2 * i8253.c 8253/PIT functions
5 #include <linux/clockchips.h>
6 #include <linux/init.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/module.h>
10 #include <linux/spinlock.h>
12 #include <asm/delay.h>
13 #include <asm/i8253.h>
17 DEFINE_SPINLOCK(i8253_lock
);
20 * Initialize the PIT timer.
22 * This is also called after resume to bring the PIT into operation again.
24 static void init_pit_timer(enum clock_event_mode mode
,
25 struct clock_event_device
*evt
)
29 spin_lock_irqsave(&i8253_lock
, flags
);
32 case CLOCK_EVT_MODE_PERIODIC
:
33 /* binary, mode 2, LSB/MSB, ch 0 */
34 outb_p(0x34, PIT_MODE
);
35 outb_p(LATCH
& 0xff , PIT_CH0
); /* LSB */
36 outb(LATCH
>> 8 , PIT_CH0
); /* MSB */
39 case CLOCK_EVT_MODE_SHUTDOWN
:
40 case CLOCK_EVT_MODE_UNUSED
:
41 if (evt
->mode
== CLOCK_EVT_MODE_PERIODIC
||
42 evt
->mode
== CLOCK_EVT_MODE_ONESHOT
) {
43 outb_p(0x30, PIT_MODE
);
49 case CLOCK_EVT_MODE_ONESHOT
:
51 outb_p(0x38, PIT_MODE
);
54 case CLOCK_EVT_MODE_RESUME
:
55 /* Nothing to do here */
58 spin_unlock_irqrestore(&i8253_lock
, flags
);
62 * Program the next event in oneshot mode
64 * Delta is given in PIT ticks
66 static int pit_next_event(unsigned long delta
, struct clock_event_device
*evt
)
70 spin_lock_irqsave(&i8253_lock
, flags
);
71 outb_p(delta
& 0xff , PIT_CH0
); /* LSB */
72 outb(delta
>> 8 , PIT_CH0
); /* MSB */
73 spin_unlock_irqrestore(&i8253_lock
, flags
);
79 * On UP the PIT can serve all of the possible timer functions. On SMP systems
80 * it can be solely used for the global tick.
82 * The profiling and update capabilites are switched off once the local apic is
83 * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
84 * !using_apic_timer decisions in do_timer_interrupt_hook()
86 struct clock_event_device pit_clockevent
= {
88 .features
= CLOCK_EVT_FEAT_PERIODIC
| CLOCK_EVT_FEAT_ONESHOT
,
89 .set_mode
= init_pit_timer
,
90 .set_next_event
= pit_next_event
,
94 static irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
96 pit_clockevent
.event_handler(&pit_clockevent
);
101 static struct irqaction irq0
= {
102 .handler
= timer_interrupt
,
103 .flags
= IRQF_DISABLED
| IRQF_NOBALANCING
,
104 .mask
= CPU_MASK_NONE
,
109 * Initialize the conversion factor and the min/max deltas of the clock event
110 * structure and register the clock event source with the framework.
112 void __init
setup_pit_timer(void)
114 struct clock_event_device
*cd
= &pit_clockevent
;
115 unsigned int cpu
= smp_processor_id();
118 * Start pit with the boot cpu mask and make it global after the
119 * IO_APIC has been initialized.
121 cd
->cpumask
= cpumask_of_cpu(cpu
);
122 clockevent_set_clock(cd
, CLOCK_TICK_RATE
);
123 cd
->max_delta_ns
= clockevent_delta2ns(0x7FFF, cd
);
124 cd
->min_delta_ns
= clockevent_delta2ns(0xF, cd
);
125 clockevents_register_device(cd
);
127 irq0
.mask
= cpumask_of_cpu(cpu
);
132 * Since the PIT overflows every tick, its not very useful
133 * to just read by itself. So use jiffies to emulate a free
136 static cycle_t
pit_read(void)
141 static int old_count
;
144 spin_lock_irqsave(&i8253_lock
, flags
);
146 * Although our caller may have the read side of xtime_lock,
147 * this is now a seqlock, and we are cheating in this routine
148 * by having side effects on state that we cannot undo if
149 * there is a collision on the seqlock and our caller has to
150 * retry. (Namely, old_jifs and old_count.) So we must treat
151 * jiffies as volatile despite the lock. We read jiffies
152 * before latching the timer count to guarantee that although
153 * the jiffies value might be older than the count (that is,
154 * the counter may underflow between the last point where
155 * jiffies was incremented and the point where we latch the
156 * count), it cannot be newer.
159 outb_p(0x00, PIT_MODE
); /* latch the count ASAP */
160 count
= inb_p(PIT_CH0
); /* read the latched count */
161 count
|= inb_p(PIT_CH0
) << 8;
163 /* VIA686a test code... reset the latch if count > max + 1 */
165 outb_p(0x34, PIT_MODE
);
166 outb_p(LATCH
& 0xff, PIT_CH0
);
167 outb(LATCH
>> 8, PIT_CH0
);
172 * It's possible for count to appear to go the wrong way for a
175 * 1. The timer counter underflows, but we haven't handled the
176 * resulting interrupt and incremented jiffies yet.
177 * 2. Hardware problem with the timer, not giving us continuous time,
178 * the counter does small "jumps" upwards on some Pentium systems,
179 * (see c't 95/10 page 335 for Neptun bug.)
181 * Previous attempts to handle these cases intelligently were
182 * buggy, so we just do the simple thing now.
184 if (count
> old_count
&& jifs
== old_jifs
) {
190 spin_unlock_irqrestore(&i8253_lock
, flags
);
192 count
= (LATCH
- 1) - count
;
194 return (cycle_t
)(jifs
* LATCH
) + count
;
197 static struct clocksource clocksource_pit
= {
201 .mask
= CLOCKSOURCE_MASK(32),
206 static int __init
init_pit_clocksource(void)
208 if (num_possible_cpus() > 1) /* PIT does not scale! */
211 clocksource_pit
.mult
= clocksource_hz2mult(CLOCK_TICK_RATE
, 20);
212 return clocksource_register(&clocksource_pit
);
214 arch_initcall(init_pit_clocksource
);