1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
17 #include "btrfs_inode.h"
19 #include "check-integrity.h"
21 #include "rcu-string.h"
24 static struct kmem_cache
*extent_state_cache
;
25 static struct kmem_cache
*extent_buffer_cache
;
26 static struct bio_set
*btrfs_bioset
;
28 static inline bool extent_state_in_tree(const struct extent_state
*state
)
30 return !RB_EMPTY_NODE(&state
->rb_node
);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers
);
35 static LIST_HEAD(states
);
37 static DEFINE_SPINLOCK(leak_lock
);
40 void btrfs_leak_debug_add(struct list_head
*new, struct list_head
*head
)
44 spin_lock_irqsave(&leak_lock
, flags
);
46 spin_unlock_irqrestore(&leak_lock
, flags
);
50 void btrfs_leak_debug_del(struct list_head
*entry
)
54 spin_lock_irqsave(&leak_lock
, flags
);
56 spin_unlock_irqrestore(&leak_lock
, flags
);
60 void btrfs_leak_debug_check(void)
62 struct extent_state
*state
;
63 struct extent_buffer
*eb
;
65 while (!list_empty(&states
)) {
66 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state
->start
, state
->end
, state
->state
,
69 extent_state_in_tree(state
),
70 atomic_read(&state
->refs
));
71 list_del(&state
->leak_list
);
72 kmem_cache_free(extent_state_cache
, state
);
75 while (!list_empty(&buffers
)) {
76 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
77 printk(KERN_ERR
"BTRFS: buffer leak start %llu len %lu "
79 eb
->start
, eb
->len
, atomic_read(&eb
->refs
));
80 list_del(&eb
->leak_list
);
81 kmem_cache_free(extent_buffer_cache
, eb
);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller
,
88 struct extent_io_tree
*tree
, u64 start
, u64 end
)
96 inode
= tree
->mapping
->host
;
97 isize
= i_size_read(inode
);
98 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
99 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller
, btrfs_ino(inode
), isize
, start
, end
);
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
111 #define BUFFER_LRU_MAX 64
116 struct rb_node rb_node
;
119 struct extent_page_data
{
121 struct extent_io_tree
*tree
;
122 get_extent_t
*get_extent
;
123 unsigned long bio_flags
;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked
:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io
:1;
134 static void add_extent_changeset(struct extent_state
*state
, unsigned bits
,
135 struct extent_changeset
*changeset
,
142 if (set
&& (state
->state
& bits
) == bits
)
144 if (!set
&& (state
->state
& bits
) == 0)
146 changeset
->bytes_changed
+= state
->end
- state
->start
+ 1;
147 ret
= ulist_add(changeset
->range_changed
, state
->start
, state
->end
,
153 static noinline
void flush_write_bio(void *data
);
154 static inline struct btrfs_fs_info
*
155 tree_fs_info(struct extent_io_tree
*tree
)
159 return btrfs_sb(tree
->mapping
->host
->i_sb
);
162 int __init
extent_io_init(void)
164 extent_state_cache
= kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state
), 0,
166 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
167 if (!extent_state_cache
)
170 extent_buffer_cache
= kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer
), 0,
172 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
173 if (!extent_buffer_cache
)
174 goto free_state_cache
;
176 btrfs_bioset
= bioset_create(BIO_POOL_SIZE
,
177 offsetof(struct btrfs_io_bio
, bio
));
179 goto free_buffer_cache
;
181 if (bioset_integrity_create(btrfs_bioset
, BIO_POOL_SIZE
))
187 bioset_free(btrfs_bioset
);
191 kmem_cache_destroy(extent_buffer_cache
);
192 extent_buffer_cache
= NULL
;
195 kmem_cache_destroy(extent_state_cache
);
196 extent_state_cache
= NULL
;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
209 if (extent_state_cache
)
210 kmem_cache_destroy(extent_state_cache
);
211 if (extent_buffer_cache
)
212 kmem_cache_destroy(extent_buffer_cache
);
214 bioset_free(btrfs_bioset
);
217 void extent_io_tree_init(struct extent_io_tree
*tree
,
218 struct address_space
*mapping
)
220 tree
->state
= RB_ROOT
;
222 tree
->dirty_bytes
= 0;
223 spin_lock_init(&tree
->lock
);
224 tree
->mapping
= mapping
;
227 static struct extent_state
*alloc_extent_state(gfp_t mask
)
229 struct extent_state
*state
;
231 state
= kmem_cache_alloc(extent_state_cache
, mask
);
236 RB_CLEAR_NODE(&state
->rb_node
);
237 btrfs_leak_debug_add(&state
->leak_list
, &states
);
238 atomic_set(&state
->refs
, 1);
239 init_waitqueue_head(&state
->wq
);
240 trace_alloc_extent_state(state
, mask
, _RET_IP_
);
244 void free_extent_state(struct extent_state
*state
)
248 if (atomic_dec_and_test(&state
->refs
)) {
249 WARN_ON(extent_state_in_tree(state
));
250 btrfs_leak_debug_del(&state
->leak_list
);
251 trace_free_extent_state(state
, _RET_IP_
);
252 kmem_cache_free(extent_state_cache
, state
);
256 static struct rb_node
*tree_insert(struct rb_root
*root
,
257 struct rb_node
*search_start
,
259 struct rb_node
*node
,
260 struct rb_node
***p_in
,
261 struct rb_node
**parent_in
)
264 struct rb_node
*parent
= NULL
;
265 struct tree_entry
*entry
;
267 if (p_in
&& parent_in
) {
273 p
= search_start
? &search_start
: &root
->rb_node
;
276 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
278 if (offset
< entry
->start
)
280 else if (offset
> entry
->end
)
287 rb_link_node(node
, parent
, p
);
288 rb_insert_color(node
, root
);
292 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
293 struct rb_node
**prev_ret
,
294 struct rb_node
**next_ret
,
295 struct rb_node
***p_ret
,
296 struct rb_node
**parent_ret
)
298 struct rb_root
*root
= &tree
->state
;
299 struct rb_node
**n
= &root
->rb_node
;
300 struct rb_node
*prev
= NULL
;
301 struct rb_node
*orig_prev
= NULL
;
302 struct tree_entry
*entry
;
303 struct tree_entry
*prev_entry
= NULL
;
307 entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
310 if (offset
< entry
->start
)
312 else if (offset
> entry
->end
)
325 while (prev
&& offset
> prev_entry
->end
) {
326 prev
= rb_next(prev
);
327 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
334 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
335 while (prev
&& offset
< prev_entry
->start
) {
336 prev
= rb_prev(prev
);
337 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
344 static inline struct rb_node
*
345 tree_search_for_insert(struct extent_io_tree
*tree
,
347 struct rb_node
***p_ret
,
348 struct rb_node
**parent_ret
)
350 struct rb_node
*prev
= NULL
;
353 ret
= __etree_search(tree
, offset
, &prev
, NULL
, p_ret
, parent_ret
);
359 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
362 return tree_search_for_insert(tree
, offset
, NULL
, NULL
);
365 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
366 struct extent_state
*other
)
368 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
369 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
380 * This should be called with the tree lock held.
382 static void merge_state(struct extent_io_tree
*tree
,
383 struct extent_state
*state
)
385 struct extent_state
*other
;
386 struct rb_node
*other_node
;
388 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
391 other_node
= rb_prev(&state
->rb_node
);
393 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
394 if (other
->end
== state
->start
- 1 &&
395 other
->state
== state
->state
) {
396 merge_cb(tree
, state
, other
);
397 state
->start
= other
->start
;
398 rb_erase(&other
->rb_node
, &tree
->state
);
399 RB_CLEAR_NODE(&other
->rb_node
);
400 free_extent_state(other
);
403 other_node
= rb_next(&state
->rb_node
);
405 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
406 if (other
->start
== state
->end
+ 1 &&
407 other
->state
== state
->state
) {
408 merge_cb(tree
, state
, other
);
409 state
->end
= other
->end
;
410 rb_erase(&other
->rb_node
, &tree
->state
);
411 RB_CLEAR_NODE(&other
->rb_node
);
412 free_extent_state(other
);
417 static void set_state_cb(struct extent_io_tree
*tree
,
418 struct extent_state
*state
, unsigned *bits
)
420 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
421 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
424 static void clear_state_cb(struct extent_io_tree
*tree
,
425 struct extent_state
*state
, unsigned *bits
)
427 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
428 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
431 static void set_state_bits(struct extent_io_tree
*tree
,
432 struct extent_state
*state
, unsigned *bits
,
433 struct extent_changeset
*changeset
);
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
445 static int insert_state(struct extent_io_tree
*tree
,
446 struct extent_state
*state
, u64 start
, u64 end
,
448 struct rb_node
**parent
,
449 unsigned *bits
, struct extent_changeset
*changeset
)
451 struct rb_node
*node
;
454 WARN(1, KERN_ERR
"BTRFS: end < start %llu %llu\n",
456 state
->start
= start
;
459 set_state_bits(tree
, state
, bits
, changeset
);
461 node
= tree_insert(&tree
->state
, NULL
, end
, &state
->rb_node
, p
, parent
);
463 struct extent_state
*found
;
464 found
= rb_entry(node
, struct extent_state
, rb_node
);
465 printk(KERN_ERR
"BTRFS: found node %llu %llu on insert of "
467 found
->start
, found
->end
, start
, end
);
470 merge_state(tree
, state
);
474 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
477 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
478 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
492 * The tree locks are not taken by this function. They need to be held
495 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
496 struct extent_state
*prealloc
, u64 split
)
498 struct rb_node
*node
;
500 split_cb(tree
, orig
, split
);
502 prealloc
->start
= orig
->start
;
503 prealloc
->end
= split
- 1;
504 prealloc
->state
= orig
->state
;
507 node
= tree_insert(&tree
->state
, &orig
->rb_node
, prealloc
->end
,
508 &prealloc
->rb_node
, NULL
, NULL
);
510 free_extent_state(prealloc
);
516 static struct extent_state
*next_state(struct extent_state
*state
)
518 struct rb_node
*next
= rb_next(&state
->rb_node
);
520 return rb_entry(next
, struct extent_state
, rb_node
);
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
532 static struct extent_state
*clear_state_bit(struct extent_io_tree
*tree
,
533 struct extent_state
*state
,
534 unsigned *bits
, int wake
,
535 struct extent_changeset
*changeset
)
537 struct extent_state
*next
;
538 unsigned bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
540 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
541 u64 range
= state
->end
- state
->start
+ 1;
542 WARN_ON(range
> tree
->dirty_bytes
);
543 tree
->dirty_bytes
-= range
;
545 clear_state_cb(tree
, state
, bits
);
546 add_extent_changeset(state
, bits_to_clear
, changeset
, 0);
547 state
->state
&= ~bits_to_clear
;
550 if (state
->state
== 0) {
551 next
= next_state(state
);
552 if (extent_state_in_tree(state
)) {
553 rb_erase(&state
->rb_node
, &tree
->state
);
554 RB_CLEAR_NODE(&state
->rb_node
);
555 free_extent_state(state
);
560 merge_state(tree
, state
);
561 next
= next_state(state
);
566 static struct extent_state
*
567 alloc_extent_state_atomic(struct extent_state
*prealloc
)
570 prealloc
= alloc_extent_state(GFP_ATOMIC
);
575 static void extent_io_tree_panic(struct extent_io_tree
*tree
, int err
)
577 btrfs_panic(tree_fs_info(tree
), err
, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
590 * the range [start, end] is inclusive.
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
594 static int __clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
595 unsigned bits
, int wake
, int delete,
596 struct extent_state
**cached_state
,
597 gfp_t mask
, struct extent_changeset
*changeset
)
599 struct extent_state
*state
;
600 struct extent_state
*cached
;
601 struct extent_state
*prealloc
= NULL
;
602 struct rb_node
*node
;
607 btrfs_debug_check_extent_io_range(tree
, start
, end
);
609 if (bits
& EXTENT_DELALLOC
)
610 bits
|= EXTENT_NORESERVE
;
613 bits
|= ~EXTENT_CTLBITS
;
614 bits
|= EXTENT_FIRST_DELALLOC
;
616 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
619 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
627 prealloc
= alloc_extent_state(mask
);
630 spin_lock(&tree
->lock
);
632 cached
= *cached_state
;
635 *cached_state
= NULL
;
639 if (cached
&& extent_state_in_tree(cached
) &&
640 cached
->start
<= start
&& cached
->end
> start
) {
642 atomic_dec(&cached
->refs
);
647 free_extent_state(cached
);
650 * this search will find the extents that end after
653 node
= tree_search(tree
, start
);
656 state
= rb_entry(node
, struct extent_state
, rb_node
);
658 if (state
->start
> end
)
660 WARN_ON(state
->end
< start
);
661 last_end
= state
->end
;
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state
->state
& bits
)) {
665 state
= next_state(state
);
670 * | ---- desired range ---- |
672 * | ------------- state -------------- |
674 * We need to split the extent we found, and may flip
675 * bits on second half.
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
685 if (state
->start
< start
) {
686 prealloc
= alloc_extent_state_atomic(prealloc
);
688 err
= split_state(tree
, state
, prealloc
, start
);
690 extent_io_tree_panic(tree
, err
);
695 if (state
->end
<= end
) {
696 state
= clear_state_bit(tree
, state
, &bits
, wake
,
703 * | ---- desired range ---- |
705 * We need to split the extent, and clear the bit
708 if (state
->start
<= end
&& state
->end
> end
) {
709 prealloc
= alloc_extent_state_atomic(prealloc
);
711 err
= split_state(tree
, state
, prealloc
, end
+ 1);
713 extent_io_tree_panic(tree
, err
);
718 clear_state_bit(tree
, prealloc
, &bits
, wake
, changeset
);
724 state
= clear_state_bit(tree
, state
, &bits
, wake
, changeset
);
726 if (last_end
== (u64
)-1)
728 start
= last_end
+ 1;
729 if (start
<= end
&& state
&& !need_resched())
734 spin_unlock(&tree
->lock
);
736 free_extent_state(prealloc
);
743 spin_unlock(&tree
->lock
);
744 if (gfpflags_allow_blocking(mask
))
749 static void wait_on_state(struct extent_io_tree
*tree
,
750 struct extent_state
*state
)
751 __releases(tree
->lock
)
752 __acquires(tree
->lock
)
755 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
756 spin_unlock(&tree
->lock
);
758 spin_lock(&tree
->lock
);
759 finish_wait(&state
->wq
, &wait
);
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
767 static void wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
770 struct extent_state
*state
;
771 struct rb_node
*node
;
773 btrfs_debug_check_extent_io_range(tree
, start
, end
);
775 spin_lock(&tree
->lock
);
779 * this search will find all the extents that end after
782 node
= tree_search(tree
, start
);
787 state
= rb_entry(node
, struct extent_state
, rb_node
);
789 if (state
->start
> end
)
792 if (state
->state
& bits
) {
793 start
= state
->start
;
794 atomic_inc(&state
->refs
);
795 wait_on_state(tree
, state
);
796 free_extent_state(state
);
799 start
= state
->end
+ 1;
804 if (!cond_resched_lock(&tree
->lock
)) {
805 node
= rb_next(node
);
810 spin_unlock(&tree
->lock
);
813 static void set_state_bits(struct extent_io_tree
*tree
,
814 struct extent_state
*state
,
815 unsigned *bits
, struct extent_changeset
*changeset
)
817 unsigned bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
819 set_state_cb(tree
, state
, bits
);
820 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
821 u64 range
= state
->end
- state
->start
+ 1;
822 tree
->dirty_bytes
+= range
;
824 add_extent_changeset(state
, bits_to_set
, changeset
, 1);
825 state
->state
|= bits_to_set
;
828 static void cache_state_if_flags(struct extent_state
*state
,
829 struct extent_state
**cached_ptr
,
832 if (cached_ptr
&& !(*cached_ptr
)) {
833 if (!flags
|| (state
->state
& flags
)) {
835 atomic_inc(&state
->refs
);
840 static void cache_state(struct extent_state
*state
,
841 struct extent_state
**cached_ptr
)
843 return cache_state_if_flags(state
, cached_ptr
,
844 EXTENT_IOBITS
| EXTENT_BOUNDARY
);
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
855 * [start, end] is inclusive This takes the tree lock.
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
860 unsigned bits
, unsigned exclusive_bits
,
861 u64
*failed_start
, struct extent_state
**cached_state
,
862 gfp_t mask
, struct extent_changeset
*changeset
)
864 struct extent_state
*state
;
865 struct extent_state
*prealloc
= NULL
;
866 struct rb_node
*node
;
868 struct rb_node
*parent
;
873 btrfs_debug_check_extent_io_range(tree
, start
, end
);
875 bits
|= EXTENT_FIRST_DELALLOC
;
877 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
878 prealloc
= alloc_extent_state(mask
);
882 spin_lock(&tree
->lock
);
883 if (cached_state
&& *cached_state
) {
884 state
= *cached_state
;
885 if (state
->start
<= start
&& state
->end
> start
&&
886 extent_state_in_tree(state
)) {
887 node
= &state
->rb_node
;
892 * this search will find all the extents that end after
895 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
897 prealloc
= alloc_extent_state_atomic(prealloc
);
899 err
= insert_state(tree
, prealloc
, start
, end
,
900 &p
, &parent
, &bits
, changeset
);
902 extent_io_tree_panic(tree
, err
);
904 cache_state(prealloc
, cached_state
);
908 state
= rb_entry(node
, struct extent_state
, rb_node
);
910 last_start
= state
->start
;
911 last_end
= state
->end
;
914 * | ---- desired range ---- |
917 * Just lock what we found and keep going
919 if (state
->start
== start
&& state
->end
<= end
) {
920 if (state
->state
& exclusive_bits
) {
921 *failed_start
= state
->start
;
926 set_state_bits(tree
, state
, &bits
, changeset
);
927 cache_state(state
, cached_state
);
928 merge_state(tree
, state
);
929 if (last_end
== (u64
)-1)
931 start
= last_end
+ 1;
932 state
= next_state(state
);
933 if (start
< end
&& state
&& state
->start
== start
&&
940 * | ---- desired range ---- |
943 * | ------------- state -------------- |
945 * We need to split the extent we found, and may flip bits on
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
952 * If the extent we found is inside our range, we set the
955 if (state
->start
< start
) {
956 if (state
->state
& exclusive_bits
) {
957 *failed_start
= start
;
962 prealloc
= alloc_extent_state_atomic(prealloc
);
964 err
= split_state(tree
, state
, prealloc
, start
);
966 extent_io_tree_panic(tree
, err
);
971 if (state
->end
<= end
) {
972 set_state_bits(tree
, state
, &bits
, changeset
);
973 cache_state(state
, cached_state
);
974 merge_state(tree
, state
);
975 if (last_end
== (u64
)-1)
977 start
= last_end
+ 1;
978 state
= next_state(state
);
979 if (start
< end
&& state
&& state
->start
== start
&&
986 * | ---- desired range ---- |
987 * | state | or | state |
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
992 if (state
->start
> start
) {
994 if (end
< last_start
)
997 this_end
= last_start
- 1;
999 prealloc
= alloc_extent_state_atomic(prealloc
);
1003 * Avoid to free 'prealloc' if it can be merged with
1006 err
= insert_state(tree
, prealloc
, start
, this_end
,
1007 NULL
, NULL
, &bits
, changeset
);
1009 extent_io_tree_panic(tree
, err
);
1011 cache_state(prealloc
, cached_state
);
1013 start
= this_end
+ 1;
1017 * | ---- desired range ---- |
1019 * We need to split the extent, and set the bit
1022 if (state
->start
<= end
&& state
->end
> end
) {
1023 if (state
->state
& exclusive_bits
) {
1024 *failed_start
= start
;
1029 prealloc
= alloc_extent_state_atomic(prealloc
);
1031 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1033 extent_io_tree_panic(tree
, err
);
1035 set_state_bits(tree
, prealloc
, &bits
, changeset
);
1036 cache_state(prealloc
, cached_state
);
1037 merge_state(tree
, prealloc
);
1045 spin_unlock(&tree
->lock
);
1047 free_extent_state(prealloc
);
1054 spin_unlock(&tree
->lock
);
1055 if (gfpflags_allow_blocking(mask
))
1060 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1061 unsigned bits
, u64
* failed_start
,
1062 struct extent_state
**cached_state
, gfp_t mask
)
1064 return __set_extent_bit(tree
, start
, end
, bits
, 0, failed_start
,
1065 cached_state
, mask
, NULL
);
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1086 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1087 unsigned bits
, unsigned clear_bits
,
1088 struct extent_state
**cached_state
, gfp_t mask
)
1090 struct extent_state
*state
;
1091 struct extent_state
*prealloc
= NULL
;
1092 struct rb_node
*node
;
1094 struct rb_node
*parent
;
1098 bool first_iteration
= true;
1100 btrfs_debug_check_extent_io_range(tree
, start
, end
);
1103 if (!prealloc
&& gfpflags_allow_blocking(mask
)) {
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1111 prealloc
= alloc_extent_state(mask
);
1112 if (!prealloc
&& !first_iteration
)
1116 spin_lock(&tree
->lock
);
1117 if (cached_state
&& *cached_state
) {
1118 state
= *cached_state
;
1119 if (state
->start
<= start
&& state
->end
> start
&&
1120 extent_state_in_tree(state
)) {
1121 node
= &state
->rb_node
;
1127 * this search will find all the extents that end after
1130 node
= tree_search_for_insert(tree
, start
, &p
, &parent
);
1132 prealloc
= alloc_extent_state_atomic(prealloc
);
1137 err
= insert_state(tree
, prealloc
, start
, end
,
1138 &p
, &parent
, &bits
, NULL
);
1140 extent_io_tree_panic(tree
, err
);
1141 cache_state(prealloc
, cached_state
);
1145 state
= rb_entry(node
, struct extent_state
, rb_node
);
1147 last_start
= state
->start
;
1148 last_end
= state
->end
;
1151 * | ---- desired range ---- |
1154 * Just lock what we found and keep going
1156 if (state
->start
== start
&& state
->end
<= end
) {
1157 set_state_bits(tree
, state
, &bits
, NULL
);
1158 cache_state(state
, cached_state
);
1159 state
= clear_state_bit(tree
, state
, &clear_bits
, 0, NULL
);
1160 if (last_end
== (u64
)-1)
1162 start
= last_end
+ 1;
1163 if (start
< end
&& state
&& state
->start
== start
&&
1170 * | ---- desired range ---- |
1173 * | ------------- state -------------- |
1175 * We need to split the extent we found, and may flip bits on
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1185 if (state
->start
< start
) {
1186 prealloc
= alloc_extent_state_atomic(prealloc
);
1191 err
= split_state(tree
, state
, prealloc
, start
);
1193 extent_io_tree_panic(tree
, err
);
1197 if (state
->end
<= end
) {
1198 set_state_bits(tree
, state
, &bits
, NULL
);
1199 cache_state(state
, cached_state
);
1200 state
= clear_state_bit(tree
, state
, &clear_bits
, 0,
1202 if (last_end
== (u64
)-1)
1204 start
= last_end
+ 1;
1205 if (start
< end
&& state
&& state
->start
== start
&&
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1218 if (state
->start
> start
) {
1220 if (end
< last_start
)
1223 this_end
= last_start
- 1;
1225 prealloc
= alloc_extent_state_atomic(prealloc
);
1232 * Avoid to free 'prealloc' if it can be merged with
1235 err
= insert_state(tree
, prealloc
, start
, this_end
,
1236 NULL
, NULL
, &bits
, NULL
);
1238 extent_io_tree_panic(tree
, err
);
1239 cache_state(prealloc
, cached_state
);
1241 start
= this_end
+ 1;
1245 * | ---- desired range ---- |
1247 * We need to split the extent, and set the bit
1250 if (state
->start
<= end
&& state
->end
> end
) {
1251 prealloc
= alloc_extent_state_atomic(prealloc
);
1257 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1259 extent_io_tree_panic(tree
, err
);
1261 set_state_bits(tree
, prealloc
, &bits
, NULL
);
1262 cache_state(prealloc
, cached_state
);
1263 clear_state_bit(tree
, prealloc
, &clear_bits
, 0, NULL
);
1271 spin_unlock(&tree
->lock
);
1273 free_extent_state(prealloc
);
1280 spin_unlock(&tree
->lock
);
1281 if (gfpflags_allow_blocking(mask
))
1283 first_iteration
= false;
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1291 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, NULL
,
1295 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1296 unsigned bits
, gfp_t mask
)
1298 return set_extent_bit(tree
, start
, end
, bits
, NULL
,
1302 int set_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1303 unsigned bits
, gfp_t mask
,
1304 struct extent_changeset
*changeset
)
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1312 BUG_ON(bits
& EXTENT_LOCKED
);
1314 return __set_extent_bit(tree
, start
, end
, bits
, 0, NULL
, NULL
, mask
,
1318 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1319 unsigned bits
, int wake
, int delete,
1320 struct extent_state
**cached
, gfp_t mask
)
1322 return __clear_extent_bit(tree
, start
, end
, bits
, wake
, delete,
1323 cached
, mask
, NULL
);
1326 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1327 unsigned bits
, gfp_t mask
)
1331 if (bits
& EXTENT_LOCKED
)
1334 return clear_extent_bit(tree
, start
, end
, bits
, wake
, 0, NULL
, mask
);
1337 int clear_record_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1338 unsigned bits
, gfp_t mask
,
1339 struct extent_changeset
*changeset
)
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1345 BUG_ON(bits
& EXTENT_LOCKED
);
1347 return __clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
,
1351 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1352 struct extent_state
**cached_state
, gfp_t mask
)
1354 return set_extent_bit(tree
, start
, end
,
1355 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1356 NULL
, cached_state
, mask
);
1359 int set_extent_defrag(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1360 struct extent_state
**cached_state
, gfp_t mask
)
1362 return set_extent_bit(tree
, start
, end
,
1363 EXTENT_DELALLOC
| EXTENT_UPTODATE
| EXTENT_DEFRAG
,
1364 NULL
, cached_state
, mask
);
1367 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1370 return clear_extent_bit(tree
, start
, end
,
1371 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1372 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1375 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1378 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, NULL
,
1382 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1383 struct extent_state
**cached_state
, gfp_t mask
)
1385 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, NULL
,
1386 cached_state
, mask
);
1389 int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1390 struct extent_state
**cached_state
, gfp_t mask
)
1392 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1393 cached_state
, mask
);
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1400 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1401 unsigned bits
, struct extent_state
**cached_state
)
1407 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1408 EXTENT_LOCKED
, &failed_start
,
1409 cached_state
, GFP_NOFS
, NULL
);
1410 if (err
== -EEXIST
) {
1411 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1412 start
= failed_start
;
1415 WARN_ON(start
> end
);
1420 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1422 return lock_extent_bits(tree
, start
, end
, 0, NULL
);
1425 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1430 err
= __set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1431 &failed_start
, NULL
, GFP_NOFS
, NULL
);
1432 if (err
== -EEXIST
) {
1433 if (failed_start
> start
)
1434 clear_extent_bit(tree
, start
, failed_start
- 1,
1435 EXTENT_LOCKED
, 1, 0, NULL
, GFP_NOFS
);
1441 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1442 struct extent_state
**cached
, gfp_t mask
)
1444 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1448 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1450 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1454 int extent_range_clear_dirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1456 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1457 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1460 while (index
<= end_index
) {
1461 page
= find_get_page(inode
->i_mapping
, index
);
1462 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page
);
1464 page_cache_release(page
);
1470 int extent_range_redirty_for_io(struct inode
*inode
, u64 start
, u64 end
)
1472 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1473 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1476 while (index
<= end_index
) {
1477 page
= find_get_page(inode
->i_mapping
, index
);
1478 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1479 __set_page_dirty_nobuffers(page
);
1480 account_page_redirty(page
);
1481 page_cache_release(page
);
1488 * helper function to set both pages and extents in the tree writeback
1490 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1492 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1493 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1496 while (index
<= end_index
) {
1497 page
= find_get_page(tree
->mapping
, index
);
1498 BUG_ON(!page
); /* Pages should be in the extent_io_tree */
1499 set_page_writeback(page
);
1500 page_cache_release(page
);
1506 /* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1510 static struct extent_state
*
1511 find_first_extent_bit_state(struct extent_io_tree
*tree
,
1512 u64 start
, unsigned bits
)
1514 struct rb_node
*node
;
1515 struct extent_state
*state
;
1518 * this search will find all the extents that end after
1521 node
= tree_search(tree
, start
);
1526 state
= rb_entry(node
, struct extent_state
, rb_node
);
1527 if (state
->end
>= start
&& (state
->state
& bits
))
1530 node
= rb_next(node
);
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1543 * If nothing was found, 1 is returned. If found something, return 0.
1545 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1546 u64
*start_ret
, u64
*end_ret
, unsigned bits
,
1547 struct extent_state
**cached_state
)
1549 struct extent_state
*state
;
1553 spin_lock(&tree
->lock
);
1554 if (cached_state
&& *cached_state
) {
1555 state
= *cached_state
;
1556 if (state
->end
== start
- 1 && extent_state_in_tree(state
)) {
1557 n
= rb_next(&state
->rb_node
);
1559 state
= rb_entry(n
, struct extent_state
,
1561 if (state
->state
& bits
)
1565 free_extent_state(*cached_state
);
1566 *cached_state
= NULL
;
1569 free_extent_state(*cached_state
);
1570 *cached_state
= NULL
;
1573 state
= find_first_extent_bit_state(tree
, start
, bits
);
1576 cache_state_if_flags(state
, cached_state
, 0);
1577 *start_ret
= state
->start
;
1578 *end_ret
= state
->end
;
1582 spin_unlock(&tree
->lock
);
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1592 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1593 u64
*start
, u64
*end
, u64 max_bytes
,
1594 struct extent_state
**cached_state
)
1596 struct rb_node
*node
;
1597 struct extent_state
*state
;
1598 u64 cur_start
= *start
;
1600 u64 total_bytes
= 0;
1602 spin_lock(&tree
->lock
);
1605 * this search will find all the extents that end after
1608 node
= tree_search(tree
, cur_start
);
1616 state
= rb_entry(node
, struct extent_state
, rb_node
);
1617 if (found
&& (state
->start
!= cur_start
||
1618 (state
->state
& EXTENT_BOUNDARY
))) {
1621 if (!(state
->state
& EXTENT_DELALLOC
)) {
1627 *start
= state
->start
;
1628 *cached_state
= state
;
1629 atomic_inc(&state
->refs
);
1633 cur_start
= state
->end
+ 1;
1634 node
= rb_next(node
);
1635 total_bytes
+= state
->end
- state
->start
+ 1;
1636 if (total_bytes
>= max_bytes
)
1642 spin_unlock(&tree
->lock
);
1646 static noinline
void __unlock_for_delalloc(struct inode
*inode
,
1647 struct page
*locked_page
,
1651 struct page
*pages
[16];
1652 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1653 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1654 unsigned long nr_pages
= end_index
- index
+ 1;
1657 if (index
== locked_page
->index
&& end_index
== index
)
1660 while (nr_pages
> 0) {
1661 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1662 min_t(unsigned long, nr_pages
,
1663 ARRAY_SIZE(pages
)), pages
);
1664 for (i
= 0; i
< ret
; i
++) {
1665 if (pages
[i
] != locked_page
)
1666 unlock_page(pages
[i
]);
1667 page_cache_release(pages
[i
]);
1675 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1676 struct page
*locked_page
,
1680 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1681 unsigned long start_index
= index
;
1682 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1683 unsigned long pages_locked
= 0;
1684 struct page
*pages
[16];
1685 unsigned long nrpages
;
1689 /* the caller is responsible for locking the start index */
1690 if (index
== locked_page
->index
&& index
== end_index
)
1693 /* skip the page at the start index */
1694 nrpages
= end_index
- index
+ 1;
1695 while (nrpages
> 0) {
1696 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1697 min_t(unsigned long,
1698 nrpages
, ARRAY_SIZE(pages
)), pages
);
1703 /* now we have an array of pages, lock them all */
1704 for (i
= 0; i
< ret
; i
++) {
1706 * the caller is taking responsibility for
1709 if (pages
[i
] != locked_page
) {
1710 lock_page(pages
[i
]);
1711 if (!PageDirty(pages
[i
]) ||
1712 pages
[i
]->mapping
!= inode
->i_mapping
) {
1714 unlock_page(pages
[i
]);
1715 page_cache_release(pages
[i
]);
1719 page_cache_release(pages
[i
]);
1728 if (ret
&& pages_locked
) {
1729 __unlock_for_delalloc(inode
, locked_page
,
1731 ((u64
)(start_index
+ pages_locked
- 1)) <<
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1743 STATIC u64
find_lock_delalloc_range(struct inode
*inode
,
1744 struct extent_io_tree
*tree
,
1745 struct page
*locked_page
, u64
*start
,
1746 u64
*end
, u64 max_bytes
)
1751 struct extent_state
*cached_state
= NULL
;
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start
= *start
;
1759 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1760 max_bytes
, &cached_state
);
1761 if (!found
|| delalloc_end
<= *start
) {
1762 *start
= delalloc_start
;
1763 *end
= delalloc_end
;
1764 free_extent_state(cached_state
);
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1773 if (delalloc_start
< *start
)
1774 delalloc_start
= *start
;
1777 * make sure to limit the number of pages we try to lock down
1779 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
)
1780 delalloc_end
= delalloc_start
+ max_bytes
- 1;
1782 /* step two, lock all the pages after the page that has start */
1783 ret
= lock_delalloc_pages(inode
, locked_page
,
1784 delalloc_start
, delalloc_end
);
1785 if (ret
== -EAGAIN
) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1789 free_extent_state(cached_state
);
1790 cached_state
= NULL
;
1792 max_bytes
= PAGE_CACHE_SIZE
;
1800 BUG_ON(ret
); /* Only valid values are 0 and -EAGAIN */
1802 /* step three, lock the state bits for the whole range */
1803 lock_extent_bits(tree
, delalloc_start
, delalloc_end
, 0, &cached_state
);
1805 /* then test to make sure it is all still delalloc */
1806 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1807 EXTENT_DELALLOC
, 1, cached_state
);
1809 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1810 &cached_state
, GFP_NOFS
);
1811 __unlock_for_delalloc(inode
, locked_page
,
1812 delalloc_start
, delalloc_end
);
1816 free_extent_state(cached_state
);
1817 *start
= delalloc_start
;
1818 *end
= delalloc_end
;
1823 int extent_clear_unlock_delalloc(struct inode
*inode
, u64 start
, u64 end
,
1824 struct page
*locked_page
,
1825 unsigned clear_bits
,
1826 unsigned long page_ops
)
1828 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1830 struct page
*pages
[16];
1831 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1832 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1833 unsigned long nr_pages
= end_index
- index
+ 1;
1836 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1840 if ((page_ops
& PAGE_SET_ERROR
) && nr_pages
> 0)
1841 mapping_set_error(inode
->i_mapping
, -EIO
);
1843 while (nr_pages
> 0) {
1844 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1845 min_t(unsigned long,
1846 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1847 for (i
= 0; i
< ret
; i
++) {
1849 if (page_ops
& PAGE_SET_PRIVATE2
)
1850 SetPagePrivate2(pages
[i
]);
1852 if (pages
[i
] == locked_page
) {
1853 page_cache_release(pages
[i
]);
1856 if (page_ops
& PAGE_CLEAR_DIRTY
)
1857 clear_page_dirty_for_io(pages
[i
]);
1858 if (page_ops
& PAGE_SET_WRITEBACK
)
1859 set_page_writeback(pages
[i
]);
1860 if (page_ops
& PAGE_SET_ERROR
)
1861 SetPageError(pages
[i
]);
1862 if (page_ops
& PAGE_END_WRITEBACK
)
1863 end_page_writeback(pages
[i
]);
1864 if (page_ops
& PAGE_UNLOCK
)
1865 unlock_page(pages
[i
]);
1866 page_cache_release(pages
[i
]);
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1880 u64
count_range_bits(struct extent_io_tree
*tree
,
1881 u64
*start
, u64 search_end
, u64 max_bytes
,
1882 unsigned bits
, int contig
)
1884 struct rb_node
*node
;
1885 struct extent_state
*state
;
1886 u64 cur_start
= *start
;
1887 u64 total_bytes
= 0;
1891 if (WARN_ON(search_end
<= cur_start
))
1894 spin_lock(&tree
->lock
);
1895 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1896 total_bytes
= tree
->dirty_bytes
;
1900 * this search will find all the extents that end after
1903 node
= tree_search(tree
, cur_start
);
1908 state
= rb_entry(node
, struct extent_state
, rb_node
);
1909 if (state
->start
> search_end
)
1911 if (contig
&& found
&& state
->start
> last
+ 1)
1913 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1914 total_bytes
+= min(search_end
, state
->end
) + 1 -
1915 max(cur_start
, state
->start
);
1916 if (total_bytes
>= max_bytes
)
1919 *start
= max(cur_start
, state
->start
);
1923 } else if (contig
&& found
) {
1926 node
= rb_next(node
);
1931 spin_unlock(&tree
->lock
);
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1939 static int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1941 struct rb_node
*node
;
1942 struct extent_state
*state
;
1945 spin_lock(&tree
->lock
);
1947 * this search will find all the extents that end after
1950 node
= tree_search(tree
, start
);
1955 state
= rb_entry(node
, struct extent_state
, rb_node
);
1956 if (state
->start
!= start
) {
1960 state
->private = private;
1962 spin_unlock(&tree
->lock
);
1966 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1968 struct rb_node
*node
;
1969 struct extent_state
*state
;
1972 spin_lock(&tree
->lock
);
1974 * this search will find all the extents that end after
1977 node
= tree_search(tree
, start
);
1982 state
= rb_entry(node
, struct extent_state
, rb_node
);
1983 if (state
->start
!= start
) {
1987 *private = state
->private;
1989 spin_unlock(&tree
->lock
);
1994 * searches a range in the state tree for a given mask.
1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1999 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
2000 unsigned bits
, int filled
, struct extent_state
*cached
)
2002 struct extent_state
*state
= NULL
;
2003 struct rb_node
*node
;
2006 spin_lock(&tree
->lock
);
2007 if (cached
&& extent_state_in_tree(cached
) && cached
->start
<= start
&&
2008 cached
->end
> start
)
2009 node
= &cached
->rb_node
;
2011 node
= tree_search(tree
, start
);
2012 while (node
&& start
<= end
) {
2013 state
= rb_entry(node
, struct extent_state
, rb_node
);
2015 if (filled
&& state
->start
> start
) {
2020 if (state
->start
> end
)
2023 if (state
->state
& bits
) {
2027 } else if (filled
) {
2032 if (state
->end
== (u64
)-1)
2035 start
= state
->end
+ 1;
2038 node
= rb_next(node
);
2045 spin_unlock(&tree
->lock
);
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2053 static void check_page_uptodate(struct extent_io_tree
*tree
, struct page
*page
)
2055 u64 start
= page_offset(page
);
2056 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
2057 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
2058 SetPageUptodate(page
);
2061 int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
)
2065 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2067 set_state_private(failure_tree
, rec
->start
, 0);
2068 ret
= clear_extent_bits(failure_tree
, rec
->start
,
2069 rec
->start
+ rec
->len
- 1,
2070 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2074 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
2075 rec
->start
+ rec
->len
- 1,
2076 EXTENT_DAMAGED
, GFP_NOFS
);
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
2089 * to avoid any synchronization issues, wait for the data after writing, which
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2094 int repair_io_failure(struct inode
*inode
, u64 start
, u64 length
, u64 logical
,
2095 struct page
*page
, unsigned int pg_offset
, int mirror_num
)
2097 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2099 struct btrfs_device
*dev
;
2102 struct btrfs_bio
*bbio
= NULL
;
2103 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
2106 ASSERT(!(fs_info
->sb
->s_flags
& MS_RDONLY
));
2107 BUG_ON(!mirror_num
);
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree
, logical
, length
, mirror_num
))
2113 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2116 bio
->bi_iter
.bi_size
= 0;
2117 map_length
= length
;
2119 ret
= btrfs_map_block(fs_info
, WRITE
, logical
,
2120 &map_length
, &bbio
, mirror_num
);
2125 BUG_ON(mirror_num
!= bbio
->mirror_num
);
2126 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
2127 bio
->bi_iter
.bi_sector
= sector
;
2128 dev
= bbio
->stripes
[mirror_num
-1].dev
;
2129 btrfs_put_bbio(bbio
);
2130 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
2134 bio
->bi_bdev
= dev
->bdev
;
2135 bio_add_page(bio
, page
, length
, pg_offset
);
2137 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
)) {
2138 /* try to remap that extent elsewhere? */
2140 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
2144 btrfs_info_rl_in_rcu(fs_info
,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 btrfs_ino(inode
), start
,
2147 rcu_str_deref(dev
->name
), sector
);
2152 int repair_eb_io_failure(struct btrfs_root
*root
, struct extent_buffer
*eb
,
2155 u64 start
= eb
->start
;
2156 unsigned long i
, num_pages
= num_extent_pages(eb
->start
, eb
->len
);
2159 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
2162 for (i
= 0; i
< num_pages
; i
++) {
2163 struct page
*p
= eb
->pages
[i
];
2165 ret
= repair_io_failure(root
->fs_info
->btree_inode
, start
,
2166 PAGE_CACHE_SIZE
, start
, p
,
2167 start
- page_offset(p
), mirror_num
);
2170 start
+= PAGE_CACHE_SIZE
;
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2180 int clean_io_failure(struct inode
*inode
, u64 start
, struct page
*page
,
2181 unsigned int pg_offset
)
2184 u64 private_failure
;
2185 struct io_failure_record
*failrec
;
2186 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2187 struct extent_state
*state
;
2192 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
2193 (u64
)-1, 1, EXTENT_DIRTY
, 0);
2197 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
2202 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
2203 BUG_ON(!failrec
->this_mirror
);
2205 if (failrec
->in_validation
) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2211 if (fs_info
->sb
->s_flags
& MS_RDONLY
)
2214 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
2215 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
2218 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
2220 if (state
&& state
->start
<= failrec
->start
&&
2221 state
->end
>= failrec
->start
+ failrec
->len
- 1) {
2222 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
,
2224 if (num_copies
> 1) {
2225 repair_io_failure(inode
, start
, failrec
->len
,
2226 failrec
->logical
, page
,
2227 pg_offset
, failrec
->failed_mirror
);
2232 free_io_failure(inode
, failrec
);
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2243 void btrfs_free_io_failure_record(struct inode
*inode
, u64 start
, u64 end
)
2245 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2246 struct io_failure_record
*failrec
;
2247 struct extent_state
*state
, *next
;
2249 if (RB_EMPTY_ROOT(&failure_tree
->state
))
2252 spin_lock(&failure_tree
->lock
);
2253 state
= find_first_extent_bit_state(failure_tree
, start
, EXTENT_DIRTY
);
2255 if (state
->start
> end
)
2258 ASSERT(state
->end
<= end
);
2260 next
= next_state(state
);
2262 failrec
= (struct io_failure_record
*)(unsigned long)state
->private;
2263 free_extent_state(state
);
2268 spin_unlock(&failure_tree
->lock
);
2271 int btrfs_get_io_failure_record(struct inode
*inode
, u64 start
, u64 end
,
2272 struct io_failure_record
**failrec_ret
)
2274 struct io_failure_record
*failrec
;
2276 struct extent_map
*em
;
2277 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
2278 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2279 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2283 ret
= get_state_private(failure_tree
, start
, &private);
2285 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2289 failrec
->start
= start
;
2290 failrec
->len
= end
- start
+ 1;
2291 failrec
->this_mirror
= 0;
2292 failrec
->bio_flags
= 0;
2293 failrec
->in_validation
= 0;
2295 read_lock(&em_tree
->lock
);
2296 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2298 read_unlock(&em_tree
->lock
);
2303 if (em
->start
> start
|| em
->start
+ em
->len
<= start
) {
2304 free_extent_map(em
);
2307 read_unlock(&em_tree
->lock
);
2313 logical
= start
- em
->start
;
2314 logical
= em
->block_start
+ logical
;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2316 logical
= em
->block_start
;
2317 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2318 extent_set_compress_type(&failrec
->bio_flags
,
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical
, start
, failrec
->len
);
2325 failrec
->logical
= logical
;
2326 free_extent_map(em
);
2328 /* set the bits in the private failure tree */
2329 ret
= set_extent_bits(failure_tree
, start
, end
,
2330 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2332 ret
= set_state_private(failure_tree
, start
,
2333 (u64
)(unsigned long)failrec
);
2334 /* set the bits in the inode's tree */
2336 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2343 failrec
= (struct io_failure_record
*)(unsigned long)private;
2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 failrec
->logical
, failrec
->start
, failrec
->len
,
2346 failrec
->in_validation
);
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2354 *failrec_ret
= failrec
;
2359 int btrfs_check_repairable(struct inode
*inode
, struct bio
*failed_bio
,
2360 struct io_failure_record
*failrec
, int failed_mirror
)
2364 num_copies
= btrfs_num_copies(BTRFS_I(inode
)->root
->fs_info
,
2365 failrec
->logical
, failrec
->len
);
2366 if (num_copies
== 1) {
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 num_copies
, failrec
->this_mirror
, failed_mirror
);
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2382 if (failed_bio
->bi_vcnt
> 1) {
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2391 BUG_ON(failrec
->in_validation
);
2392 failrec
->in_validation
= 1;
2393 failrec
->this_mirror
= failed_mirror
;
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2400 if (failrec
->in_validation
) {
2401 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2402 failrec
->in_validation
= 0;
2403 failrec
->this_mirror
= 0;
2405 failrec
->failed_mirror
= failed_mirror
;
2406 failrec
->this_mirror
++;
2407 if (failrec
->this_mirror
== failed_mirror
)
2408 failrec
->this_mirror
++;
2411 if (failrec
->this_mirror
> num_copies
) {
2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 num_copies
, failrec
->this_mirror
, failed_mirror
);
2421 struct bio
*btrfs_create_repair_bio(struct inode
*inode
, struct bio
*failed_bio
,
2422 struct io_failure_record
*failrec
,
2423 struct page
*page
, int pg_offset
, int icsum
,
2424 bio_end_io_t
*endio_func
, void *data
)
2427 struct btrfs_io_bio
*btrfs_failed_bio
;
2428 struct btrfs_io_bio
*btrfs_bio
;
2430 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
2434 bio
->bi_end_io
= endio_func
;
2435 bio
->bi_iter
.bi_sector
= failrec
->logical
>> 9;
2436 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2437 bio
->bi_iter
.bi_size
= 0;
2438 bio
->bi_private
= data
;
2440 btrfs_failed_bio
= btrfs_io_bio(failed_bio
);
2441 if (btrfs_failed_bio
->csum
) {
2442 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2443 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
2445 btrfs_bio
= btrfs_io_bio(bio
);
2446 btrfs_bio
->csum
= btrfs_bio
->csum_inline
;
2448 memcpy(btrfs_bio
->csum
, btrfs_failed_bio
->csum
+ icsum
,
2452 bio_add_page(bio
, page
, failrec
->len
, pg_offset
);
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2465 static int bio_readpage_error(struct bio
*failed_bio
, u64 phy_offset
,
2466 struct page
*page
, u64 start
, u64 end
,
2469 struct io_failure_record
*failrec
;
2470 struct inode
*inode
= page
->mapping
->host
;
2471 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2476 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2478 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
2482 ret
= btrfs_check_repairable(inode
, failed_bio
, failrec
, failed_mirror
);
2484 free_io_failure(inode
, failrec
);
2488 if (failed_bio
->bi_vcnt
> 1)
2489 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2491 read_mode
= READ_SYNC
;
2493 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
2494 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
2495 start
- page_offset(page
),
2496 (int)phy_offset
, failed_bio
->bi_end_io
,
2499 free_io_failure(inode
, failrec
);
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
2506 ret
= tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
,
2507 failrec
->this_mirror
,
2508 failrec
->bio_flags
, 0);
2510 free_io_failure(inode
, failrec
);
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2519 int end_extent_writepage(struct page
*page
, int err
, u64 start
, u64 end
)
2521 int uptodate
= (err
== 0);
2522 struct extent_io_tree
*tree
;
2525 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2527 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2528 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2529 end
, NULL
, uptodate
);
2535 ClearPageUptodate(page
);
2537 ret
= err
< 0 ? err
: -EIO
;
2538 mapping_set_error(page
->mapping
, ret
);
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2552 static void end_bio_extent_writepage(struct bio
*bio
)
2554 struct bio_vec
*bvec
;
2559 bio_for_each_segment_all(bvec
, bio
, i
) {
2560 struct page
*page
= bvec
->bv_page
;
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
2567 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2568 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2569 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec
->bv_offset
, bvec
->bv_len
);
2573 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2574 "incomplete page write in btrfs with offset %u and "
2576 bvec
->bv_offset
, bvec
->bv_len
);
2579 start
= page_offset(page
);
2580 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2582 if (end_extent_writepage(page
, bio
->bi_error
, start
, end
))
2585 end_page_writeback(page
);
2592 endio_readpage_release_extent(struct extent_io_tree
*tree
, u64 start
, u64 len
,
2595 struct extent_state
*cached
= NULL
;
2596 u64 end
= start
+ len
- 1;
2598 if (uptodate
&& tree
->track_uptodate
)
2599 set_extent_uptodate(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2600 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2614 static void end_bio_extent_readpage(struct bio
*bio
)
2616 struct bio_vec
*bvec
;
2617 int uptodate
= !bio
->bi_error
;
2618 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
2619 struct extent_io_tree
*tree
;
2624 u64 extent_start
= 0;
2630 bio_for_each_segment_all(bvec
, bio
, i
) {
2631 struct page
*page
= bvec
->bv_page
;
2632 struct inode
*inode
= page
->mapping
->host
;
2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 "mirror=%u\n", (u64
)bio
->bi_iter
.bi_sector
,
2636 bio
->bi_error
, io_bio
->mirror_num
);
2637 tree
= &BTRFS_I(inode
)->io_tree
;
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
2644 if (bvec
->bv_offset
|| bvec
->bv_len
!= PAGE_CACHE_SIZE
) {
2645 if (bvec
->bv_offset
+ bvec
->bv_len
!= PAGE_CACHE_SIZE
)
2646 btrfs_err(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec
->bv_offset
, bvec
->bv_len
);
2650 btrfs_info(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
2651 "incomplete page read in btrfs with offset %u and "
2653 bvec
->bv_offset
, bvec
->bv_len
);
2656 start
= page_offset(page
);
2657 end
= start
+ bvec
->bv_offset
+ bvec
->bv_len
- 1;
2660 mirror
= io_bio
->mirror_num
;
2661 if (likely(uptodate
&& tree
->ops
&&
2662 tree
->ops
->readpage_end_io_hook
)) {
2663 ret
= tree
->ops
->readpage_end_io_hook(io_bio
, offset
,
2669 clean_io_failure(inode
, start
, page
, 0);
2672 if (likely(uptodate
))
2675 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2676 ret
= tree
->ops
->readpage_io_failed_hook(page
, mirror
);
2677 if (!ret
&& !bio
->bi_error
)
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2690 ret
= bio_readpage_error(bio
, offset
, page
, start
, end
,
2693 uptodate
= !bio
->bi_error
;
2699 if (likely(uptodate
)) {
2700 loff_t i_size
= i_size_read(inode
);
2701 pgoff_t end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2704 /* Zero out the end if this page straddles i_size */
2705 off
= i_size
& (PAGE_CACHE_SIZE
-1);
2706 if (page
->index
== end_index
&& off
)
2707 zero_user_segment(page
, off
, PAGE_CACHE_SIZE
);
2708 SetPageUptodate(page
);
2710 ClearPageUptodate(page
);
2716 if (unlikely(!uptodate
)) {
2718 endio_readpage_release_extent(tree
,
2724 endio_readpage_release_extent(tree
, start
,
2725 end
- start
+ 1, 0);
2726 } else if (!extent_len
) {
2727 extent_start
= start
;
2728 extent_len
= end
+ 1 - start
;
2729 } else if (extent_start
+ extent_len
== start
) {
2730 extent_len
+= end
+ 1 - start
;
2732 endio_readpage_release_extent(tree
, extent_start
,
2733 extent_len
, uptodate
);
2734 extent_start
= start
;
2735 extent_len
= end
+ 1 - start
;
2740 endio_readpage_release_extent(tree
, extent_start
, extent_len
,
2743 io_bio
->end_io(io_bio
, bio
->bi_error
);
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2752 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2755 struct btrfs_io_bio
*btrfs_bio
;
2758 bio
= bio_alloc_bioset(gfp_flags
, nr_vecs
, btrfs_bioset
);
2760 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2761 while (!bio
&& (nr_vecs
/= 2)) {
2762 bio
= bio_alloc_bioset(gfp_flags
,
2763 nr_vecs
, btrfs_bioset
);
2768 bio
->bi_bdev
= bdev
;
2769 bio
->bi_iter
.bi_sector
= first_sector
;
2770 btrfs_bio
= btrfs_io_bio(bio
);
2771 btrfs_bio
->csum
= NULL
;
2772 btrfs_bio
->csum_allocated
= NULL
;
2773 btrfs_bio
->end_io
= NULL
;
2778 struct bio
*btrfs_bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
2780 struct btrfs_io_bio
*btrfs_bio
;
2783 new = bio_clone_bioset(bio
, gfp_mask
, btrfs_bioset
);
2785 btrfs_bio
= btrfs_io_bio(new);
2786 btrfs_bio
->csum
= NULL
;
2787 btrfs_bio
->csum_allocated
= NULL
;
2788 btrfs_bio
->end_io
= NULL
;
2793 /* this also allocates from the btrfs_bioset */
2794 struct bio
*btrfs_io_bio_alloc(gfp_t gfp_mask
, unsigned int nr_iovecs
)
2796 struct btrfs_io_bio
*btrfs_bio
;
2799 bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, btrfs_bioset
);
2801 btrfs_bio
= btrfs_io_bio(bio
);
2802 btrfs_bio
->csum
= NULL
;
2803 btrfs_bio
->csum_allocated
= NULL
;
2804 btrfs_bio
->end_io
= NULL
;
2810 static int __must_check
submit_one_bio(int rw
, struct bio
*bio
,
2811 int mirror_num
, unsigned long bio_flags
)
2814 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2815 struct page
*page
= bvec
->bv_page
;
2816 struct extent_io_tree
*tree
= bio
->bi_private
;
2819 start
= page_offset(page
) + bvec
->bv_offset
;
2821 bio
->bi_private
= NULL
;
2825 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2826 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2827 mirror_num
, bio_flags
, start
);
2829 btrfsic_submit_bio(rw
, bio
);
2835 static int merge_bio(int rw
, struct extent_io_tree
*tree
, struct page
*page
,
2836 unsigned long offset
, size_t size
, struct bio
*bio
,
2837 unsigned long bio_flags
)
2840 if (tree
->ops
&& tree
->ops
->merge_bio_hook
)
2841 ret
= tree
->ops
->merge_bio_hook(rw
, page
, offset
, size
, bio
,
2848 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2849 struct writeback_control
*wbc
,
2850 struct page
*page
, sector_t sector
,
2851 size_t size
, unsigned long offset
,
2852 struct block_device
*bdev
,
2853 struct bio
**bio_ret
,
2854 unsigned long max_pages
,
2855 bio_end_io_t end_io_func
,
2857 unsigned long prev_bio_flags
,
2858 unsigned long bio_flags
,
2859 bool force_bio_submit
)
2864 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2865 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2867 if (bio_ret
&& *bio_ret
) {
2870 contig
= bio
->bi_iter
.bi_sector
== sector
;
2872 contig
= bio_end_sector(bio
) == sector
;
2874 if (prev_bio_flags
!= bio_flags
|| !contig
||
2876 merge_bio(rw
, tree
, page
, offset
, page_size
, bio
, bio_flags
) ||
2877 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2878 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2887 wbc_account_io(wbc
, page
, page_size
);
2892 bio
= btrfs_bio_alloc(bdev
, sector
, BIO_MAX_PAGES
,
2893 GFP_NOFS
| __GFP_HIGH
);
2897 bio_add_page(bio
, page
, page_size
, offset
);
2898 bio
->bi_end_io
= end_io_func
;
2899 bio
->bi_private
= tree
;
2901 wbc_init_bio(wbc
, bio
);
2902 wbc_account_io(wbc
, page
, page_size
);
2908 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2913 static void attach_extent_buffer_page(struct extent_buffer
*eb
,
2916 if (!PagePrivate(page
)) {
2917 SetPagePrivate(page
);
2918 page_cache_get(page
);
2919 set_page_private(page
, (unsigned long)eb
);
2921 WARN_ON(page
->private != (unsigned long)eb
);
2925 void set_page_extent_mapped(struct page
*page
)
2927 if (!PagePrivate(page
)) {
2928 SetPagePrivate(page
);
2929 page_cache_get(page
);
2930 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2934 static struct extent_map
*
2935 __get_extent_map(struct inode
*inode
, struct page
*page
, size_t pg_offset
,
2936 u64 start
, u64 len
, get_extent_t
*get_extent
,
2937 struct extent_map
**em_cached
)
2939 struct extent_map
*em
;
2941 if (em_cached
&& *em_cached
) {
2943 if (extent_map_in_tree(em
) && start
>= em
->start
&&
2944 start
< extent_map_end(em
)) {
2945 atomic_inc(&em
->refs
);
2949 free_extent_map(em
);
2953 em
= get_extent(inode
, page
, pg_offset
, start
, len
, 0);
2954 if (em_cached
&& !IS_ERR_OR_NULL(em
)) {
2956 atomic_inc(&em
->refs
);
2962 * basic readpage implementation. Locked extent state structs are inserted
2963 * into the tree that are removed when the IO is done (by the end_io
2965 * XXX JDM: This needs looking at to ensure proper page locking
2967 static int __do_readpage(struct extent_io_tree
*tree
,
2969 get_extent_t
*get_extent
,
2970 struct extent_map
**em_cached
,
2971 struct bio
**bio
, int mirror_num
,
2972 unsigned long *bio_flags
, int rw
,
2975 struct inode
*inode
= page
->mapping
->host
;
2976 u64 start
= page_offset(page
);
2977 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2981 u64 last_byte
= i_size_read(inode
);
2985 struct extent_map
*em
;
2986 struct block_device
*bdev
;
2989 int parent_locked
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2990 size_t pg_offset
= 0;
2992 size_t disk_io_size
;
2993 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2994 unsigned long this_bio_flag
= *bio_flags
& EXTENT_BIO_PARENT_LOCKED
;
2996 set_page_extent_mapped(page
);
2999 if (!PageUptodate(page
)) {
3000 if (cleancache_get_page(page
) == 0) {
3001 BUG_ON(blocksize
!= PAGE_SIZE
);
3002 unlock_extent(tree
, start
, end
);
3007 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
3009 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
3012 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
3013 userpage
= kmap_atomic(page
);
3014 memset(userpage
+ zero_offset
, 0, iosize
);
3015 flush_dcache_page(page
);
3016 kunmap_atomic(userpage
);
3019 while (cur
<= end
) {
3020 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
3021 bool force_bio_submit
= false;
3023 if (cur
>= last_byte
) {
3025 struct extent_state
*cached
= NULL
;
3027 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
3028 userpage
= kmap_atomic(page
);
3029 memset(userpage
+ pg_offset
, 0, iosize
);
3030 flush_dcache_page(page
);
3031 kunmap_atomic(userpage
);
3032 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3035 unlock_extent_cached(tree
, cur
,
3040 em
= __get_extent_map(inode
, page
, pg_offset
, cur
,
3041 end
- cur
+ 1, get_extent
, em_cached
);
3042 if (IS_ERR_OR_NULL(em
)) {
3045 unlock_extent(tree
, cur
, end
);
3048 extent_offset
= cur
- em
->start
;
3049 BUG_ON(extent_map_end(em
) <= cur
);
3052 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3053 this_bio_flag
|= EXTENT_BIO_COMPRESSED
;
3054 extent_set_compress_type(&this_bio_flag
,
3058 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
3059 cur_end
= min(extent_map_end(em
) - 1, end
);
3060 iosize
= ALIGN(iosize
, blocksize
);
3061 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
3062 disk_io_size
= em
->block_len
;
3063 sector
= em
->block_start
>> 9;
3065 sector
= (em
->block_start
+ extent_offset
) >> 9;
3066 disk_io_size
= iosize
;
3069 block_start
= em
->block_start
;
3070 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
3071 block_start
= EXTENT_MAP_HOLE
;
3074 * If we have a file range that points to a compressed extent
3075 * and it's followed by a consecutive file range that points to
3076 * to the same compressed extent (possibly with a different
3077 * offset and/or length, so it either points to the whole extent
3078 * or only part of it), we must make sure we do not submit a
3079 * single bio to populate the pages for the 2 ranges because
3080 * this makes the compressed extent read zero out the pages
3081 * belonging to the 2nd range. Imagine the following scenario:
3084 * [0 - 8K] [8K - 24K]
3087 * points to extent X, points to extent X,
3088 * offset 4K, length of 8K offset 0, length 16K
3090 * [extent X, compressed length = 4K uncompressed length = 16K]
3092 * If the bio to read the compressed extent covers both ranges,
3093 * it will decompress extent X into the pages belonging to the
3094 * first range and then it will stop, zeroing out the remaining
3095 * pages that belong to the other range that points to extent X.
3096 * So here we make sure we submit 2 bios, one for the first
3097 * range and another one for the third range. Both will target
3098 * the same physical extent from disk, but we can't currently
3099 * make the compressed bio endio callback populate the pages
3100 * for both ranges because each compressed bio is tightly
3101 * coupled with a single extent map, and each range can have
3102 * an extent map with a different offset value relative to the
3103 * uncompressed data of our extent and different lengths. This
3104 * is a corner case so we prioritize correctness over
3105 * non-optimal behavior (submitting 2 bios for the same extent).
3107 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) &&
3108 prev_em_start
&& *prev_em_start
!= (u64
)-1 &&
3109 *prev_em_start
!= em
->orig_start
)
3110 force_bio_submit
= true;
3113 *prev_em_start
= em
->orig_start
;
3115 free_extent_map(em
);
3118 /* we've found a hole, just zero and go on */
3119 if (block_start
== EXTENT_MAP_HOLE
) {
3121 struct extent_state
*cached
= NULL
;
3123 userpage
= kmap_atomic(page
);
3124 memset(userpage
+ pg_offset
, 0, iosize
);
3125 flush_dcache_page(page
);
3126 kunmap_atomic(userpage
);
3128 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
3131 free_extent_state(cached
);
3133 unlock_extent_cached(tree
, cur
,
3137 pg_offset
+= iosize
;
3140 /* the get_extent function already copied into the page */
3141 if (test_range_bit(tree
, cur
, cur_end
,
3142 EXTENT_UPTODATE
, 1, NULL
)) {
3143 check_page_uptodate(tree
, page
);
3145 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3147 pg_offset
+= iosize
;
3150 /* we have an inline extent but it didn't get marked up
3151 * to date. Error out
3153 if (block_start
== EXTENT_MAP_INLINE
) {
3156 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3158 pg_offset
+= iosize
;
3163 ret
= submit_extent_page(rw
, tree
, NULL
, page
,
3164 sector
, disk_io_size
, pg_offset
,
3166 end_bio_extent_readpage
, mirror_num
,
3172 *bio_flags
= this_bio_flag
;
3176 unlock_extent(tree
, cur
, cur
+ iosize
- 1);
3179 pg_offset
+= iosize
;
3183 if (!PageError(page
))
3184 SetPageUptodate(page
);
3190 static inline void __do_contiguous_readpages(struct extent_io_tree
*tree
,
3191 struct page
*pages
[], int nr_pages
,
3193 get_extent_t
*get_extent
,
3194 struct extent_map
**em_cached
,
3195 struct bio
**bio
, int mirror_num
,
3196 unsigned long *bio_flags
, int rw
,
3199 struct inode
*inode
;
3200 struct btrfs_ordered_extent
*ordered
;
3203 inode
= pages
[0]->mapping
->host
;
3205 lock_extent(tree
, start
, end
);
3206 ordered
= btrfs_lookup_ordered_range(inode
, start
,
3210 unlock_extent(tree
, start
, end
);
3211 btrfs_start_ordered_extent(inode
, ordered
, 1);
3212 btrfs_put_ordered_extent(ordered
);
3215 for (index
= 0; index
< nr_pages
; index
++) {
3216 __do_readpage(tree
, pages
[index
], get_extent
, em_cached
, bio
,
3217 mirror_num
, bio_flags
, rw
, prev_em_start
);
3218 page_cache_release(pages
[index
]);
3222 static void __extent_readpages(struct extent_io_tree
*tree
,
3223 struct page
*pages
[],
3224 int nr_pages
, get_extent_t
*get_extent
,
3225 struct extent_map
**em_cached
,
3226 struct bio
**bio
, int mirror_num
,
3227 unsigned long *bio_flags
, int rw
,
3234 int first_index
= 0;
3236 for (index
= 0; index
< nr_pages
; index
++) {
3237 page_start
= page_offset(pages
[index
]);
3240 end
= start
+ PAGE_CACHE_SIZE
- 1;
3241 first_index
= index
;
3242 } else if (end
+ 1 == page_start
) {
3243 end
+= PAGE_CACHE_SIZE
;
3245 __do_contiguous_readpages(tree
, &pages
[first_index
],
3246 index
- first_index
, start
,
3247 end
, get_extent
, em_cached
,
3248 bio
, mirror_num
, bio_flags
,
3251 end
= start
+ PAGE_CACHE_SIZE
- 1;
3252 first_index
= index
;
3257 __do_contiguous_readpages(tree
, &pages
[first_index
],
3258 index
- first_index
, start
,
3259 end
, get_extent
, em_cached
, bio
,
3260 mirror_num
, bio_flags
, rw
,
3264 static int __extent_read_full_page(struct extent_io_tree
*tree
,
3266 get_extent_t
*get_extent
,
3267 struct bio
**bio
, int mirror_num
,
3268 unsigned long *bio_flags
, int rw
)
3270 struct inode
*inode
= page
->mapping
->host
;
3271 struct btrfs_ordered_extent
*ordered
;
3272 u64 start
= page_offset(page
);
3273 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3277 lock_extent(tree
, start
, end
);
3278 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
3281 unlock_extent(tree
, start
, end
);
3282 btrfs_start_ordered_extent(inode
, ordered
, 1);
3283 btrfs_put_ordered_extent(ordered
);
3286 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, bio
, mirror_num
,
3287 bio_flags
, rw
, NULL
);
3291 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3292 get_extent_t
*get_extent
, int mirror_num
)
3294 struct bio
*bio
= NULL
;
3295 unsigned long bio_flags
= 0;
3298 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
3301 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3305 int extent_read_full_page_nolock(struct extent_io_tree
*tree
, struct page
*page
,
3306 get_extent_t
*get_extent
, int mirror_num
)
3308 struct bio
*bio
= NULL
;
3309 unsigned long bio_flags
= EXTENT_BIO_PARENT_LOCKED
;
3312 ret
= __do_readpage(tree
, page
, get_extent
, NULL
, &bio
, mirror_num
,
3313 &bio_flags
, READ
, NULL
);
3315 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
3319 static noinline
void update_nr_written(struct page
*page
,
3320 struct writeback_control
*wbc
,
3321 unsigned long nr_written
)
3323 wbc
->nr_to_write
-= nr_written
;
3324 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
3325 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
3326 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
3330 * helper for __extent_writepage, doing all of the delayed allocation setup.
3332 * This returns 1 if our fill_delalloc function did all the work required
3333 * to write the page (copy into inline extent). In this case the IO has
3334 * been started and the page is already unlocked.
3336 * This returns 0 if all went well (page still locked)
3337 * This returns < 0 if there were errors (page still locked)
3339 static noinline_for_stack
int writepage_delalloc(struct inode
*inode
,
3340 struct page
*page
, struct writeback_control
*wbc
,
3341 struct extent_page_data
*epd
,
3343 unsigned long *nr_written
)
3345 struct extent_io_tree
*tree
= epd
->tree
;
3346 u64 page_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
3348 u64 delalloc_to_write
= 0;
3349 u64 delalloc_end
= 0;
3351 int page_started
= 0;
3353 if (epd
->extent_locked
|| !tree
->ops
|| !tree
->ops
->fill_delalloc
)
3356 while (delalloc_end
< page_end
) {
3357 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
3361 BTRFS_MAX_EXTENT_SIZE
);
3362 if (nr_delalloc
== 0) {
3363 delalloc_start
= delalloc_end
+ 1;
3366 ret
= tree
->ops
->fill_delalloc(inode
, page
,
3371 /* File system has been set read-only */
3374 /* fill_delalloc should be return < 0 for error
3375 * but just in case, we use > 0 here meaning the
3376 * IO is started, so we don't want to return > 0
3377 * unless things are going well.
3379 ret
= ret
< 0 ? ret
: -EIO
;
3383 * delalloc_end is already one less than the total
3384 * length, so we don't subtract one from
3387 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
3390 delalloc_start
= delalloc_end
+ 1;
3392 if (wbc
->nr_to_write
< delalloc_to_write
) {
3395 if (delalloc_to_write
< thresh
* 2)
3396 thresh
= delalloc_to_write
;
3397 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
3401 /* did the fill delalloc function already unlock and start
3406 * we've unlocked the page, so we can't update
3407 * the mapping's writeback index, just update
3410 wbc
->nr_to_write
-= *nr_written
;
3421 * helper for __extent_writepage. This calls the writepage start hooks,
3422 * and does the loop to map the page into extents and bios.
3424 * We return 1 if the IO is started and the page is unlocked,
3425 * 0 if all went well (page still locked)
3426 * < 0 if there were errors (page still locked)
3428 static noinline_for_stack
int __extent_writepage_io(struct inode
*inode
,
3430 struct writeback_control
*wbc
,
3431 struct extent_page_data
*epd
,
3433 unsigned long nr_written
,
3434 int write_flags
, int *nr_ret
)
3436 struct extent_io_tree
*tree
= epd
->tree
;
3437 u64 start
= page_offset(page
);
3438 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3445 struct extent_state
*cached_state
= NULL
;
3446 struct extent_map
*em
;
3447 struct block_device
*bdev
;
3448 size_t pg_offset
= 0;
3454 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
3455 ret
= tree
->ops
->writepage_start_hook(page
, start
,
3458 /* Fixup worker will requeue */
3460 wbc
->pages_skipped
++;
3462 redirty_page_for_writepage(wbc
, page
);
3464 update_nr_written(page
, wbc
, nr_written
);
3472 * we don't want to touch the inode after unlocking the page,
3473 * so we update the mapping writeback index now
3475 update_nr_written(page
, wbc
, nr_written
+ 1);
3478 if (i_size
<= start
) {
3479 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3480 tree
->ops
->writepage_end_io_hook(page
, start
,
3485 blocksize
= inode
->i_sb
->s_blocksize
;
3487 while (cur
<= end
) {
3489 if (cur
>= i_size
) {
3490 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3491 tree
->ops
->writepage_end_io_hook(page
, cur
,
3495 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
3497 if (IS_ERR_OR_NULL(em
)) {
3499 ret
= PTR_ERR_OR_ZERO(em
);
3503 extent_offset
= cur
- em
->start
;
3504 em_end
= extent_map_end(em
);
3505 BUG_ON(em_end
<= cur
);
3507 iosize
= min(em_end
- cur
, end
- cur
+ 1);
3508 iosize
= ALIGN(iosize
, blocksize
);
3509 sector
= (em
->block_start
+ extent_offset
) >> 9;
3511 block_start
= em
->block_start
;
3512 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
3513 free_extent_map(em
);
3517 * compressed and inline extents are written through other
3520 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
3521 block_start
== EXTENT_MAP_INLINE
) {
3523 * end_io notification does not happen here for
3524 * compressed extents
3526 if (!compressed
&& tree
->ops
&&
3527 tree
->ops
->writepage_end_io_hook
)
3528 tree
->ops
->writepage_end_io_hook(page
, cur
,
3531 else if (compressed
) {
3532 /* we don't want to end_page_writeback on
3533 * a compressed extent. this happens
3540 pg_offset
+= iosize
;
3544 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
3545 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
3553 unsigned long max_nr
= (i_size
>> PAGE_CACHE_SHIFT
) + 1;
3555 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
3556 if (!PageWriteback(page
)) {
3557 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
3558 "page %lu not writeback, cur %llu end %llu",
3559 page
->index
, cur
, end
);
3562 ret
= submit_extent_page(write_flags
, tree
, wbc
, page
,
3563 sector
, iosize
, pg_offset
,
3564 bdev
, &epd
->bio
, max_nr
,
3565 end_bio_extent_writepage
,
3571 pg_offset
+= iosize
;
3579 /* drop our reference on any cached states */
3580 free_extent_state(cached_state
);
3585 * the writepage semantics are similar to regular writepage. extent
3586 * records are inserted to lock ranges in the tree, and as dirty areas
3587 * are found, they are marked writeback. Then the lock bits are removed
3588 * and the end_io handler clears the writeback ranges
3590 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
3593 struct inode
*inode
= page
->mapping
->host
;
3594 struct extent_page_data
*epd
= data
;
3595 u64 start
= page_offset(page
);
3596 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
3599 size_t pg_offset
= 0;
3600 loff_t i_size
= i_size_read(inode
);
3601 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
3603 unsigned long nr_written
= 0;
3605 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3606 write_flags
= WRITE_SYNC
;
3608 write_flags
= WRITE
;
3610 trace___extent_writepage(page
, inode
, wbc
);
3612 WARN_ON(!PageLocked(page
));
3614 ClearPageError(page
);
3616 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
3617 if (page
->index
> end_index
||
3618 (page
->index
== end_index
&& !pg_offset
)) {
3619 page
->mapping
->a_ops
->invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
3624 if (page
->index
== end_index
) {
3627 userpage
= kmap_atomic(page
);
3628 memset(userpage
+ pg_offset
, 0,
3629 PAGE_CACHE_SIZE
- pg_offset
);
3630 kunmap_atomic(userpage
);
3631 flush_dcache_page(page
);
3636 set_page_extent_mapped(page
);
3638 ret
= writepage_delalloc(inode
, page
, wbc
, epd
, start
, &nr_written
);
3644 ret
= __extent_writepage_io(inode
, page
, wbc
, epd
,
3645 i_size
, nr_written
, write_flags
, &nr
);
3651 /* make sure the mapping tag for page dirty gets cleared */
3652 set_page_writeback(page
);
3653 end_page_writeback(page
);
3655 if (PageError(page
)) {
3656 ret
= ret
< 0 ? ret
: -EIO
;
3657 end_extent_writepage(page
, ret
, start
, page_end
);
3666 void wait_on_extent_buffer_writeback(struct extent_buffer
*eb
)
3668 wait_on_bit_io(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
,
3669 TASK_UNINTERRUPTIBLE
);
3672 static noinline_for_stack
int
3673 lock_extent_buffer_for_io(struct extent_buffer
*eb
,
3674 struct btrfs_fs_info
*fs_info
,
3675 struct extent_page_data
*epd
)
3677 unsigned long i
, num_pages
;
3681 if (!btrfs_try_tree_write_lock(eb
)) {
3683 flush_write_bio(epd
);
3684 btrfs_tree_lock(eb
);
3687 if (test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
)) {
3688 btrfs_tree_unlock(eb
);
3692 flush_write_bio(epd
);
3696 wait_on_extent_buffer_writeback(eb
);
3697 btrfs_tree_lock(eb
);
3698 if (!test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
))
3700 btrfs_tree_unlock(eb
);
3705 * We need to do this to prevent races in people who check if the eb is
3706 * under IO since we can end up having no IO bits set for a short period
3709 spin_lock(&eb
->refs_lock
);
3710 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
3711 set_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3712 spin_unlock(&eb
->refs_lock
);
3713 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
3714 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
3716 fs_info
->dirty_metadata_batch
);
3719 spin_unlock(&eb
->refs_lock
);
3722 btrfs_tree_unlock(eb
);
3727 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3728 for (i
= 0; i
< num_pages
; i
++) {
3729 struct page
*p
= eb
->pages
[i
];
3731 if (!trylock_page(p
)) {
3733 flush_write_bio(epd
);
3743 static void end_extent_buffer_writeback(struct extent_buffer
*eb
)
3745 clear_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
);
3746 smp_mb__after_atomic();
3747 wake_up_bit(&eb
->bflags
, EXTENT_BUFFER_WRITEBACK
);
3750 static void set_btree_ioerr(struct page
*page
)
3752 struct extent_buffer
*eb
= (struct extent_buffer
*)page
->private;
3753 struct btrfs_inode
*btree_ino
= BTRFS_I(eb
->fs_info
->btree_inode
);
3756 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
))
3760 * If writeback for a btree extent that doesn't belong to a log tree
3761 * failed, increment the counter transaction->eb_write_errors.
3762 * We do this because while the transaction is running and before it's
3763 * committing (when we call filemap_fdata[write|wait]_range against
3764 * the btree inode), we might have
3765 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3766 * returns an error or an error happens during writeback, when we're
3767 * committing the transaction we wouldn't know about it, since the pages
3768 * can be no longer dirty nor marked anymore for writeback (if a
3769 * subsequent modification to the extent buffer didn't happen before the
3770 * transaction commit), which makes filemap_fdata[write|wait]_range not
3771 * able to find the pages tagged with SetPageError at transaction
3772 * commit time. So if this happens we must abort the transaction,
3773 * otherwise we commit a super block with btree roots that point to
3774 * btree nodes/leafs whose content on disk is invalid - either garbage
3775 * or the content of some node/leaf from a past generation that got
3776 * cowed or deleted and is no longer valid.
3778 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3779 * not be enough - we need to distinguish between log tree extents vs
3780 * non-log tree extents, and the next filemap_fdatawait_range() call
3781 * will catch and clear such errors in the mapping - and that call might
3782 * be from a log sync and not from a transaction commit. Also, checking
3783 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3784 * not done and would not be reliable - the eb might have been released
3785 * from memory and reading it back again means that flag would not be
3786 * set (since it's a runtime flag, not persisted on disk).
3788 * Using the flags below in the btree inode also makes us achieve the
3789 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3790 * writeback for all dirty pages and before filemap_fdatawait_range()
3791 * is called, the writeback for all dirty pages had already finished
3792 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3793 * filemap_fdatawait_range() would return success, as it could not know
3794 * that writeback errors happened (the pages were no longer tagged for
3797 switch (eb
->log_index
) {
3799 set_bit(BTRFS_INODE_BTREE_ERR
, &btree_ino
->runtime_flags
);
3802 set_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
3805 set_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
3808 BUG(); /* unexpected, logic error */
3812 static void end_bio_extent_buffer_writepage(struct bio
*bio
)
3814 struct bio_vec
*bvec
;
3815 struct extent_buffer
*eb
;
3818 bio_for_each_segment_all(bvec
, bio
, i
) {
3819 struct page
*page
= bvec
->bv_page
;
3821 eb
= (struct extent_buffer
*)page
->private;
3823 done
= atomic_dec_and_test(&eb
->io_pages
);
3825 if (bio
->bi_error
||
3826 test_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
)) {
3827 ClearPageUptodate(page
);
3828 set_btree_ioerr(page
);
3831 end_page_writeback(page
);
3836 end_extent_buffer_writeback(eb
);
3842 static noinline_for_stack
int write_one_eb(struct extent_buffer
*eb
,
3843 struct btrfs_fs_info
*fs_info
,
3844 struct writeback_control
*wbc
,
3845 struct extent_page_data
*epd
)
3847 struct block_device
*bdev
= fs_info
->fs_devices
->latest_bdev
;
3848 struct extent_io_tree
*tree
= &BTRFS_I(fs_info
->btree_inode
)->io_tree
;
3849 u64 offset
= eb
->start
;
3851 unsigned long i
, num_pages
;
3852 unsigned long bio_flags
= 0;
3853 unsigned long start
, end
;
3854 int rw
= (epd
->sync_io
? WRITE_SYNC
: WRITE
) | REQ_META
;
3857 clear_bit(EXTENT_BUFFER_WRITE_ERR
, &eb
->bflags
);
3858 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3859 atomic_set(&eb
->io_pages
, num_pages
);
3860 if (btrfs_header_owner(eb
) == BTRFS_TREE_LOG_OBJECTID
)
3861 bio_flags
= EXTENT_BIO_TREE_LOG
;
3863 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3864 nritems
= btrfs_header_nritems(eb
);
3865 if (btrfs_header_level(eb
) > 0) {
3866 end
= btrfs_node_key_ptr_offset(nritems
);
3868 memset_extent_buffer(eb
, 0, end
, eb
->len
- end
);
3872 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3874 start
= btrfs_item_nr_offset(nritems
);
3875 end
= btrfs_leaf_data(eb
) +
3876 leaf_data_end(fs_info
->tree_root
, eb
);
3877 memset_extent_buffer(eb
, 0, start
, end
- start
);
3880 for (i
= 0; i
< num_pages
; i
++) {
3881 struct page
*p
= eb
->pages
[i
];
3883 clear_page_dirty_for_io(p
);
3884 set_page_writeback(p
);
3885 ret
= submit_extent_page(rw
, tree
, wbc
, p
, offset
>> 9,
3886 PAGE_CACHE_SIZE
, 0, bdev
, &epd
->bio
,
3887 -1, end_bio_extent_buffer_writepage
,
3888 0, epd
->bio_flags
, bio_flags
, false);
3889 epd
->bio_flags
= bio_flags
;
3892 end_page_writeback(p
);
3893 if (atomic_sub_and_test(num_pages
- i
, &eb
->io_pages
))
3894 end_extent_buffer_writeback(eb
);
3898 offset
+= PAGE_CACHE_SIZE
;
3899 update_nr_written(p
, wbc
, 1);
3903 if (unlikely(ret
)) {
3904 for (; i
< num_pages
; i
++) {
3905 struct page
*p
= eb
->pages
[i
];
3906 clear_page_dirty_for_io(p
);
3914 int btree_write_cache_pages(struct address_space
*mapping
,
3915 struct writeback_control
*wbc
)
3917 struct extent_io_tree
*tree
= &BTRFS_I(mapping
->host
)->io_tree
;
3918 struct btrfs_fs_info
*fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
3919 struct extent_buffer
*eb
, *prev_eb
= NULL
;
3920 struct extent_page_data epd
= {
3924 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3929 int nr_to_write_done
= 0;
3930 struct pagevec pvec
;
3933 pgoff_t end
; /* Inclusive */
3937 pagevec_init(&pvec
, 0);
3938 if (wbc
->range_cyclic
) {
3939 index
= mapping
->writeback_index
; /* Start from prev offset */
3942 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
3943 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
3946 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3947 tag
= PAGECACHE_TAG_TOWRITE
;
3949 tag
= PAGECACHE_TAG_DIRTY
;
3951 if (wbc
->sync_mode
== WB_SYNC_ALL
)
3952 tag_pages_for_writeback(mapping
, index
, end
);
3953 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3954 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3955 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3959 for (i
= 0; i
< nr_pages
; i
++) {
3960 struct page
*page
= pvec
.pages
[i
];
3962 if (!PagePrivate(page
))
3965 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3970 spin_lock(&mapping
->private_lock
);
3971 if (!PagePrivate(page
)) {
3972 spin_unlock(&mapping
->private_lock
);
3976 eb
= (struct extent_buffer
*)page
->private;
3979 * Shouldn't happen and normally this would be a BUG_ON
3980 * but no sense in crashing the users box for something
3981 * we can survive anyway.
3984 spin_unlock(&mapping
->private_lock
);
3988 if (eb
== prev_eb
) {
3989 spin_unlock(&mapping
->private_lock
);
3993 ret
= atomic_inc_not_zero(&eb
->refs
);
3994 spin_unlock(&mapping
->private_lock
);
3999 ret
= lock_extent_buffer_for_io(eb
, fs_info
, &epd
);
4001 free_extent_buffer(eb
);
4005 ret
= write_one_eb(eb
, fs_info
, wbc
, &epd
);
4008 free_extent_buffer(eb
);
4011 free_extent_buffer(eb
);
4014 * the filesystem may choose to bump up nr_to_write.
4015 * We have to make sure to honor the new nr_to_write
4018 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4020 pagevec_release(&pvec
);
4023 if (!scanned
&& !done
) {
4025 * We hit the last page and there is more work to be done: wrap
4026 * back to the start of the file
4032 flush_write_bio(&epd
);
4037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4038 * @mapping: address space structure to write
4039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4040 * @writepage: function called for each page
4041 * @data: data passed to writepage function
4043 * If a page is already under I/O, write_cache_pages() skips it, even
4044 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4045 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4046 * and msync() need to guarantee that all the data which was dirty at the time
4047 * the call was made get new I/O started against them. If wbc->sync_mode is
4048 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4049 * existing IO to complete.
4051 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
4052 struct address_space
*mapping
,
4053 struct writeback_control
*wbc
,
4054 writepage_t writepage
, void *data
,
4055 void (*flush_fn
)(void *))
4057 struct inode
*inode
= mapping
->host
;
4061 int nr_to_write_done
= 0;
4062 struct pagevec pvec
;
4065 pgoff_t end
; /* Inclusive */
4070 * We have to hold onto the inode so that ordered extents can do their
4071 * work when the IO finishes. The alternative to this is failing to add
4072 * an ordered extent if the igrab() fails there and that is a huge pain
4073 * to deal with, so instead just hold onto the inode throughout the
4074 * writepages operation. If it fails here we are freeing up the inode
4075 * anyway and we'd rather not waste our time writing out stuff that is
4076 * going to be truncated anyway.
4081 pagevec_init(&pvec
, 0);
4082 if (wbc
->range_cyclic
) {
4083 index
= mapping
->writeback_index
; /* Start from prev offset */
4086 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
4087 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
4090 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4091 tag
= PAGECACHE_TAG_TOWRITE
;
4093 tag
= PAGECACHE_TAG_DIRTY
;
4095 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4096 tag_pages_for_writeback(mapping
, index
, end
);
4097 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
4098 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
4099 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
4103 for (i
= 0; i
< nr_pages
; i
++) {
4104 struct page
*page
= pvec
.pages
[i
];
4107 * At this point we hold neither mapping->tree_lock nor
4108 * lock on the page itself: the page may be truncated or
4109 * invalidated (changing page->mapping to NULL), or even
4110 * swizzled back from swapper_space to tmpfs file
4113 if (!trylock_page(page
)) {
4118 if (unlikely(page
->mapping
!= mapping
)) {
4123 if (!wbc
->range_cyclic
&& page
->index
> end
) {
4129 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
4130 if (PageWriteback(page
))
4132 wait_on_page_writeback(page
);
4135 if (PageWriteback(page
) ||
4136 !clear_page_dirty_for_io(page
)) {
4141 ret
= (*writepage
)(page
, wbc
, data
);
4143 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
4147 if (!err
&& ret
< 0)
4151 * the filesystem may choose to bump up nr_to_write.
4152 * We have to make sure to honor the new nr_to_write
4155 nr_to_write_done
= wbc
->nr_to_write
<= 0;
4157 pagevec_release(&pvec
);
4160 if (!scanned
&& !done
&& !err
) {
4162 * We hit the last page and there is more work to be done: wrap
4163 * back to the start of the file
4169 btrfs_add_delayed_iput(inode
);
4173 static void flush_epd_write_bio(struct extent_page_data
*epd
)
4182 ret
= submit_one_bio(rw
, epd
->bio
, 0, epd
->bio_flags
);
4183 BUG_ON(ret
< 0); /* -ENOMEM */
4188 static noinline
void flush_write_bio(void *data
)
4190 struct extent_page_data
*epd
= data
;
4191 flush_epd_write_bio(epd
);
4194 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
4195 get_extent_t
*get_extent
,
4196 struct writeback_control
*wbc
)
4199 struct extent_page_data epd
= {
4202 .get_extent
= get_extent
,
4204 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4208 ret
= __extent_writepage(page
, wbc
, &epd
);
4210 flush_epd_write_bio(&epd
);
4214 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
4215 u64 start
, u64 end
, get_extent_t
*get_extent
,
4219 struct address_space
*mapping
= inode
->i_mapping
;
4221 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
4224 struct extent_page_data epd
= {
4227 .get_extent
= get_extent
,
4229 .sync_io
= mode
== WB_SYNC_ALL
,
4232 struct writeback_control wbc_writepages
= {
4234 .nr_to_write
= nr_pages
* 2,
4235 .range_start
= start
,
4236 .range_end
= end
+ 1,
4239 while (start
<= end
) {
4240 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
4241 if (clear_page_dirty_for_io(page
))
4242 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
4244 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
4245 tree
->ops
->writepage_end_io_hook(page
, start
,
4246 start
+ PAGE_CACHE_SIZE
- 1,
4250 page_cache_release(page
);
4251 start
+= PAGE_CACHE_SIZE
;
4254 flush_epd_write_bio(&epd
);
4258 int extent_writepages(struct extent_io_tree
*tree
,
4259 struct address_space
*mapping
,
4260 get_extent_t
*get_extent
,
4261 struct writeback_control
*wbc
)
4264 struct extent_page_data epd
= {
4267 .get_extent
= get_extent
,
4269 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
4273 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
4274 __extent_writepage
, &epd
,
4276 flush_epd_write_bio(&epd
);
4280 int extent_readpages(struct extent_io_tree
*tree
,
4281 struct address_space
*mapping
,
4282 struct list_head
*pages
, unsigned nr_pages
,
4283 get_extent_t get_extent
)
4285 struct bio
*bio
= NULL
;
4287 unsigned long bio_flags
= 0;
4288 struct page
*pagepool
[16];
4290 struct extent_map
*em_cached
= NULL
;
4292 u64 prev_em_start
= (u64
)-1;
4294 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
4295 page
= list_entry(pages
->prev
, struct page
, lru
);
4297 prefetchw(&page
->flags
);
4298 list_del(&page
->lru
);
4299 if (add_to_page_cache_lru(page
, mapping
,
4300 page
->index
, GFP_NOFS
)) {
4301 page_cache_release(page
);
4305 pagepool
[nr
++] = page
;
4306 if (nr
< ARRAY_SIZE(pagepool
))
4308 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4309 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4313 __extent_readpages(tree
, pagepool
, nr
, get_extent
, &em_cached
,
4314 &bio
, 0, &bio_flags
, READ
, &prev_em_start
);
4317 free_extent_map(em_cached
);
4319 BUG_ON(!list_empty(pages
));
4321 return submit_one_bio(READ
, bio
, 0, bio_flags
);
4326 * basic invalidatepage code, this waits on any locked or writeback
4327 * ranges corresponding to the page, and then deletes any extent state
4328 * records from the tree
4330 int extent_invalidatepage(struct extent_io_tree
*tree
,
4331 struct page
*page
, unsigned long offset
)
4333 struct extent_state
*cached_state
= NULL
;
4334 u64 start
= page_offset(page
);
4335 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4336 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
4338 start
+= ALIGN(offset
, blocksize
);
4342 lock_extent_bits(tree
, start
, end
, 0, &cached_state
);
4343 wait_on_page_writeback(page
);
4344 clear_extent_bit(tree
, start
, end
,
4345 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4346 EXTENT_DO_ACCOUNTING
,
4347 1, 1, &cached_state
, GFP_NOFS
);
4352 * a helper for releasepage, this tests for areas of the page that
4353 * are locked or under IO and drops the related state bits if it is safe
4356 static int try_release_extent_state(struct extent_map_tree
*map
,
4357 struct extent_io_tree
*tree
,
4358 struct page
*page
, gfp_t mask
)
4360 u64 start
= page_offset(page
);
4361 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4364 if (test_range_bit(tree
, start
, end
,
4365 EXTENT_IOBITS
, 0, NULL
))
4368 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
4371 * at this point we can safely clear everything except the
4372 * locked bit and the nodatasum bit
4374 ret
= clear_extent_bit(tree
, start
, end
,
4375 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
4378 /* if clear_extent_bit failed for enomem reasons,
4379 * we can't allow the release to continue.
4390 * a helper for releasepage. As long as there are no locked extents
4391 * in the range corresponding to the page, both state records and extent
4392 * map records are removed
4394 int try_release_extent_mapping(struct extent_map_tree
*map
,
4395 struct extent_io_tree
*tree
, struct page
*page
,
4398 struct extent_map
*em
;
4399 u64 start
= page_offset(page
);
4400 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
4402 if (gfpflags_allow_blocking(mask
) &&
4403 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
4405 while (start
<= end
) {
4406 len
= end
- start
+ 1;
4407 write_lock(&map
->lock
);
4408 em
= lookup_extent_mapping(map
, start
, len
);
4410 write_unlock(&map
->lock
);
4413 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
4414 em
->start
!= start
) {
4415 write_unlock(&map
->lock
);
4416 free_extent_map(em
);
4419 if (!test_range_bit(tree
, em
->start
,
4420 extent_map_end(em
) - 1,
4421 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
4423 remove_extent_mapping(map
, em
);
4424 /* once for the rb tree */
4425 free_extent_map(em
);
4427 start
= extent_map_end(em
);
4428 write_unlock(&map
->lock
);
4431 free_extent_map(em
);
4434 return try_release_extent_state(map
, tree
, page
, mask
);
4438 * helper function for fiemap, which doesn't want to see any holes.
4439 * This maps until we find something past 'last'
4441 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
4444 get_extent_t
*get_extent
)
4446 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
4447 struct extent_map
*em
;
4454 len
= last
- offset
;
4457 len
= ALIGN(len
, sectorsize
);
4458 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
4459 if (IS_ERR_OR_NULL(em
))
4462 /* if this isn't a hole return it */
4463 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
4464 em
->block_start
!= EXTENT_MAP_HOLE
) {
4468 /* this is a hole, advance to the next extent */
4469 offset
= extent_map_end(em
);
4470 free_extent_map(em
);
4477 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4478 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
4482 u64 max
= start
+ len
;
4486 u64 last_for_get_extent
= 0;
4488 u64 isize
= i_size_read(inode
);
4489 struct btrfs_key found_key
;
4490 struct extent_map
*em
= NULL
;
4491 struct extent_state
*cached_state
= NULL
;
4492 struct btrfs_path
*path
;
4493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4502 path
= btrfs_alloc_path();
4505 path
->leave_spinning
= 1;
4507 start
= round_down(start
, BTRFS_I(inode
)->root
->sectorsize
);
4508 len
= round_up(max
, BTRFS_I(inode
)->root
->sectorsize
) - start
;
4511 * lookup the last file extent. We're not using i_size here
4512 * because there might be preallocation past i_size
4514 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, btrfs_ino(inode
), -1,
4517 btrfs_free_path(path
);
4522 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
4523 found_type
= found_key
.type
;
4525 /* No extents, but there might be delalloc bits */
4526 if (found_key
.objectid
!= btrfs_ino(inode
) ||
4527 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4528 /* have to trust i_size as the end */
4530 last_for_get_extent
= isize
;
4533 * remember the start of the last extent. There are a
4534 * bunch of different factors that go into the length of the
4535 * extent, so its much less complex to remember where it started
4537 last
= found_key
.offset
;
4538 last_for_get_extent
= last
+ 1;
4540 btrfs_release_path(path
);
4543 * we might have some extents allocated but more delalloc past those
4544 * extents. so, we trust isize unless the start of the last extent is
4549 last_for_get_extent
= isize
;
4552 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1, 0,
4555 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
4565 u64 offset_in_extent
= 0;
4567 /* break if the extent we found is outside the range */
4568 if (em
->start
>= max
|| extent_map_end(em
) < off
)
4572 * get_extent may return an extent that starts before our
4573 * requested range. We have to make sure the ranges
4574 * we return to fiemap always move forward and don't
4575 * overlap, so adjust the offsets here
4577 em_start
= max(em
->start
, off
);
4580 * record the offset from the start of the extent
4581 * for adjusting the disk offset below. Only do this if the
4582 * extent isn't compressed since our in ram offset may be past
4583 * what we have actually allocated on disk.
4585 if (!test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4586 offset_in_extent
= em_start
- em
->start
;
4587 em_end
= extent_map_end(em
);
4588 em_len
= em_end
- em_start
;
4593 * bump off for our next call to get_extent
4595 off
= extent_map_end(em
);
4599 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
4601 flags
|= FIEMAP_EXTENT_LAST
;
4602 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
4603 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
4604 FIEMAP_EXTENT_NOT_ALIGNED
);
4605 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
4606 flags
|= (FIEMAP_EXTENT_DELALLOC
|
4607 FIEMAP_EXTENT_UNKNOWN
);
4608 } else if (fieinfo
->fi_extents_max
) {
4609 u64 bytenr
= em
->block_start
-
4610 (em
->start
- em
->orig_start
);
4612 disko
= em
->block_start
+ offset_in_extent
;
4615 * As btrfs supports shared space, this information
4616 * can be exported to userspace tools via
4617 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4618 * then we're just getting a count and we can skip the
4621 ret
= btrfs_check_shared(NULL
, root
->fs_info
,
4623 btrfs_ino(inode
), bytenr
);
4627 flags
|= FIEMAP_EXTENT_SHARED
;
4630 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
4631 flags
|= FIEMAP_EXTENT_ENCODED
;
4632 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4633 flags
|= FIEMAP_EXTENT_UNWRITTEN
;
4635 free_extent_map(em
);
4637 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
4638 (last
== (u64
)-1 && isize
<= em_end
)) {
4639 flags
|= FIEMAP_EXTENT_LAST
;
4643 /* now scan forward to see if this is really the last extent. */
4644 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
4651 flags
|= FIEMAP_EXTENT_LAST
;
4654 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
4663 free_extent_map(em
);
4665 btrfs_free_path(path
);
4666 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
- 1,
4667 &cached_state
, GFP_NOFS
);
4671 static void __free_extent_buffer(struct extent_buffer
*eb
)
4673 btrfs_leak_debug_del(&eb
->leak_list
);
4674 kmem_cache_free(extent_buffer_cache
, eb
);
4677 int extent_buffer_under_io(struct extent_buffer
*eb
)
4679 return (atomic_read(&eb
->io_pages
) ||
4680 test_bit(EXTENT_BUFFER_WRITEBACK
, &eb
->bflags
) ||
4681 test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4685 * Helper for releasing extent buffer page.
4687 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
)
4689 unsigned long index
;
4691 int mapped
= !test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4693 BUG_ON(extent_buffer_under_io(eb
));
4695 index
= num_extent_pages(eb
->start
, eb
->len
);
4701 page
= eb
->pages
[index
];
4705 spin_lock(&page
->mapping
->private_lock
);
4707 * We do this since we'll remove the pages after we've
4708 * removed the eb from the radix tree, so we could race
4709 * and have this page now attached to the new eb. So
4710 * only clear page_private if it's still connected to
4713 if (PagePrivate(page
) &&
4714 page
->private == (unsigned long)eb
) {
4715 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
4716 BUG_ON(PageDirty(page
));
4717 BUG_ON(PageWriteback(page
));
4719 * We need to make sure we haven't be attached
4722 ClearPagePrivate(page
);
4723 set_page_private(page
, 0);
4724 /* One for the page private */
4725 page_cache_release(page
);
4729 spin_unlock(&page
->mapping
->private_lock
);
4731 /* One for when we alloced the page */
4732 page_cache_release(page
);
4733 } while (index
!= 0);
4737 * Helper for releasing the extent buffer.
4739 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
4741 btrfs_release_extent_buffer_page(eb
);
4742 __free_extent_buffer(eb
);
4745 static struct extent_buffer
*
4746 __alloc_extent_buffer(struct btrfs_fs_info
*fs_info
, u64 start
,
4749 struct extent_buffer
*eb
= NULL
;
4751 eb
= kmem_cache_zalloc(extent_buffer_cache
, GFP_NOFS
|__GFP_NOFAIL
);
4754 eb
->fs_info
= fs_info
;
4756 rwlock_init(&eb
->lock
);
4757 atomic_set(&eb
->write_locks
, 0);
4758 atomic_set(&eb
->read_locks
, 0);
4759 atomic_set(&eb
->blocking_readers
, 0);
4760 atomic_set(&eb
->blocking_writers
, 0);
4761 atomic_set(&eb
->spinning_readers
, 0);
4762 atomic_set(&eb
->spinning_writers
, 0);
4763 eb
->lock_nested
= 0;
4764 init_waitqueue_head(&eb
->write_lock_wq
);
4765 init_waitqueue_head(&eb
->read_lock_wq
);
4767 btrfs_leak_debug_add(&eb
->leak_list
, &buffers
);
4769 spin_lock_init(&eb
->refs_lock
);
4770 atomic_set(&eb
->refs
, 1);
4771 atomic_set(&eb
->io_pages
, 0);
4774 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4776 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4777 > MAX_INLINE_EXTENT_BUFFER_SIZE
);
4778 BUG_ON(len
> MAX_INLINE_EXTENT_BUFFER_SIZE
);
4783 struct extent_buffer
*btrfs_clone_extent_buffer(struct extent_buffer
*src
)
4787 struct extent_buffer
*new;
4788 unsigned long num_pages
= num_extent_pages(src
->start
, src
->len
);
4790 new = __alloc_extent_buffer(src
->fs_info
, src
->start
, src
->len
);
4794 for (i
= 0; i
< num_pages
; i
++) {
4795 p
= alloc_page(GFP_NOFS
);
4797 btrfs_release_extent_buffer(new);
4800 attach_extent_buffer_page(new, p
);
4801 WARN_ON(PageDirty(p
));
4806 copy_extent_buffer(new, src
, 0, 0, src
->len
);
4807 set_bit(EXTENT_BUFFER_UPTODATE
, &new->bflags
);
4808 set_bit(EXTENT_BUFFER_DUMMY
, &new->bflags
);
4813 struct extent_buffer
*alloc_dummy_extent_buffer(struct btrfs_fs_info
*fs_info
,
4816 struct extent_buffer
*eb
;
4818 unsigned long num_pages
;
4823 * Called only from tests that don't always have a fs_info
4824 * available, but we know that nodesize is 4096
4828 len
= fs_info
->tree_root
->nodesize
;
4830 num_pages
= num_extent_pages(0, len
);
4832 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
4836 for (i
= 0; i
< num_pages
; i
++) {
4837 eb
->pages
[i
] = alloc_page(GFP_NOFS
);
4841 set_extent_buffer_uptodate(eb
);
4842 btrfs_set_header_nritems(eb
, 0);
4843 set_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
);
4848 __free_page(eb
->pages
[i
- 1]);
4849 __free_extent_buffer(eb
);
4853 static void check_buffer_tree_ref(struct extent_buffer
*eb
)
4856 /* the ref bit is tricky. We have to make sure it is set
4857 * if we have the buffer dirty. Otherwise the
4858 * code to free a buffer can end up dropping a dirty
4861 * Once the ref bit is set, it won't go away while the
4862 * buffer is dirty or in writeback, and it also won't
4863 * go away while we have the reference count on the
4866 * We can't just set the ref bit without bumping the
4867 * ref on the eb because free_extent_buffer might
4868 * see the ref bit and try to clear it. If this happens
4869 * free_extent_buffer might end up dropping our original
4870 * ref by mistake and freeing the page before we are able
4871 * to add one more ref.
4873 * So bump the ref count first, then set the bit. If someone
4874 * beat us to it, drop the ref we added.
4876 refs
= atomic_read(&eb
->refs
);
4877 if (refs
>= 2 && test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4880 spin_lock(&eb
->refs_lock
);
4881 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
4882 atomic_inc(&eb
->refs
);
4883 spin_unlock(&eb
->refs_lock
);
4886 static void mark_extent_buffer_accessed(struct extent_buffer
*eb
,
4887 struct page
*accessed
)
4889 unsigned long num_pages
, i
;
4891 check_buffer_tree_ref(eb
);
4893 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
4894 for (i
= 0; i
< num_pages
; i
++) {
4895 struct page
*p
= eb
->pages
[i
];
4898 mark_page_accessed(p
);
4902 struct extent_buffer
*find_extent_buffer(struct btrfs_fs_info
*fs_info
,
4905 struct extent_buffer
*eb
;
4908 eb
= radix_tree_lookup(&fs_info
->buffer_radix
,
4909 start
>> PAGE_CACHE_SHIFT
);
4910 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
4913 * Lock our eb's refs_lock to avoid races with
4914 * free_extent_buffer. When we get our eb it might be flagged
4915 * with EXTENT_BUFFER_STALE and another task running
4916 * free_extent_buffer might have seen that flag set,
4917 * eb->refs == 2, that the buffer isn't under IO (dirty and
4918 * writeback flags not set) and it's still in the tree (flag
4919 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4920 * of decrementing the extent buffer's reference count twice.
4921 * So here we could race and increment the eb's reference count,
4922 * clear its stale flag, mark it as dirty and drop our reference
4923 * before the other task finishes executing free_extent_buffer,
4924 * which would later result in an attempt to free an extent
4925 * buffer that is dirty.
4927 if (test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
)) {
4928 spin_lock(&eb
->refs_lock
);
4929 spin_unlock(&eb
->refs_lock
);
4931 mark_extent_buffer_accessed(eb
, NULL
);
4939 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4940 struct extent_buffer
*alloc_test_extent_buffer(struct btrfs_fs_info
*fs_info
,
4943 struct extent_buffer
*eb
, *exists
= NULL
;
4946 eb
= find_extent_buffer(fs_info
, start
);
4949 eb
= alloc_dummy_extent_buffer(fs_info
, start
);
4952 eb
->fs_info
= fs_info
;
4954 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
4957 spin_lock(&fs_info
->buffer_lock
);
4958 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
4959 start
>> PAGE_CACHE_SHIFT
, eb
);
4960 spin_unlock(&fs_info
->buffer_lock
);
4961 radix_tree_preload_end();
4962 if (ret
== -EEXIST
) {
4963 exists
= find_extent_buffer(fs_info
, start
);
4969 check_buffer_tree_ref(eb
);
4970 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
4973 * We will free dummy extent buffer's if they come into
4974 * free_extent_buffer with a ref count of 2, but if we are using this we
4975 * want the buffers to stay in memory until we're done with them, so
4976 * bump the ref count again.
4978 atomic_inc(&eb
->refs
);
4981 btrfs_release_extent_buffer(eb
);
4986 struct extent_buffer
*alloc_extent_buffer(struct btrfs_fs_info
*fs_info
,
4989 unsigned long len
= fs_info
->tree_root
->nodesize
;
4990 unsigned long num_pages
= num_extent_pages(start
, len
);
4992 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
4993 struct extent_buffer
*eb
;
4994 struct extent_buffer
*exists
= NULL
;
4996 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
5000 eb
= find_extent_buffer(fs_info
, start
);
5004 eb
= __alloc_extent_buffer(fs_info
, start
, len
);
5008 for (i
= 0; i
< num_pages
; i
++, index
++) {
5009 p
= find_or_create_page(mapping
, index
, GFP_NOFS
|__GFP_NOFAIL
);
5013 spin_lock(&mapping
->private_lock
);
5014 if (PagePrivate(p
)) {
5016 * We could have already allocated an eb for this page
5017 * and attached one so lets see if we can get a ref on
5018 * the existing eb, and if we can we know it's good and
5019 * we can just return that one, else we know we can just
5020 * overwrite page->private.
5022 exists
= (struct extent_buffer
*)p
->private;
5023 if (atomic_inc_not_zero(&exists
->refs
)) {
5024 spin_unlock(&mapping
->private_lock
);
5026 page_cache_release(p
);
5027 mark_extent_buffer_accessed(exists
, p
);
5033 * Do this so attach doesn't complain and we need to
5034 * drop the ref the old guy had.
5036 ClearPagePrivate(p
);
5037 WARN_ON(PageDirty(p
));
5038 page_cache_release(p
);
5040 attach_extent_buffer_page(eb
, p
);
5041 spin_unlock(&mapping
->private_lock
);
5042 WARN_ON(PageDirty(p
));
5044 if (!PageUptodate(p
))
5048 * see below about how we avoid a nasty race with release page
5049 * and why we unlock later
5053 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5055 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
5059 spin_lock(&fs_info
->buffer_lock
);
5060 ret
= radix_tree_insert(&fs_info
->buffer_radix
,
5061 start
>> PAGE_CACHE_SHIFT
, eb
);
5062 spin_unlock(&fs_info
->buffer_lock
);
5063 radix_tree_preload_end();
5064 if (ret
== -EEXIST
) {
5065 exists
= find_extent_buffer(fs_info
, start
);
5071 /* add one reference for the tree */
5072 check_buffer_tree_ref(eb
);
5073 set_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
);
5076 * there is a race where release page may have
5077 * tried to find this extent buffer in the radix
5078 * but failed. It will tell the VM it is safe to
5079 * reclaim the, and it will clear the page private bit.
5080 * We must make sure to set the page private bit properly
5081 * after the extent buffer is in the radix tree so
5082 * it doesn't get lost
5084 SetPageChecked(eb
->pages
[0]);
5085 for (i
= 1; i
< num_pages
; i
++) {
5087 ClearPageChecked(p
);
5090 unlock_page(eb
->pages
[0]);
5094 WARN_ON(!atomic_dec_and_test(&eb
->refs
));
5095 for (i
= 0; i
< num_pages
; i
++) {
5097 unlock_page(eb
->pages
[i
]);
5100 btrfs_release_extent_buffer(eb
);
5104 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
5106 struct extent_buffer
*eb
=
5107 container_of(head
, struct extent_buffer
, rcu_head
);
5109 __free_extent_buffer(eb
);
5112 /* Expects to have eb->eb_lock already held */
5113 static int release_extent_buffer(struct extent_buffer
*eb
)
5115 WARN_ON(atomic_read(&eb
->refs
) == 0);
5116 if (atomic_dec_and_test(&eb
->refs
)) {
5117 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE
, &eb
->bflags
)) {
5118 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
5120 spin_unlock(&eb
->refs_lock
);
5122 spin_lock(&fs_info
->buffer_lock
);
5123 radix_tree_delete(&fs_info
->buffer_radix
,
5124 eb
->start
>> PAGE_CACHE_SHIFT
);
5125 spin_unlock(&fs_info
->buffer_lock
);
5127 spin_unlock(&eb
->refs_lock
);
5130 /* Should be safe to release our pages at this point */
5131 btrfs_release_extent_buffer_page(eb
);
5132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5133 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))) {
5134 __free_extent_buffer(eb
);
5138 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);
5141 spin_unlock(&eb
->refs_lock
);
5146 void free_extent_buffer(struct extent_buffer
*eb
)
5154 refs
= atomic_read(&eb
->refs
);
5157 old
= atomic_cmpxchg(&eb
->refs
, refs
, refs
- 1);
5162 spin_lock(&eb
->refs_lock
);
5163 if (atomic_read(&eb
->refs
) == 2 &&
5164 test_bit(EXTENT_BUFFER_DUMMY
, &eb
->bflags
))
5165 atomic_dec(&eb
->refs
);
5167 if (atomic_read(&eb
->refs
) == 2 &&
5168 test_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
) &&
5169 !extent_buffer_under_io(eb
) &&
5170 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5171 atomic_dec(&eb
->refs
);
5174 * I know this is terrible, but it's temporary until we stop tracking
5175 * the uptodate bits and such for the extent buffers.
5177 release_extent_buffer(eb
);
5180 void free_extent_buffer_stale(struct extent_buffer
*eb
)
5185 spin_lock(&eb
->refs_lock
);
5186 set_bit(EXTENT_BUFFER_STALE
, &eb
->bflags
);
5188 if (atomic_read(&eb
->refs
) == 2 && !extent_buffer_under_io(eb
) &&
5189 test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
))
5190 atomic_dec(&eb
->refs
);
5191 release_extent_buffer(eb
);
5194 void clear_extent_buffer_dirty(struct extent_buffer
*eb
)
5197 unsigned long num_pages
;
5200 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5202 for (i
= 0; i
< num_pages
; i
++) {
5203 page
= eb
->pages
[i
];
5204 if (!PageDirty(page
))
5208 WARN_ON(!PagePrivate(page
));
5210 clear_page_dirty_for_io(page
);
5211 spin_lock_irq(&page
->mapping
->tree_lock
);
5212 if (!PageDirty(page
)) {
5213 radix_tree_tag_clear(&page
->mapping
->page_tree
,
5215 PAGECACHE_TAG_DIRTY
);
5217 spin_unlock_irq(&page
->mapping
->tree_lock
);
5218 ClearPageError(page
);
5221 WARN_ON(atomic_read(&eb
->refs
) == 0);
5224 int set_extent_buffer_dirty(struct extent_buffer
*eb
)
5227 unsigned long num_pages
;
5230 check_buffer_tree_ref(eb
);
5232 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
5234 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5235 WARN_ON(atomic_read(&eb
->refs
) == 0);
5236 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
));
5238 for (i
= 0; i
< num_pages
; i
++)
5239 set_page_dirty(eb
->pages
[i
]);
5243 int clear_extent_buffer_uptodate(struct extent_buffer
*eb
)
5247 unsigned long num_pages
;
5249 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5250 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5251 for (i
= 0; i
< num_pages
; i
++) {
5252 page
= eb
->pages
[i
];
5254 ClearPageUptodate(page
);
5259 int set_extent_buffer_uptodate(struct extent_buffer
*eb
)
5263 unsigned long num_pages
;
5265 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5266 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5267 for (i
= 0; i
< num_pages
; i
++) {
5268 page
= eb
->pages
[i
];
5269 SetPageUptodate(page
);
5274 int extent_buffer_uptodate(struct extent_buffer
*eb
)
5276 return test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5279 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
5280 struct extent_buffer
*eb
, u64 start
, int wait
,
5281 get_extent_t
*get_extent
, int mirror_num
)
5284 unsigned long start_i
;
5288 int locked_pages
= 0;
5289 int all_uptodate
= 1;
5290 unsigned long num_pages
;
5291 unsigned long num_reads
= 0;
5292 struct bio
*bio
= NULL
;
5293 unsigned long bio_flags
= 0;
5295 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
5299 WARN_ON(start
< eb
->start
);
5300 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
5301 (eb
->start
>> PAGE_CACHE_SHIFT
);
5306 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
5307 for (i
= start_i
; i
< num_pages
; i
++) {
5308 page
= eb
->pages
[i
];
5309 if (wait
== WAIT_NONE
) {
5310 if (!trylock_page(page
))
5318 * We need to firstly lock all pages to make sure that
5319 * the uptodate bit of our pages won't be affected by
5320 * clear_extent_buffer_uptodate().
5322 for (i
= start_i
; i
< num_pages
; i
++) {
5323 page
= eb
->pages
[i
];
5324 if (!PageUptodate(page
)) {
5332 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
5336 clear_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
5337 eb
->read_mirror
= 0;
5338 atomic_set(&eb
->io_pages
, num_reads
);
5339 for (i
= start_i
; i
< num_pages
; i
++) {
5340 page
= eb
->pages
[i
];
5341 if (!PageUptodate(page
)) {
5342 ClearPageError(page
);
5343 err
= __extent_read_full_page(tree
, page
,
5345 mirror_num
, &bio_flags
,
5355 err
= submit_one_bio(READ
| REQ_META
, bio
, mirror_num
,
5361 if (ret
|| wait
!= WAIT_COMPLETE
)
5364 for (i
= start_i
; i
< num_pages
; i
++) {
5365 page
= eb
->pages
[i
];
5366 wait_on_page_locked(page
);
5367 if (!PageUptodate(page
))
5375 while (locked_pages
> 0) {
5376 page
= eb
->pages
[i
];
5384 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
5385 unsigned long start
,
5392 char *dst
= (char *)dstv
;
5393 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5394 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5396 WARN_ON(start
> eb
->len
);
5397 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5399 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5402 page
= eb
->pages
[i
];
5404 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5405 kaddr
= page_address(page
);
5406 memcpy(dst
, kaddr
+ offset
, cur
);
5415 int read_extent_buffer_to_user(struct extent_buffer
*eb
, void __user
*dstv
,
5416 unsigned long start
,
5423 char __user
*dst
= (char __user
*)dstv
;
5424 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5425 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5428 WARN_ON(start
> eb
->len
);
5429 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5431 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5434 page
= eb
->pages
[i
];
5436 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5437 kaddr
= page_address(page
);
5438 if (copy_to_user(dst
, kaddr
+ offset
, cur
)) {
5452 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
5453 unsigned long min_len
, char **map
,
5454 unsigned long *map_start
,
5455 unsigned long *map_len
)
5457 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
5460 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5461 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5462 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
5469 offset
= start_offset
;
5473 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
5476 if (start
+ min_len
> eb
->len
) {
5477 WARN(1, KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
5479 eb
->start
, eb
->len
, start
, min_len
);
5484 kaddr
= page_address(p
);
5485 *map
= kaddr
+ offset
;
5486 *map_len
= PAGE_CACHE_SIZE
- offset
;
5490 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
5491 unsigned long start
,
5498 char *ptr
= (char *)ptrv
;
5499 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5500 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5503 WARN_ON(start
> eb
->len
);
5504 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5506 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5509 page
= eb
->pages
[i
];
5511 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
5513 kaddr
= page_address(page
);
5514 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
5526 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
5527 unsigned long start
, unsigned long len
)
5533 char *src
= (char *)srcv
;
5534 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5535 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5537 WARN_ON(start
> eb
->len
);
5538 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5540 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5543 page
= eb
->pages
[i
];
5544 WARN_ON(!PageUptodate(page
));
5546 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5547 kaddr
= page_address(page
);
5548 memcpy(kaddr
+ offset
, src
, cur
);
5557 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
5558 unsigned long start
, unsigned long len
)
5564 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5565 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
5567 WARN_ON(start
> eb
->len
);
5568 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
5570 offset
= (start_offset
+ start
) & (PAGE_CACHE_SIZE
- 1);
5573 page
= eb
->pages
[i
];
5574 WARN_ON(!PageUptodate(page
));
5576 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
5577 kaddr
= page_address(page
);
5578 memset(kaddr
+ offset
, c
, cur
);
5586 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
5587 unsigned long dst_offset
, unsigned long src_offset
,
5590 u64 dst_len
= dst
->len
;
5595 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5596 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5598 WARN_ON(src
->len
!= dst_len
);
5600 offset
= (start_offset
+ dst_offset
) &
5601 (PAGE_CACHE_SIZE
- 1);
5604 page
= dst
->pages
[i
];
5605 WARN_ON(!PageUptodate(page
));
5607 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
5609 kaddr
= page_address(page
);
5610 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
5619 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
5621 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
5622 return distance
< len
;
5625 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
5626 unsigned long dst_off
, unsigned long src_off
,
5629 char *dst_kaddr
= page_address(dst_page
);
5631 int must_memmove
= 0;
5633 if (dst_page
!= src_page
) {
5634 src_kaddr
= page_address(src_page
);
5636 src_kaddr
= dst_kaddr
;
5637 if (areas_overlap(src_off
, dst_off
, len
))
5642 memmove(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5644 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
5647 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5648 unsigned long src_offset
, unsigned long len
)
5651 size_t dst_off_in_page
;
5652 size_t src_off_in_page
;
5653 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5654 unsigned long dst_i
;
5655 unsigned long src_i
;
5657 if (src_offset
+ len
> dst
->len
) {
5658 btrfs_err(dst
->fs_info
,
5659 "memmove bogus src_offset %lu move "
5660 "len %lu dst len %lu", src_offset
, len
, dst
->len
);
5663 if (dst_offset
+ len
> dst
->len
) {
5664 btrfs_err(dst
->fs_info
,
5665 "memmove bogus dst_offset %lu move "
5666 "len %lu dst len %lu", dst_offset
, len
, dst
->len
);
5671 dst_off_in_page
= (start_offset
+ dst_offset
) &
5672 (PAGE_CACHE_SIZE
- 1);
5673 src_off_in_page
= (start_offset
+ src_offset
) &
5674 (PAGE_CACHE_SIZE
- 1);
5676 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
5677 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
5679 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
5681 cur
= min_t(unsigned long, cur
,
5682 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
5684 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5685 dst_off_in_page
, src_off_in_page
, cur
);
5693 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
5694 unsigned long src_offset
, unsigned long len
)
5697 size_t dst_off_in_page
;
5698 size_t src_off_in_page
;
5699 unsigned long dst_end
= dst_offset
+ len
- 1;
5700 unsigned long src_end
= src_offset
+ len
- 1;
5701 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
5702 unsigned long dst_i
;
5703 unsigned long src_i
;
5705 if (src_offset
+ len
> dst
->len
) {
5706 btrfs_err(dst
->fs_info
, "memmove bogus src_offset %lu move "
5707 "len %lu len %lu", src_offset
, len
, dst
->len
);
5710 if (dst_offset
+ len
> dst
->len
) {
5711 btrfs_err(dst
->fs_info
, "memmove bogus dst_offset %lu move "
5712 "len %lu len %lu", dst_offset
, len
, dst
->len
);
5715 if (dst_offset
< src_offset
) {
5716 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
5720 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
5721 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
5723 dst_off_in_page
= (start_offset
+ dst_end
) &
5724 (PAGE_CACHE_SIZE
- 1);
5725 src_off_in_page
= (start_offset
+ src_end
) &
5726 (PAGE_CACHE_SIZE
- 1);
5728 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
5729 cur
= min(cur
, dst_off_in_page
+ 1);
5730 copy_pages(dst
->pages
[dst_i
], dst
->pages
[src_i
],
5731 dst_off_in_page
- cur
+ 1,
5732 src_off_in_page
- cur
+ 1, cur
);
5740 int try_release_extent_buffer(struct page
*page
)
5742 struct extent_buffer
*eb
;
5745 * We need to make sure noboody is attaching this page to an eb right
5748 spin_lock(&page
->mapping
->private_lock
);
5749 if (!PagePrivate(page
)) {
5750 spin_unlock(&page
->mapping
->private_lock
);
5754 eb
= (struct extent_buffer
*)page
->private;
5758 * This is a little awful but should be ok, we need to make sure that
5759 * the eb doesn't disappear out from under us while we're looking at
5762 spin_lock(&eb
->refs_lock
);
5763 if (atomic_read(&eb
->refs
) != 1 || extent_buffer_under_io(eb
)) {
5764 spin_unlock(&eb
->refs_lock
);
5765 spin_unlock(&page
->mapping
->private_lock
);
5768 spin_unlock(&page
->mapping
->private_lock
);
5771 * If tree ref isn't set then we know the ref on this eb is a real ref,
5772 * so just return, this page will likely be freed soon anyway.
5774 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF
, &eb
->bflags
)) {
5775 spin_unlock(&eb
->refs_lock
);
5779 return release_extent_buffer(eb
);