1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
8 #define pr_fmt(fmt) "LOGIC PIO: " fmt
12 #include <linux/logic_pio.h>
14 #include <linux/rculist.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
18 /* The unique hardware address list */
19 static LIST_HEAD(io_range_list
);
20 static DEFINE_MUTEX(io_range_mutex
);
22 /* Consider a kernel general helper for this */
23 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
26 * logic_pio_register_range - register logical PIO range for a host
27 * @new_range: pointer to the IO range to be registered.
29 * Returns 0 on success, the error code in case of failure.
31 * Register a new IO range node in the IO range list.
33 int logic_pio_register_range(struct logic_pio_hwaddr
*new_range
)
35 struct logic_pio_hwaddr
*range
;
36 resource_size_t start
;
38 resource_size_t mmio_end
= 0;
39 resource_size_t iio_sz
= MMIO_UPPER_LIMIT
;
42 if (!new_range
|| !new_range
->fwnode
|| !new_range
->size
)
45 start
= new_range
->hw_start
;
46 end
= new_range
->hw_start
+ new_range
->size
;
48 mutex_lock(&io_range_mutex
);
49 list_for_each_entry(range
, &io_range_list
, list
) {
50 if (range
->fwnode
== new_range
->fwnode
) {
51 /* range already there */
54 if (range
->flags
== LOGIC_PIO_CPU_MMIO
&&
55 new_range
->flags
== LOGIC_PIO_CPU_MMIO
) {
56 /* for MMIO ranges we need to check for overlap */
57 if (start
>= range
->hw_start
+ range
->size
||
58 end
< range
->hw_start
) {
59 mmio_end
= range
->io_start
+ range
->size
;
64 } else if (range
->flags
== LOGIC_PIO_INDIRECT
&&
65 new_range
->flags
== LOGIC_PIO_INDIRECT
) {
66 iio_sz
+= range
->size
;
70 /* range not registered yet, check for available space */
71 if (new_range
->flags
== LOGIC_PIO_CPU_MMIO
) {
72 if (mmio_end
+ new_range
->size
- 1 > MMIO_UPPER_LIMIT
) {
73 /* if it's too big check if 64K space can be reserved */
74 if (mmio_end
+ SZ_64K
- 1 > MMIO_UPPER_LIMIT
) {
78 new_range
->size
= SZ_64K
;
79 pr_warn("Requested IO range too big, new size set to 64K\n");
81 new_range
->io_start
= mmio_end
;
82 } else if (new_range
->flags
== LOGIC_PIO_INDIRECT
) {
83 if (iio_sz
+ new_range
->size
- 1 > IO_SPACE_LIMIT
) {
87 new_range
->io_start
= iio_sz
;
94 list_add_tail_rcu(&new_range
->list
, &io_range_list
);
97 mutex_unlock(&io_range_mutex
);
102 * logic_pio_unregister_range - unregister a logical PIO range for a host
103 * @range: pointer to the IO range which has been already registered.
105 * Unregister a previously-registered IO range node.
107 void logic_pio_unregister_range(struct logic_pio_hwaddr
*range
)
109 mutex_lock(&io_range_mutex
);
110 list_del_rcu(&range
->list
);
111 mutex_unlock(&io_range_mutex
);
116 * find_io_range_by_fwnode - find logical PIO range for given FW node
117 * @fwnode: FW node handle associated with logical PIO range
119 * Returns pointer to node on success, NULL otherwise.
121 * Traverse the io_range_list to find the registered node for @fwnode.
123 struct logic_pio_hwaddr
*find_io_range_by_fwnode(struct fwnode_handle
*fwnode
)
125 struct logic_pio_hwaddr
*range
, *found_range
= NULL
;
128 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
129 if (range
->fwnode
== fwnode
) {
139 /* Return a registered range given an input PIO token */
140 static struct logic_pio_hwaddr
*find_io_range(unsigned long pio
)
142 struct logic_pio_hwaddr
*range
, *found_range
= NULL
;
145 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
146 if (in_range(pio
, range
->io_start
, range
->size
)) {
154 pr_err("PIO entry token 0x%lx invalid\n", pio
);
160 * logic_pio_to_hwaddr - translate logical PIO to HW address
161 * @pio: logical PIO value
163 * Returns HW address if valid, ~0 otherwise.
165 * Translate the input logical PIO to the corresponding hardware address.
166 * The input PIO should be unique in the whole logical PIO space.
168 resource_size_t
logic_pio_to_hwaddr(unsigned long pio
)
170 struct logic_pio_hwaddr
*range
;
172 range
= find_io_range(pio
);
174 return range
->hw_start
+ pio
- range
->io_start
;
176 return (resource_size_t
)~0;
180 * logic_pio_trans_hwaddr - translate HW address to logical PIO
181 * @fwnode: FW node reference for the host
182 * @addr: Host-relative HW address
183 * @size: size to translate
185 * Returns Logical PIO value if successful, ~0UL otherwise
187 unsigned long logic_pio_trans_hwaddr(struct fwnode_handle
*fwnode
,
188 resource_size_t addr
, resource_size_t size
)
190 struct logic_pio_hwaddr
*range
;
192 range
= find_io_range_by_fwnode(fwnode
);
193 if (!range
|| range
->flags
== LOGIC_PIO_CPU_MMIO
) {
194 pr_err("IO range not found or invalid\n");
197 if (range
->size
< size
) {
198 pr_err("resource size %pa cannot fit in IO range size %pa\n",
199 &size
, &range
->size
);
202 return addr
- range
->hw_start
+ range
->io_start
;
205 unsigned long logic_pio_trans_cpuaddr(resource_size_t addr
)
207 struct logic_pio_hwaddr
*range
;
210 list_for_each_entry_rcu(range
, &io_range_list
, list
) {
211 if (range
->flags
!= LOGIC_PIO_CPU_MMIO
)
213 if (in_range(addr
, range
->hw_start
, range
->size
)) {
214 unsigned long cpuaddr
;
216 cpuaddr
= addr
- range
->hw_start
+ range
->io_start
;
224 pr_err("addr %pa not registered in io_range_list\n", &addr
);
229 #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
230 #define BUILD_LOGIC_IO(bw, type) \
231 type logic_in##bw(unsigned long addr) \
233 type ret = (type)~0; \
235 if (addr < MMIO_UPPER_LIMIT) { \
236 ret = read##bw(PCI_IOBASE + addr); \
237 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
238 struct logic_pio_hwaddr *entry = find_io_range(addr); \
240 if (entry && entry->ops) \
241 ret = entry->ops->in(entry->hostdata, \
242 addr, sizeof(type)); \
249 void logic_out##bw(type value, unsigned long addr) \
251 if (addr < MMIO_UPPER_LIMIT) { \
252 write##bw(value, PCI_IOBASE + addr); \
253 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
254 struct logic_pio_hwaddr *entry = find_io_range(addr); \
256 if (entry && entry->ops) \
257 entry->ops->out(entry->hostdata, \
258 addr, value, sizeof(type)); \
264 void logic_ins##bw(unsigned long addr, void *buffer, \
265 unsigned int count) \
267 if (addr < MMIO_UPPER_LIMIT) { \
268 reads##bw(PCI_IOBASE + addr, buffer, count); \
269 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
270 struct logic_pio_hwaddr *entry = find_io_range(addr); \
272 if (entry && entry->ops) \
273 entry->ops->ins(entry->hostdata, \
274 addr, buffer, sizeof(type), count); \
281 void logic_outs##bw(unsigned long addr, const void *buffer, \
282 unsigned int count) \
284 if (addr < MMIO_UPPER_LIMIT) { \
285 writes##bw(PCI_IOBASE + addr, buffer, count); \
286 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
287 struct logic_pio_hwaddr *entry = find_io_range(addr); \
289 if (entry && entry->ops) \
290 entry->ops->outs(entry->hostdata, \
291 addr, buffer, sizeof(type), count); \
297 BUILD_LOGIC_IO(b
, u8
)
298 EXPORT_SYMBOL(logic_inb
);
299 EXPORT_SYMBOL(logic_insb
);
300 EXPORT_SYMBOL(logic_outb
);
301 EXPORT_SYMBOL(logic_outsb
);
303 BUILD_LOGIC_IO(w
, u16
)
304 EXPORT_SYMBOL(logic_inw
);
305 EXPORT_SYMBOL(logic_insw
);
306 EXPORT_SYMBOL(logic_outw
);
307 EXPORT_SYMBOL(logic_outsw
);
309 BUILD_LOGIC_IO(l
, u32
)
310 EXPORT_SYMBOL(logic_inl
);
311 EXPORT_SYMBOL(logic_insl
);
312 EXPORT_SYMBOL(logic_outl
);
313 EXPORT_SYMBOL(logic_outsl
);
315 #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */