Btrfs: memset to avoid stale content in btree leaf
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
bloba2fff9a0fe9185da5a36d3abd2b8178bed885c69
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
28 static inline bool extent_state_in_tree(const struct extent_state *state)
30 return !RB_EMPTY_NODE(&state->rb_node);
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
37 static DEFINE_SPINLOCK(leak_lock);
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 unsigned long flags;
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
52 unsigned long flags;
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
59 static inline
60 void btrfs_leak_debug_check(void)
62 struct extent_state *state;
63 struct extent_buffer *eb;
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
70 atomic_read(&state->refs));
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
90 struct inode *inode;
91 u64 isize;
93 if (!tree->mapping)
94 return;
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
111 #define BUFFER_LRU_MAX 64
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
128 unsigned int extent_locked:1;
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
138 int ret;
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
155 tree_fs_info(struct extent_io_tree *tree)
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
162 int __init extent_io_init(void)
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
184 return 0;
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
200 void extent_io_exit(void)
202 btrfs_leak_debug_check();
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
208 rcu_barrier();
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
217 void extent_io_tree_init(struct extent_io_tree *tree,
218 struct address_space *mapping)
220 tree->state = RB_ROOT;
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
223 spin_lock_init(&tree->lock);
224 tree->mapping = mapping;
227 static struct extent_state *alloc_extent_state(gfp_t mask)
229 struct extent_state *state;
231 state = kmem_cache_alloc(extent_state_cache, mask);
232 if (!state)
233 return state;
234 state->state = 0;
235 state->private = 0;
236 RB_CLEAR_NODE(&state->rb_node);
237 btrfs_leak_debug_add(&state->leak_list, &states);
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
240 trace_alloc_extent_state(state, mask, _RET_IP_);
241 return state;
244 void free_extent_state(struct extent_state *state)
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
249 WARN_ON(extent_state_in_tree(state));
250 btrfs_leak_debug_del(&state->leak_list);
251 trace_free_extent_state(state, _RET_IP_);
252 kmem_cache_free(extent_state_cache, state);
256 static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
263 struct rb_node **p;
264 struct rb_node *parent = NULL;
265 struct tree_entry *entry;
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
273 p = search_start ? &search_start : &root->rb_node;
274 while (*p) {
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
286 do_insert:
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
292 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
298 struct rb_root *root = &tree->state;
299 struct rb_node **n = &root->rb_node;
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
308 prev_entry = entry;
310 if (offset < entry->start)
311 n = &(*n)->rb_left;
312 else if (offset > entry->end)
313 n = &(*n)->rb_right;
314 else
315 return *n;
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
323 if (prev_ret) {
324 orig_prev = prev;
325 while (prev && offset > prev_entry->end) {
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 *prev_ret = prev;
330 prev = orig_prev;
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
335 while (prev && offset < prev_entry->start) {
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
339 *next_ret = prev;
341 return NULL;
344 static inline struct rb_node *
345 tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
350 struct rb_node *prev = NULL;
351 struct rb_node *ret;
353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
354 if (!ret)
355 return prev;
356 return ret;
359 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
362 return tree_search_for_insert(tree, offset, NULL, NULL);
365 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
380 * This should be called with the tree lock held.
382 static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
385 struct extent_state *other;
386 struct rb_node *other_node;
388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
389 return;
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
396 merge_cb(tree, state, other);
397 state->start = other->start;
398 rb_erase(&other->rb_node, &tree->state);
399 RB_CLEAR_NODE(&other->rb_node);
400 free_extent_state(other);
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
408 merge_cb(tree, state, other);
409 state->end = other->end;
410 rb_erase(&other->rb_node, &tree->state);
411 RB_CLEAR_NODE(&other->rb_node);
412 free_extent_state(other);
417 static void set_state_cb(struct extent_io_tree *tree,
418 struct extent_state *state, unsigned *bits)
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
424 static void clear_state_cb(struct extent_io_tree *tree,
425 struct extent_state *state, unsigned *bits)
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
431 static void set_state_bits(struct extent_io_tree *tree,
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
445 static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
447 struct rb_node ***p,
448 struct rb_node **parent,
449 unsigned *bits, struct extent_changeset *changeset)
451 struct rb_node *node;
453 if (end < start)
454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
455 end, start);
456 state->start = start;
457 state->end = end;
459 set_state_bits(tree, state, bits, changeset);
461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
466 "%llu %llu\n",
467 found->start, found->end, start, end);
468 return -EEXIST;
470 merge_state(tree, state);
471 return 0;
474 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
475 u64 split)
477 if (tree->ops && tree->ops->split_extent_hook)
478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
495 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
498 struct rb_node *node;
500 split_cb(tree, orig, split);
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
509 if (node) {
510 free_extent_state(prealloc);
511 return -EEXIST;
513 return 0;
516 static struct extent_state *next_state(struct extent_state *state)
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
526 * utility function to clear some bits in an extent state struct.
527 * it will optionally wake up any one waiting on this state (wake == 1).
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
532 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
537 struct extent_state *next;
538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
545 clear_state_cb(tree, state, bits);
546 add_extent_changeset(state, bits_to_clear, changeset, 0);
547 state->state &= ~bits_to_clear;
548 if (wake)
549 wake_up(&state->wq);
550 if (state->state == 0) {
551 next = next_state(state);
552 if (extent_state_in_tree(state)) {
553 rb_erase(&state->rb_node, &tree->state);
554 RB_CLEAR_NODE(&state->rb_node);
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
559 } else {
560 merge_state(tree, state);
561 next = next_state(state);
563 return next;
566 static struct extent_state *
567 alloc_extent_state_atomic(struct extent_state *prealloc)
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
572 return prealloc;
575 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
590 * the range [start, end] is inclusive.
592 * This takes the tree lock, and returns 0 on success and < 0 on error.
594 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
599 struct extent_state *state;
600 struct extent_state *cached;
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
603 u64 last_end;
604 int err;
605 int clear = 0;
607 btrfs_debug_check_extent_io_range(tree, start, end);
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
618 again:
619 if (!prealloc && gfpflags_allow_blocking(mask)) {
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
627 prealloc = alloc_extent_state(mask);
630 spin_lock(&tree->lock);
631 if (cached_state) {
632 cached = *cached_state;
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
641 if (clear)
642 atomic_dec(&cached->refs);
643 state = cached;
644 goto hit_next;
646 if (clear)
647 free_extent_state(cached);
650 * this search will find the extents that end after
651 * our range starts
653 node = tree_search(tree, start);
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
657 hit_next:
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
661 last_end = state->end;
663 /* the state doesn't have the wanted bits, go ahead */
664 if (!(state->state & bits)) {
665 state = next_state(state);
666 goto next;
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
674 * We need to split the extent we found, and may flip
675 * bits on second half.
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
685 if (state->start < start) {
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
688 err = split_state(tree, state, prealloc, start);
689 if (err)
690 extent_io_tree_panic(tree, err);
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
698 goto next;
700 goto search_again;
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
708 if (state->start <= end && state->end > end) {
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
711 err = split_state(tree, state, prealloc, end + 1);
712 if (err)
713 extent_io_tree_panic(tree, err);
715 if (wake)
716 wake_up(&state->wq);
718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
720 prealloc = NULL;
721 goto out;
724 state = clear_state_bit(tree, state, &bits, wake, changeset);
725 next:
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
729 if (start <= end && state && !need_resched())
730 goto hit_next;
731 goto search_again;
733 out:
734 spin_unlock(&tree->lock);
735 if (prealloc)
736 free_extent_state(prealloc);
738 return 0;
740 search_again:
741 if (start > end)
742 goto out;
743 spin_unlock(&tree->lock);
744 if (gfpflags_allow_blocking(mask))
745 cond_resched();
746 goto again;
749 static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
751 __releases(tree->lock)
752 __acquires(tree->lock)
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
756 spin_unlock(&tree->lock);
757 schedule();
758 spin_lock(&tree->lock);
759 finish_wait(&state->wq, &wait);
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
767 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
770 struct extent_state *state;
771 struct rb_node *node;
773 btrfs_debug_check_extent_io_range(tree, start, end);
775 spin_lock(&tree->lock);
776 again:
777 while (1) {
779 * this search will find all the extents that end after
780 * our range starts
782 node = tree_search(tree, start);
783 process_node:
784 if (!node)
785 break;
787 state = rb_entry(node, struct extent_state, rb_node);
789 if (state->start > end)
790 goto out;
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
799 start = state->end + 1;
801 if (start > end)
802 break;
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
809 out:
810 spin_unlock(&tree->lock);
813 static void set_state_bits(struct extent_io_tree *tree,
814 struct extent_state *state,
815 unsigned *bits, struct extent_changeset *changeset)
817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
819 set_state_cb(tree, state, bits);
820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
824 add_extent_changeset(state, bits_to_set, changeset, 1);
825 state->state |= bits_to_set;
828 static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
830 unsigned flags)
832 if (cached_ptr && !(*cached_ptr)) {
833 if (!flags || (state->state & flags)) {
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
840 static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
855 * [start, end] is inclusive This takes the tree lock.
858 static int __must_check
859 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
860 unsigned bits, unsigned exclusive_bits,
861 u64 *failed_start, struct extent_state **cached_state,
862 gfp_t mask, struct extent_changeset *changeset)
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
867 struct rb_node **p;
868 struct rb_node *parent;
869 int err = 0;
870 u64 last_start;
871 u64 last_end;
873 btrfs_debug_check_extent_io_range(tree, start, end);
875 bits |= EXTENT_FIRST_DELALLOC;
876 again:
877 if (!prealloc && gfpflags_allow_blocking(mask)) {
878 prealloc = alloc_extent_state(mask);
879 BUG_ON(!prealloc);
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
892 * this search will find all the extents that end after
893 * our range starts.
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
908 state = rb_entry(node, struct extent_state, rb_node);
909 hit_next:
910 last_start = state->start;
911 last_end = state->end;
914 * | ---- desired range ---- |
915 * | state |
917 * Just lock what we found and keep going
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
945 * We need to split the extent we found, and may flip bits on
946 * second half.
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
983 goto search_again;
986 * | ---- desired range ---- |
987 * | state | or | state |
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1042 goto search_again;
1044 out:
1045 spin_unlock(&tree->lock);
1046 if (prealloc)
1047 free_extent_state(prealloc);
1049 return err;
1051 search_again:
1052 if (start > end)
1053 goto out;
1054 spin_unlock(&tree->lock);
1055 if (gfpflags_allow_blocking(mask))
1056 cond_resched();
1057 goto again;
1060 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1061 unsigned bits, u64 * failed_start,
1062 struct extent_state **cached_state, gfp_t mask)
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1065 cached_state, mask, NULL);
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
1077 * @cached_state: state that we're going to cache
1078 * @mask: the allocation mask
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1086 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state, gfp_t mask)
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1102 again:
1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1111 prealloc = alloc_extent_state(mask);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1127 * this search will find all the extents that end after
1128 * our range starts.
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1145 state = rb_entry(node, struct extent_state, rb_node);
1146 hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1151 * | ---- desired range ---- |
1152 * | state |
1154 * Just lock what we found and keep going
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1209 goto search_again;
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1268 goto search_again;
1270 out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1275 return err;
1277 search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
1281 if (gfpflags_allow_blocking(mask))
1282 cond_resched();
1283 first_iteration = false;
1284 goto again;
1287 /* wrappers around set/clear extent bit */
1288 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1292 NULL, mask);
1295 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, gfp_t mask)
1298 return set_extent_bit(tree, start, end, bits, NULL,
1299 NULL, mask);
1302 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1312 BUG_ON(bits & EXTENT_LOCKED);
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1318 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1326 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1327 unsigned bits, gfp_t mask)
1329 int wake = 0;
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
1337 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1345 BUG_ON(bits & EXTENT_LOCKED);
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1351 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1352 struct extent_state **cached_state, gfp_t mask)
1354 return set_extent_bit(tree, start, end,
1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
1356 NULL, cached_state, mask);
1359 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1367 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1370 return clear_extent_bit(tree, start, end,
1371 EXTENT_DIRTY | EXTENT_DELALLOC |
1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1375 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1379 NULL, mask);
1382 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1383 struct extent_state **cached_state, gfp_t mask)
1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1386 cached_state, mask);
1389 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1393 cached_state, mask);
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1400 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1401 unsigned bits, struct extent_state **cached_state)
1403 int err;
1404 u64 failed_start;
1406 while (1) {
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
1409 cached_state, GFP_NOFS, NULL);
1410 if (err == -EEXIST) {
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
1413 } else
1414 break;
1415 WARN_ON(start > end);
1417 return err;
1420 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1422 return lock_extent_bits(tree, start, end, 0, NULL);
1425 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1427 int err;
1428 u64 failed_start;
1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1431 &failed_start, NULL, GFP_NOFS, NULL);
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1436 return 0;
1438 return 1;
1441 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1448 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1451 GFP_NOFS);
1454 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1467 return 0;
1470 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1472 unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474 struct page *page;
1476 while (index <= end_index) {
1477 page = find_get_page(inode->i_mapping, index);
1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1479 __set_page_dirty_nobuffers(page);
1480 account_page_redirty(page);
1481 page_cache_release(page);
1482 index++;
1484 return 0;
1488 * helper function to set both pages and extents in the tree writeback
1490 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1492 unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494 struct page *page;
1496 while (index <= end_index) {
1497 page = find_get_page(tree->mapping, index);
1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1499 set_page_writeback(page);
1500 page_cache_release(page);
1501 index++;
1503 return 0;
1506 /* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1510 static struct extent_state *
1511 find_first_extent_bit_state(struct extent_io_tree *tree,
1512 u64 start, unsigned bits)
1514 struct rb_node *node;
1515 struct extent_state *state;
1518 * this search will find all the extents that end after
1519 * our range starts.
1521 node = tree_search(tree, start);
1522 if (!node)
1523 goto out;
1525 while (1) {
1526 state = rb_entry(node, struct extent_state, rb_node);
1527 if (state->end >= start && (state->state & bits))
1528 return state;
1530 node = rb_next(node);
1531 if (!node)
1532 break;
1534 out:
1535 return NULL;
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1543 * If nothing was found, 1 is returned. If found something, return 0.
1545 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1546 u64 *start_ret, u64 *end_ret, unsigned bits,
1547 struct extent_state **cached_state)
1549 struct extent_state *state;
1550 struct rb_node *n;
1551 int ret = 1;
1553 spin_lock(&tree->lock);
1554 if (cached_state && *cached_state) {
1555 state = *cached_state;
1556 if (state->end == start - 1 && extent_state_in_tree(state)) {
1557 n = rb_next(&state->rb_node);
1558 while (n) {
1559 state = rb_entry(n, struct extent_state,
1560 rb_node);
1561 if (state->state & bits)
1562 goto got_it;
1563 n = rb_next(n);
1565 free_extent_state(*cached_state);
1566 *cached_state = NULL;
1567 goto out;
1569 free_extent_state(*cached_state);
1570 *cached_state = NULL;
1573 state = find_first_extent_bit_state(tree, start, bits);
1574 got_it:
1575 if (state) {
1576 cache_state_if_flags(state, cached_state, 0);
1577 *start_ret = state->start;
1578 *end_ret = state->end;
1579 ret = 0;
1581 out:
1582 spin_unlock(&tree->lock);
1583 return ret;
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1592 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1593 u64 *start, u64 *end, u64 max_bytes,
1594 struct extent_state **cached_state)
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1599 u64 found = 0;
1600 u64 total_bytes = 0;
1602 spin_lock(&tree->lock);
1605 * this search will find all the extents that end after
1606 * our range starts.
1608 node = tree_search(tree, cur_start);
1609 if (!node) {
1610 if (!found)
1611 *end = (u64)-1;
1612 goto out;
1615 while (1) {
1616 state = rb_entry(node, struct extent_state, rb_node);
1617 if (found && (state->start != cur_start ||
1618 (state->state & EXTENT_BOUNDARY))) {
1619 goto out;
1621 if (!(state->state & EXTENT_DELALLOC)) {
1622 if (!found)
1623 *end = state->end;
1624 goto out;
1626 if (!found) {
1627 *start = state->start;
1628 *cached_state = state;
1629 atomic_inc(&state->refs);
1631 found++;
1632 *end = state->end;
1633 cur_start = state->end + 1;
1634 node = rb_next(node);
1635 total_bytes += state->end - state->start + 1;
1636 if (total_bytes >= max_bytes)
1637 break;
1638 if (!node)
1639 break;
1641 out:
1642 spin_unlock(&tree->lock);
1643 return found;
1646 static noinline void __unlock_for_delalloc(struct inode *inode,
1647 struct page *locked_page,
1648 u64 start, u64 end)
1650 int ret;
1651 struct page *pages[16];
1652 unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 unsigned long nr_pages = end_index - index + 1;
1655 int i;
1657 if (index == locked_page->index && end_index == index)
1658 return;
1660 while (nr_pages > 0) {
1661 ret = find_get_pages_contig(inode->i_mapping, index,
1662 min_t(unsigned long, nr_pages,
1663 ARRAY_SIZE(pages)), pages);
1664 for (i = 0; i < ret; i++) {
1665 if (pages[i] != locked_page)
1666 unlock_page(pages[i]);
1667 page_cache_release(pages[i]);
1669 nr_pages -= ret;
1670 index += ret;
1671 cond_resched();
1675 static noinline int lock_delalloc_pages(struct inode *inode,
1676 struct page *locked_page,
1677 u64 delalloc_start,
1678 u64 delalloc_end)
1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 unsigned long start_index = index;
1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 unsigned long pages_locked = 0;
1684 struct page *pages[16];
1685 unsigned long nrpages;
1686 int ret;
1687 int i;
1689 /* the caller is responsible for locking the start index */
1690 if (index == locked_page->index && index == end_index)
1691 return 0;
1693 /* skip the page at the start index */
1694 nrpages = end_index - index + 1;
1695 while (nrpages > 0) {
1696 ret = find_get_pages_contig(inode->i_mapping, index,
1697 min_t(unsigned long,
1698 nrpages, ARRAY_SIZE(pages)), pages);
1699 if (ret == 0) {
1700 ret = -EAGAIN;
1701 goto done;
1703 /* now we have an array of pages, lock them all */
1704 for (i = 0; i < ret; i++) {
1706 * the caller is taking responsibility for
1707 * locked_page
1709 if (pages[i] != locked_page) {
1710 lock_page(pages[i]);
1711 if (!PageDirty(pages[i]) ||
1712 pages[i]->mapping != inode->i_mapping) {
1713 ret = -EAGAIN;
1714 unlock_page(pages[i]);
1715 page_cache_release(pages[i]);
1716 goto done;
1719 page_cache_release(pages[i]);
1720 pages_locked++;
1722 nrpages -= ret;
1723 index += ret;
1724 cond_resched();
1726 ret = 0;
1727 done:
1728 if (ret && pages_locked) {
1729 __unlock_for_delalloc(inode, locked_page,
1730 delalloc_start,
1731 ((u64)(start_index + pages_locked - 1)) <<
1732 PAGE_CACHE_SHIFT);
1734 return ret;
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1743 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 struct extent_io_tree *tree,
1745 struct page *locked_page, u64 *start,
1746 u64 *end, u64 max_bytes)
1748 u64 delalloc_start;
1749 u64 delalloc_end;
1750 u64 found;
1751 struct extent_state *cached_state = NULL;
1752 int ret;
1753 int loops = 0;
1755 again:
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start = *start;
1758 delalloc_end = 0;
1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1760 max_bytes, &cached_state);
1761 if (!found || delalloc_end <= *start) {
1762 *start = delalloc_start;
1763 *end = delalloc_end;
1764 free_extent_state(cached_state);
1765 return 0;
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1771 * locked_page
1773 if (delalloc_start < *start)
1774 delalloc_start = *start;
1777 * make sure to limit the number of pages we try to lock down
1779 if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 delalloc_end = delalloc_start + max_bytes - 1;
1782 /* step two, lock all the pages after the page that has start */
1783 ret = lock_delalloc_pages(inode, locked_page,
1784 delalloc_start, delalloc_end);
1785 if (ret == -EAGAIN) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1789 free_extent_state(cached_state);
1790 cached_state = NULL;
1791 if (!loops) {
1792 max_bytes = PAGE_CACHE_SIZE;
1793 loops = 1;
1794 goto again;
1795 } else {
1796 found = 0;
1797 goto out_failed;
1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1802 /* step three, lock the state bits for the whole range */
1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1805 /* then test to make sure it is all still delalloc */
1806 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1807 EXTENT_DELALLOC, 1, cached_state);
1808 if (!ret) {
1809 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 &cached_state, GFP_NOFS);
1811 __unlock_for_delalloc(inode, locked_page,
1812 delalloc_start, delalloc_end);
1813 cond_resched();
1814 goto again;
1816 free_extent_state(cached_state);
1817 *start = delalloc_start;
1818 *end = delalloc_end;
1819 out_failed:
1820 return found;
1823 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824 struct page *locked_page,
1825 unsigned clear_bits,
1826 unsigned long page_ops)
1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1829 int ret;
1830 struct page *pages[16];
1831 unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 unsigned long nr_pages = end_index - index + 1;
1834 int i;
1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1837 if (page_ops == 0)
1838 return 0;
1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 mapping_set_error(inode->i_mapping, -EIO);
1843 while (nr_pages > 0) {
1844 ret = find_get_pages_contig(inode->i_mapping, index,
1845 min_t(unsigned long,
1846 nr_pages, ARRAY_SIZE(pages)), pages);
1847 for (i = 0; i < ret; i++) {
1849 if (page_ops & PAGE_SET_PRIVATE2)
1850 SetPagePrivate2(pages[i]);
1852 if (pages[i] == locked_page) {
1853 page_cache_release(pages[i]);
1854 continue;
1856 if (page_ops & PAGE_CLEAR_DIRTY)
1857 clear_page_dirty_for_io(pages[i]);
1858 if (page_ops & PAGE_SET_WRITEBACK)
1859 set_page_writeback(pages[i]);
1860 if (page_ops & PAGE_SET_ERROR)
1861 SetPageError(pages[i]);
1862 if (page_ops & PAGE_END_WRITEBACK)
1863 end_page_writeback(pages[i]);
1864 if (page_ops & PAGE_UNLOCK)
1865 unlock_page(pages[i]);
1866 page_cache_release(pages[i]);
1868 nr_pages -= ret;
1869 index += ret;
1870 cond_resched();
1872 return 0;
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1880 u64 count_range_bits(struct extent_io_tree *tree,
1881 u64 *start, u64 search_end, u64 max_bytes,
1882 unsigned bits, int contig)
1884 struct rb_node *node;
1885 struct extent_state *state;
1886 u64 cur_start = *start;
1887 u64 total_bytes = 0;
1888 u64 last = 0;
1889 int found = 0;
1891 if (WARN_ON(search_end <= cur_start))
1892 return 0;
1894 spin_lock(&tree->lock);
1895 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896 total_bytes = tree->dirty_bytes;
1897 goto out;
1900 * this search will find all the extents that end after
1901 * our range starts.
1903 node = tree_search(tree, cur_start);
1904 if (!node)
1905 goto out;
1907 while (1) {
1908 state = rb_entry(node, struct extent_state, rb_node);
1909 if (state->start > search_end)
1910 break;
1911 if (contig && found && state->start > last + 1)
1912 break;
1913 if (state->end >= cur_start && (state->state & bits) == bits) {
1914 total_bytes += min(search_end, state->end) + 1 -
1915 max(cur_start, state->start);
1916 if (total_bytes >= max_bytes)
1917 break;
1918 if (!found) {
1919 *start = max(cur_start, state->start);
1920 found = 1;
1922 last = state->end;
1923 } else if (contig && found) {
1924 break;
1926 node = rb_next(node);
1927 if (!node)
1928 break;
1930 out:
1931 spin_unlock(&tree->lock);
1932 return total_bytes;
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1939 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1941 struct rb_node *node;
1942 struct extent_state *state;
1943 int ret = 0;
1945 spin_lock(&tree->lock);
1947 * this search will find all the extents that end after
1948 * our range starts.
1950 node = tree_search(tree, start);
1951 if (!node) {
1952 ret = -ENOENT;
1953 goto out;
1955 state = rb_entry(node, struct extent_state, rb_node);
1956 if (state->start != start) {
1957 ret = -ENOENT;
1958 goto out;
1960 state->private = private;
1961 out:
1962 spin_unlock(&tree->lock);
1963 return ret;
1966 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1968 struct rb_node *node;
1969 struct extent_state *state;
1970 int ret = 0;
1972 spin_lock(&tree->lock);
1974 * this search will find all the extents that end after
1975 * our range starts.
1977 node = tree_search(tree, start);
1978 if (!node) {
1979 ret = -ENOENT;
1980 goto out;
1982 state = rb_entry(node, struct extent_state, rb_node);
1983 if (state->start != start) {
1984 ret = -ENOENT;
1985 goto out;
1987 *private = state->private;
1988 out:
1989 spin_unlock(&tree->lock);
1990 return ret;
1994 * searches a range in the state tree for a given mask.
1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1999 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2000 unsigned bits, int filled, struct extent_state *cached)
2002 struct extent_state *state = NULL;
2003 struct rb_node *node;
2004 int bitset = 0;
2006 spin_lock(&tree->lock);
2007 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2008 cached->end > start)
2009 node = &cached->rb_node;
2010 else
2011 node = tree_search(tree, start);
2012 while (node && start <= end) {
2013 state = rb_entry(node, struct extent_state, rb_node);
2015 if (filled && state->start > start) {
2016 bitset = 0;
2017 break;
2020 if (state->start > end)
2021 break;
2023 if (state->state & bits) {
2024 bitset = 1;
2025 if (!filled)
2026 break;
2027 } else if (filled) {
2028 bitset = 0;
2029 break;
2032 if (state->end == (u64)-1)
2033 break;
2035 start = state->end + 1;
2036 if (start > end)
2037 break;
2038 node = rb_next(node);
2039 if (!node) {
2040 if (filled)
2041 bitset = 0;
2042 break;
2045 spin_unlock(&tree->lock);
2046 return bitset;
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2053 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2055 u64 start = page_offset(page);
2056 u64 end = start + PAGE_CACHE_SIZE - 1;
2057 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2058 SetPageUptodate(page);
2061 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
2063 int ret;
2064 int err = 0;
2065 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2067 set_state_private(failure_tree, rec->start, 0);
2068 ret = clear_extent_bits(failure_tree, rec->start,
2069 rec->start + rec->len - 1,
2070 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2071 if (ret)
2072 err = ret;
2074 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075 rec->start + rec->len - 1,
2076 EXTENT_DAMAGED, GFP_NOFS);
2077 if (ret && !err)
2078 err = ret;
2080 kfree(rec);
2081 return err;
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
2089 * to avoid any synchronization issues, wait for the data after writing, which
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2094 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095 struct page *page, unsigned int pg_offset, int mirror_num)
2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2098 struct bio *bio;
2099 struct btrfs_device *dev;
2100 u64 map_length = 0;
2101 u64 sector;
2102 struct btrfs_bio *bbio = NULL;
2103 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2104 int ret;
2106 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2107 BUG_ON(!mirror_num);
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2111 return 0;
2113 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2114 if (!bio)
2115 return -EIO;
2116 bio->bi_iter.bi_size = 0;
2117 map_length = length;
2119 ret = btrfs_map_block(fs_info, WRITE, logical,
2120 &map_length, &bbio, mirror_num);
2121 if (ret) {
2122 bio_put(bio);
2123 return -EIO;
2125 BUG_ON(mirror_num != bbio->mirror_num);
2126 sector = bbio->stripes[mirror_num-1].physical >> 9;
2127 bio->bi_iter.bi_sector = sector;
2128 dev = bbio->stripes[mirror_num-1].dev;
2129 btrfs_put_bbio(bbio);
2130 if (!dev || !dev->bdev || !dev->writeable) {
2131 bio_put(bio);
2132 return -EIO;
2134 bio->bi_bdev = dev->bdev;
2135 bio_add_page(bio, page, length, pg_offset);
2137 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2138 /* try to remap that extent elsewhere? */
2139 bio_put(bio);
2140 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2141 return -EIO;
2144 btrfs_info_rl_in_rcu(fs_info,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2146 btrfs_ino(inode), start,
2147 rcu_str_deref(dev->name), sector);
2148 bio_put(bio);
2149 return 0;
2152 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2153 int mirror_num)
2155 u64 start = eb->start;
2156 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2157 int ret = 0;
2159 if (root->fs_info->sb->s_flags & MS_RDONLY)
2160 return -EROFS;
2162 for (i = 0; i < num_pages; i++) {
2163 struct page *p = eb->pages[i];
2165 ret = repair_io_failure(root->fs_info->btree_inode, start,
2166 PAGE_CACHE_SIZE, start, p,
2167 start - page_offset(p), mirror_num);
2168 if (ret)
2169 break;
2170 start += PAGE_CACHE_SIZE;
2173 return ret;
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2180 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181 unsigned int pg_offset)
2183 u64 private;
2184 u64 private_failure;
2185 struct io_failure_record *failrec;
2186 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2187 struct extent_state *state;
2188 int num_copies;
2189 int ret;
2191 private = 0;
2192 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193 (u64)-1, 1, EXTENT_DIRTY, 0);
2194 if (!ret)
2195 return 0;
2197 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2198 &private_failure);
2199 if (ret)
2200 return 0;
2202 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203 BUG_ON(!failrec->this_mirror);
2205 if (failrec->in_validation) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2208 failrec->start);
2209 goto out;
2211 if (fs_info->sb->s_flags & MS_RDONLY)
2212 goto out;
2214 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2216 failrec->start,
2217 EXTENT_LOCKED);
2218 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2220 if (state && state->start <= failrec->start &&
2221 state->end >= failrec->start + failrec->len - 1) {
2222 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2223 failrec->len);
2224 if (num_copies > 1) {
2225 repair_io_failure(inode, start, failrec->len,
2226 failrec->logical, page,
2227 pg_offset, failrec->failed_mirror);
2231 out:
2232 free_io_failure(inode, failrec);
2234 return 0;
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2243 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2245 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246 struct io_failure_record *failrec;
2247 struct extent_state *state, *next;
2249 if (RB_EMPTY_ROOT(&failure_tree->state))
2250 return;
2252 spin_lock(&failure_tree->lock);
2253 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2254 while (state) {
2255 if (state->start > end)
2256 break;
2258 ASSERT(state->end <= end);
2260 next = next_state(state);
2262 failrec = (struct io_failure_record *)(unsigned long)state->private;
2263 free_extent_state(state);
2264 kfree(failrec);
2266 state = next;
2268 spin_unlock(&failure_tree->lock);
2271 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272 struct io_failure_record **failrec_ret)
2274 struct io_failure_record *failrec;
2275 u64 private;
2276 struct extent_map *em;
2277 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2280 int ret;
2281 u64 logical;
2283 ret = get_state_private(failure_tree, start, &private);
2284 if (ret) {
2285 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2286 if (!failrec)
2287 return -ENOMEM;
2289 failrec->start = start;
2290 failrec->len = end - start + 1;
2291 failrec->this_mirror = 0;
2292 failrec->bio_flags = 0;
2293 failrec->in_validation = 0;
2295 read_lock(&em_tree->lock);
2296 em = lookup_extent_mapping(em_tree, start, failrec->len);
2297 if (!em) {
2298 read_unlock(&em_tree->lock);
2299 kfree(failrec);
2300 return -EIO;
2303 if (em->start > start || em->start + em->len <= start) {
2304 free_extent_map(em);
2305 em = NULL;
2307 read_unlock(&em_tree->lock);
2308 if (!em) {
2309 kfree(failrec);
2310 return -EIO;
2313 logical = start - em->start;
2314 logical = em->block_start + logical;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316 logical = em->block_start;
2317 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318 extent_set_compress_type(&failrec->bio_flags,
2319 em->compress_type);
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical, start, failrec->len);
2325 failrec->logical = logical;
2326 free_extent_map(em);
2328 /* set the bits in the private failure tree */
2329 ret = set_extent_bits(failure_tree, start, end,
2330 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2331 if (ret >= 0)
2332 ret = set_state_private(failure_tree, start,
2333 (u64)(unsigned long)failrec);
2334 /* set the bits in the inode's tree */
2335 if (ret >= 0)
2336 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2337 GFP_NOFS);
2338 if (ret < 0) {
2339 kfree(failrec);
2340 return ret;
2342 } else {
2343 failrec = (struct io_failure_record *)(unsigned long)private;
2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
2345 failrec->logical, failrec->start, failrec->len,
2346 failrec->in_validation);
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2354 *failrec_ret = failrec;
2356 return 0;
2359 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360 struct io_failure_record *failrec, int failed_mirror)
2362 int num_copies;
2364 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365 failrec->logical, failrec->len);
2366 if (num_copies == 1) {
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2373 num_copies, failrec->this_mirror, failed_mirror);
2374 return 0;
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2382 if (failed_bio->bi_vcnt > 1) {
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2391 BUG_ON(failrec->in_validation);
2392 failrec->in_validation = 1;
2393 failrec->this_mirror = failed_mirror;
2394 } else {
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2400 if (failrec->in_validation) {
2401 BUG_ON(failrec->this_mirror != failed_mirror);
2402 failrec->in_validation = 0;
2403 failrec->this_mirror = 0;
2405 failrec->failed_mirror = failed_mirror;
2406 failrec->this_mirror++;
2407 if (failrec->this_mirror == failed_mirror)
2408 failrec->this_mirror++;
2411 if (failrec->this_mirror > num_copies) {
2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2413 num_copies, failrec->this_mirror, failed_mirror);
2414 return 0;
2417 return 1;
2421 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422 struct io_failure_record *failrec,
2423 struct page *page, int pg_offset, int icsum,
2424 bio_end_io_t *endio_func, void *data)
2426 struct bio *bio;
2427 struct btrfs_io_bio *btrfs_failed_bio;
2428 struct btrfs_io_bio *btrfs_bio;
2430 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2431 if (!bio)
2432 return NULL;
2434 bio->bi_end_io = endio_func;
2435 bio->bi_iter.bi_sector = failrec->logical >> 9;
2436 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2437 bio->bi_iter.bi_size = 0;
2438 bio->bi_private = data;
2440 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441 if (btrfs_failed_bio->csum) {
2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2445 btrfs_bio = btrfs_io_bio(bio);
2446 btrfs_bio->csum = btrfs_bio->csum_inline;
2447 icsum *= csum_size;
2448 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2449 csum_size);
2452 bio_add_page(bio, page, failrec->len, pg_offset);
2454 return bio;
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2462 * needed
2465 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466 struct page *page, u64 start, u64 end,
2467 int failed_mirror)
2469 struct io_failure_record *failrec;
2470 struct inode *inode = page->mapping->host;
2471 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2472 struct bio *bio;
2473 int read_mode;
2474 int ret;
2476 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2478 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2479 if (ret)
2480 return ret;
2482 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2483 if (!ret) {
2484 free_io_failure(inode, failrec);
2485 return -EIO;
2488 if (failed_bio->bi_vcnt > 1)
2489 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2490 else
2491 read_mode = READ_SYNC;
2493 phy_offset >>= inode->i_sb->s_blocksize_bits;
2494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495 start - page_offset(page),
2496 (int)phy_offset, failed_bio->bi_end_io,
2497 NULL);
2498 if (!bio) {
2499 free_io_failure(inode, failrec);
2500 return -EIO;
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode, failrec->this_mirror, failrec->in_validation);
2506 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507 failrec->this_mirror,
2508 failrec->bio_flags, 0);
2509 if (ret) {
2510 free_io_failure(inode, failrec);
2511 bio_put(bio);
2514 return ret;
2517 /* lots and lots of room for performance fixes in the end_bio funcs */
2519 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2521 int uptodate = (err == 0);
2522 struct extent_io_tree *tree;
2523 int ret = 0;
2525 tree = &BTRFS_I(page->mapping->host)->io_tree;
2527 if (tree->ops && tree->ops->writepage_end_io_hook) {
2528 ret = tree->ops->writepage_end_io_hook(page, start,
2529 end, NULL, uptodate);
2530 if (ret)
2531 uptodate = 0;
2534 if (!uptodate) {
2535 ClearPageUptodate(page);
2536 SetPageError(page);
2537 ret = err < 0 ? err : -EIO;
2538 mapping_set_error(page->mapping, ret);
2540 return 0;
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2552 static void end_bio_extent_writepage(struct bio *bio)
2554 struct bio_vec *bvec;
2555 u64 start;
2556 u64 end;
2557 int i;
2559 bio_for_each_segment_all(bvec, bio, i) {
2560 struct page *page = bvec->bv_page;
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
2567 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec->bv_offset, bvec->bv_len);
2572 else
2573 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574 "incomplete page write in btrfs with offset %u and "
2575 "length %u",
2576 bvec->bv_offset, bvec->bv_len);
2579 start = page_offset(page);
2580 end = start + bvec->bv_offset + bvec->bv_len - 1;
2582 if (end_extent_writepage(page, bio->bi_error, start, end))
2583 continue;
2585 end_page_writeback(page);
2588 bio_put(bio);
2591 static void
2592 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2593 int uptodate)
2595 struct extent_state *cached = NULL;
2596 u64 end = start + len - 1;
2598 if (uptodate && tree->track_uptodate)
2599 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2614 static void end_bio_extent_readpage(struct bio *bio)
2616 struct bio_vec *bvec;
2617 int uptodate = !bio->bi_error;
2618 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2619 struct extent_io_tree *tree;
2620 u64 offset = 0;
2621 u64 start;
2622 u64 end;
2623 u64 len;
2624 u64 extent_start = 0;
2625 u64 extent_len = 0;
2626 int mirror;
2627 int ret;
2628 int i;
2630 bio_for_each_segment_all(bvec, bio, i) {
2631 struct page *page = bvec->bv_page;
2632 struct inode *inode = page->mapping->host;
2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2635 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636 bio->bi_error, io_bio->mirror_num);
2637 tree = &BTRFS_I(inode)->io_tree;
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
2644 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec->bv_offset, bvec->bv_len);
2649 else
2650 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651 "incomplete page read in btrfs with offset %u and "
2652 "length %u",
2653 bvec->bv_offset, bvec->bv_len);
2656 start = page_offset(page);
2657 end = start + bvec->bv_offset + bvec->bv_len - 1;
2658 len = bvec->bv_len;
2660 mirror = io_bio->mirror_num;
2661 if (likely(uptodate && tree->ops &&
2662 tree->ops->readpage_end_io_hook)) {
2663 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2664 page, start, end,
2665 mirror);
2666 if (ret)
2667 uptodate = 0;
2668 else
2669 clean_io_failure(inode, start, page, 0);
2672 if (likely(uptodate))
2673 goto readpage_ok;
2675 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2676 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2677 if (!ret && !bio->bi_error)
2678 uptodate = 1;
2679 } else {
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2690 ret = bio_readpage_error(bio, offset, page, start, end,
2691 mirror);
2692 if (ret == 0) {
2693 uptodate = !bio->bi_error;
2694 offset += len;
2695 continue;
2698 readpage_ok:
2699 if (likely(uptodate)) {
2700 loff_t i_size = i_size_read(inode);
2701 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2702 unsigned off;
2704 /* Zero out the end if this page straddles i_size */
2705 off = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index == end_index && off)
2707 zero_user_segment(page, off, PAGE_CACHE_SIZE);
2708 SetPageUptodate(page);
2709 } else {
2710 ClearPageUptodate(page);
2711 SetPageError(page);
2713 unlock_page(page);
2714 offset += len;
2716 if (unlikely(!uptodate)) {
2717 if (extent_len) {
2718 endio_readpage_release_extent(tree,
2719 extent_start,
2720 extent_len, 1);
2721 extent_start = 0;
2722 extent_len = 0;
2724 endio_readpage_release_extent(tree, start,
2725 end - start + 1, 0);
2726 } else if (!extent_len) {
2727 extent_start = start;
2728 extent_len = end + 1 - start;
2729 } else if (extent_start + extent_len == start) {
2730 extent_len += end + 1 - start;
2731 } else {
2732 endio_readpage_release_extent(tree, extent_start,
2733 extent_len, uptodate);
2734 extent_start = start;
2735 extent_len = end + 1 - start;
2739 if (extent_len)
2740 endio_readpage_release_extent(tree, extent_start, extent_len,
2741 uptodate);
2742 if (io_bio->end_io)
2743 io_bio->end_io(io_bio, bio->bi_error);
2744 bio_put(bio);
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2751 struct bio *
2752 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2753 gfp_t gfp_flags)
2755 struct btrfs_io_bio *btrfs_bio;
2756 struct bio *bio;
2758 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2760 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2761 while (!bio && (nr_vecs /= 2)) {
2762 bio = bio_alloc_bioset(gfp_flags,
2763 nr_vecs, btrfs_bioset);
2767 if (bio) {
2768 bio->bi_bdev = bdev;
2769 bio->bi_iter.bi_sector = first_sector;
2770 btrfs_bio = btrfs_io_bio(bio);
2771 btrfs_bio->csum = NULL;
2772 btrfs_bio->csum_allocated = NULL;
2773 btrfs_bio->end_io = NULL;
2775 return bio;
2778 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2780 struct btrfs_io_bio *btrfs_bio;
2781 struct bio *new;
2783 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2784 if (new) {
2785 btrfs_bio = btrfs_io_bio(new);
2786 btrfs_bio->csum = NULL;
2787 btrfs_bio->csum_allocated = NULL;
2788 btrfs_bio->end_io = NULL;
2790 return new;
2793 /* this also allocates from the btrfs_bioset */
2794 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2796 struct btrfs_io_bio *btrfs_bio;
2797 struct bio *bio;
2799 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2800 if (bio) {
2801 btrfs_bio = btrfs_io_bio(bio);
2802 btrfs_bio->csum = NULL;
2803 btrfs_bio->csum_allocated = NULL;
2804 btrfs_bio->end_io = NULL;
2806 return bio;
2810 static int __must_check submit_one_bio(int rw, struct bio *bio,
2811 int mirror_num, unsigned long bio_flags)
2813 int ret = 0;
2814 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2815 struct page *page = bvec->bv_page;
2816 struct extent_io_tree *tree = bio->bi_private;
2817 u64 start;
2819 start = page_offset(page) + bvec->bv_offset;
2821 bio->bi_private = NULL;
2823 bio_get(bio);
2825 if (tree->ops && tree->ops->submit_bio_hook)
2826 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2827 mirror_num, bio_flags, start);
2828 else
2829 btrfsic_submit_bio(rw, bio);
2831 bio_put(bio);
2832 return ret;
2835 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2836 unsigned long offset, size_t size, struct bio *bio,
2837 unsigned long bio_flags)
2839 int ret = 0;
2840 if (tree->ops && tree->ops->merge_bio_hook)
2841 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2842 bio_flags);
2843 BUG_ON(ret < 0);
2844 return ret;
2848 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2849 struct writeback_control *wbc,
2850 struct page *page, sector_t sector,
2851 size_t size, unsigned long offset,
2852 struct block_device *bdev,
2853 struct bio **bio_ret,
2854 unsigned long max_pages,
2855 bio_end_io_t end_io_func,
2856 int mirror_num,
2857 unsigned long prev_bio_flags,
2858 unsigned long bio_flags,
2859 bool force_bio_submit)
2861 int ret = 0;
2862 struct bio *bio;
2863 int contig = 0;
2864 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2865 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2867 if (bio_ret && *bio_ret) {
2868 bio = *bio_ret;
2869 if (old_compressed)
2870 contig = bio->bi_iter.bi_sector == sector;
2871 else
2872 contig = bio_end_sector(bio) == sector;
2874 if (prev_bio_flags != bio_flags || !contig ||
2875 force_bio_submit ||
2876 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2877 bio_add_page(bio, page, page_size, offset) < page_size) {
2878 ret = submit_one_bio(rw, bio, mirror_num,
2879 prev_bio_flags);
2880 if (ret < 0) {
2881 *bio_ret = NULL;
2882 return ret;
2884 bio = NULL;
2885 } else {
2886 if (wbc)
2887 wbc_account_io(wbc, page, page_size);
2888 return 0;
2892 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2893 GFP_NOFS | __GFP_HIGH);
2894 if (!bio)
2895 return -ENOMEM;
2897 bio_add_page(bio, page, page_size, offset);
2898 bio->bi_end_io = end_io_func;
2899 bio->bi_private = tree;
2900 if (wbc) {
2901 wbc_init_bio(wbc, bio);
2902 wbc_account_io(wbc, page, page_size);
2905 if (bio_ret)
2906 *bio_ret = bio;
2907 else
2908 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2910 return ret;
2913 static void attach_extent_buffer_page(struct extent_buffer *eb,
2914 struct page *page)
2916 if (!PagePrivate(page)) {
2917 SetPagePrivate(page);
2918 page_cache_get(page);
2919 set_page_private(page, (unsigned long)eb);
2920 } else {
2921 WARN_ON(page->private != (unsigned long)eb);
2925 void set_page_extent_mapped(struct page *page)
2927 if (!PagePrivate(page)) {
2928 SetPagePrivate(page);
2929 page_cache_get(page);
2930 set_page_private(page, EXTENT_PAGE_PRIVATE);
2934 static struct extent_map *
2935 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2936 u64 start, u64 len, get_extent_t *get_extent,
2937 struct extent_map **em_cached)
2939 struct extent_map *em;
2941 if (em_cached && *em_cached) {
2942 em = *em_cached;
2943 if (extent_map_in_tree(em) && start >= em->start &&
2944 start < extent_map_end(em)) {
2945 atomic_inc(&em->refs);
2946 return em;
2949 free_extent_map(em);
2950 *em_cached = NULL;
2953 em = get_extent(inode, page, pg_offset, start, len, 0);
2954 if (em_cached && !IS_ERR_OR_NULL(em)) {
2955 BUG_ON(*em_cached);
2956 atomic_inc(&em->refs);
2957 *em_cached = em;
2959 return em;
2962 * basic readpage implementation. Locked extent state structs are inserted
2963 * into the tree that are removed when the IO is done (by the end_io
2964 * handlers)
2965 * XXX JDM: This needs looking at to ensure proper page locking
2967 static int __do_readpage(struct extent_io_tree *tree,
2968 struct page *page,
2969 get_extent_t *get_extent,
2970 struct extent_map **em_cached,
2971 struct bio **bio, int mirror_num,
2972 unsigned long *bio_flags, int rw,
2973 u64 *prev_em_start)
2975 struct inode *inode = page->mapping->host;
2976 u64 start = page_offset(page);
2977 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2978 u64 end;
2979 u64 cur = start;
2980 u64 extent_offset;
2981 u64 last_byte = i_size_read(inode);
2982 u64 block_start;
2983 u64 cur_end;
2984 sector_t sector;
2985 struct extent_map *em;
2986 struct block_device *bdev;
2987 int ret;
2988 int nr = 0;
2989 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2990 size_t pg_offset = 0;
2991 size_t iosize;
2992 size_t disk_io_size;
2993 size_t blocksize = inode->i_sb->s_blocksize;
2994 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2996 set_page_extent_mapped(page);
2998 end = page_end;
2999 if (!PageUptodate(page)) {
3000 if (cleancache_get_page(page) == 0) {
3001 BUG_ON(blocksize != PAGE_SIZE);
3002 unlock_extent(tree, start, end);
3003 goto out;
3007 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3008 char *userpage;
3009 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3011 if (zero_offset) {
3012 iosize = PAGE_CACHE_SIZE - zero_offset;
3013 userpage = kmap_atomic(page);
3014 memset(userpage + zero_offset, 0, iosize);
3015 flush_dcache_page(page);
3016 kunmap_atomic(userpage);
3019 while (cur <= end) {
3020 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
3021 bool force_bio_submit = false;
3023 if (cur >= last_byte) {
3024 char *userpage;
3025 struct extent_state *cached = NULL;
3027 iosize = PAGE_CACHE_SIZE - pg_offset;
3028 userpage = kmap_atomic(page);
3029 memset(userpage + pg_offset, 0, iosize);
3030 flush_dcache_page(page);
3031 kunmap_atomic(userpage);
3032 set_extent_uptodate(tree, cur, cur + iosize - 1,
3033 &cached, GFP_NOFS);
3034 if (!parent_locked)
3035 unlock_extent_cached(tree, cur,
3036 cur + iosize - 1,
3037 &cached, GFP_NOFS);
3038 break;
3040 em = __get_extent_map(inode, page, pg_offset, cur,
3041 end - cur + 1, get_extent, em_cached);
3042 if (IS_ERR_OR_NULL(em)) {
3043 SetPageError(page);
3044 if (!parent_locked)
3045 unlock_extent(tree, cur, end);
3046 break;
3048 extent_offset = cur - em->start;
3049 BUG_ON(extent_map_end(em) <= cur);
3050 BUG_ON(end < cur);
3052 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3053 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3054 extent_set_compress_type(&this_bio_flag,
3055 em->compress_type);
3058 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3059 cur_end = min(extent_map_end(em) - 1, end);
3060 iosize = ALIGN(iosize, blocksize);
3061 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3062 disk_io_size = em->block_len;
3063 sector = em->block_start >> 9;
3064 } else {
3065 sector = (em->block_start + extent_offset) >> 9;
3066 disk_io_size = iosize;
3068 bdev = em->bdev;
3069 block_start = em->block_start;
3070 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3071 block_start = EXTENT_MAP_HOLE;
3074 * If we have a file range that points to a compressed extent
3075 * and it's followed by a consecutive file range that points to
3076 * to the same compressed extent (possibly with a different
3077 * offset and/or length, so it either points to the whole extent
3078 * or only part of it), we must make sure we do not submit a
3079 * single bio to populate the pages for the 2 ranges because
3080 * this makes the compressed extent read zero out the pages
3081 * belonging to the 2nd range. Imagine the following scenario:
3083 * File layout
3084 * [0 - 8K] [8K - 24K]
3085 * | |
3086 * | |
3087 * points to extent X, points to extent X,
3088 * offset 4K, length of 8K offset 0, length 16K
3090 * [extent X, compressed length = 4K uncompressed length = 16K]
3092 * If the bio to read the compressed extent covers both ranges,
3093 * it will decompress extent X into the pages belonging to the
3094 * first range and then it will stop, zeroing out the remaining
3095 * pages that belong to the other range that points to extent X.
3096 * So here we make sure we submit 2 bios, one for the first
3097 * range and another one for the third range. Both will target
3098 * the same physical extent from disk, but we can't currently
3099 * make the compressed bio endio callback populate the pages
3100 * for both ranges because each compressed bio is tightly
3101 * coupled with a single extent map, and each range can have
3102 * an extent map with a different offset value relative to the
3103 * uncompressed data of our extent and different lengths. This
3104 * is a corner case so we prioritize correctness over
3105 * non-optimal behavior (submitting 2 bios for the same extent).
3107 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3108 prev_em_start && *prev_em_start != (u64)-1 &&
3109 *prev_em_start != em->orig_start)
3110 force_bio_submit = true;
3112 if (prev_em_start)
3113 *prev_em_start = em->orig_start;
3115 free_extent_map(em);
3116 em = NULL;
3118 /* we've found a hole, just zero and go on */
3119 if (block_start == EXTENT_MAP_HOLE) {
3120 char *userpage;
3121 struct extent_state *cached = NULL;
3123 userpage = kmap_atomic(page);
3124 memset(userpage + pg_offset, 0, iosize);
3125 flush_dcache_page(page);
3126 kunmap_atomic(userpage);
3128 set_extent_uptodate(tree, cur, cur + iosize - 1,
3129 &cached, GFP_NOFS);
3130 if (parent_locked)
3131 free_extent_state(cached);
3132 else
3133 unlock_extent_cached(tree, cur,
3134 cur + iosize - 1,
3135 &cached, GFP_NOFS);
3136 cur = cur + iosize;
3137 pg_offset += iosize;
3138 continue;
3140 /* the get_extent function already copied into the page */
3141 if (test_range_bit(tree, cur, cur_end,
3142 EXTENT_UPTODATE, 1, NULL)) {
3143 check_page_uptodate(tree, page);
3144 if (!parent_locked)
3145 unlock_extent(tree, cur, cur + iosize - 1);
3146 cur = cur + iosize;
3147 pg_offset += iosize;
3148 continue;
3150 /* we have an inline extent but it didn't get marked up
3151 * to date. Error out
3153 if (block_start == EXTENT_MAP_INLINE) {
3154 SetPageError(page);
3155 if (!parent_locked)
3156 unlock_extent(tree, cur, cur + iosize - 1);
3157 cur = cur + iosize;
3158 pg_offset += iosize;
3159 continue;
3162 pnr -= page->index;
3163 ret = submit_extent_page(rw, tree, NULL, page,
3164 sector, disk_io_size, pg_offset,
3165 bdev, bio, pnr,
3166 end_bio_extent_readpage, mirror_num,
3167 *bio_flags,
3168 this_bio_flag,
3169 force_bio_submit);
3170 if (!ret) {
3171 nr++;
3172 *bio_flags = this_bio_flag;
3173 } else {
3174 SetPageError(page);
3175 if (!parent_locked)
3176 unlock_extent(tree, cur, cur + iosize - 1);
3178 cur = cur + iosize;
3179 pg_offset += iosize;
3181 out:
3182 if (!nr) {
3183 if (!PageError(page))
3184 SetPageUptodate(page);
3185 unlock_page(page);
3187 return 0;
3190 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3191 struct page *pages[], int nr_pages,
3192 u64 start, u64 end,
3193 get_extent_t *get_extent,
3194 struct extent_map **em_cached,
3195 struct bio **bio, int mirror_num,
3196 unsigned long *bio_flags, int rw,
3197 u64 *prev_em_start)
3199 struct inode *inode;
3200 struct btrfs_ordered_extent *ordered;
3201 int index;
3203 inode = pages[0]->mapping->host;
3204 while (1) {
3205 lock_extent(tree, start, end);
3206 ordered = btrfs_lookup_ordered_range(inode, start,
3207 end - start + 1);
3208 if (!ordered)
3209 break;
3210 unlock_extent(tree, start, end);
3211 btrfs_start_ordered_extent(inode, ordered, 1);
3212 btrfs_put_ordered_extent(ordered);
3215 for (index = 0; index < nr_pages; index++) {
3216 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3217 mirror_num, bio_flags, rw, prev_em_start);
3218 page_cache_release(pages[index]);
3222 static void __extent_readpages(struct extent_io_tree *tree,
3223 struct page *pages[],
3224 int nr_pages, get_extent_t *get_extent,
3225 struct extent_map **em_cached,
3226 struct bio **bio, int mirror_num,
3227 unsigned long *bio_flags, int rw,
3228 u64 *prev_em_start)
3230 u64 start = 0;
3231 u64 end = 0;
3232 u64 page_start;
3233 int index;
3234 int first_index = 0;
3236 for (index = 0; index < nr_pages; index++) {
3237 page_start = page_offset(pages[index]);
3238 if (!end) {
3239 start = page_start;
3240 end = start + PAGE_CACHE_SIZE - 1;
3241 first_index = index;
3242 } else if (end + 1 == page_start) {
3243 end += PAGE_CACHE_SIZE;
3244 } else {
3245 __do_contiguous_readpages(tree, &pages[first_index],
3246 index - first_index, start,
3247 end, get_extent, em_cached,
3248 bio, mirror_num, bio_flags,
3249 rw, prev_em_start);
3250 start = page_start;
3251 end = start + PAGE_CACHE_SIZE - 1;
3252 first_index = index;
3256 if (end)
3257 __do_contiguous_readpages(tree, &pages[first_index],
3258 index - first_index, start,
3259 end, get_extent, em_cached, bio,
3260 mirror_num, bio_flags, rw,
3261 prev_em_start);
3264 static int __extent_read_full_page(struct extent_io_tree *tree,
3265 struct page *page,
3266 get_extent_t *get_extent,
3267 struct bio **bio, int mirror_num,
3268 unsigned long *bio_flags, int rw)
3270 struct inode *inode = page->mapping->host;
3271 struct btrfs_ordered_extent *ordered;
3272 u64 start = page_offset(page);
3273 u64 end = start + PAGE_CACHE_SIZE - 1;
3274 int ret;
3276 while (1) {
3277 lock_extent(tree, start, end);
3278 ordered = btrfs_lookup_ordered_extent(inode, start);
3279 if (!ordered)
3280 break;
3281 unlock_extent(tree, start, end);
3282 btrfs_start_ordered_extent(inode, ordered, 1);
3283 btrfs_put_ordered_extent(ordered);
3286 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3287 bio_flags, rw, NULL);
3288 return ret;
3291 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3292 get_extent_t *get_extent, int mirror_num)
3294 struct bio *bio = NULL;
3295 unsigned long bio_flags = 0;
3296 int ret;
3298 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3299 &bio_flags, READ);
3300 if (bio)
3301 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3302 return ret;
3305 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3306 get_extent_t *get_extent, int mirror_num)
3308 struct bio *bio = NULL;
3309 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3310 int ret;
3312 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3313 &bio_flags, READ, NULL);
3314 if (bio)
3315 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3316 return ret;
3319 static noinline void update_nr_written(struct page *page,
3320 struct writeback_control *wbc,
3321 unsigned long nr_written)
3323 wbc->nr_to_write -= nr_written;
3324 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3325 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3326 page->mapping->writeback_index = page->index + nr_written;
3330 * helper for __extent_writepage, doing all of the delayed allocation setup.
3332 * This returns 1 if our fill_delalloc function did all the work required
3333 * to write the page (copy into inline extent). In this case the IO has
3334 * been started and the page is already unlocked.
3336 * This returns 0 if all went well (page still locked)
3337 * This returns < 0 if there were errors (page still locked)
3339 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3340 struct page *page, struct writeback_control *wbc,
3341 struct extent_page_data *epd,
3342 u64 delalloc_start,
3343 unsigned long *nr_written)
3345 struct extent_io_tree *tree = epd->tree;
3346 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3347 u64 nr_delalloc;
3348 u64 delalloc_to_write = 0;
3349 u64 delalloc_end = 0;
3350 int ret;
3351 int page_started = 0;
3353 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3354 return 0;
3356 while (delalloc_end < page_end) {
3357 nr_delalloc = find_lock_delalloc_range(inode, tree,
3358 page,
3359 &delalloc_start,
3360 &delalloc_end,
3361 BTRFS_MAX_EXTENT_SIZE);
3362 if (nr_delalloc == 0) {
3363 delalloc_start = delalloc_end + 1;
3364 continue;
3366 ret = tree->ops->fill_delalloc(inode, page,
3367 delalloc_start,
3368 delalloc_end,
3369 &page_started,
3370 nr_written);
3371 /* File system has been set read-only */
3372 if (ret) {
3373 SetPageError(page);
3374 /* fill_delalloc should be return < 0 for error
3375 * but just in case, we use > 0 here meaning the
3376 * IO is started, so we don't want to return > 0
3377 * unless things are going well.
3379 ret = ret < 0 ? ret : -EIO;
3380 goto done;
3383 * delalloc_end is already one less than the total
3384 * length, so we don't subtract one from
3385 * PAGE_CACHE_SIZE
3387 delalloc_to_write += (delalloc_end - delalloc_start +
3388 PAGE_CACHE_SIZE) >>
3389 PAGE_CACHE_SHIFT;
3390 delalloc_start = delalloc_end + 1;
3392 if (wbc->nr_to_write < delalloc_to_write) {
3393 int thresh = 8192;
3395 if (delalloc_to_write < thresh * 2)
3396 thresh = delalloc_to_write;
3397 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3398 thresh);
3401 /* did the fill delalloc function already unlock and start
3402 * the IO?
3404 if (page_started) {
3406 * we've unlocked the page, so we can't update
3407 * the mapping's writeback index, just update
3408 * nr_to_write.
3410 wbc->nr_to_write -= *nr_written;
3411 return 1;
3414 ret = 0;
3416 done:
3417 return ret;
3421 * helper for __extent_writepage. This calls the writepage start hooks,
3422 * and does the loop to map the page into extents and bios.
3424 * We return 1 if the IO is started and the page is unlocked,
3425 * 0 if all went well (page still locked)
3426 * < 0 if there were errors (page still locked)
3428 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3429 struct page *page,
3430 struct writeback_control *wbc,
3431 struct extent_page_data *epd,
3432 loff_t i_size,
3433 unsigned long nr_written,
3434 int write_flags, int *nr_ret)
3436 struct extent_io_tree *tree = epd->tree;
3437 u64 start = page_offset(page);
3438 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3439 u64 end;
3440 u64 cur = start;
3441 u64 extent_offset;
3442 u64 block_start;
3443 u64 iosize;
3444 sector_t sector;
3445 struct extent_state *cached_state = NULL;
3446 struct extent_map *em;
3447 struct block_device *bdev;
3448 size_t pg_offset = 0;
3449 size_t blocksize;
3450 int ret = 0;
3451 int nr = 0;
3452 bool compressed;
3454 if (tree->ops && tree->ops->writepage_start_hook) {
3455 ret = tree->ops->writepage_start_hook(page, start,
3456 page_end);
3457 if (ret) {
3458 /* Fixup worker will requeue */
3459 if (ret == -EBUSY)
3460 wbc->pages_skipped++;
3461 else
3462 redirty_page_for_writepage(wbc, page);
3464 update_nr_written(page, wbc, nr_written);
3465 unlock_page(page);
3466 ret = 1;
3467 goto done_unlocked;
3472 * we don't want to touch the inode after unlocking the page,
3473 * so we update the mapping writeback index now
3475 update_nr_written(page, wbc, nr_written + 1);
3477 end = page_end;
3478 if (i_size <= start) {
3479 if (tree->ops && tree->ops->writepage_end_io_hook)
3480 tree->ops->writepage_end_io_hook(page, start,
3481 page_end, NULL, 1);
3482 goto done;
3485 blocksize = inode->i_sb->s_blocksize;
3487 while (cur <= end) {
3488 u64 em_end;
3489 if (cur >= i_size) {
3490 if (tree->ops && tree->ops->writepage_end_io_hook)
3491 tree->ops->writepage_end_io_hook(page, cur,
3492 page_end, NULL, 1);
3493 break;
3495 em = epd->get_extent(inode, page, pg_offset, cur,
3496 end - cur + 1, 1);
3497 if (IS_ERR_OR_NULL(em)) {
3498 SetPageError(page);
3499 ret = PTR_ERR_OR_ZERO(em);
3500 break;
3503 extent_offset = cur - em->start;
3504 em_end = extent_map_end(em);
3505 BUG_ON(em_end <= cur);
3506 BUG_ON(end < cur);
3507 iosize = min(em_end - cur, end - cur + 1);
3508 iosize = ALIGN(iosize, blocksize);
3509 sector = (em->block_start + extent_offset) >> 9;
3510 bdev = em->bdev;
3511 block_start = em->block_start;
3512 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3513 free_extent_map(em);
3514 em = NULL;
3517 * compressed and inline extents are written through other
3518 * paths in the FS
3520 if (compressed || block_start == EXTENT_MAP_HOLE ||
3521 block_start == EXTENT_MAP_INLINE) {
3523 * end_io notification does not happen here for
3524 * compressed extents
3526 if (!compressed && tree->ops &&
3527 tree->ops->writepage_end_io_hook)
3528 tree->ops->writepage_end_io_hook(page, cur,
3529 cur + iosize - 1,
3530 NULL, 1);
3531 else if (compressed) {
3532 /* we don't want to end_page_writeback on
3533 * a compressed extent. this happens
3534 * elsewhere
3536 nr++;
3539 cur += iosize;
3540 pg_offset += iosize;
3541 continue;
3544 if (tree->ops && tree->ops->writepage_io_hook) {
3545 ret = tree->ops->writepage_io_hook(page, cur,
3546 cur + iosize - 1);
3547 } else {
3548 ret = 0;
3550 if (ret) {
3551 SetPageError(page);
3552 } else {
3553 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3555 set_range_writeback(tree, cur, cur + iosize - 1);
3556 if (!PageWriteback(page)) {
3557 btrfs_err(BTRFS_I(inode)->root->fs_info,
3558 "page %lu not writeback, cur %llu end %llu",
3559 page->index, cur, end);
3562 ret = submit_extent_page(write_flags, tree, wbc, page,
3563 sector, iosize, pg_offset,
3564 bdev, &epd->bio, max_nr,
3565 end_bio_extent_writepage,
3566 0, 0, 0, false);
3567 if (ret)
3568 SetPageError(page);
3570 cur = cur + iosize;
3571 pg_offset += iosize;
3572 nr++;
3574 done:
3575 *nr_ret = nr;
3577 done_unlocked:
3579 /* drop our reference on any cached states */
3580 free_extent_state(cached_state);
3581 return ret;
3585 * the writepage semantics are similar to regular writepage. extent
3586 * records are inserted to lock ranges in the tree, and as dirty areas
3587 * are found, they are marked writeback. Then the lock bits are removed
3588 * and the end_io handler clears the writeback ranges
3590 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3591 void *data)
3593 struct inode *inode = page->mapping->host;
3594 struct extent_page_data *epd = data;
3595 u64 start = page_offset(page);
3596 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3597 int ret;
3598 int nr = 0;
3599 size_t pg_offset = 0;
3600 loff_t i_size = i_size_read(inode);
3601 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3602 int write_flags;
3603 unsigned long nr_written = 0;
3605 if (wbc->sync_mode == WB_SYNC_ALL)
3606 write_flags = WRITE_SYNC;
3607 else
3608 write_flags = WRITE;
3610 trace___extent_writepage(page, inode, wbc);
3612 WARN_ON(!PageLocked(page));
3614 ClearPageError(page);
3616 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3617 if (page->index > end_index ||
3618 (page->index == end_index && !pg_offset)) {
3619 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3620 unlock_page(page);
3621 return 0;
3624 if (page->index == end_index) {
3625 char *userpage;
3627 userpage = kmap_atomic(page);
3628 memset(userpage + pg_offset, 0,
3629 PAGE_CACHE_SIZE - pg_offset);
3630 kunmap_atomic(userpage);
3631 flush_dcache_page(page);
3634 pg_offset = 0;
3636 set_page_extent_mapped(page);
3638 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3639 if (ret == 1)
3640 goto done_unlocked;
3641 if (ret)
3642 goto done;
3644 ret = __extent_writepage_io(inode, page, wbc, epd,
3645 i_size, nr_written, write_flags, &nr);
3646 if (ret == 1)
3647 goto done_unlocked;
3649 done:
3650 if (nr == 0) {
3651 /* make sure the mapping tag for page dirty gets cleared */
3652 set_page_writeback(page);
3653 end_page_writeback(page);
3655 if (PageError(page)) {
3656 ret = ret < 0 ? ret : -EIO;
3657 end_extent_writepage(page, ret, start, page_end);
3659 unlock_page(page);
3660 return ret;
3662 done_unlocked:
3663 return 0;
3666 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3668 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3669 TASK_UNINTERRUPTIBLE);
3672 static noinline_for_stack int
3673 lock_extent_buffer_for_io(struct extent_buffer *eb,
3674 struct btrfs_fs_info *fs_info,
3675 struct extent_page_data *epd)
3677 unsigned long i, num_pages;
3678 int flush = 0;
3679 int ret = 0;
3681 if (!btrfs_try_tree_write_lock(eb)) {
3682 flush = 1;
3683 flush_write_bio(epd);
3684 btrfs_tree_lock(eb);
3687 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3688 btrfs_tree_unlock(eb);
3689 if (!epd->sync_io)
3690 return 0;
3691 if (!flush) {
3692 flush_write_bio(epd);
3693 flush = 1;
3695 while (1) {
3696 wait_on_extent_buffer_writeback(eb);
3697 btrfs_tree_lock(eb);
3698 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3699 break;
3700 btrfs_tree_unlock(eb);
3705 * We need to do this to prevent races in people who check if the eb is
3706 * under IO since we can end up having no IO bits set for a short period
3707 * of time.
3709 spin_lock(&eb->refs_lock);
3710 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3711 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3712 spin_unlock(&eb->refs_lock);
3713 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3714 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3715 -eb->len,
3716 fs_info->dirty_metadata_batch);
3717 ret = 1;
3718 } else {
3719 spin_unlock(&eb->refs_lock);
3722 btrfs_tree_unlock(eb);
3724 if (!ret)
3725 return ret;
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 for (i = 0; i < num_pages; i++) {
3729 struct page *p = eb->pages[i];
3731 if (!trylock_page(p)) {
3732 if (!flush) {
3733 flush_write_bio(epd);
3734 flush = 1;
3736 lock_page(p);
3740 return ret;
3743 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3745 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3746 smp_mb__after_atomic();
3747 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3750 static void set_btree_ioerr(struct page *page)
3752 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3753 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3755 SetPageError(page);
3756 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3757 return;
3760 * If writeback for a btree extent that doesn't belong to a log tree
3761 * failed, increment the counter transaction->eb_write_errors.
3762 * We do this because while the transaction is running and before it's
3763 * committing (when we call filemap_fdata[write|wait]_range against
3764 * the btree inode), we might have
3765 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3766 * returns an error or an error happens during writeback, when we're
3767 * committing the transaction we wouldn't know about it, since the pages
3768 * can be no longer dirty nor marked anymore for writeback (if a
3769 * subsequent modification to the extent buffer didn't happen before the
3770 * transaction commit), which makes filemap_fdata[write|wait]_range not
3771 * able to find the pages tagged with SetPageError at transaction
3772 * commit time. So if this happens we must abort the transaction,
3773 * otherwise we commit a super block with btree roots that point to
3774 * btree nodes/leafs whose content on disk is invalid - either garbage
3775 * or the content of some node/leaf from a past generation that got
3776 * cowed or deleted and is no longer valid.
3778 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3779 * not be enough - we need to distinguish between log tree extents vs
3780 * non-log tree extents, and the next filemap_fdatawait_range() call
3781 * will catch and clear such errors in the mapping - and that call might
3782 * be from a log sync and not from a transaction commit. Also, checking
3783 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3784 * not done and would not be reliable - the eb might have been released
3785 * from memory and reading it back again means that flag would not be
3786 * set (since it's a runtime flag, not persisted on disk).
3788 * Using the flags below in the btree inode also makes us achieve the
3789 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3790 * writeback for all dirty pages and before filemap_fdatawait_range()
3791 * is called, the writeback for all dirty pages had already finished
3792 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3793 * filemap_fdatawait_range() would return success, as it could not know
3794 * that writeback errors happened (the pages were no longer tagged for
3795 * writeback).
3797 switch (eb->log_index) {
3798 case -1:
3799 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3800 break;
3801 case 0:
3802 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3803 break;
3804 case 1:
3805 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3806 break;
3807 default:
3808 BUG(); /* unexpected, logic error */
3812 static void end_bio_extent_buffer_writepage(struct bio *bio)
3814 struct bio_vec *bvec;
3815 struct extent_buffer *eb;
3816 int i, done;
3818 bio_for_each_segment_all(bvec, bio, i) {
3819 struct page *page = bvec->bv_page;
3821 eb = (struct extent_buffer *)page->private;
3822 BUG_ON(!eb);
3823 done = atomic_dec_and_test(&eb->io_pages);
3825 if (bio->bi_error ||
3826 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3827 ClearPageUptodate(page);
3828 set_btree_ioerr(page);
3831 end_page_writeback(page);
3833 if (!done)
3834 continue;
3836 end_extent_buffer_writeback(eb);
3839 bio_put(bio);
3842 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3843 struct btrfs_fs_info *fs_info,
3844 struct writeback_control *wbc,
3845 struct extent_page_data *epd)
3847 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3848 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3849 u64 offset = eb->start;
3850 u32 nritems;
3851 unsigned long i, num_pages;
3852 unsigned long bio_flags = 0;
3853 unsigned long start, end;
3854 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3855 int ret = 0;
3857 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3858 num_pages = num_extent_pages(eb->start, eb->len);
3859 atomic_set(&eb->io_pages, num_pages);
3860 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3861 bio_flags = EXTENT_BIO_TREE_LOG;
3863 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3864 nritems = btrfs_header_nritems(eb);
3865 if (btrfs_header_level(eb) > 0) {
3866 end = btrfs_node_key_ptr_offset(nritems);
3868 memset_extent_buffer(eb, 0, end, eb->len - end);
3869 } else {
3871 * leaf:
3872 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3874 start = btrfs_item_nr_offset(nritems);
3875 end = btrfs_leaf_data(eb) +
3876 leaf_data_end(fs_info->tree_root, eb);
3877 memset_extent_buffer(eb, 0, start, end - start);
3880 for (i = 0; i < num_pages; i++) {
3881 struct page *p = eb->pages[i];
3883 clear_page_dirty_for_io(p);
3884 set_page_writeback(p);
3885 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
3886 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3887 -1, end_bio_extent_buffer_writepage,
3888 0, epd->bio_flags, bio_flags, false);
3889 epd->bio_flags = bio_flags;
3890 if (ret) {
3891 set_btree_ioerr(p);
3892 end_page_writeback(p);
3893 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3894 end_extent_buffer_writeback(eb);
3895 ret = -EIO;
3896 break;
3898 offset += PAGE_CACHE_SIZE;
3899 update_nr_written(p, wbc, 1);
3900 unlock_page(p);
3903 if (unlikely(ret)) {
3904 for (; i < num_pages; i++) {
3905 struct page *p = eb->pages[i];
3906 clear_page_dirty_for_io(p);
3907 unlock_page(p);
3911 return ret;
3914 int btree_write_cache_pages(struct address_space *mapping,
3915 struct writeback_control *wbc)
3917 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3918 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3919 struct extent_buffer *eb, *prev_eb = NULL;
3920 struct extent_page_data epd = {
3921 .bio = NULL,
3922 .tree = tree,
3923 .extent_locked = 0,
3924 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3925 .bio_flags = 0,
3927 int ret = 0;
3928 int done = 0;
3929 int nr_to_write_done = 0;
3930 struct pagevec pvec;
3931 int nr_pages;
3932 pgoff_t index;
3933 pgoff_t end; /* Inclusive */
3934 int scanned = 0;
3935 int tag;
3937 pagevec_init(&pvec, 0);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3943 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3944 scanned = 1;
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
3950 retry:
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3956 unsigned i;
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3962 if (!PagePrivate(page))
3963 continue;
3965 if (!wbc->range_cyclic && page->index > end) {
3966 done = 1;
3967 break;
3970 spin_lock(&mapping->private_lock);
3971 if (!PagePrivate(page)) {
3972 spin_unlock(&mapping->private_lock);
3973 continue;
3976 eb = (struct extent_buffer *)page->private;
3979 * Shouldn't happen and normally this would be a BUG_ON
3980 * but no sense in crashing the users box for something
3981 * we can survive anyway.
3983 if (WARN_ON(!eb)) {
3984 spin_unlock(&mapping->private_lock);
3985 continue;
3988 if (eb == prev_eb) {
3989 spin_unlock(&mapping->private_lock);
3990 continue;
3993 ret = atomic_inc_not_zero(&eb->refs);
3994 spin_unlock(&mapping->private_lock);
3995 if (!ret)
3996 continue;
3998 prev_eb = eb;
3999 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
4000 if (!ret) {
4001 free_extent_buffer(eb);
4002 continue;
4005 ret = write_one_eb(eb, fs_info, wbc, &epd);
4006 if (ret) {
4007 done = 1;
4008 free_extent_buffer(eb);
4009 break;
4011 free_extent_buffer(eb);
4014 * the filesystem may choose to bump up nr_to_write.
4015 * We have to make sure to honor the new nr_to_write
4016 * at any time
4018 nr_to_write_done = wbc->nr_to_write <= 0;
4020 pagevec_release(&pvec);
4021 cond_resched();
4023 if (!scanned && !done) {
4025 * We hit the last page and there is more work to be done: wrap
4026 * back to the start of the file
4028 scanned = 1;
4029 index = 0;
4030 goto retry;
4032 flush_write_bio(&epd);
4033 return ret;
4037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4038 * @mapping: address space structure to write
4039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4040 * @writepage: function called for each page
4041 * @data: data passed to writepage function
4043 * If a page is already under I/O, write_cache_pages() skips it, even
4044 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4045 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4046 * and msync() need to guarantee that all the data which was dirty at the time
4047 * the call was made get new I/O started against them. If wbc->sync_mode is
4048 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4049 * existing IO to complete.
4051 static int extent_write_cache_pages(struct extent_io_tree *tree,
4052 struct address_space *mapping,
4053 struct writeback_control *wbc,
4054 writepage_t writepage, void *data,
4055 void (*flush_fn)(void *))
4057 struct inode *inode = mapping->host;
4058 int ret = 0;
4059 int done = 0;
4060 int err = 0;
4061 int nr_to_write_done = 0;
4062 struct pagevec pvec;
4063 int nr_pages;
4064 pgoff_t index;
4065 pgoff_t end; /* Inclusive */
4066 int scanned = 0;
4067 int tag;
4070 * We have to hold onto the inode so that ordered extents can do their
4071 * work when the IO finishes. The alternative to this is failing to add
4072 * an ordered extent if the igrab() fails there and that is a huge pain
4073 * to deal with, so instead just hold onto the inode throughout the
4074 * writepages operation. If it fails here we are freeing up the inode
4075 * anyway and we'd rather not waste our time writing out stuff that is
4076 * going to be truncated anyway.
4078 if (!igrab(inode))
4079 return 0;
4081 pagevec_init(&pvec, 0);
4082 if (wbc->range_cyclic) {
4083 index = mapping->writeback_index; /* Start from prev offset */
4084 end = -1;
4085 } else {
4086 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4087 end = wbc->range_end >> PAGE_CACHE_SHIFT;
4088 scanned = 1;
4090 if (wbc->sync_mode == WB_SYNC_ALL)
4091 tag = PAGECACHE_TAG_TOWRITE;
4092 else
4093 tag = PAGECACHE_TAG_DIRTY;
4094 retry:
4095 if (wbc->sync_mode == WB_SYNC_ALL)
4096 tag_pages_for_writeback(mapping, index, end);
4097 while (!done && !nr_to_write_done && (index <= end) &&
4098 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4099 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
4100 unsigned i;
4102 scanned = 1;
4103 for (i = 0; i < nr_pages; i++) {
4104 struct page *page = pvec.pages[i];
4107 * At this point we hold neither mapping->tree_lock nor
4108 * lock on the page itself: the page may be truncated or
4109 * invalidated (changing page->mapping to NULL), or even
4110 * swizzled back from swapper_space to tmpfs file
4111 * mapping
4113 if (!trylock_page(page)) {
4114 flush_fn(data);
4115 lock_page(page);
4118 if (unlikely(page->mapping != mapping)) {
4119 unlock_page(page);
4120 continue;
4123 if (!wbc->range_cyclic && page->index > end) {
4124 done = 1;
4125 unlock_page(page);
4126 continue;
4129 if (wbc->sync_mode != WB_SYNC_NONE) {
4130 if (PageWriteback(page))
4131 flush_fn(data);
4132 wait_on_page_writeback(page);
4135 if (PageWriteback(page) ||
4136 !clear_page_dirty_for_io(page)) {
4137 unlock_page(page);
4138 continue;
4141 ret = (*writepage)(page, wbc, data);
4143 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4144 unlock_page(page);
4145 ret = 0;
4147 if (!err && ret < 0)
4148 err = ret;
4151 * the filesystem may choose to bump up nr_to_write.
4152 * We have to make sure to honor the new nr_to_write
4153 * at any time
4155 nr_to_write_done = wbc->nr_to_write <= 0;
4157 pagevec_release(&pvec);
4158 cond_resched();
4160 if (!scanned && !done && !err) {
4162 * We hit the last page and there is more work to be done: wrap
4163 * back to the start of the file
4165 scanned = 1;
4166 index = 0;
4167 goto retry;
4169 btrfs_add_delayed_iput(inode);
4170 return err;
4173 static void flush_epd_write_bio(struct extent_page_data *epd)
4175 if (epd->bio) {
4176 int rw = WRITE;
4177 int ret;
4179 if (epd->sync_io)
4180 rw = WRITE_SYNC;
4182 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
4183 BUG_ON(ret < 0); /* -ENOMEM */
4184 epd->bio = NULL;
4188 static noinline void flush_write_bio(void *data)
4190 struct extent_page_data *epd = data;
4191 flush_epd_write_bio(epd);
4194 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4195 get_extent_t *get_extent,
4196 struct writeback_control *wbc)
4198 int ret;
4199 struct extent_page_data epd = {
4200 .bio = NULL,
4201 .tree = tree,
4202 .get_extent = get_extent,
4203 .extent_locked = 0,
4204 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4205 .bio_flags = 0,
4208 ret = __extent_writepage(page, wbc, &epd);
4210 flush_epd_write_bio(&epd);
4211 return ret;
4214 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4215 u64 start, u64 end, get_extent_t *get_extent,
4216 int mode)
4218 int ret = 0;
4219 struct address_space *mapping = inode->i_mapping;
4220 struct page *page;
4221 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4222 PAGE_CACHE_SHIFT;
4224 struct extent_page_data epd = {
4225 .bio = NULL,
4226 .tree = tree,
4227 .get_extent = get_extent,
4228 .extent_locked = 1,
4229 .sync_io = mode == WB_SYNC_ALL,
4230 .bio_flags = 0,
4232 struct writeback_control wbc_writepages = {
4233 .sync_mode = mode,
4234 .nr_to_write = nr_pages * 2,
4235 .range_start = start,
4236 .range_end = end + 1,
4239 while (start <= end) {
4240 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4241 if (clear_page_dirty_for_io(page))
4242 ret = __extent_writepage(page, &wbc_writepages, &epd);
4243 else {
4244 if (tree->ops && tree->ops->writepage_end_io_hook)
4245 tree->ops->writepage_end_io_hook(page, start,
4246 start + PAGE_CACHE_SIZE - 1,
4247 NULL, 1);
4248 unlock_page(page);
4250 page_cache_release(page);
4251 start += PAGE_CACHE_SIZE;
4254 flush_epd_write_bio(&epd);
4255 return ret;
4258 int extent_writepages(struct extent_io_tree *tree,
4259 struct address_space *mapping,
4260 get_extent_t *get_extent,
4261 struct writeback_control *wbc)
4263 int ret = 0;
4264 struct extent_page_data epd = {
4265 .bio = NULL,
4266 .tree = tree,
4267 .get_extent = get_extent,
4268 .extent_locked = 0,
4269 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4270 .bio_flags = 0,
4273 ret = extent_write_cache_pages(tree, mapping, wbc,
4274 __extent_writepage, &epd,
4275 flush_write_bio);
4276 flush_epd_write_bio(&epd);
4277 return ret;
4280 int extent_readpages(struct extent_io_tree *tree,
4281 struct address_space *mapping,
4282 struct list_head *pages, unsigned nr_pages,
4283 get_extent_t get_extent)
4285 struct bio *bio = NULL;
4286 unsigned page_idx;
4287 unsigned long bio_flags = 0;
4288 struct page *pagepool[16];
4289 struct page *page;
4290 struct extent_map *em_cached = NULL;
4291 int nr = 0;
4292 u64 prev_em_start = (u64)-1;
4294 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4295 page = list_entry(pages->prev, struct page, lru);
4297 prefetchw(&page->flags);
4298 list_del(&page->lru);
4299 if (add_to_page_cache_lru(page, mapping,
4300 page->index, GFP_NOFS)) {
4301 page_cache_release(page);
4302 continue;
4305 pagepool[nr++] = page;
4306 if (nr < ARRAY_SIZE(pagepool))
4307 continue;
4308 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4309 &bio, 0, &bio_flags, READ, &prev_em_start);
4310 nr = 0;
4312 if (nr)
4313 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4314 &bio, 0, &bio_flags, READ, &prev_em_start);
4316 if (em_cached)
4317 free_extent_map(em_cached);
4319 BUG_ON(!list_empty(pages));
4320 if (bio)
4321 return submit_one_bio(READ, bio, 0, bio_flags);
4322 return 0;
4326 * basic invalidatepage code, this waits on any locked or writeback
4327 * ranges corresponding to the page, and then deletes any extent state
4328 * records from the tree
4330 int extent_invalidatepage(struct extent_io_tree *tree,
4331 struct page *page, unsigned long offset)
4333 struct extent_state *cached_state = NULL;
4334 u64 start = page_offset(page);
4335 u64 end = start + PAGE_CACHE_SIZE - 1;
4336 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4338 start += ALIGN(offset, blocksize);
4339 if (start > end)
4340 return 0;
4342 lock_extent_bits(tree, start, end, 0, &cached_state);
4343 wait_on_page_writeback(page);
4344 clear_extent_bit(tree, start, end,
4345 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4346 EXTENT_DO_ACCOUNTING,
4347 1, 1, &cached_state, GFP_NOFS);
4348 return 0;
4352 * a helper for releasepage, this tests for areas of the page that
4353 * are locked or under IO and drops the related state bits if it is safe
4354 * to drop the page.
4356 static int try_release_extent_state(struct extent_map_tree *map,
4357 struct extent_io_tree *tree,
4358 struct page *page, gfp_t mask)
4360 u64 start = page_offset(page);
4361 u64 end = start + PAGE_CACHE_SIZE - 1;
4362 int ret = 1;
4364 if (test_range_bit(tree, start, end,
4365 EXTENT_IOBITS, 0, NULL))
4366 ret = 0;
4367 else {
4368 if ((mask & GFP_NOFS) == GFP_NOFS)
4369 mask = GFP_NOFS;
4371 * at this point we can safely clear everything except the
4372 * locked bit and the nodatasum bit
4374 ret = clear_extent_bit(tree, start, end,
4375 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4376 0, 0, NULL, mask);
4378 /* if clear_extent_bit failed for enomem reasons,
4379 * we can't allow the release to continue.
4381 if (ret < 0)
4382 ret = 0;
4383 else
4384 ret = 1;
4386 return ret;
4390 * a helper for releasepage. As long as there are no locked extents
4391 * in the range corresponding to the page, both state records and extent
4392 * map records are removed
4394 int try_release_extent_mapping(struct extent_map_tree *map,
4395 struct extent_io_tree *tree, struct page *page,
4396 gfp_t mask)
4398 struct extent_map *em;
4399 u64 start = page_offset(page);
4400 u64 end = start + PAGE_CACHE_SIZE - 1;
4402 if (gfpflags_allow_blocking(mask) &&
4403 page->mapping->host->i_size > 16 * 1024 * 1024) {
4404 u64 len;
4405 while (start <= end) {
4406 len = end - start + 1;
4407 write_lock(&map->lock);
4408 em = lookup_extent_mapping(map, start, len);
4409 if (!em) {
4410 write_unlock(&map->lock);
4411 break;
4413 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4414 em->start != start) {
4415 write_unlock(&map->lock);
4416 free_extent_map(em);
4417 break;
4419 if (!test_range_bit(tree, em->start,
4420 extent_map_end(em) - 1,
4421 EXTENT_LOCKED | EXTENT_WRITEBACK,
4422 0, NULL)) {
4423 remove_extent_mapping(map, em);
4424 /* once for the rb tree */
4425 free_extent_map(em);
4427 start = extent_map_end(em);
4428 write_unlock(&map->lock);
4430 /* once for us */
4431 free_extent_map(em);
4434 return try_release_extent_state(map, tree, page, mask);
4438 * helper function for fiemap, which doesn't want to see any holes.
4439 * This maps until we find something past 'last'
4441 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4442 u64 offset,
4443 u64 last,
4444 get_extent_t *get_extent)
4446 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4447 struct extent_map *em;
4448 u64 len;
4450 if (offset >= last)
4451 return NULL;
4453 while (1) {
4454 len = last - offset;
4455 if (len == 0)
4456 break;
4457 len = ALIGN(len, sectorsize);
4458 em = get_extent(inode, NULL, 0, offset, len, 0);
4459 if (IS_ERR_OR_NULL(em))
4460 return em;
4462 /* if this isn't a hole return it */
4463 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4464 em->block_start != EXTENT_MAP_HOLE) {
4465 return em;
4468 /* this is a hole, advance to the next extent */
4469 offset = extent_map_end(em);
4470 free_extent_map(em);
4471 if (offset >= last)
4472 break;
4474 return NULL;
4477 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4478 __u64 start, __u64 len, get_extent_t *get_extent)
4480 int ret = 0;
4481 u64 off = start;
4482 u64 max = start + len;
4483 u32 flags = 0;
4484 u32 found_type;
4485 u64 last;
4486 u64 last_for_get_extent = 0;
4487 u64 disko = 0;
4488 u64 isize = i_size_read(inode);
4489 struct btrfs_key found_key;
4490 struct extent_map *em = NULL;
4491 struct extent_state *cached_state = NULL;
4492 struct btrfs_path *path;
4493 struct btrfs_root *root = BTRFS_I(inode)->root;
4494 int end = 0;
4495 u64 em_start = 0;
4496 u64 em_len = 0;
4497 u64 em_end = 0;
4499 if (len == 0)
4500 return -EINVAL;
4502 path = btrfs_alloc_path();
4503 if (!path)
4504 return -ENOMEM;
4505 path->leave_spinning = 1;
4507 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4508 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4511 * lookup the last file extent. We're not using i_size here
4512 * because there might be preallocation past i_size
4514 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4516 if (ret < 0) {
4517 btrfs_free_path(path);
4518 return ret;
4520 WARN_ON(!ret);
4521 path->slots[0]--;
4522 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4523 found_type = found_key.type;
4525 /* No extents, but there might be delalloc bits */
4526 if (found_key.objectid != btrfs_ino(inode) ||
4527 found_type != BTRFS_EXTENT_DATA_KEY) {
4528 /* have to trust i_size as the end */
4529 last = (u64)-1;
4530 last_for_get_extent = isize;
4531 } else {
4533 * remember the start of the last extent. There are a
4534 * bunch of different factors that go into the length of the
4535 * extent, so its much less complex to remember where it started
4537 last = found_key.offset;
4538 last_for_get_extent = last + 1;
4540 btrfs_release_path(path);
4543 * we might have some extents allocated but more delalloc past those
4544 * extents. so, we trust isize unless the start of the last extent is
4545 * beyond isize
4547 if (last < isize) {
4548 last = (u64)-1;
4549 last_for_get_extent = isize;
4552 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4553 &cached_state);
4555 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4556 get_extent);
4557 if (!em)
4558 goto out;
4559 if (IS_ERR(em)) {
4560 ret = PTR_ERR(em);
4561 goto out;
4564 while (!end) {
4565 u64 offset_in_extent = 0;
4567 /* break if the extent we found is outside the range */
4568 if (em->start >= max || extent_map_end(em) < off)
4569 break;
4572 * get_extent may return an extent that starts before our
4573 * requested range. We have to make sure the ranges
4574 * we return to fiemap always move forward and don't
4575 * overlap, so adjust the offsets here
4577 em_start = max(em->start, off);
4580 * record the offset from the start of the extent
4581 * for adjusting the disk offset below. Only do this if the
4582 * extent isn't compressed since our in ram offset may be past
4583 * what we have actually allocated on disk.
4585 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4586 offset_in_extent = em_start - em->start;
4587 em_end = extent_map_end(em);
4588 em_len = em_end - em_start;
4589 disko = 0;
4590 flags = 0;
4593 * bump off for our next call to get_extent
4595 off = extent_map_end(em);
4596 if (off >= max)
4597 end = 1;
4599 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4600 end = 1;
4601 flags |= FIEMAP_EXTENT_LAST;
4602 } else if (em->block_start == EXTENT_MAP_INLINE) {
4603 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4604 FIEMAP_EXTENT_NOT_ALIGNED);
4605 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4606 flags |= (FIEMAP_EXTENT_DELALLOC |
4607 FIEMAP_EXTENT_UNKNOWN);
4608 } else if (fieinfo->fi_extents_max) {
4609 u64 bytenr = em->block_start -
4610 (em->start - em->orig_start);
4612 disko = em->block_start + offset_in_extent;
4615 * As btrfs supports shared space, this information
4616 * can be exported to userspace tools via
4617 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4618 * then we're just getting a count and we can skip the
4619 * lookup stuff.
4621 ret = btrfs_check_shared(NULL, root->fs_info,
4622 root->objectid,
4623 btrfs_ino(inode), bytenr);
4624 if (ret < 0)
4625 goto out_free;
4626 if (ret)
4627 flags |= FIEMAP_EXTENT_SHARED;
4628 ret = 0;
4630 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4631 flags |= FIEMAP_EXTENT_ENCODED;
4632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4633 flags |= FIEMAP_EXTENT_UNWRITTEN;
4635 free_extent_map(em);
4636 em = NULL;
4637 if ((em_start >= last) || em_len == (u64)-1 ||
4638 (last == (u64)-1 && isize <= em_end)) {
4639 flags |= FIEMAP_EXTENT_LAST;
4640 end = 1;
4643 /* now scan forward to see if this is really the last extent. */
4644 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4645 get_extent);
4646 if (IS_ERR(em)) {
4647 ret = PTR_ERR(em);
4648 goto out;
4650 if (!em) {
4651 flags |= FIEMAP_EXTENT_LAST;
4652 end = 1;
4654 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4655 em_len, flags);
4656 if (ret) {
4657 if (ret == 1)
4658 ret = 0;
4659 goto out_free;
4662 out_free:
4663 free_extent_map(em);
4664 out:
4665 btrfs_free_path(path);
4666 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4667 &cached_state, GFP_NOFS);
4668 return ret;
4671 static void __free_extent_buffer(struct extent_buffer *eb)
4673 btrfs_leak_debug_del(&eb->leak_list);
4674 kmem_cache_free(extent_buffer_cache, eb);
4677 int extent_buffer_under_io(struct extent_buffer *eb)
4679 return (atomic_read(&eb->io_pages) ||
4680 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4681 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4685 * Helper for releasing extent buffer page.
4687 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4689 unsigned long index;
4690 struct page *page;
4691 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4693 BUG_ON(extent_buffer_under_io(eb));
4695 index = num_extent_pages(eb->start, eb->len);
4696 if (index == 0)
4697 return;
4699 do {
4700 index--;
4701 page = eb->pages[index];
4702 if (!page)
4703 continue;
4704 if (mapped)
4705 spin_lock(&page->mapping->private_lock);
4707 * We do this since we'll remove the pages after we've
4708 * removed the eb from the radix tree, so we could race
4709 * and have this page now attached to the new eb. So
4710 * only clear page_private if it's still connected to
4711 * this eb.
4713 if (PagePrivate(page) &&
4714 page->private == (unsigned long)eb) {
4715 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4716 BUG_ON(PageDirty(page));
4717 BUG_ON(PageWriteback(page));
4719 * We need to make sure we haven't be attached
4720 * to a new eb.
4722 ClearPagePrivate(page);
4723 set_page_private(page, 0);
4724 /* One for the page private */
4725 page_cache_release(page);
4728 if (mapped)
4729 spin_unlock(&page->mapping->private_lock);
4731 /* One for when we alloced the page */
4732 page_cache_release(page);
4733 } while (index != 0);
4737 * Helper for releasing the extent buffer.
4739 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4741 btrfs_release_extent_buffer_page(eb);
4742 __free_extent_buffer(eb);
4745 static struct extent_buffer *
4746 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4747 unsigned long len)
4749 struct extent_buffer *eb = NULL;
4751 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4752 eb->start = start;
4753 eb->len = len;
4754 eb->fs_info = fs_info;
4755 eb->bflags = 0;
4756 rwlock_init(&eb->lock);
4757 atomic_set(&eb->write_locks, 0);
4758 atomic_set(&eb->read_locks, 0);
4759 atomic_set(&eb->blocking_readers, 0);
4760 atomic_set(&eb->blocking_writers, 0);
4761 atomic_set(&eb->spinning_readers, 0);
4762 atomic_set(&eb->spinning_writers, 0);
4763 eb->lock_nested = 0;
4764 init_waitqueue_head(&eb->write_lock_wq);
4765 init_waitqueue_head(&eb->read_lock_wq);
4767 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4769 spin_lock_init(&eb->refs_lock);
4770 atomic_set(&eb->refs, 1);
4771 atomic_set(&eb->io_pages, 0);
4774 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4776 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4777 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4778 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4780 return eb;
4783 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4785 unsigned long i;
4786 struct page *p;
4787 struct extent_buffer *new;
4788 unsigned long num_pages = num_extent_pages(src->start, src->len);
4790 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4791 if (new == NULL)
4792 return NULL;
4794 for (i = 0; i < num_pages; i++) {
4795 p = alloc_page(GFP_NOFS);
4796 if (!p) {
4797 btrfs_release_extent_buffer(new);
4798 return NULL;
4800 attach_extent_buffer_page(new, p);
4801 WARN_ON(PageDirty(p));
4802 SetPageUptodate(p);
4803 new->pages[i] = p;
4806 copy_extent_buffer(new, src, 0, 0, src->len);
4807 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4808 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4810 return new;
4813 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4814 u64 start)
4816 struct extent_buffer *eb;
4817 unsigned long len;
4818 unsigned long num_pages;
4819 unsigned long i;
4821 if (!fs_info) {
4823 * Called only from tests that don't always have a fs_info
4824 * available, but we know that nodesize is 4096
4826 len = 4096;
4827 } else {
4828 len = fs_info->tree_root->nodesize;
4830 num_pages = num_extent_pages(0, len);
4832 eb = __alloc_extent_buffer(fs_info, start, len);
4833 if (!eb)
4834 return NULL;
4836 for (i = 0; i < num_pages; i++) {
4837 eb->pages[i] = alloc_page(GFP_NOFS);
4838 if (!eb->pages[i])
4839 goto err;
4841 set_extent_buffer_uptodate(eb);
4842 btrfs_set_header_nritems(eb, 0);
4843 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4845 return eb;
4846 err:
4847 for (; i > 0; i--)
4848 __free_page(eb->pages[i - 1]);
4849 __free_extent_buffer(eb);
4850 return NULL;
4853 static void check_buffer_tree_ref(struct extent_buffer *eb)
4855 int refs;
4856 /* the ref bit is tricky. We have to make sure it is set
4857 * if we have the buffer dirty. Otherwise the
4858 * code to free a buffer can end up dropping a dirty
4859 * page
4861 * Once the ref bit is set, it won't go away while the
4862 * buffer is dirty or in writeback, and it also won't
4863 * go away while we have the reference count on the
4864 * eb bumped.
4866 * We can't just set the ref bit without bumping the
4867 * ref on the eb because free_extent_buffer might
4868 * see the ref bit and try to clear it. If this happens
4869 * free_extent_buffer might end up dropping our original
4870 * ref by mistake and freeing the page before we are able
4871 * to add one more ref.
4873 * So bump the ref count first, then set the bit. If someone
4874 * beat us to it, drop the ref we added.
4876 refs = atomic_read(&eb->refs);
4877 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4878 return;
4880 spin_lock(&eb->refs_lock);
4881 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4882 atomic_inc(&eb->refs);
4883 spin_unlock(&eb->refs_lock);
4886 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4887 struct page *accessed)
4889 unsigned long num_pages, i;
4891 check_buffer_tree_ref(eb);
4893 num_pages = num_extent_pages(eb->start, eb->len);
4894 for (i = 0; i < num_pages; i++) {
4895 struct page *p = eb->pages[i];
4897 if (p != accessed)
4898 mark_page_accessed(p);
4902 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4903 u64 start)
4905 struct extent_buffer *eb;
4907 rcu_read_lock();
4908 eb = radix_tree_lookup(&fs_info->buffer_radix,
4909 start >> PAGE_CACHE_SHIFT);
4910 if (eb && atomic_inc_not_zero(&eb->refs)) {
4911 rcu_read_unlock();
4913 * Lock our eb's refs_lock to avoid races with
4914 * free_extent_buffer. When we get our eb it might be flagged
4915 * with EXTENT_BUFFER_STALE and another task running
4916 * free_extent_buffer might have seen that flag set,
4917 * eb->refs == 2, that the buffer isn't under IO (dirty and
4918 * writeback flags not set) and it's still in the tree (flag
4919 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4920 * of decrementing the extent buffer's reference count twice.
4921 * So here we could race and increment the eb's reference count,
4922 * clear its stale flag, mark it as dirty and drop our reference
4923 * before the other task finishes executing free_extent_buffer,
4924 * which would later result in an attempt to free an extent
4925 * buffer that is dirty.
4927 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4928 spin_lock(&eb->refs_lock);
4929 spin_unlock(&eb->refs_lock);
4931 mark_extent_buffer_accessed(eb, NULL);
4932 return eb;
4934 rcu_read_unlock();
4936 return NULL;
4939 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4940 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4941 u64 start)
4943 struct extent_buffer *eb, *exists = NULL;
4944 int ret;
4946 eb = find_extent_buffer(fs_info, start);
4947 if (eb)
4948 return eb;
4949 eb = alloc_dummy_extent_buffer(fs_info, start);
4950 if (!eb)
4951 return NULL;
4952 eb->fs_info = fs_info;
4953 again:
4954 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4955 if (ret)
4956 goto free_eb;
4957 spin_lock(&fs_info->buffer_lock);
4958 ret = radix_tree_insert(&fs_info->buffer_radix,
4959 start >> PAGE_CACHE_SHIFT, eb);
4960 spin_unlock(&fs_info->buffer_lock);
4961 radix_tree_preload_end();
4962 if (ret == -EEXIST) {
4963 exists = find_extent_buffer(fs_info, start);
4964 if (exists)
4965 goto free_eb;
4966 else
4967 goto again;
4969 check_buffer_tree_ref(eb);
4970 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4973 * We will free dummy extent buffer's if they come into
4974 * free_extent_buffer with a ref count of 2, but if we are using this we
4975 * want the buffers to stay in memory until we're done with them, so
4976 * bump the ref count again.
4978 atomic_inc(&eb->refs);
4979 return eb;
4980 free_eb:
4981 btrfs_release_extent_buffer(eb);
4982 return exists;
4984 #endif
4986 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4987 u64 start)
4989 unsigned long len = fs_info->tree_root->nodesize;
4990 unsigned long num_pages = num_extent_pages(start, len);
4991 unsigned long i;
4992 unsigned long index = start >> PAGE_CACHE_SHIFT;
4993 struct extent_buffer *eb;
4994 struct extent_buffer *exists = NULL;
4995 struct page *p;
4996 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4997 int uptodate = 1;
4998 int ret;
5000 eb = find_extent_buffer(fs_info, start);
5001 if (eb)
5002 return eb;
5004 eb = __alloc_extent_buffer(fs_info, start, len);
5005 if (!eb)
5006 return NULL;
5008 for (i = 0; i < num_pages; i++, index++) {
5009 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5010 if (!p)
5011 goto free_eb;
5013 spin_lock(&mapping->private_lock);
5014 if (PagePrivate(p)) {
5016 * We could have already allocated an eb for this page
5017 * and attached one so lets see if we can get a ref on
5018 * the existing eb, and if we can we know it's good and
5019 * we can just return that one, else we know we can just
5020 * overwrite page->private.
5022 exists = (struct extent_buffer *)p->private;
5023 if (atomic_inc_not_zero(&exists->refs)) {
5024 spin_unlock(&mapping->private_lock);
5025 unlock_page(p);
5026 page_cache_release(p);
5027 mark_extent_buffer_accessed(exists, p);
5028 goto free_eb;
5030 exists = NULL;
5033 * Do this so attach doesn't complain and we need to
5034 * drop the ref the old guy had.
5036 ClearPagePrivate(p);
5037 WARN_ON(PageDirty(p));
5038 page_cache_release(p);
5040 attach_extent_buffer_page(eb, p);
5041 spin_unlock(&mapping->private_lock);
5042 WARN_ON(PageDirty(p));
5043 eb->pages[i] = p;
5044 if (!PageUptodate(p))
5045 uptodate = 0;
5048 * see below about how we avoid a nasty race with release page
5049 * and why we unlock later
5052 if (uptodate)
5053 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5054 again:
5055 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5056 if (ret)
5057 goto free_eb;
5059 spin_lock(&fs_info->buffer_lock);
5060 ret = radix_tree_insert(&fs_info->buffer_radix,
5061 start >> PAGE_CACHE_SHIFT, eb);
5062 spin_unlock(&fs_info->buffer_lock);
5063 radix_tree_preload_end();
5064 if (ret == -EEXIST) {
5065 exists = find_extent_buffer(fs_info, start);
5066 if (exists)
5067 goto free_eb;
5068 else
5069 goto again;
5071 /* add one reference for the tree */
5072 check_buffer_tree_ref(eb);
5073 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5076 * there is a race where release page may have
5077 * tried to find this extent buffer in the radix
5078 * but failed. It will tell the VM it is safe to
5079 * reclaim the, and it will clear the page private bit.
5080 * We must make sure to set the page private bit properly
5081 * after the extent buffer is in the radix tree so
5082 * it doesn't get lost
5084 SetPageChecked(eb->pages[0]);
5085 for (i = 1; i < num_pages; i++) {
5086 p = eb->pages[i];
5087 ClearPageChecked(p);
5088 unlock_page(p);
5090 unlock_page(eb->pages[0]);
5091 return eb;
5093 free_eb:
5094 WARN_ON(!atomic_dec_and_test(&eb->refs));
5095 for (i = 0; i < num_pages; i++) {
5096 if (eb->pages[i])
5097 unlock_page(eb->pages[i]);
5100 btrfs_release_extent_buffer(eb);
5101 return exists;
5104 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5106 struct extent_buffer *eb =
5107 container_of(head, struct extent_buffer, rcu_head);
5109 __free_extent_buffer(eb);
5112 /* Expects to have eb->eb_lock already held */
5113 static int release_extent_buffer(struct extent_buffer *eb)
5115 WARN_ON(atomic_read(&eb->refs) == 0);
5116 if (atomic_dec_and_test(&eb->refs)) {
5117 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5118 struct btrfs_fs_info *fs_info = eb->fs_info;
5120 spin_unlock(&eb->refs_lock);
5122 spin_lock(&fs_info->buffer_lock);
5123 radix_tree_delete(&fs_info->buffer_radix,
5124 eb->start >> PAGE_CACHE_SHIFT);
5125 spin_unlock(&fs_info->buffer_lock);
5126 } else {
5127 spin_unlock(&eb->refs_lock);
5130 /* Should be safe to release our pages at this point */
5131 btrfs_release_extent_buffer_page(eb);
5132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5133 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5134 __free_extent_buffer(eb);
5135 return 1;
5137 #endif
5138 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5139 return 1;
5141 spin_unlock(&eb->refs_lock);
5143 return 0;
5146 void free_extent_buffer(struct extent_buffer *eb)
5148 int refs;
5149 int old;
5150 if (!eb)
5151 return;
5153 while (1) {
5154 refs = atomic_read(&eb->refs);
5155 if (refs <= 3)
5156 break;
5157 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5158 if (old == refs)
5159 return;
5162 spin_lock(&eb->refs_lock);
5163 if (atomic_read(&eb->refs) == 2 &&
5164 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5165 atomic_dec(&eb->refs);
5167 if (atomic_read(&eb->refs) == 2 &&
5168 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5169 !extent_buffer_under_io(eb) &&
5170 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5171 atomic_dec(&eb->refs);
5174 * I know this is terrible, but it's temporary until we stop tracking
5175 * the uptodate bits and such for the extent buffers.
5177 release_extent_buffer(eb);
5180 void free_extent_buffer_stale(struct extent_buffer *eb)
5182 if (!eb)
5183 return;
5185 spin_lock(&eb->refs_lock);
5186 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5188 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5189 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5190 atomic_dec(&eb->refs);
5191 release_extent_buffer(eb);
5194 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5196 unsigned long i;
5197 unsigned long num_pages;
5198 struct page *page;
5200 num_pages = num_extent_pages(eb->start, eb->len);
5202 for (i = 0; i < num_pages; i++) {
5203 page = eb->pages[i];
5204 if (!PageDirty(page))
5205 continue;
5207 lock_page(page);
5208 WARN_ON(!PagePrivate(page));
5210 clear_page_dirty_for_io(page);
5211 spin_lock_irq(&page->mapping->tree_lock);
5212 if (!PageDirty(page)) {
5213 radix_tree_tag_clear(&page->mapping->page_tree,
5214 page_index(page),
5215 PAGECACHE_TAG_DIRTY);
5217 spin_unlock_irq(&page->mapping->tree_lock);
5218 ClearPageError(page);
5219 unlock_page(page);
5221 WARN_ON(atomic_read(&eb->refs) == 0);
5224 int set_extent_buffer_dirty(struct extent_buffer *eb)
5226 unsigned long i;
5227 unsigned long num_pages;
5228 int was_dirty = 0;
5230 check_buffer_tree_ref(eb);
5232 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5234 num_pages = num_extent_pages(eb->start, eb->len);
5235 WARN_ON(atomic_read(&eb->refs) == 0);
5236 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5238 for (i = 0; i < num_pages; i++)
5239 set_page_dirty(eb->pages[i]);
5240 return was_dirty;
5243 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
5245 unsigned long i;
5246 struct page *page;
5247 unsigned long num_pages;
5249 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5250 num_pages = num_extent_pages(eb->start, eb->len);
5251 for (i = 0; i < num_pages; i++) {
5252 page = eb->pages[i];
5253 if (page)
5254 ClearPageUptodate(page);
5256 return 0;
5259 int set_extent_buffer_uptodate(struct extent_buffer *eb)
5261 unsigned long i;
5262 struct page *page;
5263 unsigned long num_pages;
5265 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5266 num_pages = num_extent_pages(eb->start, eb->len);
5267 for (i = 0; i < num_pages; i++) {
5268 page = eb->pages[i];
5269 SetPageUptodate(page);
5271 return 0;
5274 int extent_buffer_uptodate(struct extent_buffer *eb)
5276 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5279 int read_extent_buffer_pages(struct extent_io_tree *tree,
5280 struct extent_buffer *eb, u64 start, int wait,
5281 get_extent_t *get_extent, int mirror_num)
5283 unsigned long i;
5284 unsigned long start_i;
5285 struct page *page;
5286 int err;
5287 int ret = 0;
5288 int locked_pages = 0;
5289 int all_uptodate = 1;
5290 unsigned long num_pages;
5291 unsigned long num_reads = 0;
5292 struct bio *bio = NULL;
5293 unsigned long bio_flags = 0;
5295 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5296 return 0;
5298 if (start) {
5299 WARN_ON(start < eb->start);
5300 start_i = (start >> PAGE_CACHE_SHIFT) -
5301 (eb->start >> PAGE_CACHE_SHIFT);
5302 } else {
5303 start_i = 0;
5306 num_pages = num_extent_pages(eb->start, eb->len);
5307 for (i = start_i; i < num_pages; i++) {
5308 page = eb->pages[i];
5309 if (wait == WAIT_NONE) {
5310 if (!trylock_page(page))
5311 goto unlock_exit;
5312 } else {
5313 lock_page(page);
5315 locked_pages++;
5318 * We need to firstly lock all pages to make sure that
5319 * the uptodate bit of our pages won't be affected by
5320 * clear_extent_buffer_uptodate().
5322 for (i = start_i; i < num_pages; i++) {
5323 page = eb->pages[i];
5324 if (!PageUptodate(page)) {
5325 num_reads++;
5326 all_uptodate = 0;
5330 if (all_uptodate) {
5331 if (start_i == 0)
5332 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5333 goto unlock_exit;
5336 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5337 eb->read_mirror = 0;
5338 atomic_set(&eb->io_pages, num_reads);
5339 for (i = start_i; i < num_pages; i++) {
5340 page = eb->pages[i];
5341 if (!PageUptodate(page)) {
5342 ClearPageError(page);
5343 err = __extent_read_full_page(tree, page,
5344 get_extent, &bio,
5345 mirror_num, &bio_flags,
5346 READ | REQ_META);
5347 if (err)
5348 ret = err;
5349 } else {
5350 unlock_page(page);
5354 if (bio) {
5355 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5356 bio_flags);
5357 if (err)
5358 return err;
5361 if (ret || wait != WAIT_COMPLETE)
5362 return ret;
5364 for (i = start_i; i < num_pages; i++) {
5365 page = eb->pages[i];
5366 wait_on_page_locked(page);
5367 if (!PageUptodate(page))
5368 ret = -EIO;
5371 return ret;
5373 unlock_exit:
5374 i = start_i;
5375 while (locked_pages > 0) {
5376 page = eb->pages[i];
5377 i++;
5378 unlock_page(page);
5379 locked_pages--;
5381 return ret;
5384 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5385 unsigned long start,
5386 unsigned long len)
5388 size_t cur;
5389 size_t offset;
5390 struct page *page;
5391 char *kaddr;
5392 char *dst = (char *)dstv;
5393 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5394 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5396 WARN_ON(start > eb->len);
5397 WARN_ON(start + len > eb->start + eb->len);
5399 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5401 while (len > 0) {
5402 page = eb->pages[i];
5404 cur = min(len, (PAGE_CACHE_SIZE - offset));
5405 kaddr = page_address(page);
5406 memcpy(dst, kaddr + offset, cur);
5408 dst += cur;
5409 len -= cur;
5410 offset = 0;
5411 i++;
5415 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5416 unsigned long start,
5417 unsigned long len)
5419 size_t cur;
5420 size_t offset;
5421 struct page *page;
5422 char *kaddr;
5423 char __user *dst = (char __user *)dstv;
5424 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5425 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5426 int ret = 0;
5428 WARN_ON(start > eb->len);
5429 WARN_ON(start + len > eb->start + eb->len);
5431 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5433 while (len > 0) {
5434 page = eb->pages[i];
5436 cur = min(len, (PAGE_CACHE_SIZE - offset));
5437 kaddr = page_address(page);
5438 if (copy_to_user(dst, kaddr + offset, cur)) {
5439 ret = -EFAULT;
5440 break;
5443 dst += cur;
5444 len -= cur;
5445 offset = 0;
5446 i++;
5449 return ret;
5452 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5453 unsigned long min_len, char **map,
5454 unsigned long *map_start,
5455 unsigned long *map_len)
5457 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5458 char *kaddr;
5459 struct page *p;
5460 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5461 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5462 unsigned long end_i = (start_offset + start + min_len - 1) >>
5463 PAGE_CACHE_SHIFT;
5465 if (i != end_i)
5466 return -EINVAL;
5468 if (i == 0) {
5469 offset = start_offset;
5470 *map_start = 0;
5471 } else {
5472 offset = 0;
5473 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5476 if (start + min_len > eb->len) {
5477 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5478 "wanted %lu %lu\n",
5479 eb->start, eb->len, start, min_len);
5480 return -EINVAL;
5483 p = eb->pages[i];
5484 kaddr = page_address(p);
5485 *map = kaddr + offset;
5486 *map_len = PAGE_CACHE_SIZE - offset;
5487 return 0;
5490 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5491 unsigned long start,
5492 unsigned long len)
5494 size_t cur;
5495 size_t offset;
5496 struct page *page;
5497 char *kaddr;
5498 char *ptr = (char *)ptrv;
5499 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5500 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5501 int ret = 0;
5503 WARN_ON(start > eb->len);
5504 WARN_ON(start + len > eb->start + eb->len);
5506 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5508 while (len > 0) {
5509 page = eb->pages[i];
5511 cur = min(len, (PAGE_CACHE_SIZE - offset));
5513 kaddr = page_address(page);
5514 ret = memcmp(ptr, kaddr + offset, cur);
5515 if (ret)
5516 break;
5518 ptr += cur;
5519 len -= cur;
5520 offset = 0;
5521 i++;
5523 return ret;
5526 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5527 unsigned long start, unsigned long len)
5529 size_t cur;
5530 size_t offset;
5531 struct page *page;
5532 char *kaddr;
5533 char *src = (char *)srcv;
5534 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5535 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5537 WARN_ON(start > eb->len);
5538 WARN_ON(start + len > eb->start + eb->len);
5540 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5542 while (len > 0) {
5543 page = eb->pages[i];
5544 WARN_ON(!PageUptodate(page));
5546 cur = min(len, PAGE_CACHE_SIZE - offset);
5547 kaddr = page_address(page);
5548 memcpy(kaddr + offset, src, cur);
5550 src += cur;
5551 len -= cur;
5552 offset = 0;
5553 i++;
5557 void memset_extent_buffer(struct extent_buffer *eb, char c,
5558 unsigned long start, unsigned long len)
5560 size_t cur;
5561 size_t offset;
5562 struct page *page;
5563 char *kaddr;
5564 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5565 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5567 WARN_ON(start > eb->len);
5568 WARN_ON(start + len > eb->start + eb->len);
5570 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5572 while (len > 0) {
5573 page = eb->pages[i];
5574 WARN_ON(!PageUptodate(page));
5576 cur = min(len, PAGE_CACHE_SIZE - offset);
5577 kaddr = page_address(page);
5578 memset(kaddr + offset, c, cur);
5580 len -= cur;
5581 offset = 0;
5582 i++;
5586 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5587 unsigned long dst_offset, unsigned long src_offset,
5588 unsigned long len)
5590 u64 dst_len = dst->len;
5591 size_t cur;
5592 size_t offset;
5593 struct page *page;
5594 char *kaddr;
5595 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5596 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5598 WARN_ON(src->len != dst_len);
5600 offset = (start_offset + dst_offset) &
5601 (PAGE_CACHE_SIZE - 1);
5603 while (len > 0) {
5604 page = dst->pages[i];
5605 WARN_ON(!PageUptodate(page));
5607 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5609 kaddr = page_address(page);
5610 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5612 src_offset += cur;
5613 len -= cur;
5614 offset = 0;
5615 i++;
5619 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5621 unsigned long distance = (src > dst) ? src - dst : dst - src;
5622 return distance < len;
5625 static void copy_pages(struct page *dst_page, struct page *src_page,
5626 unsigned long dst_off, unsigned long src_off,
5627 unsigned long len)
5629 char *dst_kaddr = page_address(dst_page);
5630 char *src_kaddr;
5631 int must_memmove = 0;
5633 if (dst_page != src_page) {
5634 src_kaddr = page_address(src_page);
5635 } else {
5636 src_kaddr = dst_kaddr;
5637 if (areas_overlap(src_off, dst_off, len))
5638 must_memmove = 1;
5641 if (must_memmove)
5642 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5643 else
5644 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5647 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5648 unsigned long src_offset, unsigned long len)
5650 size_t cur;
5651 size_t dst_off_in_page;
5652 size_t src_off_in_page;
5653 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5654 unsigned long dst_i;
5655 unsigned long src_i;
5657 if (src_offset + len > dst->len) {
5658 btrfs_err(dst->fs_info,
5659 "memmove bogus src_offset %lu move "
5660 "len %lu dst len %lu", src_offset, len, dst->len);
5661 BUG_ON(1);
5663 if (dst_offset + len > dst->len) {
5664 btrfs_err(dst->fs_info,
5665 "memmove bogus dst_offset %lu move "
5666 "len %lu dst len %lu", dst_offset, len, dst->len);
5667 BUG_ON(1);
5670 while (len > 0) {
5671 dst_off_in_page = (start_offset + dst_offset) &
5672 (PAGE_CACHE_SIZE - 1);
5673 src_off_in_page = (start_offset + src_offset) &
5674 (PAGE_CACHE_SIZE - 1);
5676 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5677 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5679 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5680 src_off_in_page));
5681 cur = min_t(unsigned long, cur,
5682 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5684 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5685 dst_off_in_page, src_off_in_page, cur);
5687 src_offset += cur;
5688 dst_offset += cur;
5689 len -= cur;
5693 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5694 unsigned long src_offset, unsigned long len)
5696 size_t cur;
5697 size_t dst_off_in_page;
5698 size_t src_off_in_page;
5699 unsigned long dst_end = dst_offset + len - 1;
5700 unsigned long src_end = src_offset + len - 1;
5701 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5702 unsigned long dst_i;
5703 unsigned long src_i;
5705 if (src_offset + len > dst->len) {
5706 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5707 "len %lu len %lu", src_offset, len, dst->len);
5708 BUG_ON(1);
5710 if (dst_offset + len > dst->len) {
5711 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5712 "len %lu len %lu", dst_offset, len, dst->len);
5713 BUG_ON(1);
5715 if (dst_offset < src_offset) {
5716 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5717 return;
5719 while (len > 0) {
5720 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5721 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5723 dst_off_in_page = (start_offset + dst_end) &
5724 (PAGE_CACHE_SIZE - 1);
5725 src_off_in_page = (start_offset + src_end) &
5726 (PAGE_CACHE_SIZE - 1);
5728 cur = min_t(unsigned long, len, src_off_in_page + 1);
5729 cur = min(cur, dst_off_in_page + 1);
5730 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5731 dst_off_in_page - cur + 1,
5732 src_off_in_page - cur + 1, cur);
5734 dst_end -= cur;
5735 src_end -= cur;
5736 len -= cur;
5740 int try_release_extent_buffer(struct page *page)
5742 struct extent_buffer *eb;
5745 * We need to make sure noboody is attaching this page to an eb right
5746 * now.
5748 spin_lock(&page->mapping->private_lock);
5749 if (!PagePrivate(page)) {
5750 spin_unlock(&page->mapping->private_lock);
5751 return 1;
5754 eb = (struct extent_buffer *)page->private;
5755 BUG_ON(!eb);
5758 * This is a little awful but should be ok, we need to make sure that
5759 * the eb doesn't disappear out from under us while we're looking at
5760 * this page.
5762 spin_lock(&eb->refs_lock);
5763 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5764 spin_unlock(&eb->refs_lock);
5765 spin_unlock(&page->mapping->private_lock);
5766 return 0;
5768 spin_unlock(&page->mapping->private_lock);
5771 * If tree ref isn't set then we know the ref on this eb is a real ref,
5772 * so just return, this page will likely be freed soon anyway.
5774 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5775 spin_unlock(&eb->refs_lock);
5776 return 0;
5779 return release_extent_buffer(eb);