5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
49 #define EXTENT_MERGE_SIZE 5
51 static umode_t
udf_convert_permissions(struct fileEntry
*);
52 static int udf_update_inode(struct inode
*, int);
53 static int udf_sync_inode(struct inode
*inode
);
54 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
55 static sector_t
inode_getblk(struct inode
*, sector_t
, int *, int *);
56 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
57 struct kernel_lb_addr
, uint32_t);
58 static void udf_split_extents(struct inode
*, int *, int, int,
59 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
60 static void udf_prealloc_extents(struct inode
*, int, int,
61 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
62 static void udf_merge_extents(struct inode
*,
63 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
64 static void udf_update_extents(struct inode
*,
65 struct kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
66 struct extent_position
*);
67 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
69 static void __udf_clear_extent_cache(struct inode
*inode
)
71 struct udf_inode_info
*iinfo
= UDF_I(inode
);
73 if (iinfo
->cached_extent
.lstart
!= -1) {
74 brelse(iinfo
->cached_extent
.epos
.bh
);
75 iinfo
->cached_extent
.lstart
= -1;
79 /* Invalidate extent cache */
80 static void udf_clear_extent_cache(struct inode
*inode
)
82 struct udf_inode_info
*iinfo
= UDF_I(inode
);
84 spin_lock(&iinfo
->i_extent_cache_lock
);
85 __udf_clear_extent_cache(inode
);
86 spin_unlock(&iinfo
->i_extent_cache_lock
);
89 /* Return contents of extent cache */
90 static int udf_read_extent_cache(struct inode
*inode
, loff_t bcount
,
91 loff_t
*lbcount
, struct extent_position
*pos
)
93 struct udf_inode_info
*iinfo
= UDF_I(inode
);
96 spin_lock(&iinfo
->i_extent_cache_lock
);
97 if ((iinfo
->cached_extent
.lstart
<= bcount
) &&
98 (iinfo
->cached_extent
.lstart
!= -1)) {
100 *lbcount
= iinfo
->cached_extent
.lstart
;
101 memcpy(pos
, &iinfo
->cached_extent
.epos
,
102 sizeof(struct extent_position
));
107 spin_unlock(&iinfo
->i_extent_cache_lock
);
111 /* Add extent to extent cache */
112 static void udf_update_extent_cache(struct inode
*inode
, loff_t estart
,
113 struct extent_position
*pos
, int next_epos
)
115 struct udf_inode_info
*iinfo
= UDF_I(inode
);
117 spin_lock(&iinfo
->i_extent_cache_lock
);
118 /* Invalidate previously cached extent */
119 __udf_clear_extent_cache(inode
);
122 memcpy(&iinfo
->cached_extent
.epos
, pos
,
123 sizeof(struct extent_position
));
124 iinfo
->cached_extent
.lstart
= estart
;
126 switch (iinfo
->i_alloc_type
) {
127 case ICBTAG_FLAG_AD_SHORT
:
128 iinfo
->cached_extent
.epos
.offset
-=
129 sizeof(struct short_ad
);
131 case ICBTAG_FLAG_AD_LONG
:
132 iinfo
->cached_extent
.epos
.offset
-=
133 sizeof(struct long_ad
);
135 spin_unlock(&iinfo
->i_extent_cache_lock
);
138 void udf_evict_inode(struct inode
*inode
)
140 struct udf_inode_info
*iinfo
= UDF_I(inode
);
143 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
145 udf_setsize(inode
, 0);
146 udf_update_inode(inode
, IS_SYNC(inode
));
148 truncate_inode_pages_final(&inode
->i_data
);
149 invalidate_inode_buffers(inode
);
151 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
&&
152 inode
->i_size
!= iinfo
->i_lenExtents
) {
153 udf_warn(inode
->i_sb
, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154 inode
->i_ino
, inode
->i_mode
,
155 (unsigned long long)inode
->i_size
,
156 (unsigned long long)iinfo
->i_lenExtents
);
158 kfree(iinfo
->i_ext
.i_data
);
159 iinfo
->i_ext
.i_data
= NULL
;
160 udf_clear_extent_cache(inode
);
162 udf_free_inode(inode
);
166 static void udf_write_failed(struct address_space
*mapping
, loff_t to
)
168 struct inode
*inode
= mapping
->host
;
169 struct udf_inode_info
*iinfo
= UDF_I(inode
);
170 loff_t isize
= inode
->i_size
;
173 truncate_pagecache(inode
, isize
);
174 if (iinfo
->i_alloc_type
!= ICBTAG_FLAG_AD_IN_ICB
) {
175 down_write(&iinfo
->i_data_sem
);
176 udf_clear_extent_cache(inode
);
177 udf_truncate_extents(inode
);
178 up_write(&iinfo
->i_data_sem
);
183 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
185 return block_write_full_page(page
, udf_get_block
, wbc
);
188 static int udf_writepages(struct address_space
*mapping
,
189 struct writeback_control
*wbc
)
191 return mpage_writepages(mapping
, wbc
, udf_get_block
);
194 static int udf_readpage(struct file
*file
, struct page
*page
)
196 return mpage_readpage(page
, udf_get_block
);
199 static int udf_readpages(struct file
*file
, struct address_space
*mapping
,
200 struct list_head
*pages
, unsigned nr_pages
)
202 return mpage_readpages(mapping
, pages
, nr_pages
, udf_get_block
);
205 static int udf_write_begin(struct file
*file
, struct address_space
*mapping
,
206 loff_t pos
, unsigned len
, unsigned flags
,
207 struct page
**pagep
, void **fsdata
)
211 ret
= block_write_begin(mapping
, pos
, len
, flags
, pagep
, udf_get_block
);
213 udf_write_failed(mapping
, pos
+ len
);
217 static ssize_t
udf_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
220 struct file
*file
= iocb
->ki_filp
;
221 struct address_space
*mapping
= file
->f_mapping
;
222 struct inode
*inode
= mapping
->host
;
223 size_t count
= iov_iter_count(iter
);
226 ret
= blockdev_direct_IO(iocb
, inode
, iter
, offset
, udf_get_block
);
227 if (unlikely(ret
< 0 && iov_iter_rw(iter
) == WRITE
))
228 udf_write_failed(mapping
, offset
+ count
);
232 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
234 return generic_block_bmap(mapping
, block
, udf_get_block
);
237 const struct address_space_operations udf_aops
= {
238 .readpage
= udf_readpage
,
239 .readpages
= udf_readpages
,
240 .writepage
= udf_writepage
,
241 .writepages
= udf_writepages
,
242 .write_begin
= udf_write_begin
,
243 .write_end
= generic_write_end
,
244 .direct_IO
= udf_direct_IO
,
249 * Expand file stored in ICB to a normal one-block-file
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
254 int udf_expand_file_adinicb(struct inode
*inode
)
258 struct udf_inode_info
*iinfo
= UDF_I(inode
);
260 struct writeback_control udf_wbc
= {
261 .sync_mode
= WB_SYNC_NONE
,
265 WARN_ON_ONCE(!inode_is_locked(inode
));
266 if (!iinfo
->i_lenAlloc
) {
267 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
268 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
270 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
271 /* from now on we have normal address_space methods */
272 inode
->i_data
.a_ops
= &udf_aops
;
273 up_write(&iinfo
->i_data_sem
);
274 mark_inode_dirty(inode
);
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
281 up_write(&iinfo
->i_data_sem
);
283 page
= find_or_create_page(inode
->i_mapping
, 0, GFP_NOFS
);
287 if (!PageUptodate(page
)) {
289 memset(kaddr
+ iinfo
->i_lenAlloc
, 0x00,
290 PAGE_CACHE_SIZE
- iinfo
->i_lenAlloc
);
291 memcpy(kaddr
, iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
,
293 flush_dcache_page(page
);
294 SetPageUptodate(page
);
297 down_write(&iinfo
->i_data_sem
);
298 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0x00,
300 iinfo
->i_lenAlloc
= 0;
301 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
302 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_SHORT
;
304 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_LONG
;
305 /* from now on we have normal address_space methods */
306 inode
->i_data
.a_ops
= &udf_aops
;
307 up_write(&iinfo
->i_data_sem
);
308 err
= inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
310 /* Restore everything back so that we don't lose data... */
313 down_write(&iinfo
->i_data_sem
);
314 memcpy(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, kaddr
,
318 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
319 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
320 up_write(&iinfo
->i_data_sem
);
322 page_cache_release(page
);
323 mark_inode_dirty(inode
);
328 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
332 struct buffer_head
*dbh
= NULL
;
333 struct kernel_lb_addr eloc
;
335 struct extent_position epos
;
337 struct udf_fileident_bh sfibh
, dfibh
;
338 loff_t f_pos
= udf_ext0_offset(inode
);
339 int size
= udf_ext0_offset(inode
) + inode
->i_size
;
340 struct fileIdentDesc cfi
, *sfi
, *dfi
;
341 struct udf_inode_info
*iinfo
= UDF_I(inode
);
343 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
344 alloctype
= ICBTAG_FLAG_AD_SHORT
;
346 alloctype
= ICBTAG_FLAG_AD_LONG
;
348 if (!inode
->i_size
) {
349 iinfo
->i_alloc_type
= alloctype
;
350 mark_inode_dirty(inode
);
354 /* alloc block, and copy data to it */
355 *block
= udf_new_block(inode
->i_sb
, inode
,
356 iinfo
->i_location
.partitionReferenceNum
,
357 iinfo
->i_location
.logicalBlockNum
, err
);
360 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
361 iinfo
->i_location
.partitionReferenceNum
,
365 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
369 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
370 set_buffer_uptodate(dbh
);
372 mark_buffer_dirty_inode(dbh
, inode
);
374 sfibh
.soffset
= sfibh
.eoffset
=
375 f_pos
& (inode
->i_sb
->s_blocksize
- 1);
376 sfibh
.sbh
= sfibh
.ebh
= NULL
;
377 dfibh
.soffset
= dfibh
.eoffset
= 0;
378 dfibh
.sbh
= dfibh
.ebh
= dbh
;
379 while (f_pos
< size
) {
380 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
381 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
,
387 iinfo
->i_alloc_type
= alloctype
;
388 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
389 dfibh
.soffset
= dfibh
.eoffset
;
390 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
391 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
392 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
394 le16_to_cpu(sfi
->lengthOfImpUse
))) {
395 iinfo
->i_alloc_type
= ICBTAG_FLAG_AD_IN_ICB
;
400 mark_buffer_dirty_inode(dbh
, inode
);
402 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
, 0,
404 iinfo
->i_lenAlloc
= 0;
405 eloc
.logicalBlockNum
= *block
;
406 eloc
.partitionReferenceNum
=
407 iinfo
->i_location
.partitionReferenceNum
;
408 iinfo
->i_lenExtents
= inode
->i_size
;
410 epos
.block
= iinfo
->i_location
;
411 epos
.offset
= udf_file_entry_alloc_offset(inode
);
412 udf_add_aext(inode
, &epos
, &eloc
, inode
->i_size
, 0);
416 mark_inode_dirty(inode
);
420 static int udf_get_block(struct inode
*inode
, sector_t block
,
421 struct buffer_head
*bh_result
, int create
)
425 struct udf_inode_info
*iinfo
;
428 phys
= udf_block_map(inode
, block
);
430 map_bh(bh_result
, inode
->i_sb
, phys
);
436 iinfo
= UDF_I(inode
);
438 down_write(&iinfo
->i_data_sem
);
439 if (block
== iinfo
->i_next_alloc_block
+ 1) {
440 iinfo
->i_next_alloc_block
++;
441 iinfo
->i_next_alloc_goal
++;
444 udf_clear_extent_cache(inode
);
445 phys
= inode_getblk(inode
, block
, &err
, &new);
450 set_buffer_new(bh_result
);
451 map_bh(bh_result
, inode
->i_sb
, phys
);
454 up_write(&iinfo
->i_data_sem
);
458 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
459 int create
, int *err
)
461 struct buffer_head
*bh
;
462 struct buffer_head dummy
;
465 dummy
.b_blocknr
= -1000;
466 *err
= udf_get_block(inode
, block
, &dummy
, create
);
467 if (!*err
&& buffer_mapped(&dummy
)) {
468 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
469 if (buffer_new(&dummy
)) {
471 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
472 set_buffer_uptodate(bh
);
474 mark_buffer_dirty_inode(bh
, inode
);
482 /* Extend the file by 'blocks' blocks, return the number of extents added */
483 static int udf_do_extend_file(struct inode
*inode
,
484 struct extent_position
*last_pos
,
485 struct kernel_long_ad
*last_ext
,
489 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
490 struct super_block
*sb
= inode
->i_sb
;
491 struct kernel_lb_addr prealloc_loc
= {};
492 int prealloc_len
= 0;
493 struct udf_inode_info
*iinfo
;
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
501 iinfo
= UDF_I(inode
);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
504 last_ext
->extLength
=
505 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
506 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
507 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
508 iinfo
->i_lenExtents
=
509 (iinfo
->i_lenExtents
+ sb
->s_blocksize
- 1) &
510 ~(sb
->s_blocksize
- 1);
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
515 EXT_NOT_RECORDED_ALLOCATED
) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc
= last_ext
->extLocation
;
518 prealloc_len
= last_ext
->extLength
;
519 /* Mark the extent as a hole */
520 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
521 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
522 last_ext
->extLocation
.logicalBlockNum
= 0;
523 last_ext
->extLocation
.partitionReferenceNum
= 0;
526 /* Can we merge with the previous extent? */
527 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED
) {
529 add
= ((1 << 30) - sb
->s_blocksize
-
530 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
)) >>
531 sb
->s_blocksize_bits
;
535 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
539 udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
540 last_ext
->extLength
, 1);
543 struct kernel_lb_addr tmploc
;
546 udf_write_aext(inode
, last_pos
, &last_ext
->extLocation
,
547 last_ext
->extLength
, 1);
549 * We've rewritten the last extent but there may be empty
550 * indirect extent after it - enter it.
552 udf_next_aext(inode
, last_pos
, &tmploc
, &tmplen
, 0);
555 /* Managed to do everything necessary? */
559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
560 last_ext
->extLocation
.logicalBlockNum
= 0;
561 last_ext
->extLocation
.partitionReferenceNum
= 0;
562 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
563 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
564 (add
<< sb
->s_blocksize_bits
);
566 /* Create enough extents to cover the whole hole */
567 while (blocks
> add
) {
569 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
570 last_ext
->extLength
, 1);
576 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
577 (blocks
<< sb
->s_blocksize_bits
);
578 err
= udf_add_aext(inode
, last_pos
, &last_ext
->extLocation
,
579 last_ext
->extLength
, 1);
586 /* Do we have some preallocated blocks saved? */
588 err
= udf_add_aext(inode
, last_pos
, &prealloc_loc
,
592 last_ext
->extLocation
= prealloc_loc
;
593 last_ext
->extLength
= prealloc_len
;
597 /* last_pos should point to the last written extent... */
598 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
599 last_pos
->offset
-= sizeof(struct short_ad
);
600 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
601 last_pos
->offset
-= sizeof(struct long_ad
);
608 static int udf_extend_file(struct inode
*inode
, loff_t newsize
)
611 struct extent_position epos
;
612 struct kernel_lb_addr eloc
;
615 struct super_block
*sb
= inode
->i_sb
;
616 sector_t first_block
= newsize
>> sb
->s_blocksize_bits
, offset
;
618 struct udf_inode_info
*iinfo
= UDF_I(inode
);
619 struct kernel_long_ad extent
;
622 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
623 adsize
= sizeof(struct short_ad
);
624 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
625 adsize
= sizeof(struct long_ad
);
629 etype
= inode_bmap(inode
, first_block
, &epos
, &eloc
, &elen
, &offset
);
631 /* File has extent covering the new size (could happen when extending
632 * inside a block)? */
635 if (newsize
& (sb
->s_blocksize
- 1))
637 /* Extended file just to the boundary of the last file block? */
641 /* Truncate is extending the file by 'offset' blocks */
642 if ((!epos
.bh
&& epos
.offset
== udf_file_entry_alloc_offset(inode
)) ||
643 (epos
.bh
&& epos
.offset
== sizeof(struct allocExtDesc
))) {
644 /* File has no extents at all or has empty last
645 * indirect extent! Create a fake extent... */
646 extent
.extLocation
.logicalBlockNum
= 0;
647 extent
.extLocation
.partitionReferenceNum
= 0;
648 extent
.extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
650 epos
.offset
-= adsize
;
651 etype
= udf_next_aext(inode
, &epos
, &extent
.extLocation
,
652 &extent
.extLength
, 0);
653 extent
.extLength
|= etype
<< 30;
655 err
= udf_do_extend_file(inode
, &epos
, &extent
, offset
);
659 iinfo
->i_lenExtents
= newsize
;
665 static sector_t
inode_getblk(struct inode
*inode
, sector_t block
,
668 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
669 struct extent_position prev_epos
, cur_epos
, next_epos
;
670 int count
= 0, startnum
= 0, endnum
= 0;
671 uint32_t elen
= 0, tmpelen
;
672 struct kernel_lb_addr eloc
, tmpeloc
;
674 loff_t lbcount
= 0, b_off
= 0;
675 uint32_t newblocknum
, newblock
;
678 struct udf_inode_info
*iinfo
= UDF_I(inode
);
679 int goal
= 0, pgoal
= iinfo
->i_location
.logicalBlockNum
;
685 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
686 prev_epos
.block
= iinfo
->i_location
;
688 cur_epos
= next_epos
= prev_epos
;
689 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
691 /* find the extent which contains the block we are looking for.
692 alternate between laarr[0] and laarr[1] for locations of the
693 current extent, and the previous extent */
695 if (prev_epos
.bh
!= cur_epos
.bh
) {
696 brelse(prev_epos
.bh
);
698 prev_epos
.bh
= cur_epos
.bh
;
700 if (cur_epos
.bh
!= next_epos
.bh
) {
702 get_bh(next_epos
.bh
);
703 cur_epos
.bh
= next_epos
.bh
;
708 prev_epos
.block
= cur_epos
.block
;
709 cur_epos
.block
= next_epos
.block
;
711 prev_epos
.offset
= cur_epos
.offset
;
712 cur_epos
.offset
= next_epos
.offset
;
714 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1);
720 laarr
[c
].extLength
= (etype
<< 30) | elen
;
721 laarr
[c
].extLocation
= eloc
;
723 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
724 pgoal
= eloc
.logicalBlockNum
+
725 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
726 inode
->i_sb
->s_blocksize_bits
);
729 } while (lbcount
+ elen
<= b_off
);
732 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
734 * Move prev_epos and cur_epos into indirect extent if we are at
737 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
738 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
740 /* if the extent is allocated and recorded, return the block
741 if the extent is not a multiple of the blocksize, round up */
743 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
744 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
745 elen
= EXT_RECORDED_ALLOCATED
|
746 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
747 ~(inode
->i_sb
->s_blocksize
- 1));
748 udf_write_aext(inode
, &cur_epos
, &eloc
, elen
, 1);
750 brelse(prev_epos
.bh
);
752 brelse(next_epos
.bh
);
753 newblock
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
757 /* Are we beyond EOF? */
766 /* Create a fake extent when there's not one */
767 memset(&laarr
[0].extLocation
, 0x00,
768 sizeof(struct kernel_lb_addr
));
769 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
770 /* Will udf_do_extend_file() create real extent from
772 startnum
= (offset
> 0);
774 /* Create extents for the hole between EOF and offset */
775 ret
= udf_do_extend_file(inode
, &prev_epos
, laarr
, offset
);
777 brelse(prev_epos
.bh
);
779 brelse(next_epos
.bh
);
786 /* We are not covered by a preallocated extent? */
787 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) !=
788 EXT_NOT_RECORDED_ALLOCATED
) {
789 /* Is there any real extent? - otherwise we overwrite
793 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
794 inode
->i_sb
->s_blocksize
;
795 memset(&laarr
[c
].extLocation
, 0x00,
796 sizeof(struct kernel_lb_addr
));
803 endnum
= startnum
= ((count
> 2) ? 2 : count
);
805 /* if the current extent is in position 0,
806 swap it with the previous */
807 if (!c
&& count
!= 1) {
814 /* if the current block is located in an extent,
815 read the next extent */
816 etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0);
818 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
819 laarr
[c
+ 1].extLocation
= eloc
;
827 /* if the current extent is not recorded but allocated, get the
828 * block in the extent corresponding to the requested block */
829 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30))
830 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
831 else { /* otherwise, allocate a new block */
832 if (iinfo
->i_next_alloc_block
== block
)
833 goal
= iinfo
->i_next_alloc_goal
;
836 if (!(goal
= pgoal
)) /* XXX: what was intended here? */
837 goal
= iinfo
->i_location
.logicalBlockNum
+ 1;
840 newblocknum
= udf_new_block(inode
->i_sb
, inode
,
841 iinfo
->i_location
.partitionReferenceNum
,
844 brelse(prev_epos
.bh
);
846 brelse(next_epos
.bh
);
851 iinfo
->i_lenExtents
+= inode
->i_sb
->s_blocksize
;
854 /* if the extent the requsted block is located in contains multiple
855 * blocks, split the extent into at most three extents. blocks prior
856 * to requested block, requested block, and blocks after requested
858 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
860 #ifdef UDF_PREALLOCATE
861 /* We preallocate blocks only for regular files. It also makes sense
862 * for directories but there's a problem when to drop the
863 * preallocation. We might use some delayed work for that but I feel
864 * it's overengineering for a filesystem like UDF. */
865 if (S_ISREG(inode
->i_mode
))
866 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
869 /* merge any continuous blocks in laarr */
870 udf_merge_extents(inode
, laarr
, &endnum
);
872 /* write back the new extents, inserting new extents if the new number
873 * of extents is greater than the old number, and deleting extents if
874 * the new number of extents is less than the old number */
875 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
877 brelse(prev_epos
.bh
);
879 brelse(next_epos
.bh
);
881 newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
882 iinfo
->i_location
.partitionReferenceNum
, 0);
888 iinfo
->i_next_alloc_block
= block
;
889 iinfo
->i_next_alloc_goal
= newblocknum
;
890 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
893 udf_sync_inode(inode
);
895 mark_inode_dirty(inode
);
900 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
902 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
905 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
906 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
908 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
909 (laarr
[*c
].extLength
>> 30) ==
910 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
912 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
913 blocksize
- 1) >> blocksize_bits
;
914 int8_t etype
= (laarr
[curr
].extLength
>> 30);
918 else if (!offset
|| blen
== offset
+ 1) {
919 laarr
[curr
+ 2] = laarr
[curr
+ 1];
920 laarr
[curr
+ 1] = laarr
[curr
];
922 laarr
[curr
+ 3] = laarr
[curr
+ 1];
923 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
927 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
928 udf_free_blocks(inode
->i_sb
, inode
,
929 &laarr
[curr
].extLocation
,
931 laarr
[curr
].extLength
=
932 EXT_NOT_RECORDED_NOT_ALLOCATED
|
933 (offset
<< blocksize_bits
);
934 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
935 laarr
[curr
].extLocation
.
936 partitionReferenceNum
= 0;
938 laarr
[curr
].extLength
= (etype
<< 30) |
939 (offset
<< blocksize_bits
);
945 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
946 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
947 laarr
[curr
].extLocation
.partitionReferenceNum
=
948 UDF_I(inode
)->i_location
.partitionReferenceNum
;
949 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
953 if (blen
!= offset
+ 1) {
954 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
955 laarr
[curr
].extLocation
.logicalBlockNum
+=
957 laarr
[curr
].extLength
= (etype
<< 30) |
958 ((blen
- (offset
+ 1)) << blocksize_bits
);
965 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
966 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
969 int start
, length
= 0, currlength
= 0, i
;
971 if (*endnum
>= (c
+ 1)) {
977 if ((laarr
[c
+ 1].extLength
>> 30) ==
978 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
980 length
= currlength
=
981 (((laarr
[c
+ 1].extLength
&
982 UDF_EXTENT_LENGTH_MASK
) +
983 inode
->i_sb
->s_blocksize
- 1) >>
984 inode
->i_sb
->s_blocksize_bits
);
989 for (i
= start
+ 1; i
<= *endnum
; i
++) {
992 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
993 } else if ((laarr
[i
].extLength
>> 30) ==
994 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
995 length
+= (((laarr
[i
].extLength
&
996 UDF_EXTENT_LENGTH_MASK
) +
997 inode
->i_sb
->s_blocksize
- 1) >>
998 inode
->i_sb
->s_blocksize_bits
);
1004 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
1005 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
1006 inode
->i_sb
->s_blocksize
- 1) >>
1007 inode
->i_sb
->s_blocksize_bits
);
1008 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
1009 laarr
[start
].extLocation
.partitionReferenceNum
,
1010 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
?
1011 length
: UDF_DEFAULT_PREALLOC_BLOCKS
) -
1014 if (start
== (c
+ 1))
1015 laarr
[start
].extLength
+=
1017 inode
->i_sb
->s_blocksize_bits
);
1019 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
1020 sizeof(struct long_ad
) * (*endnum
- (c
+ 1)));
1022 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
1023 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
1024 laarr
[c
].extLocation
.
1025 partitionReferenceNum
;
1026 laarr
[c
+ 1].extLength
=
1027 EXT_NOT_RECORDED_ALLOCATED
|
1029 inode
->i_sb
->s_blocksize_bits
);
1033 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
1034 int elen
= ((laarr
[i
].extLength
&
1035 UDF_EXTENT_LENGTH_MASK
) +
1036 inode
->i_sb
->s_blocksize
- 1) >>
1037 inode
->i_sb
->s_blocksize_bits
;
1039 if (elen
> numalloc
) {
1040 laarr
[i
].extLength
-=
1042 inode
->i_sb
->s_blocksize_bits
);
1046 if (*endnum
> (i
+ 1))
1049 sizeof(struct long_ad
) *
1050 (*endnum
- (i
+ 1)));
1055 UDF_I(inode
)->i_lenExtents
+=
1056 numalloc
<< inode
->i_sb
->s_blocksize_bits
;
1061 static void udf_merge_extents(struct inode
*inode
,
1062 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
1066 unsigned long blocksize
= inode
->i_sb
->s_blocksize
;
1067 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1069 for (i
= 0; i
< (*endnum
- 1); i
++) {
1070 struct kernel_long_ad
*li
/*l[i]*/ = &laarr
[i
];
1071 struct kernel_long_ad
*lip1
/*l[i plus 1]*/ = &laarr
[i
+ 1];
1073 if (((li
->extLength
>> 30) == (lip1
->extLength
>> 30)) &&
1074 (((li
->extLength
>> 30) ==
1075 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
1076 ((lip1
->extLocation
.logicalBlockNum
-
1077 li
->extLocation
.logicalBlockNum
) ==
1078 (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1079 blocksize
- 1) >> blocksize_bits
)))) {
1081 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1082 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1083 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
1084 lip1
->extLength
= (lip1
->extLength
-
1086 UDF_EXTENT_LENGTH_MASK
) +
1087 UDF_EXTENT_LENGTH_MASK
) &
1089 li
->extLength
= (li
->extLength
&
1090 UDF_EXTENT_FLAG_MASK
) +
1091 (UDF_EXTENT_LENGTH_MASK
+ 1) -
1093 lip1
->extLocation
.logicalBlockNum
=
1094 li
->extLocation
.logicalBlockNum
+
1096 UDF_EXTENT_LENGTH_MASK
) >>
1099 li
->extLength
= lip1
->extLength
+
1101 UDF_EXTENT_LENGTH_MASK
) +
1102 blocksize
- 1) & ~(blocksize
- 1));
1103 if (*endnum
> (i
+ 2))
1104 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
1105 sizeof(struct long_ad
) *
1106 (*endnum
- (i
+ 2)));
1110 } else if (((li
->extLength
>> 30) ==
1111 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
1112 ((lip1
->extLength
>> 30) ==
1113 (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
1114 udf_free_blocks(inode
->i_sb
, inode
, &li
->extLocation
, 0,
1116 UDF_EXTENT_LENGTH_MASK
) +
1117 blocksize
- 1) >> blocksize_bits
);
1118 li
->extLocation
.logicalBlockNum
= 0;
1119 li
->extLocation
.partitionReferenceNum
= 0;
1121 if (((li
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1122 (lip1
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
1123 blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
1124 lip1
->extLength
= (lip1
->extLength
-
1126 UDF_EXTENT_LENGTH_MASK
) +
1127 UDF_EXTENT_LENGTH_MASK
) &
1129 li
->extLength
= (li
->extLength
&
1130 UDF_EXTENT_FLAG_MASK
) +
1131 (UDF_EXTENT_LENGTH_MASK
+ 1) -
1134 li
->extLength
= lip1
->extLength
+
1136 UDF_EXTENT_LENGTH_MASK
) +
1137 blocksize
- 1) & ~(blocksize
- 1));
1138 if (*endnum
> (i
+ 2))
1139 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
1140 sizeof(struct long_ad
) *
1141 (*endnum
- (i
+ 2)));
1145 } else if ((li
->extLength
>> 30) ==
1146 (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
1147 udf_free_blocks(inode
->i_sb
, inode
,
1148 &li
->extLocation
, 0,
1150 UDF_EXTENT_LENGTH_MASK
) +
1151 blocksize
- 1) >> blocksize_bits
);
1152 li
->extLocation
.logicalBlockNum
= 0;
1153 li
->extLocation
.partitionReferenceNum
= 0;
1154 li
->extLength
= (li
->extLength
&
1155 UDF_EXTENT_LENGTH_MASK
) |
1156 EXT_NOT_RECORDED_NOT_ALLOCATED
;
1161 static void udf_update_extents(struct inode
*inode
,
1162 struct kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
1163 int startnum
, int endnum
,
1164 struct extent_position
*epos
)
1167 struct kernel_lb_addr tmploc
;
1170 if (startnum
> endnum
) {
1171 for (i
= 0; i
< (startnum
- endnum
); i
++)
1172 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
1173 laarr
[i
].extLength
);
1174 } else if (startnum
< endnum
) {
1175 for (i
= 0; i
< (endnum
- startnum
); i
++) {
1176 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
1177 laarr
[i
].extLength
);
1178 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
1179 &laarr
[i
].extLength
, 1);
1184 for (i
= start
; i
< endnum
; i
++) {
1185 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
1186 udf_write_aext(inode
, epos
, &laarr
[i
].extLocation
,
1187 laarr
[i
].extLength
, 1);
1191 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
1192 int create
, int *err
)
1194 struct buffer_head
*bh
= NULL
;
1196 bh
= udf_getblk(inode
, block
, create
, err
);
1200 if (buffer_uptodate(bh
))
1203 ll_rw_block(READ
, 1, &bh
);
1206 if (buffer_uptodate(bh
))
1214 int udf_setsize(struct inode
*inode
, loff_t newsize
)
1217 struct udf_inode_info
*iinfo
;
1218 int bsize
= 1 << inode
->i_blkbits
;
1220 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1221 S_ISLNK(inode
->i_mode
)))
1223 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
1226 iinfo
= UDF_I(inode
);
1227 if (newsize
> inode
->i_size
) {
1228 down_write(&iinfo
->i_data_sem
);
1229 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1231 (udf_file_entry_alloc_offset(inode
) + newsize
)) {
1232 err
= udf_expand_file_adinicb(inode
);
1235 down_write(&iinfo
->i_data_sem
);
1237 iinfo
->i_lenAlloc
= newsize
;
1241 err
= udf_extend_file(inode
, newsize
);
1243 up_write(&iinfo
->i_data_sem
);
1247 truncate_setsize(inode
, newsize
);
1248 up_write(&iinfo
->i_data_sem
);
1250 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1251 down_write(&iinfo
->i_data_sem
);
1252 udf_clear_extent_cache(inode
);
1253 memset(iinfo
->i_ext
.i_data
+ iinfo
->i_lenEAttr
+ newsize
,
1254 0x00, bsize
- newsize
-
1255 udf_file_entry_alloc_offset(inode
));
1256 iinfo
->i_lenAlloc
= newsize
;
1257 truncate_setsize(inode
, newsize
);
1258 up_write(&iinfo
->i_data_sem
);
1261 err
= block_truncate_page(inode
->i_mapping
, newsize
,
1265 down_write(&iinfo
->i_data_sem
);
1266 udf_clear_extent_cache(inode
);
1267 truncate_setsize(inode
, newsize
);
1268 udf_truncate_extents(inode
);
1269 up_write(&iinfo
->i_data_sem
);
1272 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
1274 udf_sync_inode(inode
);
1276 mark_inode_dirty(inode
);
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1285 #define UDF_MAX_ICB_NESTING 1024
1287 static int udf_read_inode(struct inode
*inode
, bool hidden_inode
)
1289 struct buffer_head
*bh
= NULL
;
1290 struct fileEntry
*fe
;
1291 struct extendedFileEntry
*efe
;
1293 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1294 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1295 struct kernel_lb_addr
*iloc
= &iinfo
->i_location
;
1296 unsigned int link_count
;
1297 unsigned int indirections
= 0;
1298 int bs
= inode
->i_sb
->s_blocksize
;
1302 if (iloc
->logicalBlockNum
>=
1303 sbi
->s_partmaps
[iloc
->partitionReferenceNum
].s_partition_len
) {
1304 udf_debug("block=%d, partition=%d out of range\n",
1305 iloc
->logicalBlockNum
, iloc
->partitionReferenceNum
);
1310 * Set defaults, but the inode is still incomplete!
1311 * Note: get_new_inode() sets the following on a new inode:
1314 * i_flags = sb->s_flags
1316 * clean_inode(): zero fills and sets
1321 bh
= udf_read_ptagged(inode
->i_sb
, iloc
, 0, &ident
);
1323 udf_err(inode
->i_sb
, "(ino %ld) failed !bh\n", inode
->i_ino
);
1327 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1328 ident
!= TAG_IDENT_USE
) {
1329 udf_err(inode
->i_sb
, "(ino %ld) failed ident=%d\n",
1330 inode
->i_ino
, ident
);
1334 fe
= (struct fileEntry
*)bh
->b_data
;
1335 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1337 if (fe
->icbTag
.strategyType
== cpu_to_le16(4096)) {
1338 struct buffer_head
*ibh
;
1340 ibh
= udf_read_ptagged(inode
->i_sb
, iloc
, 1, &ident
);
1341 if (ident
== TAG_IDENT_IE
&& ibh
) {
1342 struct kernel_lb_addr loc
;
1343 struct indirectEntry
*ie
;
1345 ie
= (struct indirectEntry
*)ibh
->b_data
;
1346 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1348 if (ie
->indirectICB
.extLength
) {
1350 memcpy(&iinfo
->i_location
, &loc
,
1351 sizeof(struct kernel_lb_addr
));
1352 if (++indirections
> UDF_MAX_ICB_NESTING
) {
1353 udf_err(inode
->i_sb
,
1354 "too many ICBs in ICB hierarchy"
1355 " (max %d supported)\n",
1356 UDF_MAX_ICB_NESTING
);
1364 } else if (fe
->icbTag
.strategyType
!= cpu_to_le16(4)) {
1365 udf_err(inode
->i_sb
, "unsupported strategy type: %d\n",
1366 le16_to_cpu(fe
->icbTag
.strategyType
));
1369 if (fe
->icbTag
.strategyType
== cpu_to_le16(4))
1370 iinfo
->i_strat4096
= 0;
1371 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372 iinfo
->i_strat4096
= 1;
1374 iinfo
->i_alloc_type
= le16_to_cpu(fe
->icbTag
.flags
) &
1375 ICBTAG_FLAG_AD_MASK
;
1376 iinfo
->i_unique
= 0;
1377 iinfo
->i_lenEAttr
= 0;
1378 iinfo
->i_lenExtents
= 0;
1379 iinfo
->i_lenAlloc
= 0;
1380 iinfo
->i_next_alloc_block
= 0;
1381 iinfo
->i_next_alloc_goal
= 0;
1382 if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_EFE
)) {
1385 ret
= udf_alloc_i_data(inode
, bs
-
1386 sizeof(struct extendedFileEntry
));
1389 memcpy(iinfo
->i_ext
.i_data
,
1390 bh
->b_data
+ sizeof(struct extendedFileEntry
),
1391 bs
- sizeof(struct extendedFileEntry
));
1392 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_FE
)) {
1395 ret
= udf_alloc_i_data(inode
, bs
- sizeof(struct fileEntry
));
1398 memcpy(iinfo
->i_ext
.i_data
,
1399 bh
->b_data
+ sizeof(struct fileEntry
),
1400 bs
- sizeof(struct fileEntry
));
1401 } else if (fe
->descTag
.tagIdent
== cpu_to_le16(TAG_IDENT_USE
)) {
1404 iinfo
->i_lenAlloc
= le32_to_cpu(
1405 ((struct unallocSpaceEntry
*)bh
->b_data
)->
1407 ret
= udf_alloc_i_data(inode
, bs
-
1408 sizeof(struct unallocSpaceEntry
));
1411 memcpy(iinfo
->i_ext
.i_data
,
1412 bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1413 bs
- sizeof(struct unallocSpaceEntry
));
1418 read_lock(&sbi
->s_cred_lock
);
1419 i_uid_write(inode
, le32_to_cpu(fe
->uid
));
1420 if (!uid_valid(inode
->i_uid
) ||
1421 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_IGNORE
) ||
1422 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_SET
))
1423 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1425 i_gid_write(inode
, le32_to_cpu(fe
->gid
));
1426 if (!gid_valid(inode
->i_gid
) ||
1427 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_IGNORE
) ||
1428 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_SET
))
1429 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1431 if (fe
->icbTag
.fileType
!= ICBTAG_FILE_TYPE_DIRECTORY
&&
1432 sbi
->s_fmode
!= UDF_INVALID_MODE
)
1433 inode
->i_mode
= sbi
->s_fmode
;
1434 else if (fe
->icbTag
.fileType
== ICBTAG_FILE_TYPE_DIRECTORY
&&
1435 sbi
->s_dmode
!= UDF_INVALID_MODE
)
1436 inode
->i_mode
= sbi
->s_dmode
;
1438 inode
->i_mode
= udf_convert_permissions(fe
);
1439 inode
->i_mode
&= ~sbi
->s_umask
;
1440 read_unlock(&sbi
->s_cred_lock
);
1442 link_count
= le16_to_cpu(fe
->fileLinkCount
);
1444 if (!hidden_inode
) {
1450 set_nlink(inode
, link_count
);
1452 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1453 iinfo
->i_lenExtents
= inode
->i_size
;
1455 if (iinfo
->i_efe
== 0) {
1456 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1457 (inode
->i_sb
->s_blocksize_bits
- 9);
1459 if (!udf_disk_stamp_to_time(&inode
->i_atime
, fe
->accessTime
))
1460 inode
->i_atime
= sbi
->s_record_time
;
1462 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1463 fe
->modificationTime
))
1464 inode
->i_mtime
= sbi
->s_record_time
;
1466 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, fe
->attrTime
))
1467 inode
->i_ctime
= sbi
->s_record_time
;
1469 iinfo
->i_unique
= le64_to_cpu(fe
->uniqueID
);
1470 iinfo
->i_lenEAttr
= le32_to_cpu(fe
->lengthExtendedAttr
);
1471 iinfo
->i_lenAlloc
= le32_to_cpu(fe
->lengthAllocDescs
);
1472 iinfo
->i_checkpoint
= le32_to_cpu(fe
->checkpoint
);
1474 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1475 (inode
->i_sb
->s_blocksize_bits
- 9);
1477 if (!udf_disk_stamp_to_time(&inode
->i_atime
, efe
->accessTime
))
1478 inode
->i_atime
= sbi
->s_record_time
;
1480 if (!udf_disk_stamp_to_time(&inode
->i_mtime
,
1481 efe
->modificationTime
))
1482 inode
->i_mtime
= sbi
->s_record_time
;
1484 if (!udf_disk_stamp_to_time(&iinfo
->i_crtime
, efe
->createTime
))
1485 iinfo
->i_crtime
= sbi
->s_record_time
;
1487 if (!udf_disk_stamp_to_time(&inode
->i_ctime
, efe
->attrTime
))
1488 inode
->i_ctime
= sbi
->s_record_time
;
1490 iinfo
->i_unique
= le64_to_cpu(efe
->uniqueID
);
1491 iinfo
->i_lenEAttr
= le32_to_cpu(efe
->lengthExtendedAttr
);
1492 iinfo
->i_lenAlloc
= le32_to_cpu(efe
->lengthAllocDescs
);
1493 iinfo
->i_checkpoint
= le32_to_cpu(efe
->checkpoint
);
1495 inode
->i_generation
= iinfo
->i_unique
;
1498 * Sanity check length of allocation descriptors and extended attrs to
1499 * avoid integer overflows
1501 if (iinfo
->i_lenEAttr
> bs
|| iinfo
->i_lenAlloc
> bs
)
1503 /* Now do exact checks */
1504 if (udf_file_entry_alloc_offset(inode
) + iinfo
->i_lenAlloc
> bs
)
1506 /* Sanity checks for files in ICB so that we don't get confused later */
1507 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
) {
1509 * For file in ICB data is stored in allocation descriptor
1510 * so sizes should match
1512 if (iinfo
->i_lenAlloc
!= inode
->i_size
)
1514 /* File in ICB has to fit in there... */
1515 if (inode
->i_size
> bs
- udf_file_entry_alloc_offset(inode
))
1519 switch (fe
->icbTag
.fileType
) {
1520 case ICBTAG_FILE_TYPE_DIRECTORY
:
1521 inode
->i_op
= &udf_dir_inode_operations
;
1522 inode
->i_fop
= &udf_dir_operations
;
1523 inode
->i_mode
|= S_IFDIR
;
1526 case ICBTAG_FILE_TYPE_REALTIME
:
1527 case ICBTAG_FILE_TYPE_REGULAR
:
1528 case ICBTAG_FILE_TYPE_UNDEF
:
1529 case ICBTAG_FILE_TYPE_VAT20
:
1530 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
)
1531 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1533 inode
->i_data
.a_ops
= &udf_aops
;
1534 inode
->i_op
= &udf_file_inode_operations
;
1535 inode
->i_fop
= &udf_file_operations
;
1536 inode
->i_mode
|= S_IFREG
;
1538 case ICBTAG_FILE_TYPE_BLOCK
:
1539 inode
->i_mode
|= S_IFBLK
;
1541 case ICBTAG_FILE_TYPE_CHAR
:
1542 inode
->i_mode
|= S_IFCHR
;
1544 case ICBTAG_FILE_TYPE_FIFO
:
1545 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1547 case ICBTAG_FILE_TYPE_SOCKET
:
1548 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1550 case ICBTAG_FILE_TYPE_SYMLINK
:
1551 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1552 inode
->i_op
= &page_symlink_inode_operations
;
1553 inode_nohighmem(inode
);
1554 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1556 case ICBTAG_FILE_TYPE_MAIN
:
1557 udf_debug("METADATA FILE-----\n");
1559 case ICBTAG_FILE_TYPE_MIRROR
:
1560 udf_debug("METADATA MIRROR FILE-----\n");
1562 case ICBTAG_FILE_TYPE_BITMAP
:
1563 udf_debug("METADATA BITMAP FILE-----\n");
1566 udf_err(inode
->i_sb
, "(ino %ld) failed unknown file type=%d\n",
1567 inode
->i_ino
, fe
->icbTag
.fileType
);
1570 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1571 struct deviceSpec
*dsea
=
1572 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1574 init_special_inode(inode
, inode
->i_mode
,
1575 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1576 le32_to_cpu(dsea
->minorDeviceIdent
)));
1577 /* Developer ID ??? */
1587 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1589 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1590 iinfo
->i_ext
.i_data
= kmalloc(size
, GFP_KERNEL
);
1592 if (!iinfo
->i_ext
.i_data
) {
1593 udf_err(inode
->i_sb
, "(ino %ld) no free memory\n",
1601 static umode_t
udf_convert_permissions(struct fileEntry
*fe
)
1604 uint32_t permissions
;
1607 permissions
= le32_to_cpu(fe
->permissions
);
1608 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1610 mode
= ((permissions
) & S_IRWXO
) |
1611 ((permissions
>> 2) & S_IRWXG
) |
1612 ((permissions
>> 4) & S_IRWXU
) |
1613 ((flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1614 ((flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1615 ((flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1620 int udf_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1622 return udf_update_inode(inode
, wbc
->sync_mode
== WB_SYNC_ALL
);
1625 static int udf_sync_inode(struct inode
*inode
)
1627 return udf_update_inode(inode
, 1);
1630 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1632 struct buffer_head
*bh
= NULL
;
1633 struct fileEntry
*fe
;
1634 struct extendedFileEntry
*efe
;
1635 uint64_t lb_recorded
;
1640 struct udf_sb_info
*sbi
= UDF_SB(inode
->i_sb
);
1641 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
1642 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1644 bh
= udf_tgetblk(inode
->i_sb
,
1645 udf_get_lb_pblock(inode
->i_sb
, &iinfo
->i_location
, 0));
1647 udf_debug("getblk failure\n");
1652 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1653 fe
= (struct fileEntry
*)bh
->b_data
;
1654 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1657 struct unallocSpaceEntry
*use
=
1658 (struct unallocSpaceEntry
*)bh
->b_data
;
1660 use
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1661 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1662 iinfo
->i_ext
.i_data
, inode
->i_sb
->s_blocksize
-
1663 sizeof(struct unallocSpaceEntry
));
1664 use
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_USE
);
1665 crclen
= sizeof(struct unallocSpaceEntry
);
1670 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1671 fe
->uid
= cpu_to_le32(-1);
1673 fe
->uid
= cpu_to_le32(i_uid_read(inode
));
1675 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1676 fe
->gid
= cpu_to_le32(-1);
1678 fe
->gid
= cpu_to_le32(i_gid_read(inode
));
1680 udfperms
= ((inode
->i_mode
& S_IRWXO
)) |
1681 ((inode
->i_mode
& S_IRWXG
) << 2) |
1682 ((inode
->i_mode
& S_IRWXU
) << 4);
1684 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1685 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1686 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1687 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1688 fe
->permissions
= cpu_to_le32(udfperms
);
1690 if (S_ISDIR(inode
->i_mode
) && inode
->i_nlink
> 0)
1691 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1693 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1695 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1697 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1699 struct deviceSpec
*dsea
=
1700 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1702 dsea
= (struct deviceSpec
*)
1703 udf_add_extendedattr(inode
,
1704 sizeof(struct deviceSpec
) +
1705 sizeof(struct regid
), 12, 0x3);
1706 dsea
->attrType
= cpu_to_le32(12);
1707 dsea
->attrSubtype
= 1;
1708 dsea
->attrLength
= cpu_to_le32(
1709 sizeof(struct deviceSpec
) +
1710 sizeof(struct regid
));
1711 dsea
->impUseLength
= cpu_to_le32(sizeof(struct regid
));
1713 eid
= (struct regid
*)dsea
->impUse
;
1714 memset(eid
, 0, sizeof(struct regid
));
1715 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1716 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1717 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1718 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1719 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1722 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_IN_ICB
)
1723 lb_recorded
= 0; /* No extents => no blocks! */
1726 (inode
->i_blocks
+ (1 << (blocksize_bits
- 9)) - 1) >>
1727 (blocksize_bits
- 9);
1729 if (iinfo
->i_efe
== 0) {
1730 memcpy(bh
->b_data
+ sizeof(struct fileEntry
),
1731 iinfo
->i_ext
.i_data
,
1732 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1733 fe
->logicalBlocksRecorded
= cpu_to_le64(lb_recorded
);
1735 udf_time_to_disk_stamp(&fe
->accessTime
, inode
->i_atime
);
1736 udf_time_to_disk_stamp(&fe
->modificationTime
, inode
->i_mtime
);
1737 udf_time_to_disk_stamp(&fe
->attrTime
, inode
->i_ctime
);
1738 memset(&(fe
->impIdent
), 0, sizeof(struct regid
));
1739 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1740 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1741 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1742 fe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1743 fe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1744 fe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1745 fe
->checkpoint
= cpu_to_le32(iinfo
->i_checkpoint
);
1746 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1747 crclen
= sizeof(struct fileEntry
);
1749 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
),
1750 iinfo
->i_ext
.i_data
,
1751 inode
->i_sb
->s_blocksize
-
1752 sizeof(struct extendedFileEntry
));
1753 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1754 efe
->logicalBlocksRecorded
= cpu_to_le64(lb_recorded
);
1756 if (iinfo
->i_crtime
.tv_sec
> inode
->i_atime
.tv_sec
||
1757 (iinfo
->i_crtime
.tv_sec
== inode
->i_atime
.tv_sec
&&
1758 iinfo
->i_crtime
.tv_nsec
> inode
->i_atime
.tv_nsec
))
1759 iinfo
->i_crtime
= inode
->i_atime
;
1761 if (iinfo
->i_crtime
.tv_sec
> inode
->i_mtime
.tv_sec
||
1762 (iinfo
->i_crtime
.tv_sec
== inode
->i_mtime
.tv_sec
&&
1763 iinfo
->i_crtime
.tv_nsec
> inode
->i_mtime
.tv_nsec
))
1764 iinfo
->i_crtime
= inode
->i_mtime
;
1766 if (iinfo
->i_crtime
.tv_sec
> inode
->i_ctime
.tv_sec
||
1767 (iinfo
->i_crtime
.tv_sec
== inode
->i_ctime
.tv_sec
&&
1768 iinfo
->i_crtime
.tv_nsec
> inode
->i_ctime
.tv_nsec
))
1769 iinfo
->i_crtime
= inode
->i_ctime
;
1771 udf_time_to_disk_stamp(&efe
->accessTime
, inode
->i_atime
);
1772 udf_time_to_disk_stamp(&efe
->modificationTime
, inode
->i_mtime
);
1773 udf_time_to_disk_stamp(&efe
->createTime
, iinfo
->i_crtime
);
1774 udf_time_to_disk_stamp(&efe
->attrTime
, inode
->i_ctime
);
1776 memset(&(efe
->impIdent
), 0, sizeof(struct regid
));
1777 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1778 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1779 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1780 efe
->uniqueID
= cpu_to_le64(iinfo
->i_unique
);
1781 efe
->lengthExtendedAttr
= cpu_to_le32(iinfo
->i_lenEAttr
);
1782 efe
->lengthAllocDescs
= cpu_to_le32(iinfo
->i_lenAlloc
);
1783 efe
->checkpoint
= cpu_to_le32(iinfo
->i_checkpoint
);
1784 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1785 crclen
= sizeof(struct extendedFileEntry
);
1789 if (iinfo
->i_strat4096
) {
1790 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1791 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1792 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1794 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1795 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1799 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_USE
;
1800 else if (S_ISDIR(inode
->i_mode
))
1801 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1802 else if (S_ISREG(inode
->i_mode
))
1803 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1804 else if (S_ISLNK(inode
->i_mode
))
1805 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1806 else if (S_ISBLK(inode
->i_mode
))
1807 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1808 else if (S_ISCHR(inode
->i_mode
))
1809 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1810 else if (S_ISFIFO(inode
->i_mode
))
1811 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1812 else if (S_ISSOCK(inode
->i_mode
))
1813 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1815 icbflags
= iinfo
->i_alloc_type
|
1816 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1817 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1818 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1819 (le16_to_cpu(fe
->icbTag
.flags
) &
1820 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1821 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1823 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1824 if (sbi
->s_udfrev
>= 0x0200)
1825 fe
->descTag
.descVersion
= cpu_to_le16(3);
1827 fe
->descTag
.descVersion
= cpu_to_le16(2);
1828 fe
->descTag
.tagSerialNum
= cpu_to_le16(sbi
->s_serial_number
);
1829 fe
->descTag
.tagLocation
= cpu_to_le32(
1830 iinfo
->i_location
.logicalBlockNum
);
1831 crclen
+= iinfo
->i_lenEAttr
+ iinfo
->i_lenAlloc
- sizeof(struct tag
);
1832 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1833 fe
->descTag
.descCRC
= cpu_to_le16(crc_itu_t(0, (char *)fe
+ sizeof(struct tag
),
1835 fe
->descTag
.tagChecksum
= udf_tag_checksum(&fe
->descTag
);
1837 set_buffer_uptodate(bh
);
1840 /* write the data blocks */
1841 mark_buffer_dirty(bh
);
1843 sync_dirty_buffer(bh
);
1844 if (buffer_write_io_error(bh
)) {
1845 udf_warn(inode
->i_sb
, "IO error syncing udf inode [%08lx]\n",
1855 struct inode
*__udf_iget(struct super_block
*sb
, struct kernel_lb_addr
*ino
,
1858 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1859 struct inode
*inode
= iget_locked(sb
, block
);
1863 return ERR_PTR(-ENOMEM
);
1865 if (!(inode
->i_state
& I_NEW
))
1868 memcpy(&UDF_I(inode
)->i_location
, ino
, sizeof(struct kernel_lb_addr
));
1869 err
= udf_read_inode(inode
, hidden_inode
);
1872 return ERR_PTR(err
);
1874 unlock_new_inode(inode
);
1879 int udf_setup_indirect_aext(struct inode
*inode
, int block
,
1880 struct extent_position
*epos
)
1882 struct super_block
*sb
= inode
->i_sb
;
1883 struct buffer_head
*bh
;
1884 struct allocExtDesc
*aed
;
1885 struct extent_position nepos
;
1886 struct kernel_lb_addr neloc
;
1889 if (UDF_I(inode
)->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
1890 adsize
= sizeof(struct short_ad
);
1891 else if (UDF_I(inode
)->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
1892 adsize
= sizeof(struct long_ad
);
1896 neloc
.logicalBlockNum
= block
;
1897 neloc
.partitionReferenceNum
= epos
->block
.partitionReferenceNum
;
1899 bh
= udf_tgetblk(sb
, udf_get_lb_pblock(sb
, &neloc
, 0));
1903 memset(bh
->b_data
, 0x00, sb
->s_blocksize
);
1904 set_buffer_uptodate(bh
);
1906 mark_buffer_dirty_inode(bh
, inode
);
1908 aed
= (struct allocExtDesc
*)(bh
->b_data
);
1909 if (!UDF_QUERY_FLAG(sb
, UDF_FLAG_STRICT
)) {
1910 aed
->previousAllocExtLocation
=
1911 cpu_to_le32(epos
->block
.logicalBlockNum
);
1913 aed
->lengthAllocDescs
= cpu_to_le32(0);
1914 if (UDF_SB(sb
)->s_udfrev
>= 0x0200)
1918 udf_new_tag(bh
->b_data
, TAG_IDENT_AED
, ver
, 1, block
,
1919 sizeof(struct tag
));
1921 nepos
.block
= neloc
;
1922 nepos
.offset
= sizeof(struct allocExtDesc
);
1926 * Do we have to copy current last extent to make space for indirect
1929 if (epos
->offset
+ adsize
> sb
->s_blocksize
) {
1930 struct kernel_lb_addr cp_loc
;
1934 epos
->offset
-= adsize
;
1935 cp_type
= udf_current_aext(inode
, epos
, &cp_loc
, &cp_len
, 0);
1936 cp_len
|= ((uint32_t)cp_type
) << 30;
1938 __udf_add_aext(inode
, &nepos
, &cp_loc
, cp_len
, 1);
1939 udf_write_aext(inode
, epos
, &nepos
.block
,
1940 sb
->s_blocksize
| EXT_NEXT_EXTENT_ALLOCDECS
, 0);
1942 __udf_add_aext(inode
, epos
, &nepos
.block
,
1943 sb
->s_blocksize
| EXT_NEXT_EXTENT_ALLOCDECS
, 0);
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1957 int __udf_add_aext(struct inode
*inode
, struct extent_position
*epos
,
1958 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
1960 struct udf_inode_info
*iinfo
= UDF_I(inode
);
1961 struct allocExtDesc
*aed
;
1964 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
1965 adsize
= sizeof(struct short_ad
);
1966 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
1967 adsize
= sizeof(struct long_ad
);
1972 WARN_ON(iinfo
->i_lenAlloc
!=
1973 epos
->offset
- udf_file_entry_alloc_offset(inode
));
1975 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1976 WARN_ON(le32_to_cpu(aed
->lengthAllocDescs
) !=
1977 epos
->offset
- sizeof(struct allocExtDesc
));
1978 WARN_ON(epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
);
1981 udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1984 iinfo
->i_lenAlloc
+= adsize
;
1985 mark_inode_dirty(inode
);
1987 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1988 le32_add_cpu(&aed
->lengthAllocDescs
, adsize
);
1989 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1990 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
1991 udf_update_tag(epos
->bh
->b_data
,
1992 epos
->offset
+ (inc
? 0 : adsize
));
1994 udf_update_tag(epos
->bh
->b_data
,
1995 sizeof(struct allocExtDesc
));
1996 mark_buffer_dirty_inode(epos
->bh
, inode
);
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2006 int udf_add_aext(struct inode
*inode
, struct extent_position
*epos
,
2007 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
2010 struct super_block
*sb
= inode
->i_sb
;
2012 if (UDF_I(inode
)->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
2013 adsize
= sizeof(struct short_ad
);
2014 else if (UDF_I(inode
)->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
2015 adsize
= sizeof(struct long_ad
);
2019 if (epos
->offset
+ (2 * adsize
) > sb
->s_blocksize
) {
2023 new_block
= udf_new_block(sb
, NULL
,
2024 epos
->block
.partitionReferenceNum
,
2025 epos
->block
.logicalBlockNum
, &err
);
2029 err
= udf_setup_indirect_aext(inode
, new_block
, epos
);
2034 return __udf_add_aext(inode
, epos
, eloc
, elen
, inc
);
2037 void udf_write_aext(struct inode
*inode
, struct extent_position
*epos
,
2038 struct kernel_lb_addr
*eloc
, uint32_t elen
, int inc
)
2042 struct short_ad
*sad
;
2043 struct long_ad
*lad
;
2044 struct udf_inode_info
*iinfo
= UDF_I(inode
);
2047 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
2048 udf_file_entry_alloc_offset(inode
) +
2051 ptr
= epos
->bh
->b_data
+ epos
->offset
;
2053 switch (iinfo
->i_alloc_type
) {
2054 case ICBTAG_FLAG_AD_SHORT
:
2055 sad
= (struct short_ad
*)ptr
;
2056 sad
->extLength
= cpu_to_le32(elen
);
2057 sad
->extPosition
= cpu_to_le32(eloc
->logicalBlockNum
);
2058 adsize
= sizeof(struct short_ad
);
2060 case ICBTAG_FLAG_AD_LONG
:
2061 lad
= (struct long_ad
*)ptr
;
2062 lad
->extLength
= cpu_to_le32(elen
);
2063 lad
->extLocation
= cpu_to_lelb(*eloc
);
2064 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
2065 adsize
= sizeof(struct long_ad
);
2072 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2073 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201) {
2074 struct allocExtDesc
*aed
=
2075 (struct allocExtDesc
*)epos
->bh
->b_data
;
2076 udf_update_tag(epos
->bh
->b_data
,
2077 le32_to_cpu(aed
->lengthAllocDescs
) +
2078 sizeof(struct allocExtDesc
));
2080 mark_buffer_dirty_inode(epos
->bh
, inode
);
2082 mark_inode_dirty(inode
);
2086 epos
->offset
+= adsize
;
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2093 #define UDF_MAX_INDIR_EXTS 16
2095 int8_t udf_next_aext(struct inode
*inode
, struct extent_position
*epos
,
2096 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
2099 unsigned int indirections
= 0;
2101 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
2102 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
2105 if (++indirections
> UDF_MAX_INDIR_EXTS
) {
2106 udf_err(inode
->i_sb
,
2107 "too many indirect extents in inode %lu\n",
2112 epos
->block
= *eloc
;
2113 epos
->offset
= sizeof(struct allocExtDesc
);
2115 block
= udf_get_lb_pblock(inode
->i_sb
, &epos
->block
, 0);
2116 epos
->bh
= udf_tread(inode
->i_sb
, block
);
2118 udf_debug("reading block %d failed!\n", block
);
2126 int8_t udf_current_aext(struct inode
*inode
, struct extent_position
*epos
,
2127 struct kernel_lb_addr
*eloc
, uint32_t *elen
, int inc
)
2132 struct short_ad
*sad
;
2133 struct long_ad
*lad
;
2134 struct udf_inode_info
*iinfo
= UDF_I(inode
);
2138 epos
->offset
= udf_file_entry_alloc_offset(inode
);
2139 ptr
= iinfo
->i_ext
.i_data
+ epos
->offset
-
2140 udf_file_entry_alloc_offset(inode
) +
2142 alen
= udf_file_entry_alloc_offset(inode
) +
2146 epos
->offset
= sizeof(struct allocExtDesc
);
2147 ptr
= epos
->bh
->b_data
+ epos
->offset
;
2148 alen
= sizeof(struct allocExtDesc
) +
2149 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->
2153 switch (iinfo
->i_alloc_type
) {
2154 case ICBTAG_FLAG_AD_SHORT
:
2155 sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
);
2158 etype
= le32_to_cpu(sad
->extLength
) >> 30;
2159 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
2160 eloc
->partitionReferenceNum
=
2161 iinfo
->i_location
.partitionReferenceNum
;
2162 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
2164 case ICBTAG_FLAG_AD_LONG
:
2165 lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
);
2168 etype
= le32_to_cpu(lad
->extLength
) >> 30;
2169 *eloc
= lelb_to_cpu(lad
->extLocation
);
2170 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
2173 udf_debug("alloc_type = %d unsupported\n", iinfo
->i_alloc_type
);
2180 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
2181 struct kernel_lb_addr neloc
, uint32_t nelen
)
2183 struct kernel_lb_addr oeloc
;
2190 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
2191 udf_write_aext(inode
, &epos
, &neloc
, nelen
, 1);
2193 nelen
= (etype
<< 30) | oelen
;
2195 udf_add_aext(inode
, &epos
, &neloc
, nelen
, 1);
2198 return (nelen
>> 30);
2201 int8_t udf_delete_aext(struct inode
*inode
, struct extent_position epos
,
2202 struct kernel_lb_addr eloc
, uint32_t elen
)
2204 struct extent_position oepos
;
2207 struct allocExtDesc
*aed
;
2208 struct udf_inode_info
*iinfo
;
2215 iinfo
= UDF_I(inode
);
2216 if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_SHORT
)
2217 adsize
= sizeof(struct short_ad
);
2218 else if (iinfo
->i_alloc_type
== ICBTAG_FLAG_AD_LONG
)
2219 adsize
= sizeof(struct long_ad
);
2224 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
2227 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
2228 udf_write_aext(inode
, &oepos
, &eloc
, (etype
<< 30) | elen
, 1);
2229 if (oepos
.bh
!= epos
.bh
) {
2230 oepos
.block
= epos
.block
;
2234 oepos
.offset
= epos
.offset
- adsize
;
2237 memset(&eloc
, 0x00, sizeof(struct kernel_lb_addr
));
2240 if (epos
.bh
!= oepos
.bh
) {
2241 udf_free_blocks(inode
->i_sb
, inode
, &epos
.block
, 0, 1);
2242 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2243 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2245 iinfo
->i_lenAlloc
-= (adsize
* 2);
2246 mark_inode_dirty(inode
);
2248 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2249 le32_add_cpu(&aed
->lengthAllocDescs
, -(2 * adsize
));
2250 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2251 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2252 udf_update_tag(oepos
.bh
->b_data
,
2253 oepos
.offset
- (2 * adsize
));
2255 udf_update_tag(oepos
.bh
->b_data
,
2256 sizeof(struct allocExtDesc
));
2257 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2260 udf_write_aext(inode
, &oepos
, &eloc
, elen
, 1);
2262 iinfo
->i_lenAlloc
-= adsize
;
2263 mark_inode_dirty(inode
);
2265 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
2266 le32_add_cpu(&aed
->lengthAllocDescs
, -adsize
);
2267 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
2268 UDF_SB(inode
->i_sb
)->s_udfrev
>= 0x0201)
2269 udf_update_tag(oepos
.bh
->b_data
,
2270 epos
.offset
- adsize
);
2272 udf_update_tag(oepos
.bh
->b_data
,
2273 sizeof(struct allocExtDesc
));
2274 mark_buffer_dirty_inode(oepos
.bh
, inode
);
2281 return (elen
>> 30);
2284 int8_t inode_bmap(struct inode
*inode
, sector_t block
,
2285 struct extent_position
*pos
, struct kernel_lb_addr
*eloc
,
2286 uint32_t *elen
, sector_t
*offset
)
2288 unsigned char blocksize_bits
= inode
->i_sb
->s_blocksize_bits
;
2289 loff_t lbcount
= 0, bcount
=
2290 (loff_t
) block
<< blocksize_bits
;
2292 struct udf_inode_info
*iinfo
;
2294 iinfo
= UDF_I(inode
);
2295 if (!udf_read_extent_cache(inode
, bcount
, &lbcount
, pos
)) {
2297 pos
->block
= iinfo
->i_location
;
2302 etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1);
2304 *offset
= (bcount
- lbcount
) >> blocksize_bits
;
2305 iinfo
->i_lenExtents
= lbcount
;
2309 } while (lbcount
<= bcount
);
2310 /* update extent cache */
2311 udf_update_extent_cache(inode
, lbcount
- *elen
, pos
, 1);
2312 *offset
= (bcount
+ *elen
- lbcount
) >> blocksize_bits
;
2317 long udf_block_map(struct inode
*inode
, sector_t block
)
2319 struct kernel_lb_addr eloc
;
2322 struct extent_position epos
= {};
2325 down_read(&UDF_I(inode
)->i_data_sem
);
2327 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) ==
2328 (EXT_RECORDED_ALLOCATED
>> 30))
2329 ret
= udf_get_lb_pblock(inode
->i_sb
, &eloc
, offset
);
2333 up_read(&UDF_I(inode
)->i_data_sem
);
2336 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
2337 return udf_fixed_to_variable(ret
);