhead
,
900 * Walk backwards from the head block until we hit the tail or the first
903 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
904 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
905 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
909 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
911 *rhead
= (struct xlog_rec_header
*) offset
;
912 if (++found
== count
)
918 * If we haven't hit the tail block or the log record header count,
919 * start looking again from the end of the physical log. Note that
920 * callers can pass head == tail if the tail is not yet known.
922 if (tail_blk
>= head_blk
&& found
!= count
) {
923 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
924 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
928 if (*(__be32
*)offset
==
929 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
932 *rhead
= (struct xlog_rec_header
*) offset
;
933 if (++found
== count
)
946 * Seek forward in the log for log record headers.
948 * Given head and tail blocks, walk forward from the tail block until we find
949 * the provided number of records or hit the head block. The return value is the
950 * number of records encountered or a negative error code. The log block and
951 * buffer pointer of the last record seen are returned in rblk and rhead
955 xlog_seek_logrec_hdr(
957 xfs_daddr_t head_blk
,
958 xfs_daddr_t tail_blk
,
962 struct xlog_rec_header
**rhead
,
974 * Walk forward from the tail block until we hit the head or the last
977 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
978 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
979 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
983 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
985 *rhead
= (struct xlog_rec_header
*) offset
;
986 if (++found
== count
)
992 * If we haven't hit the head block or the log record header count,
993 * start looking again from the start of the physical log.
995 if (tail_blk
> head_blk
&& found
!= count
) {
996 for (i
= 0; i
< (int) head_blk
; i
++) {
997 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1001 if (*(__be32
*)offset
==
1002 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1005 *rhead
= (struct xlog_rec_header
*) offset
;
1006 if (++found
== count
)
1019 * Check the log tail for torn writes. This is required when torn writes are
1020 * detected at the head and the head had to be walked back to a previous record.
1021 * The tail of the previous record must now be verified to ensure the torn
1022 * writes didn't corrupt the previous tail.
1024 * Return an error if CRC verification fails as recovery cannot proceed.
1029 xfs_daddr_t head_blk
,
1030 xfs_daddr_t tail_blk
)
1032 struct xlog_rec_header
*thead
;
1034 xfs_daddr_t first_bad
;
1038 xfs_daddr_t tmp_head
;
1040 bp
= xlog_get_bp(log
, 1);
1045 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1046 * a temporary head block that points after the last possible
1047 * concurrently written record of the tail.
1049 count
= xlog_seek_logrec_hdr(log
, head_blk
, tail_blk
,
1050 XLOG_MAX_ICLOGS
+ 1, bp
, &tmp_head
, &thead
,
1058 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1059 * into the actual log head. tmp_head points to the start of the record
1060 * so update it to the actual head block.
1062 if (count
< XLOG_MAX_ICLOGS
+ 1)
1063 tmp_head
= head_blk
;
1066 * We now have a tail and temporary head block that covers at least
1067 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1068 * records were completely written. Run a CRC verification pass from
1069 * tail to head and return the result.
1071 error
= xlog_do_recovery_pass(log
, tmp_head
, tail_blk
,
1072 XLOG_RECOVER_CRCPASS
, &first_bad
);
1080 * Detect and trim torn writes from the head of the log.
1082 * Storage without sector atomicity guarantees can result in torn writes in the
1083 * log in the event of a crash. Our only means to detect this scenario is via
1084 * CRC verification. While we can't always be certain that CRC verification
1085 * failure is due to a torn write vs. an unrelated corruption, we do know that
1086 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1087 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1088 * the log and treat failures in this range as torn writes as a matter of
1089 * policy. In the event of CRC failure, the head is walked back to the last good
1090 * record in the log and the tail is updated from that record and verified.
1095 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1096 xfs_daddr_t
*tail_blk
, /* out: tail block */
1098 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1099 struct xlog_rec_header
**rhead
, /* ptr to last record */
1100 bool *wrapped
) /* last rec. wraps phys. log */
1102 struct xlog_rec_header
*tmp_rhead
;
1103 struct xfs_buf
*tmp_bp
;
1104 xfs_daddr_t first_bad
;
1105 xfs_daddr_t tmp_rhead_blk
;
1111 * Check the head of the log for torn writes. Search backwards from the
1112 * head until we hit the tail or the maximum number of log record I/Os
1113 * that could have been in flight at one time. Use a temporary buffer so
1114 * we don't trash the rhead/bp pointers from the caller.
1116 tmp_bp
= xlog_get_bp(log
, 1);
1119 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1120 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1121 &tmp_rhead
, &tmp_wrapped
);
1122 xlog_put_bp(tmp_bp
);
1127 * Now run a CRC verification pass over the records starting at the
1128 * block found above to the current head. If a CRC failure occurs, the
1129 * log block of the first bad record is saved in first_bad.
1131 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1132 XLOG_RECOVER_CRCPASS
, &first_bad
);
1133 if (error
== -EFSBADCRC
) {
1135 * We've hit a potential torn write. Reset the error and warn
1140 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1141 first_bad
, *head_blk
);
1144 * Get the header block and buffer pointer for the last good
1145 * record before the bad record.
1147 * Note that xlog_find_tail() clears the blocks at the new head
1148 * (i.e., the records with invalid CRC) if the cycle number
1149 * matches the the current cycle.
1151 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1152 rhead_blk
, rhead
, wrapped
);
1155 if (found
== 0) /* XXX: right thing to do here? */
1159 * Reset the head block to the starting block of the first bad
1160 * log record and set the tail block based on the last good
1163 * Bail out if the updated head/tail match as this indicates
1164 * possible corruption outside of the acceptable
1165 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1167 *head_blk
= first_bad
;
1168 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1169 if (*head_blk
== *tail_blk
) {
1175 * Now verify the tail based on the updated head. This is
1176 * required because the torn writes trimmed from the head could
1177 * have been written over the tail of a previous record. Return
1178 * any errors since recovery cannot proceed if the tail is
1181 * XXX: This leaves a gap in truly robust protection from torn
1182 * writes in the log. If the head is behind the tail, the tail
1183 * pushes forward to create some space and then a crash occurs
1184 * causing the writes into the previous record's tail region to
1185 * tear, log recovery isn't able to recover.
1187 * How likely is this to occur? If possible, can we do something
1188 * more intelligent here? Is it safe to push the tail forward if
1189 * we can determine that the tail is within the range of the
1190 * torn write (e.g., the kernel can only overwrite the tail if
1191 * it has actually been pushed forward)? Alternatively, could we
1192 * somehow prevent this condition at runtime?
1194 error
= xlog_verify_tail(log
, *head_blk
, *tail_blk
);
1201 * Check whether the head of the log points to an unmount record. In other
1202 * words, determine whether the log is clean. If so, update the in-core state
1206 xlog_check_unmount_rec(
1208 xfs_daddr_t
*head_blk
,
1209 xfs_daddr_t
*tail_blk
,
1210 struct xlog_rec_header
*rhead
,
1211 xfs_daddr_t rhead_blk
,
1215 struct xlog_op_header
*op_head
;
1216 xfs_daddr_t umount_data_blk
;
1217 xfs_daddr_t after_umount_blk
;
1225 * Look for unmount record. If we find it, then we know there was a
1226 * clean unmount. Since 'i' could be the last block in the physical
1227 * log, we convert to a log block before comparing to the head_blk.
1229 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1230 * below. We won't want to clear the unmount record if there is one, so
1231 * we pass the lsn of the unmount record rather than the block after it.
1233 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1234 int h_size
= be32_to_cpu(rhead
->h_size
);
1235 int h_version
= be32_to_cpu(rhead
->h_version
);
1237 if ((h_version
& XLOG_VERSION_2
) &&
1238 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1239 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1240 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1248 after_umount_blk
= rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
));
1249 after_umount_blk
= do_mod(after_umount_blk
, log
->l_logBBsize
);
1250 if (*head_blk
== after_umount_blk
&&
1251 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1252 umount_data_blk
= rhead_blk
+ hblks
;
1253 umount_data_blk
= do_mod(umount_data_blk
, log
->l_logBBsize
);
1254 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1258 op_head
= (struct xlog_op_header
*)offset
;
1259 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1261 * Set tail and last sync so that newly written log
1262 * records will point recovery to after the current
1265 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1266 log
->l_curr_cycle
, after_umount_blk
);
1267 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1268 log
->l_curr_cycle
, after_umount_blk
);
1269 *tail_blk
= after_umount_blk
;
1281 xfs_daddr_t head_blk
,
1282 struct xlog_rec_header
*rhead
,
1283 xfs_daddr_t rhead_blk
,
1287 * Reset log values according to the state of the log when we
1288 * crashed. In the case where head_blk == 0, we bump curr_cycle
1289 * one because the next write starts a new cycle rather than
1290 * continuing the cycle of the last good log record. At this
1291 * point we have guaranteed that all partial log records have been
1292 * accounted for. Therefore, we know that the last good log record
1293 * written was complete and ended exactly on the end boundary
1294 * of the physical log.
1296 log
->l_prev_block
= rhead_blk
;
1297 log
->l_curr_block
= (int)head_blk
;
1298 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1300 log
->l_curr_cycle
++;
1301 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1302 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1303 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1304 BBTOB(log
->l_curr_block
));
1305 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1306 BBTOB(log
->l_curr_block
));
1310 * Find the sync block number or the tail of the log.
1312 * This will be the block number of the last record to have its
1313 * associated buffers synced to disk. Every log record header has
1314 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1315 * to get a sync block number. The only concern is to figure out which
1316 * log record header to believe.
1318 * The following algorithm uses the log record header with the largest
1319 * lsn. The entire log record does not need to be valid. We only care
1320 * that the header is valid.
1322 * We could speed up search by using current head_blk buffer, but it is not
1328 xfs_daddr_t
*head_blk
,
1329 xfs_daddr_t
*tail_blk
)
1331 xlog_rec_header_t
*rhead
;
1332 char *offset
= NULL
;
1335 xfs_daddr_t rhead_blk
;
1337 bool wrapped
= false;
1341 * Find previous log record
1343 if ((error
= xlog_find_head(log
, head_blk
)))
1345 ASSERT(*head_blk
< INT_MAX
);
1347 bp
= xlog_get_bp(log
, 1);
1350 if (*head_blk
== 0) { /* special case */
1351 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1355 if (xlog_get_cycle(offset
) == 0) {
1357 /* leave all other log inited values alone */
1363 * Search backwards through the log looking for the log record header
1364 * block. This wraps all the way back around to the head so something is
1365 * seriously wrong if we can't find it.
1367 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1368 &rhead_blk
, &rhead
, &wrapped
);
1372 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1375 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1378 * Set the log state based on the current head record.
1380 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1381 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1384 * Look for an unmount record at the head of the log. This sets the log
1385 * state to determine whether recovery is necessary.
1387 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1388 rhead_blk
, bp
, &clean
);
1393 * Verify the log head if the log is not clean (e.g., we have anything
1394 * but an unmount record at the head). This uses CRC verification to
1395 * detect and trim torn writes. If discovered, CRC failures are
1396 * considered torn writes and the log head is trimmed accordingly.
1398 * Note that we can only run CRC verification when the log is dirty
1399 * because there's no guarantee that the log data behind an unmount
1400 * record is compatible with the current architecture.
1403 xfs_daddr_t orig_head
= *head_blk
;
1405 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1406 &rhead_blk
, &rhead
, &wrapped
);
1410 /* update in-core state again if the head changed */
1411 if (*head_blk
!= orig_head
) {
1412 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1414 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1415 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1416 rhead
, rhead_blk
, bp
,
1424 * Note that the unmount was clean. If the unmount was not clean, we
1425 * need to know this to rebuild the superblock counters from the perag
1426 * headers if we have a filesystem using non-persistent counters.
1429 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1432 * Make sure that there are no blocks in front of the head
1433 * with the same cycle number as the head. This can happen
1434 * because we allow multiple outstanding log writes concurrently,
1435 * and the later writes might make it out before earlier ones.
1437 * We use the lsn from before modifying it so that we'll never
1438 * overwrite the unmount record after a clean unmount.
1440 * Do this only if we are going to recover the filesystem
1442 * NOTE: This used to say "if (!readonly)"
1443 * However on Linux, we can & do recover a read-only filesystem.
1444 * We only skip recovery if NORECOVERY is specified on mount,
1445 * in which case we would not be here.
1447 * But... if the -device- itself is readonly, just skip this.
1448 * We can't recover this device anyway, so it won't matter.
1450 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1451 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1457 xfs_warn(log
->l_mp
, "failed to locate log tail");
1462 * Is the log zeroed at all?
1464 * The last binary search should be changed to perform an X block read
1465 * once X becomes small enough. You can then search linearly through
1466 * the X blocks. This will cut down on the number of reads we need to do.
1468 * If the log is partially zeroed, this routine will pass back the blkno
1469 * of the first block with cycle number 0. It won't have a complete LR
1473 * 0 => the log is completely written to
1474 * 1 => use *blk_no as the first block of the log
1475 * <0 => error has occurred
1480 xfs_daddr_t
*blk_no
)
1484 uint first_cycle
, last_cycle
;
1485 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1486 xfs_daddr_t num_scan_bblks
;
1487 int error
, log_bbnum
= log
->l_logBBsize
;
1491 /* check totally zeroed log */
1492 bp
= xlog_get_bp(log
, 1);
1495 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1499 first_cycle
= xlog_get_cycle(offset
);
1500 if (first_cycle
== 0) { /* completely zeroed log */
1506 /* check partially zeroed log */
1507 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1511 last_cycle
= xlog_get_cycle(offset
);
1512 if (last_cycle
!= 0) { /* log completely written to */
1515 } else if (first_cycle
!= 1) {
1517 * If the cycle of the last block is zero, the cycle of
1518 * the first block must be 1. If it's not, maybe we're
1519 * not looking at a log... Bail out.
1522 "Log inconsistent or not a log (last==0, first!=1)");
1527 /* we have a partially zeroed log */
1528 last_blk
= log_bbnum
-1;
1529 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1533 * Validate the answer. Because there is no way to guarantee that
1534 * the entire log is made up of log records which are the same size,
1535 * we scan over the defined maximum blocks. At this point, the maximum
1536 * is not chosen to mean anything special. XXXmiken
1538 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1539 ASSERT(num_scan_bblks
<= INT_MAX
);
1541 if (last_blk
< num_scan_bblks
)
1542 num_scan_bblks
= last_blk
;
1543 start_blk
= last_blk
- num_scan_bblks
;
1546 * We search for any instances of cycle number 0 that occur before
1547 * our current estimate of the head. What we're trying to detect is
1548 * 1 ... | 0 | 1 | 0...
1549 * ^ binary search ends here
1551 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1552 (int)num_scan_bblks
, 0, &new_blk
)))
1558 * Potentially backup over partial log record write. We don't need
1559 * to search the end of the log because we know it is zero.
1561 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1576 * These are simple subroutines used by xlog_clear_stale_blocks() below
1577 * to initialize a buffer full of empty log record headers and write
1578 * them into the log.
1589 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1591 memset(buf
, 0, BBSIZE
);
1592 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1593 recp
->h_cycle
= cpu_to_be32(cycle
);
1594 recp
->h_version
= cpu_to_be32(
1595 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1596 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1597 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1598 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1599 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1603 xlog_write_log_records(
1614 int sectbb
= log
->l_sectBBsize
;
1615 int end_block
= start_block
+ blocks
;
1621 * Greedily allocate a buffer big enough to handle the full
1622 * range of basic blocks to be written. If that fails, try
1623 * a smaller size. We need to be able to write at least a
1624 * log sector, or we're out of luck.
1626 bufblks
= 1 << ffs(blocks
);
1627 while (bufblks
> log
->l_logBBsize
)
1629 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1631 if (bufblks
< sectbb
)
1635 /* We may need to do a read at the start to fill in part of
1636 * the buffer in the starting sector not covered by the first
1639 balign
= round_down(start_block
, sectbb
);
1640 if (balign
!= start_block
) {
1641 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1645 j
= start_block
- balign
;
1648 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1649 int bcount
, endcount
;
1651 bcount
= min(bufblks
, end_block
- start_block
);
1652 endcount
= bcount
- j
;
1654 /* We may need to do a read at the end to fill in part of
1655 * the buffer in the final sector not covered by the write.
1656 * If this is the same sector as the above read, skip it.
1658 ealign
= round_down(end_block
, sectbb
);
1659 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1660 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1661 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1668 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1669 for (; j
< endcount
; j
++) {
1670 xlog_add_record(log
, offset
, cycle
, i
+j
,
1671 tail_cycle
, tail_block
);
1674 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1677 start_block
+= endcount
;
1687 * This routine is called to blow away any incomplete log writes out
1688 * in front of the log head. We do this so that we won't become confused
1689 * if we come up, write only a little bit more, and then crash again.
1690 * If we leave the partial log records out there, this situation could
1691 * cause us to think those partial writes are valid blocks since they
1692 * have the current cycle number. We get rid of them by overwriting them
1693 * with empty log records with the old cycle number rather than the
1696 * The tail lsn is passed in rather than taken from
1697 * the log so that we will not write over the unmount record after a
1698 * clean unmount in a 512 block log. Doing so would leave the log without
1699 * any valid log records in it until a new one was written. If we crashed
1700 * during that time we would not be able to recover.
1703 xlog_clear_stale_blocks(
1707 int tail_cycle
, head_cycle
;
1708 int tail_block
, head_block
;
1709 int tail_distance
, max_distance
;
1713 tail_cycle
= CYCLE_LSN(tail_lsn
);
1714 tail_block
= BLOCK_LSN(tail_lsn
);
1715 head_cycle
= log
->l_curr_cycle
;
1716 head_block
= log
->l_curr_block
;
1719 * Figure out the distance between the new head of the log
1720 * and the tail. We want to write over any blocks beyond the
1721 * head that we may have written just before the crash, but
1722 * we don't want to overwrite the tail of the log.
1724 if (head_cycle
== tail_cycle
) {
1726 * The tail is behind the head in the physical log,
1727 * so the distance from the head to the tail is the
1728 * distance from the head to the end of the log plus
1729 * the distance from the beginning of the log to the
1732 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1733 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1734 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1735 return -EFSCORRUPTED
;
1737 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1740 * The head is behind the tail in the physical log,
1741 * so the distance from the head to the tail is just
1742 * the tail block minus the head block.
1744 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1745 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1746 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1747 return -EFSCORRUPTED
;
1749 tail_distance
= tail_block
- head_block
;
1753 * If the head is right up against the tail, we can't clear
1756 if (tail_distance
<= 0) {
1757 ASSERT(tail_distance
== 0);
1761 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1763 * Take the smaller of the maximum amount of outstanding I/O
1764 * we could have and the distance to the tail to clear out.
1765 * We take the smaller so that we don't overwrite the tail and
1766 * we don't waste all day writing from the head to the tail
1769 max_distance
= MIN(max_distance
, tail_distance
);
1771 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1773 * We can stomp all the blocks we need to without
1774 * wrapping around the end of the log. Just do it
1775 * in a single write. Use the cycle number of the
1776 * current cycle minus one so that the log will look like:
1779 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1780 head_block
, max_distance
, tail_cycle
,
1786 * We need to wrap around the end of the physical log in
1787 * order to clear all the blocks. Do it in two separate
1788 * I/Os. The first write should be from the head to the
1789 * end of the physical log, and it should use the current
1790 * cycle number minus one just like above.
1792 distance
= log
->l_logBBsize
- head_block
;
1793 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1794 head_block
, distance
, tail_cycle
,
1801 * Now write the blocks at the start of the physical log.
1802 * This writes the remainder of the blocks we want to clear.
1803 * It uses the current cycle number since we're now on the
1804 * same cycle as the head so that we get:
1805 * n ... n ... | n - 1 ...
1806 * ^^^^^ blocks we're writing
1808 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1809 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1810 tail_cycle
, tail_block
);
1818 /******************************************************************************
1820 * Log recover routines
1822 ******************************************************************************
1826 * Sort the log items in the transaction.
1828 * The ordering constraints are defined by the inode allocation and unlink
1829 * behaviour. The rules are:
1831 * 1. Every item is only logged once in a given transaction. Hence it
1832 * represents the last logged state of the item. Hence ordering is
1833 * dependent on the order in which operations need to be performed so
1834 * required initial conditions are always met.
1836 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1837 * there's nothing to replay from them so we can simply cull them
1838 * from the transaction. However, we can't do that until after we've
1839 * replayed all the other items because they may be dependent on the
1840 * cancelled buffer and replaying the cancelled buffer can remove it
1841 * form the cancelled buffer table. Hence they have tobe done last.
1843 * 3. Inode allocation buffers must be replayed before inode items that
1844 * read the buffer and replay changes into it. For filesystems using the
1845 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1846 * treated the same as inode allocation buffers as they create and
1847 * initialise the buffers directly.
1849 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1850 * This ensures that inodes are completely flushed to the inode buffer
1851 * in a "free" state before we remove the unlinked inode list pointer.
1853 * Hence the ordering needs to be inode allocation buffers first, inode items
1854 * second, inode unlink buffers third and cancelled buffers last.
1856 * But there's a problem with that - we can't tell an inode allocation buffer
1857 * apart from a regular buffer, so we can't separate them. We can, however,
1858 * tell an inode unlink buffer from the others, and so we can separate them out
1859 * from all the other buffers and move them to last.
1861 * Hence, 4 lists, in order from head to tail:
1862 * - buffer_list for all buffers except cancelled/inode unlink buffers
1863 * - item_list for all non-buffer items
1864 * - inode_buffer_list for inode unlink buffers
1865 * - cancel_list for the cancelled buffers
1867 * Note that we add objects to the tail of the lists so that first-to-last
1868 * ordering is preserved within the lists. Adding objects to the head of the
1869 * list means when we traverse from the head we walk them in last-to-first
1870 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1871 * but for all other items there may be specific ordering that we need to
1875 xlog_recover_reorder_trans(
1877 struct xlog_recover
*trans
,
1880 xlog_recover_item_t
*item
, *n
;
1882 LIST_HEAD(sort_list
);
1883 LIST_HEAD(cancel_list
);
1884 LIST_HEAD(buffer_list
);
1885 LIST_HEAD(inode_buffer_list
);
1886 LIST_HEAD(inode_list
);
1888 list_splice_init(&trans
->r_itemq
, &sort_list
);
1889 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1890 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1892 switch (ITEM_TYPE(item
)) {
1893 case XFS_LI_ICREATE
:
1894 list_move_tail(&item
->ri_list
, &buffer_list
);
1897 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1898 trace_xfs_log_recover_item_reorder_head(log
,
1900 list_move(&item
->ri_list
, &cancel_list
);
1903 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1904 list_move(&item
->ri_list
, &inode_buffer_list
);
1907 list_move_tail(&item
->ri_list
, &buffer_list
);
1911 case XFS_LI_QUOTAOFF
:
1914 trace_xfs_log_recover_item_reorder_tail(log
,
1916 list_move_tail(&item
->ri_list
, &inode_list
);
1920 "%s: unrecognized type of log operation",
1924 * return the remaining items back to the transaction
1925 * item list so they can be freed in caller.
1927 if (!list_empty(&sort_list
))
1928 list_splice_init(&sort_list
, &trans
->r_itemq
);
1934 ASSERT(list_empty(&sort_list
));
1935 if (!list_empty(&buffer_list
))
1936 list_splice(&buffer_list
, &trans
->r_itemq
);
1937 if (!list_empty(&inode_list
))
1938 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1939 if (!list_empty(&inode_buffer_list
))
1940 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1941 if (!list_empty(&cancel_list
))
1942 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1947 * Build up the table of buf cancel records so that we don't replay
1948 * cancelled data in the second pass. For buffer records that are
1949 * not cancel records, there is nothing to do here so we just return.
1951 * If we get a cancel record which is already in the table, this indicates
1952 * that the buffer was cancelled multiple times. In order to ensure
1953 * that during pass 2 we keep the record in the table until we reach its
1954 * last occurrence in the log, we keep a reference count in the cancel
1955 * record in the table to tell us how many times we expect to see this
1956 * record during the second pass.
1959 xlog_recover_buffer_pass1(
1961 struct xlog_recover_item
*item
)
1963 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1964 struct list_head
*bucket
;
1965 struct xfs_buf_cancel
*bcp
;
1968 * If this isn't a cancel buffer item, then just return.
1970 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1971 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1976 * Insert an xfs_buf_cancel record into the hash table of them.
1977 * If there is already an identical record, bump its reference count.
1979 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1980 list_for_each_entry(bcp
, bucket
, bc_list
) {
1981 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
1982 bcp
->bc_len
== buf_f
->blf_len
) {
1984 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
1989 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
1990 bcp
->bc_blkno
= buf_f
->blf_blkno
;
1991 bcp
->bc_len
= buf_f
->blf_len
;
1992 bcp
->bc_refcount
= 1;
1993 list_add_tail(&bcp
->bc_list
, bucket
);
1995 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2000 * Check to see whether the buffer being recovered has a corresponding
2001 * entry in the buffer cancel record table. If it is, return the cancel
2002 * buffer structure to the caller.
2004 STATIC
struct xfs_buf_cancel
*
2005 xlog_peek_buffer_cancelled(
2011 struct list_head
*bucket
;
2012 struct xfs_buf_cancel
*bcp
;
2014 if (!log
->l_buf_cancel_table
) {
2015 /* empty table means no cancelled buffers in the log */
2016 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2020 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2021 list_for_each_entry(bcp
, bucket
, bc_list
) {
2022 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2027 * We didn't find a corresponding entry in the table, so return 0 so
2028 * that the buffer is NOT cancelled.
2030 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2035 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2036 * otherwise return 0. If the buffer is actually a buffer cancel item
2037 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2038 * table and remove it from the table if this is the last reference.
2040 * We remove the cancel record from the table when we encounter its last
2041 * occurrence in the log so that if the same buffer is re-used again after its
2042 * last cancellation we actually replay the changes made at that point.
2045 xlog_check_buffer_cancelled(
2051 struct xfs_buf_cancel
*bcp
;
2053 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2058 * We've go a match, so return 1 so that the recovery of this buffer
2059 * is cancelled. If this buffer is actually a buffer cancel log
2060 * item, then decrement the refcount on the one in the table and
2061 * remove it if this is the last reference.
2063 if (flags
& XFS_BLF_CANCEL
) {
2064 if (--bcp
->bc_refcount
== 0) {
2065 list_del(&bcp
->bc_list
);
2073 * Perform recovery for a buffer full of inodes. In these buffers, the only
2074 * data which should be recovered is that which corresponds to the
2075 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2076 * data for the inodes is always logged through the inodes themselves rather
2077 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2079 * The only time when buffers full of inodes are fully recovered is when the
2080 * buffer is full of newly allocated inodes. In this case the buffer will
2081 * not be marked as an inode buffer and so will be sent to
2082 * xlog_recover_do_reg_buffer() below during recovery.
2085 xlog_recover_do_inode_buffer(
2086 struct xfs_mount
*mp
,
2087 xlog_recover_item_t
*item
,
2089 xfs_buf_log_format_t
*buf_f
)
2095 int reg_buf_offset
= 0;
2096 int reg_buf_bytes
= 0;
2097 int next_unlinked_offset
;
2099 xfs_agino_t
*logged_nextp
;
2100 xfs_agino_t
*buffer_nextp
;
2102 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2105 * Post recovery validation only works properly on CRC enabled
2108 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2109 bp
->b_ops
= &xfs_inode_buf_ops
;
2111 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2112 for (i
= 0; i
< inodes_per_buf
; i
++) {
2113 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2114 offsetof(xfs_dinode_t
, di_next_unlinked
);
2116 while (next_unlinked_offset
>=
2117 (reg_buf_offset
+ reg_buf_bytes
)) {
2119 * The next di_next_unlinked field is beyond
2120 * the current logged region. Find the next
2121 * logged region that contains or is beyond
2122 * the current di_next_unlinked field.
2125 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2126 buf_f
->blf_map_size
, bit
);
2129 * If there are no more logged regions in the
2130 * buffer, then we're done.
2135 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2136 buf_f
->blf_map_size
, bit
);
2138 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2139 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2144 * If the current logged region starts after the current
2145 * di_next_unlinked field, then move on to the next
2146 * di_next_unlinked field.
2148 if (next_unlinked_offset
< reg_buf_offset
)
2151 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2152 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2153 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2154 BBTOB(bp
->b_io_length
));
2157 * The current logged region contains a copy of the
2158 * current di_next_unlinked field. Extract its value
2159 * and copy it to the buffer copy.
2161 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2162 next_unlinked_offset
- reg_buf_offset
;
2163 if (unlikely(*logged_nextp
== 0)) {
2165 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2166 "Trying to replay bad (0) inode di_next_unlinked field.",
2168 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2169 XFS_ERRLEVEL_LOW
, mp
);
2170 return -EFSCORRUPTED
;
2173 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2174 *buffer_nextp
= *logged_nextp
;
2177 * If necessary, recalculate the CRC in the on-disk inode. We
2178 * have to leave the inode in a consistent state for whoever
2181 xfs_dinode_calc_crc(mp
,
2182 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2190 * V5 filesystems know the age of the buffer on disk being recovered. We can
2191 * have newer objects on disk than we are replaying, and so for these cases we
2192 * don't want to replay the current change as that will make the buffer contents
2193 * temporarily invalid on disk.
2195 * The magic number might not match the buffer type we are going to recover
2196 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2197 * extract the LSN of the existing object in the buffer based on it's current
2198 * magic number. If we don't recognise the magic number in the buffer, then
2199 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2200 * so can recover the buffer.
2202 * Note: we cannot rely solely on magic number matches to determine that the
2203 * buffer has a valid LSN - we also need to verify that it belongs to this
2204 * filesystem, so we need to extract the object's LSN and compare it to that
2205 * which we read from the superblock. If the UUIDs don't match, then we've got a
2206 * stale metadata block from an old filesystem instance that we need to recover
2210 xlog_recover_get_buf_lsn(
2211 struct xfs_mount
*mp
,
2217 void *blk
= bp
->b_addr
;
2221 /* v4 filesystems always recover immediately */
2222 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2223 goto recover_immediately
;
2225 magic32
= be32_to_cpu(*(__be32
*)blk
);
2227 case XFS_ABTB_CRC_MAGIC
:
2228 case XFS_ABTC_CRC_MAGIC
:
2229 case XFS_ABTB_MAGIC
:
2230 case XFS_ABTC_MAGIC
:
2231 case XFS_IBT_CRC_MAGIC
:
2232 case XFS_IBT_MAGIC
: {
2233 struct xfs_btree_block
*btb
= blk
;
2235 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2236 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2239 case XFS_BMAP_CRC_MAGIC
:
2240 case XFS_BMAP_MAGIC
: {
2241 struct xfs_btree_block
*btb
= blk
;
2243 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2244 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2248 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2249 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2251 case XFS_AGFL_MAGIC
:
2252 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2253 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2256 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2257 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2259 case XFS_SYMLINK_MAGIC
:
2260 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2261 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2263 case XFS_DIR3_BLOCK_MAGIC
:
2264 case XFS_DIR3_DATA_MAGIC
:
2265 case XFS_DIR3_FREE_MAGIC
:
2266 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2267 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2269 case XFS_ATTR3_RMT_MAGIC
:
2271 * Remote attr blocks are written synchronously, rather than
2272 * being logged. That means they do not contain a valid LSN
2273 * (i.e. transactionally ordered) in them, and hence any time we
2274 * see a buffer to replay over the top of a remote attribute
2275 * block we should simply do so.
2277 goto recover_immediately
;
2280 * superblock uuids are magic. We may or may not have a
2281 * sb_meta_uuid on disk, but it will be set in the in-core
2282 * superblock. We set the uuid pointer for verification
2283 * according to the superblock feature mask to ensure we check
2284 * the relevant UUID in the superblock.
2286 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2287 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2288 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2290 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2296 if (lsn
!= (xfs_lsn_t
)-1) {
2297 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2298 goto recover_immediately
;
2302 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2304 case XFS_DIR3_LEAF1_MAGIC
:
2305 case XFS_DIR3_LEAFN_MAGIC
:
2306 case XFS_DA3_NODE_MAGIC
:
2307 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2308 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2314 if (lsn
!= (xfs_lsn_t
)-1) {
2315 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2316 goto recover_immediately
;
2321 * We do individual object checks on dquot and inode buffers as they
2322 * have their own individual LSN records. Also, we could have a stale
2323 * buffer here, so we have to at least recognise these buffer types.
2325 * A notd complexity here is inode unlinked list processing - it logs
2326 * the inode directly in the buffer, but we don't know which inodes have
2327 * been modified, and there is no global buffer LSN. Hence we need to
2328 * recover all inode buffer types immediately. This problem will be
2329 * fixed by logical logging of the unlinked list modifications.
2331 magic16
= be16_to_cpu(*(__be16
*)blk
);
2333 case XFS_DQUOT_MAGIC
:
2334 case XFS_DINODE_MAGIC
:
2335 goto recover_immediately
;
2340 /* unknown buffer contents, recover immediately */
2342 recover_immediately
:
2343 return (xfs_lsn_t
)-1;
2348 * Validate the recovered buffer is of the correct type and attach the
2349 * appropriate buffer operations to them for writeback. Magic numbers are in a
2351 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2352 * the first 32 bits of the buffer (most blocks),
2353 * inside a struct xfs_da_blkinfo at the start of the buffer.
2356 xlog_recover_validate_buf_type(
2357 struct xfs_mount
*mp
,
2359 xfs_buf_log_format_t
*buf_f
)
2361 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2367 * We can only do post recovery validation on items on CRC enabled
2368 * fielsystems as we need to know when the buffer was written to be able
2369 * to determine if we should have replayed the item. If we replay old
2370 * metadata over a newer buffer, then it will enter a temporarily
2371 * inconsistent state resulting in verification failures. Hence for now
2372 * just avoid the verification stage for non-crc filesystems
2374 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2377 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2378 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2379 magicda
= be16_to_cpu(info
->magic
);
2380 switch (xfs_blft_from_flags(buf_f
)) {
2381 case XFS_BLFT_BTREE_BUF
:
2383 case XFS_ABTB_CRC_MAGIC
:
2384 case XFS_ABTC_CRC_MAGIC
:
2385 case XFS_ABTB_MAGIC
:
2386 case XFS_ABTC_MAGIC
:
2387 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2389 case XFS_IBT_CRC_MAGIC
:
2390 case XFS_FIBT_CRC_MAGIC
:
2392 case XFS_FIBT_MAGIC
:
2393 bp
->b_ops
= &xfs_inobt_buf_ops
;
2395 case XFS_BMAP_CRC_MAGIC
:
2396 case XFS_BMAP_MAGIC
:
2397 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2400 xfs_warn(mp
, "Bad btree block magic!");
2405 case XFS_BLFT_AGF_BUF
:
2406 if (magic32
!= XFS_AGF_MAGIC
) {
2407 xfs_warn(mp
, "Bad AGF block magic!");
2411 bp
->b_ops
= &xfs_agf_buf_ops
;
2413 case XFS_BLFT_AGFL_BUF
:
2414 if (magic32
!= XFS_AGFL_MAGIC
) {
2415 xfs_warn(mp
, "Bad AGFL block magic!");
2419 bp
->b_ops
= &xfs_agfl_buf_ops
;
2421 case XFS_BLFT_AGI_BUF
:
2422 if (magic32
!= XFS_AGI_MAGIC
) {
2423 xfs_warn(mp
, "Bad AGI block magic!");
2427 bp
->b_ops
= &xfs_agi_buf_ops
;
2429 case XFS_BLFT_UDQUOT_BUF
:
2430 case XFS_BLFT_PDQUOT_BUF
:
2431 case XFS_BLFT_GDQUOT_BUF
:
2432 #ifdef CONFIG_XFS_QUOTA
2433 if (magic16
!= XFS_DQUOT_MAGIC
) {
2434 xfs_warn(mp
, "Bad DQUOT block magic!");
2438 bp
->b_ops
= &xfs_dquot_buf_ops
;
2441 "Trying to recover dquots without QUOTA support built in!");
2445 case XFS_BLFT_DINO_BUF
:
2446 if (magic16
!= XFS_DINODE_MAGIC
) {
2447 xfs_warn(mp
, "Bad INODE block magic!");
2451 bp
->b_ops
= &xfs_inode_buf_ops
;
2453 case XFS_BLFT_SYMLINK_BUF
:
2454 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2455 xfs_warn(mp
, "Bad symlink block magic!");
2459 bp
->b_ops
= &xfs_symlink_buf_ops
;
2461 case XFS_BLFT_DIR_BLOCK_BUF
:
2462 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2463 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2464 xfs_warn(mp
, "Bad dir block magic!");
2468 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2470 case XFS_BLFT_DIR_DATA_BUF
:
2471 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2472 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2473 xfs_warn(mp
, "Bad dir data magic!");
2477 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2479 case XFS_BLFT_DIR_FREE_BUF
:
2480 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2481 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2482 xfs_warn(mp
, "Bad dir3 free magic!");
2486 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2488 case XFS_BLFT_DIR_LEAF1_BUF
:
2489 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2490 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2491 xfs_warn(mp
, "Bad dir leaf1 magic!");
2495 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2497 case XFS_BLFT_DIR_LEAFN_BUF
:
2498 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2499 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2500 xfs_warn(mp
, "Bad dir leafn magic!");
2504 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2506 case XFS_BLFT_DA_NODE_BUF
:
2507 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2508 magicda
!= XFS_DA3_NODE_MAGIC
) {
2509 xfs_warn(mp
, "Bad da node magic!");
2513 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2515 case XFS_BLFT_ATTR_LEAF_BUF
:
2516 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2517 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2518 xfs_warn(mp
, "Bad attr leaf magic!");
2522 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2524 case XFS_BLFT_ATTR_RMT_BUF
:
2525 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2526 xfs_warn(mp
, "Bad attr remote magic!");
2530 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2532 case XFS_BLFT_SB_BUF
:
2533 if (magic32
!= XFS_SB_MAGIC
) {
2534 xfs_warn(mp
, "Bad SB block magic!");
2538 bp
->b_ops
= &xfs_sb_buf_ops
;
2540 #ifdef CONFIG_XFS_RT
2541 case XFS_BLFT_RTBITMAP_BUF
:
2542 case XFS_BLFT_RTSUMMARY_BUF
:
2543 /* no magic numbers for verification of RT buffers */
2544 bp
->b_ops
= &xfs_rtbuf_ops
;
2546 #endif /* CONFIG_XFS_RT */
2548 xfs_warn(mp
, "Unknown buffer type %d!",
2549 xfs_blft_from_flags(buf_f
));
2555 * Perform a 'normal' buffer recovery. Each logged region of the
2556 * buffer should be copied over the corresponding region in the
2557 * given buffer. The bitmap in the buf log format structure indicates
2558 * where to place the logged data.
2561 xlog_recover_do_reg_buffer(
2562 struct xfs_mount
*mp
,
2563 xlog_recover_item_t
*item
,
2565 xfs_buf_log_format_t
*buf_f
)
2572 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2575 i
= 1; /* 0 is the buf format structure */
2577 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2578 buf_f
->blf_map_size
, bit
);
2581 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2582 buf_f
->blf_map_size
, bit
);
2584 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2585 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2586 ASSERT(BBTOB(bp
->b_io_length
) >=
2587 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2590 * The dirty regions logged in the buffer, even though
2591 * contiguous, may span multiple chunks. This is because the
2592 * dirty region may span a physical page boundary in a buffer
2593 * and hence be split into two separate vectors for writing into
2594 * the log. Hence we need to trim nbits back to the length of
2595 * the current region being copied out of the log.
2597 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2598 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2601 * Do a sanity check if this is a dquot buffer. Just checking
2602 * the first dquot in the buffer should do. XXXThis is
2603 * probably a good thing to do for other buf types also.
2606 if (buf_f
->blf_flags
&
2607 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2608 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2610 "XFS: NULL dquot in %s.", __func__
);
2613 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2615 "XFS: dquot too small (%d) in %s.",
2616 item
->ri_buf
[i
].i_len
, __func__
);
2619 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2620 -1, 0, XFS_QMOPT_DOWARN
,
2621 "dquot_buf_recover");
2626 memcpy(xfs_buf_offset(bp
,
2627 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2628 item
->ri_buf
[i
].i_addr
, /* source */
2629 nbits
<<XFS_BLF_SHIFT
); /* length */
2635 /* Shouldn't be any more regions */
2636 ASSERT(i
== item
->ri_total
);
2638 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2642 * Perform a dquot buffer recovery.
2643 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2644 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2645 * Else, treat it as a regular buffer and do recovery.
2647 * Return false if the buffer was tossed and true if we recovered the buffer to
2648 * indicate to the caller if the buffer needs writing.
2651 xlog_recover_do_dquot_buffer(
2652 struct xfs_mount
*mp
,
2654 struct xlog_recover_item
*item
,
2656 struct xfs_buf_log_format
*buf_f
)
2660 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2663 * Filesystems are required to send in quota flags at mount time.
2669 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2670 type
|= XFS_DQ_USER
;
2671 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2672 type
|= XFS_DQ_PROJ
;
2673 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2674 type
|= XFS_DQ_GROUP
;
2676 * This type of quotas was turned off, so ignore this buffer
2678 if (log
->l_quotaoffs_flag
& type
)
2681 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2686 * This routine replays a modification made to a buffer at runtime.
2687 * There are actually two types of buffer, regular and inode, which
2688 * are handled differently. Inode buffers are handled differently
2689 * in that we only recover a specific set of data from them, namely
2690 * the inode di_next_unlinked fields. This is because all other inode
2691 * data is actually logged via inode records and any data we replay
2692 * here which overlaps that may be stale.
2694 * When meta-data buffers are freed at run time we log a buffer item
2695 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2696 * of the buffer in the log should not be replayed at recovery time.
2697 * This is so that if the blocks covered by the buffer are reused for
2698 * file data before we crash we don't end up replaying old, freed
2699 * meta-data into a user's file.
2701 * To handle the cancellation of buffer log items, we make two passes
2702 * over the log during recovery. During the first we build a table of
2703 * those buffers which have been cancelled, and during the second we
2704 * only replay those buffers which do not have corresponding cancel
2705 * records in the table. See xlog_recover_buffer_pass[1,2] above
2706 * for more details on the implementation of the table of cancel records.
2709 xlog_recover_buffer_pass2(
2711 struct list_head
*buffer_list
,
2712 struct xlog_recover_item
*item
,
2713 xfs_lsn_t current_lsn
)
2715 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2716 xfs_mount_t
*mp
= log
->l_mp
;
2723 * In this pass we only want to recover all the buffers which have
2724 * not been cancelled and are not cancellation buffers themselves.
2726 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2727 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2728 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2732 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2735 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2736 buf_flags
|= XBF_UNMAPPED
;
2738 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2742 error
= bp
->b_error
;
2744 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2749 * Recover the buffer only if we get an LSN from it and it's less than
2750 * the lsn of the transaction we are replaying.
2752 * Note that we have to be extremely careful of readahead here.
2753 * Readahead does not attach verfiers to the buffers so if we don't
2754 * actually do any replay after readahead because of the LSN we found
2755 * in the buffer if more recent than that current transaction then we
2756 * need to attach the verifier directly. Failure to do so can lead to
2757 * future recovery actions (e.g. EFI and unlinked list recovery) can
2758 * operate on the buffers and they won't get the verifier attached. This
2759 * can lead to blocks on disk having the correct content but a stale
2762 * It is safe to assume these clean buffers are currently up to date.
2763 * If the buffer is dirtied by a later transaction being replayed, then
2764 * the verifier will be reset to match whatever recover turns that
2767 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2768 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2769 xlog_recover_validate_buf_type(mp
, bp
, buf_f
);
2773 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2774 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2777 } else if (buf_f
->blf_flags
&
2778 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2781 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2785 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
);
2789 * Perform delayed write on the buffer. Asynchronous writes will be
2790 * slower when taking into account all the buffers to be flushed.
2792 * Also make sure that only inode buffers with good sizes stay in
2793 * the buffer cache. The kernel moves inodes in buffers of 1 block
2794 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2795 * buffers in the log can be a different size if the log was generated
2796 * by an older kernel using unclustered inode buffers or a newer kernel
2797 * running with a different inode cluster size. Regardless, if the
2798 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2799 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2800 * the buffer out of the buffer cache so that the buffer won't
2801 * overlap with future reads of those inodes.
2803 if (XFS_DINODE_MAGIC
==
2804 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2805 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2806 (__uint32_t
)log
->l_mp
->m_inode_cluster_size
))) {
2808 error
= xfs_bwrite(bp
);
2810 ASSERT(bp
->b_target
->bt_mount
== mp
);
2811 bp
->b_iodone
= xlog_recover_iodone
;
2812 xfs_buf_delwri_queue(bp
, buffer_list
);
2821 * Inode fork owner changes
2823 * If we have been told that we have to reparent the inode fork, it's because an
2824 * extent swap operation on a CRC enabled filesystem has been done and we are
2825 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2828 * The complexity here is that we don't have an inode context to work with, so
2829 * after we've replayed the inode we need to instantiate one. This is where the
2832 * We are in the middle of log recovery, so we can't run transactions. That
2833 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2834 * that will result in the corresponding iput() running the inode through
2835 * xfs_inactive(). If we've just replayed an inode core that changes the link
2836 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2837 * transactions (bad!).
2839 * So, to avoid this, we instantiate an inode directly from the inode core we've
2840 * just recovered. We have the buffer still locked, and all we really need to
2841 * instantiate is the inode core and the forks being modified. We can do this
2842 * manually, then run the inode btree owner change, and then tear down the
2843 * xfs_inode without having to run any transactions at all.
2845 * Also, because we don't have a transaction context available here but need to
2846 * gather all the buffers we modify for writeback so we pass the buffer_list
2847 * instead for the operation to use.
2851 xfs_recover_inode_owner_change(
2852 struct xfs_mount
*mp
,
2853 struct xfs_dinode
*dip
,
2854 struct xfs_inode_log_format
*in_f
,
2855 struct list_head
*buffer_list
)
2857 struct xfs_inode
*ip
;
2860 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2862 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2866 /* instantiate the inode */
2867 xfs_inode_from_disk(ip
, dip
);
2868 ASSERT(ip
->i_d
.di_version
>= 3);
2870 error
= xfs_iformat_fork(ip
, dip
);
2875 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2876 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2877 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2878 ip
->i_ino
, buffer_list
);
2883 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2884 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2885 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2886 ip
->i_ino
, buffer_list
);
2897 xlog_recover_inode_pass2(
2899 struct list_head
*buffer_list
,
2900 struct xlog_recover_item
*item
,
2901 xfs_lsn_t current_lsn
)
2903 xfs_inode_log_format_t
*in_f
;
2904 xfs_mount_t
*mp
= log
->l_mp
;
2913 struct xfs_log_dinode
*ldip
;
2917 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2918 in_f
= item
->ri_buf
[0].i_addr
;
2920 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2922 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2928 * Inode buffers can be freed, look out for it,
2929 * and do not replay the inode.
2931 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2932 in_f
->ilf_len
, 0)) {
2934 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2937 trace_xfs_log_recover_inode_recover(log
, in_f
);
2939 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2940 &xfs_inode_buf_ops
);
2945 error
= bp
->b_error
;
2947 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2950 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
2951 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
2954 * Make sure the place we're flushing out to really looks
2957 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
2959 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2960 __func__
, dip
, bp
, in_f
->ilf_ino
);
2961 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2962 XFS_ERRLEVEL_LOW
, mp
);
2963 error
= -EFSCORRUPTED
;
2966 ldip
= item
->ri_buf
[1].i_addr
;
2967 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
2969 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2970 __func__
, item
, in_f
->ilf_ino
);
2971 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2972 XFS_ERRLEVEL_LOW
, mp
);
2973 error
= -EFSCORRUPTED
;
2978 * If the inode has an LSN in it, recover the inode only if it's less
2979 * than the lsn of the transaction we are replaying. Note: we still
2980 * need to replay an owner change even though the inode is more recent
2981 * than the transaction as there is no guarantee that all the btree
2982 * blocks are more recent than this transaction, too.
2984 if (dip
->di_version
>= 3) {
2985 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
2987 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2988 trace_xfs_log_recover_inode_skip(log
, in_f
);
2990 goto out_owner_change
;
2995 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2996 * are transactional and if ordering is necessary we can determine that
2997 * more accurately by the LSN field in the V3 inode core. Don't trust
2998 * the inode versions we might be changing them here - use the
2999 * superblock flag to determine whether we need to look at di_flushiter
3000 * to skip replay when the on disk inode is newer than the log one
3002 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3003 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3005 * Deal with the wrap case, DI_MAX_FLUSH is less
3006 * than smaller numbers
3008 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3009 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3012 trace_xfs_log_recover_inode_skip(log
, in_f
);
3018 /* Take the opportunity to reset the flush iteration count */
3019 ldip
->di_flushiter
= 0;
3021 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3022 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3023 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3024 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3025 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3027 "%s: Bad regular inode log record, rec ptr 0x%p, "
3028 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3029 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3030 error
= -EFSCORRUPTED
;
3033 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3034 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3035 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3036 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3037 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3038 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3040 "%s: Bad dir inode log record, rec ptr 0x%p, "
3041 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3042 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3043 error
= -EFSCORRUPTED
;
3047 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3048 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3049 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3051 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3052 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3053 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3054 ldip
->di_nextents
+ ldip
->di_anextents
,
3056 error
= -EFSCORRUPTED
;
3059 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3060 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3061 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3063 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3064 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
3065 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3066 error
= -EFSCORRUPTED
;
3069 isize
= xfs_log_dinode_size(ldip
->di_version
);
3070 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3071 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3072 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3074 "%s: Bad inode log record length %d, rec ptr 0x%p",
3075 __func__
, item
->ri_buf
[1].i_len
, item
);
3076 error
= -EFSCORRUPTED
;
3080 /* recover the log dinode inode into the on disk inode */
3081 xfs_log_dinode_to_disk(ldip
, dip
);
3083 /* the rest is in on-disk format */
3084 if (item
->ri_buf
[1].i_len
> isize
) {
3085 memcpy((char *)dip
+ isize
,
3086 item
->ri_buf
[1].i_addr
+ isize
,
3087 item
->ri_buf
[1].i_len
- isize
);
3090 fields
= in_f
->ilf_fields
;
3091 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
3093 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3096 memcpy(XFS_DFORK_DPTR(dip
),
3097 &in_f
->ilf_u
.ilfu_uuid
,
3102 if (in_f
->ilf_size
== 2)
3103 goto out_owner_change
;
3104 len
= item
->ri_buf
[2].i_len
;
3105 src
= item
->ri_buf
[2].i_addr
;
3106 ASSERT(in_f
->ilf_size
<= 4);
3107 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3108 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3109 (len
== in_f
->ilf_dsize
));
3111 switch (fields
& XFS_ILOG_DFORK
) {
3112 case XFS_ILOG_DDATA
:
3114 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3117 case XFS_ILOG_DBROOT
:
3118 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3119 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3120 XFS_DFORK_DSIZE(dip
, mp
));
3125 * There are no data fork flags set.
3127 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3132 * If we logged any attribute data, recover it. There may or
3133 * may not have been any other non-core data logged in this
3136 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3137 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3142 len
= item
->ri_buf
[attr_index
].i_len
;
3143 src
= item
->ri_buf
[attr_index
].i_addr
;
3144 ASSERT(len
== in_f
->ilf_asize
);
3146 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3147 case XFS_ILOG_ADATA
:
3149 dest
= XFS_DFORK_APTR(dip
);
3150 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3151 memcpy(dest
, src
, len
);
3154 case XFS_ILOG_ABROOT
:
3155 dest
= XFS_DFORK_APTR(dip
);
3156 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3157 len
, (xfs_bmdr_block_t
*)dest
,
3158 XFS_DFORK_ASIZE(dip
, mp
));
3162 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3170 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
3171 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3173 /* re-generate the checksum. */
3174 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3176 ASSERT(bp
->b_target
->bt_mount
== mp
);
3177 bp
->b_iodone
= xlog_recover_iodone
;
3178 xfs_buf_delwri_queue(bp
, buffer_list
);
3189 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3190 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3194 xlog_recover_quotaoff_pass1(
3196 struct xlog_recover_item
*item
)
3198 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3202 * The logitem format's flag tells us if this was user quotaoff,
3203 * group/project quotaoff or both.
3205 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3206 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3207 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3208 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3209 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3210 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3216 * Recover a dquot record
3219 xlog_recover_dquot_pass2(
3221 struct list_head
*buffer_list
,
3222 struct xlog_recover_item
*item
,
3223 xfs_lsn_t current_lsn
)
3225 xfs_mount_t
*mp
= log
->l_mp
;
3227 struct xfs_disk_dquot
*ddq
, *recddq
;
3229 xfs_dq_logformat_t
*dq_f
;
3234 * Filesystems are required to send in quota flags at mount time.
3236 if (mp
->m_qflags
== 0)
3239 recddq
= item
->ri_buf
[1].i_addr
;
3240 if (recddq
== NULL
) {
3241 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3244 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3245 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3246 item
->ri_buf
[1].i_len
, __func__
);
3251 * This type of quotas was turned off, so ignore this record.
3253 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3255 if (log
->l_quotaoffs_flag
& type
)
3259 * At this point we know that quota was _not_ turned off.
3260 * Since the mount flags are not indicating to us otherwise, this
3261 * must mean that quota is on, and the dquot needs to be replayed.
3262 * Remember that we may not have fully recovered the superblock yet,
3263 * so we can't do the usual trick of looking at the SB quota bits.
3265 * The other possibility, of course, is that the quota subsystem was
3266 * removed since the last mount - ENOSYS.
3268 dq_f
= item
->ri_buf
[0].i_addr
;
3270 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
3271 "xlog_recover_dquot_pass2 (log copy)");
3274 ASSERT(dq_f
->qlf_len
== 1);
3277 * At this point we are assuming that the dquots have been allocated
3278 * and hence the buffer has valid dquots stamped in it. It should,
3279 * therefore, pass verifier validation. If the dquot is bad, then the
3280 * we'll return an error here, so we don't need to specifically check
3281 * the dquot in the buffer after the verifier has run.
3283 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3284 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3285 &xfs_dquot_buf_ops
);
3290 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3293 * If the dquot has an LSN in it, recover the dquot only if it's less
3294 * than the lsn of the transaction we are replaying.
3296 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3297 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3298 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3300 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3305 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3306 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3307 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3311 ASSERT(dq_f
->qlf_size
== 2);
3312 ASSERT(bp
->b_target
->bt_mount
== mp
);
3313 bp
->b_iodone
= xlog_recover_iodone
;
3314 xfs_buf_delwri_queue(bp
, buffer_list
);
3322 * This routine is called to create an in-core extent free intent
3323 * item from the efi format structure which was logged on disk.
3324 * It allocates an in-core efi, copies the extents from the format
3325 * structure into it, and adds the efi to the AIL with the given
3329 xlog_recover_efi_pass2(
3331 struct xlog_recover_item
*item
,
3335 struct xfs_mount
*mp
= log
->l_mp
;
3336 struct xfs_efi_log_item
*efip
;
3337 struct xfs_efi_log_format
*efi_formatp
;
3339 efi_formatp
= item
->ri_buf
[0].i_addr
;
3341 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3342 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3344 xfs_efi_item_free(efip
);
3347 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3349 spin_lock(&log
->l_ailp
->xa_lock
);
3351 * The EFI has two references. One for the EFD and one for EFI to ensure
3352 * it makes it into the AIL. Insert the EFI into the AIL directly and
3353 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3356 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3357 xfs_efi_release(efip
);
3363 * This routine is called when an EFD format structure is found in a committed
3364 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3365 * was still in the log. To do this it searches the AIL for the EFI with an id
3366 * equal to that in the EFD format structure. If we find it we drop the EFD
3367 * reference, which removes the EFI from the AIL and frees it.
3370 xlog_recover_efd_pass2(
3372 struct xlog_recover_item
*item
)
3374 xfs_efd_log_format_t
*efd_formatp
;
3375 xfs_efi_log_item_t
*efip
= NULL
;
3376 xfs_log_item_t
*lip
;
3378 struct xfs_ail_cursor cur
;
3379 struct xfs_ail
*ailp
= log
->l_ailp
;
3381 efd_formatp
= item
->ri_buf
[0].i_addr
;
3382 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3383 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3384 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3385 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3386 efi_id
= efd_formatp
->efd_efi_id
;
3389 * Search for the EFI with the id in the EFD format structure in the
3392 spin_lock(&ailp
->xa_lock
);
3393 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3394 while (lip
!= NULL
) {
3395 if (lip
->li_type
== XFS_LI_EFI
) {
3396 efip
= (xfs_efi_log_item_t
*)lip
;
3397 if (efip
->efi_format
.efi_id
== efi_id
) {
3399 * Drop the EFD reference to the EFI. This
3400 * removes the EFI from the AIL and frees it.
3402 spin_unlock(&ailp
->xa_lock
);
3403 xfs_efi_release(efip
);
3404 spin_lock(&ailp
->xa_lock
);
3408 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3411 xfs_trans_ail_cursor_done(&cur
);
3412 spin_unlock(&ailp
->xa_lock
);
3418 * This routine is called when an inode create format structure is found in a
3419 * committed transaction in the log. It's purpose is to initialise the inodes
3420 * being allocated on disk. This requires us to get inode cluster buffers that
3421 * match the range to be intialised, stamped with inode templates and written
3422 * by delayed write so that subsequent modifications will hit the cached buffer
3423 * and only need writing out at the end of recovery.
3426 xlog_recover_do_icreate_pass2(
3428 struct list_head
*buffer_list
,
3429 xlog_recover_item_t
*item
)
3431 struct xfs_mount
*mp
= log
->l_mp
;
3432 struct xfs_icreate_log
*icl
;
3433 xfs_agnumber_t agno
;
3434 xfs_agblock_t agbno
;
3437 xfs_agblock_t length
;
3438 int blks_per_cluster
;
3444 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3445 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3446 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3450 if (icl
->icl_size
!= 1) {
3451 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3455 agno
= be32_to_cpu(icl
->icl_ag
);
3456 if (agno
>= mp
->m_sb
.sb_agcount
) {
3457 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3460 agbno
= be32_to_cpu(icl
->icl_agbno
);
3461 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3462 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3465 isize
= be32_to_cpu(icl
->icl_isize
);
3466 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3467 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3470 count
= be32_to_cpu(icl
->icl_count
);
3472 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3475 length
= be32_to_cpu(icl
->icl_length
);
3476 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3477 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3482 * The inode chunk is either full or sparse and we only support
3483 * m_ialloc_min_blks sized sparse allocations at this time.
3485 if (length
!= mp
->m_ialloc_blks
&&
3486 length
!= mp
->m_ialloc_min_blks
) {
3488 "%s: unsupported chunk length", __FUNCTION__
);
3492 /* verify inode count is consistent with extent length */
3493 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3495 "%s: inconsistent inode count and chunk length",
3501 * The icreate transaction can cover multiple cluster buffers and these
3502 * buffers could have been freed and reused. Check the individual
3503 * buffers for cancellation so we don't overwrite anything written after
3506 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3507 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3508 nbufs
= length
/ blks_per_cluster
;
3509 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3512 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3513 agbno
+ i
* blks_per_cluster
);
3514 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3519 * We currently only use icreate for a single allocation at a time. This
3520 * means we should expect either all or none of the buffers to be
3521 * cancelled. Be conservative and skip replay if at least one buffer is
3522 * cancelled, but warn the user that something is awry if the buffers
3523 * are not consistent.
3525 * XXX: This must be refined to only skip cancelled clusters once we use
3526 * icreate for multiple chunk allocations.
3528 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3530 if (cancel_count
!= nbufs
)
3532 "WARNING: partial inode chunk cancellation, skipped icreate.");
3533 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3537 trace_xfs_log_recover_icreate_recover(log
, icl
);
3538 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3539 length
, be32_to_cpu(icl
->icl_gen
));
3543 xlog_recover_buffer_ra_pass2(
3545 struct xlog_recover_item
*item
)
3547 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3548 struct xfs_mount
*mp
= log
->l_mp
;
3550 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3551 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3555 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3556 buf_f
->blf_len
, NULL
);
3560 xlog_recover_inode_ra_pass2(
3562 struct xlog_recover_item
*item
)
3564 struct xfs_inode_log_format ilf_buf
;
3565 struct xfs_inode_log_format
*ilfp
;
3566 struct xfs_mount
*mp
= log
->l_mp
;
3569 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3570 ilfp
= item
->ri_buf
[0].i_addr
;
3573 memset(ilfp
, 0, sizeof(*ilfp
));
3574 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3579 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3582 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3583 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3587 xlog_recover_dquot_ra_pass2(
3589 struct xlog_recover_item
*item
)
3591 struct xfs_mount
*mp
= log
->l_mp
;
3592 struct xfs_disk_dquot
*recddq
;
3593 struct xfs_dq_logformat
*dq_f
;
3598 if (mp
->m_qflags
== 0)
3601 recddq
= item
->ri_buf
[1].i_addr
;
3604 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
3607 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3609 if (log
->l_quotaoffs_flag
& type
)
3612 dq_f
= item
->ri_buf
[0].i_addr
;
3614 ASSERT(dq_f
->qlf_len
== 1);
3616 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
3617 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
3620 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
3621 &xfs_dquot_buf_ra_ops
);
3625 xlog_recover_ra_pass2(
3627 struct xlog_recover_item
*item
)
3629 switch (ITEM_TYPE(item
)) {
3631 xlog_recover_buffer_ra_pass2(log
, item
);
3634 xlog_recover_inode_ra_pass2(log
, item
);
3637 xlog_recover_dquot_ra_pass2(log
, item
);
3641 case XFS_LI_QUOTAOFF
:
3648 xlog_recover_commit_pass1(
3650 struct xlog_recover
*trans
,
3651 struct xlog_recover_item
*item
)
3653 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
3655 switch (ITEM_TYPE(item
)) {
3657 return xlog_recover_buffer_pass1(log
, item
);
3658 case XFS_LI_QUOTAOFF
:
3659 return xlog_recover_quotaoff_pass1(log
, item
);
3664 case XFS_LI_ICREATE
:
3665 /* nothing to do in pass 1 */
3668 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3669 __func__
, ITEM_TYPE(item
));
3676 xlog_recover_commit_pass2(
3678 struct xlog_recover
*trans
,
3679 struct list_head
*buffer_list
,
3680 struct xlog_recover_item
*item
)
3682 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
3684 switch (ITEM_TYPE(item
)) {
3686 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
3689 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
3692 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
3694 return xlog_recover_efd_pass2(log
, item
);
3696 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
3698 case XFS_LI_ICREATE
:
3699 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
3700 case XFS_LI_QUOTAOFF
:
3701 /* nothing to do in pass2 */
3704 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
3705 __func__
, ITEM_TYPE(item
));
3712 xlog_recover_items_pass2(
3714 struct xlog_recover
*trans
,
3715 struct list_head
*buffer_list
,
3716 struct list_head
*item_list
)
3718 struct xlog_recover_item
*item
;
3721 list_for_each_entry(item
, item_list
, ri_list
) {
3722 error
= xlog_recover_commit_pass2(log
, trans
,
3732 * Perform the transaction.
3734 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3735 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3738 xlog_recover_commit_trans(
3740 struct xlog_recover
*trans
,
3745 int items_queued
= 0;
3746 struct xlog_recover_item
*item
;
3747 struct xlog_recover_item
*next
;
3748 LIST_HEAD (buffer_list
);
3749 LIST_HEAD (ra_list
);
3750 LIST_HEAD (done_list
);
3752 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
3754 hlist_del(&trans
->r_list
);
3756 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
3760 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
3762 case XLOG_RECOVER_PASS1
:
3763 error
= xlog_recover_commit_pass1(log
, trans
, item
);
3765 case XLOG_RECOVER_PASS2
:
3766 xlog_recover_ra_pass2(log
, item
);
3767 list_move_tail(&item
->ri_list
, &ra_list
);
3769 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
3770 error
= xlog_recover_items_pass2(log
, trans
,
3771 &buffer_list
, &ra_list
);
3772 list_splice_tail_init(&ra_list
, &done_list
);
3786 if (!list_empty(&ra_list
)) {
3788 error
= xlog_recover_items_pass2(log
, trans
,
3789 &buffer_list
, &ra_list
);
3790 list_splice_tail_init(&ra_list
, &done_list
);
3793 if (!list_empty(&done_list
))
3794 list_splice_init(&done_list
, &trans
->r_itemq
);
3796 error2
= xfs_buf_delwri_submit(&buffer_list
);
3797 return error
? error
: error2
;
3801 xlog_recover_add_item(
3802 struct list_head
*head
)
3804 xlog_recover_item_t
*item
;
3806 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
3807 INIT_LIST_HEAD(&item
->ri_list
);
3808 list_add_tail(&item
->ri_list
, head
);
3812 xlog_recover_add_to_cont_trans(
3814 struct xlog_recover
*trans
,
3818 xlog_recover_item_t
*item
;
3819 char *ptr
, *old_ptr
;
3823 * If the transaction is empty, the header was split across this and the
3824 * previous record. Copy the rest of the header.
3826 if (list_empty(&trans
->r_itemq
)) {
3827 ASSERT(len
<= sizeof(struct xfs_trans_header
));
3828 if (len
> sizeof(struct xfs_trans_header
)) {
3829 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
3833 xlog_recover_add_item(&trans
->r_itemq
);
3834 ptr
= (char *)&trans
->r_theader
+
3835 sizeof(struct xfs_trans_header
) - len
;
3836 memcpy(ptr
, dp
, len
);
3840 /* take the tail entry */
3841 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3843 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
3844 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
3846 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
3847 memcpy(&ptr
[old_len
], dp
, len
);
3848 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
3849 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
3850 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
3855 * The next region to add is the start of a new region. It could be
3856 * a whole region or it could be the first part of a new region. Because
3857 * of this, the assumption here is that the type and size fields of all
3858 * format structures fit into the first 32 bits of the structure.
3860 * This works because all regions must be 32 bit aligned. Therefore, we
3861 * either have both fields or we have neither field. In the case we have
3862 * neither field, the data part of the region is zero length. We only have
3863 * a log_op_header and can throw away the header since a new one will appear
3864 * later. If we have at least 4 bytes, then we can determine how many regions
3865 * will appear in the current log item.
3868 xlog_recover_add_to_trans(
3870 struct xlog_recover
*trans
,
3874 xfs_inode_log_format_t
*in_f
; /* any will do */
3875 xlog_recover_item_t
*item
;
3880 if (list_empty(&trans
->r_itemq
)) {
3881 /* we need to catch log corruptions here */
3882 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
3883 xfs_warn(log
->l_mp
, "%s: bad header magic number",
3889 if (len
> sizeof(struct xfs_trans_header
)) {
3890 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
3896 * The transaction header can be arbitrarily split across op
3897 * records. If we don't have the whole thing here, copy what we
3898 * do have and handle the rest in the next record.
3900 if (len
== sizeof(struct xfs_trans_header
))
3901 xlog_recover_add_item(&trans
->r_itemq
);
3902 memcpy(&trans
->r_theader
, dp
, len
);
3906 ptr
= kmem_alloc(len
, KM_SLEEP
);
3907 memcpy(ptr
, dp
, len
);
3908 in_f
= (xfs_inode_log_format_t
*)ptr
;
3910 /* take the tail entry */
3911 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
3912 if (item
->ri_total
!= 0 &&
3913 item
->ri_total
== item
->ri_cnt
) {
3914 /* tail item is in use, get a new one */
3915 xlog_recover_add_item(&trans
->r_itemq
);
3916 item
= list_entry(trans
->r_itemq
.prev
,
3917 xlog_recover_item_t
, ri_list
);
3920 if (item
->ri_total
== 0) { /* first region to be added */
3921 if (in_f
->ilf_size
== 0 ||
3922 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
3924 "bad number of regions (%d) in inode log format",
3931 item
->ri_total
= in_f
->ilf_size
;
3933 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
3936 ASSERT(item
->ri_total
> item
->ri_cnt
);
3937 /* Description region is ri_buf[0] */
3938 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
3939 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
3941 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
3946 * Free up any resources allocated by the transaction
3948 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3951 xlog_recover_free_trans(
3952 struct xlog_recover
*trans
)
3954 xlog_recover_item_t
*item
, *n
;
3957 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
3958 /* Free the regions in the item. */
3959 list_del(&item
->ri_list
);
3960 for (i
= 0; i
< item
->ri_cnt
; i
++)
3961 kmem_free(item
->ri_buf
[i
].i_addr
);
3962 /* Free the item itself */
3963 kmem_free(item
->ri_buf
);
3966 /* Free the transaction recover structure */
3971 * On error or completion, trans is freed.
3974 xlog_recovery_process_trans(
3976 struct xlog_recover
*trans
,
3983 bool freeit
= false;
3985 /* mask off ophdr transaction container flags */
3986 flags
&= ~XLOG_END_TRANS
;
3987 if (flags
& XLOG_WAS_CONT_TRANS
)
3988 flags
&= ~XLOG_CONTINUE_TRANS
;
3991 * Callees must not free the trans structure. We'll decide if we need to
3992 * free it or not based on the operation being done and it's result.
3995 /* expected flag values */
3997 case XLOG_CONTINUE_TRANS
:
3998 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4000 case XLOG_WAS_CONT_TRANS
:
4001 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4003 case XLOG_COMMIT_TRANS
:
4004 error
= xlog_recover_commit_trans(log
, trans
, pass
);
4005 /* success or fail, we are now done with this transaction. */
4009 /* unexpected flag values */
4010 case XLOG_UNMOUNT_TRANS
:
4011 /* just skip trans */
4012 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4015 case XLOG_START_TRANS
:
4017 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4022 if (error
|| freeit
)
4023 xlog_recover_free_trans(trans
);
4028 * Lookup the transaction recovery structure associated with the ID in the
4029 * current ophdr. If the transaction doesn't exist and the start flag is set in
4030 * the ophdr, then allocate a new transaction for future ID matches to find.
4031 * Either way, return what we found during the lookup - an existing transaction
4034 STATIC
struct xlog_recover
*
4035 xlog_recover_ophdr_to_trans(
4036 struct hlist_head rhash
[],
4037 struct xlog_rec_header
*rhead
,
4038 struct xlog_op_header
*ohead
)
4040 struct xlog_recover
*trans
;
4042 struct hlist_head
*rhp
;
4044 tid
= be32_to_cpu(ohead
->oh_tid
);
4045 rhp
= &rhash
[XLOG_RHASH(tid
)];
4046 hlist_for_each_entry(trans
, rhp
, r_list
) {
4047 if (trans
->r_log_tid
== tid
)
4052 * skip over non-start transaction headers - we could be
4053 * processing slack space before the next transaction starts
4055 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4058 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4061 * This is a new transaction so allocate a new recovery container to
4062 * hold the recovery ops that will follow.
4064 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4065 trans
->r_log_tid
= tid
;
4066 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4067 INIT_LIST_HEAD(&trans
->r_itemq
);
4068 INIT_HLIST_NODE(&trans
->r_list
);
4069 hlist_add_head(&trans
->r_list
, rhp
);
4072 * Nothing more to do for this ophdr. Items to be added to this new
4073 * transaction will be in subsequent ophdr containers.
4079 xlog_recover_process_ophdr(
4081 struct hlist_head rhash
[],
4082 struct xlog_rec_header
*rhead
,
4083 struct xlog_op_header
*ohead
,
4088 struct xlog_recover
*trans
;
4091 /* Do we understand who wrote this op? */
4092 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4093 ohead
->oh_clientid
!= XFS_LOG
) {
4094 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4095 __func__
, ohead
->oh_clientid
);
4101 * Check the ophdr contains all the data it is supposed to contain.
4103 len
= be32_to_cpu(ohead
->oh_len
);
4104 if (dp
+ len
> end
) {
4105 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4110 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4112 /* nothing to do, so skip over this ophdr */
4116 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4117 ohead
->oh_flags
, pass
);
4121 * There are two valid states of the r_state field. 0 indicates that the
4122 * transaction structure is in a normal state. We have either seen the
4123 * start of the transaction or the last operation we added was not a partial
4124 * operation. If the last operation we added to the transaction was a
4125 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4127 * NOTE: skip LRs with 0 data length.
4130 xlog_recover_process_data(
4132 struct hlist_head rhash
[],
4133 struct xlog_rec_header
*rhead
,
4137 struct xlog_op_header
*ohead
;
4142 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4143 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4145 /* check the log format matches our own - else we can't recover */
4146 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4149 while ((dp
< end
) && num_logops
) {
4151 ohead
= (struct xlog_op_header
*)dp
;
4152 dp
+= sizeof(*ohead
);
4155 /* errors will abort recovery */
4156 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4161 dp
+= be32_to_cpu(ohead
->oh_len
);
4168 * Process an extent free intent item that was recovered from
4169 * the log. We need to free the extents that it describes.
4172 xlog_recover_process_efi(
4174 xfs_efi_log_item_t
*efip
)
4176 xfs_efd_log_item_t
*efdp
;
4181 xfs_fsblock_t startblock_fsb
;
4183 ASSERT(!test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
));
4186 * First check the validity of the extents described by the
4187 * EFI. If any are bad, then assume that all are bad and
4188 * just toss the EFI.
4190 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
4191 extp
= &(efip
->efi_format
.efi_extents
[i
]);
4192 startblock_fsb
= XFS_BB_TO_FSB(mp
,
4193 XFS_FSB_TO_DADDR(mp
, extp
->ext_start
));
4194 if ((startblock_fsb
== 0) ||
4195 (extp
->ext_len
== 0) ||
4196 (startblock_fsb
>= mp
->m_sb
.sb_dblocks
) ||
4197 (extp
->ext_len
>= mp
->m_sb
.sb_agblocks
)) {
4199 * This will pull the EFI from the AIL and
4200 * free the memory associated with it.
4202 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
4203 xfs_efi_release(efip
);
4208 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
4211 efdp
= xfs_trans_get_efd(tp
, efip
, efip
->efi_format
.efi_nextents
);
4213 for (i
= 0; i
< efip
->efi_format
.efi_nextents
; i
++) {
4214 extp
= &(efip
->efi_format
.efi_extents
[i
]);
4215 error
= xfs_trans_free_extent(tp
, efdp
, extp
->ext_start
,
4222 set_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
);
4223 error
= xfs_trans_commit(tp
);
4227 xfs_trans_cancel(tp
);
4232 * When this is called, all of the EFIs which did not have
4233 * corresponding EFDs should be in the AIL. What we do now
4234 * is free the extents associated with each one.
4236 * Since we process the EFIs in normal transactions, they
4237 * will be removed at some point after the commit. This prevents
4238 * us from just walking down the list processing each one.
4239 * We'll use a flag in the EFI to skip those that we've already
4240 * processed and use the AIL iteration mechanism's generation
4241 * count to try to speed this up at least a bit.
4243 * When we start, we know that the EFIs are the only things in
4244 * the AIL. As we process them, however, other items are added
4245 * to the AIL. Since everything added to the AIL must come after
4246 * everything already in the AIL, we stop processing as soon as
4247 * we see something other than an EFI in the AIL.
4250 xlog_recover_process_efis(
4253 struct xfs_log_item
*lip
;
4254 struct xfs_efi_log_item
*efip
;
4256 struct xfs_ail_cursor cur
;
4257 struct xfs_ail
*ailp
;
4260 spin_lock(&ailp
->xa_lock
);
4261 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4262 while (lip
!= NULL
) {
4264 * We're done when we see something other than an EFI.
4265 * There should be no EFIs left in the AIL now.
4267 if (lip
->li_type
!= XFS_LI_EFI
) {
4269 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4270 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
4276 * Skip EFIs that we've already processed.
4278 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4279 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
)) {
4280 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4284 spin_unlock(&ailp
->xa_lock
);
4285 error
= xlog_recover_process_efi(log
->l_mp
, efip
);
4286 spin_lock(&ailp
->xa_lock
);
4289 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4292 xfs_trans_ail_cursor_done(&cur
);
4293 spin_unlock(&ailp
->xa_lock
);
4298 * A cancel occurs when the mount has failed and we're bailing out. Release all
4299 * pending EFIs so they don't pin the AIL.
4302 xlog_recover_cancel_efis(
4305 struct xfs_log_item
*lip
;
4306 struct xfs_efi_log_item
*efip
;
4308 struct xfs_ail_cursor cur
;
4309 struct xfs_ail
*ailp
;
4312 spin_lock(&ailp
->xa_lock
);
4313 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4314 while (lip
!= NULL
) {
4316 * We're done when we see something other than an EFI.
4317 * There should be no EFIs left in the AIL now.
4319 if (lip
->li_type
!= XFS_LI_EFI
) {
4321 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4322 ASSERT(lip
->li_type
!= XFS_LI_EFI
);
4327 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4329 spin_unlock(&ailp
->xa_lock
);
4330 xfs_efi_release(efip
);
4331 spin_lock(&ailp
->xa_lock
);
4333 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4336 xfs_trans_ail_cursor_done(&cur
);
4337 spin_unlock(&ailp
->xa_lock
);
4342 * This routine performs a transaction to null out a bad inode pointer
4343 * in an agi unlinked inode hash bucket.
4346 xlog_recover_clear_agi_bucket(
4348 xfs_agnumber_t agno
,
4357 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
4361 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
4365 agi
= XFS_BUF_TO_AGI(agibp
);
4366 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
4367 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
4368 (sizeof(xfs_agino_t
) * bucket
);
4369 xfs_trans_log_buf(tp
, agibp
, offset
,
4370 (offset
+ sizeof(xfs_agino_t
) - 1));
4372 error
= xfs_trans_commit(tp
);
4378 xfs_trans_cancel(tp
);
4380 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
4385 xlog_recover_process_one_iunlink(
4386 struct xfs_mount
*mp
,
4387 xfs_agnumber_t agno
,
4391 struct xfs_buf
*ibp
;
4392 struct xfs_dinode
*dip
;
4393 struct xfs_inode
*ip
;
4397 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
4398 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
4403 * Get the on disk inode to find the next inode in the bucket.
4405 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
4409 ASSERT(VFS_I(ip
)->i_nlink
== 0);
4410 ASSERT(VFS_I(ip
)->i_mode
!= 0);
4412 /* setup for the next pass */
4413 agino
= be32_to_cpu(dip
->di_next_unlinked
);
4417 * Prevent any DMAPI event from being sent when the reference on
4418 * the inode is dropped.
4420 ip
->i_d
.di_dmevmask
= 0;
4429 * We can't read in the inode this bucket points to, or this inode
4430 * is messed up. Just ditch this bucket of inodes. We will lose
4431 * some inodes and space, but at least we won't hang.
4433 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4434 * clear the inode pointer in the bucket.
4436 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
4441 * xlog_iunlink_recover
4443 * This is called during recovery to process any inodes which
4444 * we unlinked but not freed when the system crashed. These
4445 * inodes will be on the lists in the AGI blocks. What we do
4446 * here is scan all the AGIs and fully truncate and free any
4447 * inodes found on the lists. Each inode is removed from the
4448 * lists when it has been fully truncated and is freed. The
4449 * freeing of the inode and its removal from the list must be
4453 xlog_recover_process_iunlinks(
4457 xfs_agnumber_t agno
;
4468 * Prevent any DMAPI event from being sent while in this function.
4470 mp_dmevmask
= mp
->m_dmevmask
;
4473 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
4475 * Find the agi for this ag.
4477 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
4480 * AGI is b0rked. Don't process it.
4482 * We should probably mark the filesystem as corrupt
4483 * after we've recovered all the ag's we can....
4488 * Unlock the buffer so that it can be acquired in the normal
4489 * course of the transaction to truncate and free each inode.
4490 * Because we are not racing with anyone else here for the AGI
4491 * buffer, we don't even need to hold it locked to read the
4492 * initial unlinked bucket entries out of the buffer. We keep
4493 * buffer reference though, so that it stays pinned in memory
4494 * while we need the buffer.
4496 agi
= XFS_BUF_TO_AGI(agibp
);
4497 xfs_buf_unlock(agibp
);
4499 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
4500 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
4501 while (agino
!= NULLAGINO
) {
4502 agino
= xlog_recover_process_one_iunlink(mp
,
4503 agno
, agino
, bucket
);
4506 xfs_buf_rele(agibp
);
4509 mp
->m_dmevmask
= mp_dmevmask
;
4514 struct xlog_rec_header
*rhead
,
4520 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
4521 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
4522 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
4526 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4527 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
4528 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
4529 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4530 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
4531 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
4540 * CRC check, unpack and process a log record.
4543 xlog_recover_process(
4545 struct hlist_head rhash
[],
4546 struct xlog_rec_header
*rhead
,
4553 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
4556 * Nothing else to do if this is a CRC verification pass. Just return
4557 * if this a record with a non-zero crc. Unfortunately, mkfs always
4558 * sets h_crc to 0 so we must consider this valid even on v5 supers.
4559 * Otherwise, return EFSBADCRC on failure so the callers up the stack
4560 * know precisely what failed.
4562 if (pass
== XLOG_RECOVER_CRCPASS
) {
4563 if (rhead
->h_crc
&& crc
!= rhead
->h_crc
)
4569 * We're in the normal recovery path. Issue a warning if and only if the
4570 * CRC in the header is non-zero. This is an advisory warning and the
4571 * zero CRC check prevents warnings from being emitted when upgrading
4572 * the kernel from one that does not add CRCs by default.
4574 if (crc
!= rhead
->h_crc
) {
4575 if (rhead
->h_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
4576 xfs_alert(log
->l_mp
,
4577 "log record CRC mismatch: found 0x%x, expected 0x%x.",
4578 le32_to_cpu(rhead
->h_crc
),
4580 xfs_hex_dump(dp
, 32);
4584 * If the filesystem is CRC enabled, this mismatch becomes a
4585 * fatal log corruption failure.
4587 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
4588 return -EFSCORRUPTED
;
4591 error
= xlog_unpack_data(rhead
, dp
, log
);
4595 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
);
4599 xlog_valid_rec_header(
4601 struct xlog_rec_header
*rhead
,
4606 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
4607 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4608 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4609 return -EFSCORRUPTED
;
4612 (!rhead
->h_version
||
4613 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
4614 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
4615 __func__
, be32_to_cpu(rhead
->h_version
));
4619 /* LR body must have data or it wouldn't have been written */
4620 hlen
= be32_to_cpu(rhead
->h_len
);
4621 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
4622 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4623 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4624 return -EFSCORRUPTED
;
4626 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
4627 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4628 XFS_ERRLEVEL_LOW
, log
->l_mp
);
4629 return -EFSCORRUPTED
;
4635 * Read the log from tail to head and process the log records found.
4636 * Handle the two cases where the tail and head are in the same cycle
4637 * and where the active portion of the log wraps around the end of
4638 * the physical log separately. The pass parameter is passed through
4639 * to the routines called to process the data and is not looked at
4643 xlog_do_recovery_pass(
4645 xfs_daddr_t head_blk
,
4646 xfs_daddr_t tail_blk
,
4648 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
4650 xlog_rec_header_t
*rhead
;
4652 xfs_daddr_t rhead_blk
;
4654 xfs_buf_t
*hbp
, *dbp
;
4655 int error
= 0, h_size
, h_len
;
4656 int bblks
, split_bblks
;
4657 int hblks
, split_hblks
, wrapped_hblks
;
4658 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
4660 ASSERT(head_blk
!= tail_blk
);
4664 * Read the header of the tail block and get the iclog buffer size from
4665 * h_size. Use this to tell how many sectors make up the log header.
4667 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
4669 * When using variable length iclogs, read first sector of
4670 * iclog header and extract the header size from it. Get a
4671 * new hbp that is the correct size.
4673 hbp
= xlog_get_bp(log
, 1);
4677 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
4681 rhead
= (xlog_rec_header_t
*)offset
;
4682 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
4687 * xfsprogs has a bug where record length is based on lsunit but
4688 * h_size (iclog size) is hardcoded to 32k. Now that we
4689 * unconditionally CRC verify the unmount record, this means the
4690 * log buffer can be too small for the record and cause an
4693 * Detect this condition here. Use lsunit for the buffer size as
4694 * long as this looks like the mkfs case. Otherwise, return an
4695 * error to avoid a buffer overrun.
4697 h_size
= be32_to_cpu(rhead
->h_size
);
4698 h_len
= be32_to_cpu(rhead
->h_len
);
4699 if (h_len
> h_size
) {
4700 if (h_len
<= log
->l_mp
->m_logbsize
&&
4701 be32_to_cpu(rhead
->h_num_logops
) == 1) {
4703 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
4704 h_size
, log
->l_mp
->m_logbsize
);
4705 h_size
= log
->l_mp
->m_logbsize
;
4707 return -EFSCORRUPTED
;
4710 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
4711 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
4712 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
4713 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
4716 hbp
= xlog_get_bp(log
, hblks
);
4721 ASSERT(log
->l_sectBBsize
== 1);
4723 hbp
= xlog_get_bp(log
, 1);
4724 h_size
= XLOG_BIG_RECORD_BSIZE
;
4729 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
4735 memset(rhash
, 0, sizeof(rhash
));
4736 blk_no
= rhead_blk
= tail_blk
;
4737 if (tail_blk
> head_blk
) {
4739 * Perform recovery around the end of the physical log.
4740 * When the head is not on the same cycle number as the tail,
4741 * we can't do a sequential recovery.
4743 while (blk_no
< log
->l_logBBsize
) {
4745 * Check for header wrapping around physical end-of-log
4747 offset
= hbp
->b_addr
;
4750 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
4751 /* Read header in one read */
4752 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
4757 /* This LR is split across physical log end */
4758 if (blk_no
!= log
->l_logBBsize
) {
4759 /* some data before physical log end */
4760 ASSERT(blk_no
<= INT_MAX
);
4761 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
4762 ASSERT(split_hblks
> 0);
4763 error
= xlog_bread(log
, blk_no
,
4771 * Note: this black magic still works with
4772 * large sector sizes (non-512) only because:
4773 * - we increased the buffer size originally
4774 * by 1 sector giving us enough extra space
4775 * for the second read;
4776 * - the log start is guaranteed to be sector
4778 * - we read the log end (LR header start)
4779 * _first_, then the log start (LR header end)
4780 * - order is important.
4782 wrapped_hblks
= hblks
- split_hblks
;
4783 error
= xlog_bread_offset(log
, 0,
4785 offset
+ BBTOB(split_hblks
));
4789 rhead
= (xlog_rec_header_t
*)offset
;
4790 error
= xlog_valid_rec_header(log
, rhead
,
4791 split_hblks
? blk_no
: 0);
4795 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4798 /* Read in data for log record */
4799 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
4800 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
4805 /* This log record is split across the
4806 * physical end of log */
4807 offset
= dbp
->b_addr
;
4809 if (blk_no
!= log
->l_logBBsize
) {
4810 /* some data is before the physical
4812 ASSERT(!wrapped_hblks
);
4813 ASSERT(blk_no
<= INT_MAX
);
4815 log
->l_logBBsize
- (int)blk_no
;
4816 ASSERT(split_bblks
> 0);
4817 error
= xlog_bread(log
, blk_no
,
4825 * Note: this black magic still works with
4826 * large sector sizes (non-512) only because:
4827 * - we increased the buffer size originally
4828 * by 1 sector giving us enough extra space
4829 * for the second read;
4830 * - the log start is guaranteed to be sector
4832 * - we read the log end (LR header start)
4833 * _first_, then the log start (LR header end)
4834 * - order is important.
4836 error
= xlog_bread_offset(log
, 0,
4837 bblks
- split_bblks
, dbp
,
4838 offset
+ BBTOB(split_bblks
));
4843 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
4852 ASSERT(blk_no
>= log
->l_logBBsize
);
4853 blk_no
-= log
->l_logBBsize
;
4857 /* read first part of physical log */
4858 while (blk_no
< head_blk
) {
4859 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
4863 rhead
= (xlog_rec_header_t
*)offset
;
4864 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
4868 /* blocks in data section */
4869 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
4870 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
4875 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
);
4879 blk_no
+= bblks
+ hblks
;
4888 if (error
&& first_bad
)
4889 *first_bad
= rhead_blk
;
4895 * Do the recovery of the log. We actually do this in two phases.
4896 * The two passes are necessary in order to implement the function
4897 * of cancelling a record written into the log. The first pass
4898 * determines those things which have been cancelled, and the
4899 * second pass replays log items normally except for those which
4900 * have been cancelled. The handling of the replay and cancellations
4901 * takes place in the log item type specific routines.
4903 * The table of items which have cancel records in the log is allocated
4904 * and freed at this level, since only here do we know when all of
4905 * the log recovery has been completed.
4908 xlog_do_log_recovery(
4910 xfs_daddr_t head_blk
,
4911 xfs_daddr_t tail_blk
)
4915 ASSERT(head_blk
!= tail_blk
);
4918 * First do a pass to find all of the cancelled buf log items.
4919 * Store them in the buf_cancel_table for use in the second pass.
4921 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
4922 sizeof(struct list_head
),
4924 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4925 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
4927 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4928 XLOG_RECOVER_PASS1
, NULL
);
4930 kmem_free(log
->l_buf_cancel_table
);
4931 log
->l_buf_cancel_table
= NULL
;
4935 * Then do a second pass to actually recover the items in the log.
4936 * When it is complete free the table of buf cancel items.
4938 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
4939 XLOG_RECOVER_PASS2
, NULL
);
4944 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
4945 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
4949 kmem_free(log
->l_buf_cancel_table
);
4950 log
->l_buf_cancel_table
= NULL
;
4956 * Do the actual recovery
4961 xfs_daddr_t head_blk
,
4962 xfs_daddr_t tail_blk
)
4964 struct xfs_mount
*mp
= log
->l_mp
;
4970 * First replay the images in the log.
4972 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
4977 * If IO errors happened during recovery, bail out.
4979 if (XFS_FORCED_SHUTDOWN(mp
)) {
4984 * We now update the tail_lsn since much of the recovery has completed
4985 * and there may be space available to use. If there were no extent
4986 * or iunlinks, we can free up the entire log and set the tail_lsn to
4987 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4988 * lsn of the last known good LR on disk. If there are extent frees
4989 * or iunlinks they will have some entries in the AIL; so we look at
4990 * the AIL to determine how to set the tail_lsn.
4992 xlog_assign_tail_lsn(mp
);
4995 * Now that we've finished replaying all buffer and inode
4996 * updates, re-read in the superblock and reverify it.
4998 bp
= xfs_getsb(mp
, 0);
4999 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5000 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5001 bp
->b_flags
|= XBF_READ
;
5002 bp
->b_ops
= &xfs_sb_buf_ops
;
5004 error
= xfs_buf_submit_wait(bp
);
5006 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5007 xfs_buf_ioerror_alert(bp
, __func__
);
5014 /* Convert superblock from on-disk format */
5016 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5019 /* re-initialise in-core superblock and geometry structures */
5020 xfs_reinit_percpu_counters(mp
);
5021 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5023 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5027 xlog_recover_check_summary(log
);
5029 /* Normal transactions can now occur */
5030 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5035 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5037 * Return error or zero.
5043 xfs_daddr_t head_blk
, tail_blk
;
5046 /* find the tail of the log */
5047 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5052 * The superblock was read before the log was available and thus the LSN
5053 * could not be verified. Check the superblock LSN against the current
5054 * LSN now that it's known.
5056 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5057 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5060 if (tail_blk
!= head_blk
) {
5061 /* There used to be a comment here:
5063 * disallow recovery on read-only mounts. note -- mount
5064 * checks for ENOSPC and turns it into an intelligent
5066 * ...but this is no longer true. Now, unless you specify
5067 * NORECOVERY (in which case this function would never be
5068 * called), we just go ahead and recover. We do this all
5069 * under the vfs layer, so we can get away with it unless
5070 * the device itself is read-only, in which case we fail.
5072 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5077 * Version 5 superblock log feature mask validation. We know the
5078 * log is dirty so check if there are any unknown log features
5079 * in what we need to recover. If there are unknown features
5080 * (e.g. unsupported transactions, then simply reject the
5081 * attempt at recovery before touching anything.
5083 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5084 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5085 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5087 "Superblock has unknown incompatible log features (0x%x) enabled.",
5088 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5089 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5091 "The log can not be fully and/or safely recovered by this kernel.");
5093 "Please recover the log on a kernel that supports the unknown features.");
5098 * Delay log recovery if the debug hook is set. This is debug
5099 * instrumention to coordinate simulation of I/O failures with
5102 if (xfs_globals
.log_recovery_delay
) {
5103 xfs_notice(log
->l_mp
,
5104 "Delaying log recovery for %d seconds.",
5105 xfs_globals
.log_recovery_delay
);
5106 msleep(xfs_globals
.log_recovery_delay
* 1000);
5109 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5110 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5113 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5114 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5120 * In the first part of recovery we replay inodes and buffers and build
5121 * up the list of extent free items which need to be processed. Here
5122 * we process the extent free items and clean up the on disk unlinked
5123 * inode lists. This is separated from the first part of recovery so
5124 * that the root and real-time bitmap inodes can be read in from disk in
5125 * between the two stages. This is necessary so that we can free space
5126 * in the real-time portion of the file system.
5129 xlog_recover_finish(
5133 * Now we're ready to do the transactions needed for the
5134 * rest of recovery. Start with completing all the extent
5135 * free intent records and then process the unlinked inode
5136 * lists. At this point, we essentially run in normal mode
5137 * except that we're still performing recovery actions
5138 * rather than accepting new requests.
5140 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5142 error
= xlog_recover_process_efis(log
);
5144 xfs_alert(log
->l_mp
, "Failed to recover EFIs");
5148 * Sync the log to get all the EFIs out of the AIL.
5149 * This isn't absolutely necessary, but it helps in
5150 * case the unlink transactions would have problems
5151 * pushing the EFIs out of the way.
5153 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5155 xlog_recover_process_iunlinks(log
);
5157 xlog_recover_check_summary(log
);
5159 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5160 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5162 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5164 xfs_info(log
->l_mp
, "Ending clean mount");
5170 xlog_recover_cancel(
5175 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5176 error
= xlog_recover_cancel_efis(log
);
5183 * Read all of the agf and agi counters and check that they
5184 * are consistent with the superblock counters.
5187 xlog_recover_check_summary(
5194 xfs_agnumber_t agno
;
5195 __uint64_t freeblks
;
5205 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5206 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5208 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5209 __func__
, agno
, error
);
5211 agfp
= XFS_BUF_TO_AGF(agfbp
);
5212 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5213 be32_to_cpu(agfp
->agf_flcount
);
5214 xfs_buf_relse(agfbp
);
5217 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5219 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5220 __func__
, agno
, error
);
5222 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5224 itotal
+= be32_to_cpu(agi
->agi_count
);
5225 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5226 xfs_buf_relse(agibp
);