xen: include xen/xen.h for definition of xen_initial_domain()
[linux/fpc-iii.git] / fs / aio.c
blob250b0a73c8a8ca92b78c3a0282d2425ce7649dcf
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
21 #define DEBUG 0
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
44 #if DEBUG > 1
45 #define dprintk printk
46 #else
47 #define dprintk(x...) do { ; } while (0)
48 #endif
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock);
52 unsigned long aio_nr; /* current system wide number of aio requests */
53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
56 static struct kmem_cache *kiocb_cachep;
57 static struct kmem_cache *kioctx_cachep;
59 static struct workqueue_struct *aio_wq;
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct *);
63 static DECLARE_WORK(fput_work, aio_fput_routine);
65 static DEFINE_SPINLOCK(fput_lock);
66 static LIST_HEAD(fput_head);
68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry {
71 struct hlist_node list;
72 struct address_space *mapping;
74 mempool_t *abe_pool;
76 static void aio_kick_handler(struct work_struct *);
77 static void aio_queue_work(struct kioctx *);
79 /* aio_setup
80 * Creates the slab caches used by the aio routines, panic on
81 * failure as this is done early during the boot sequence.
83 static int __init aio_setup(void)
85 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
88 aio_wq = create_workqueue("aio");
89 abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90 BUG_ON(!abe_pool);
92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
94 return 0;
96 __initcall(aio_setup);
98 static void aio_free_ring(struct kioctx *ctx)
100 struct aio_ring_info *info = &ctx->ring_info;
101 long i;
103 for (i=0; i<info->nr_pages; i++)
104 put_page(info->ring_pages[i]);
106 if (info->mmap_size) {
107 down_write(&ctx->mm->mmap_sem);
108 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109 up_write(&ctx->mm->mmap_sem);
112 if (info->ring_pages && info->ring_pages != info->internal_pages)
113 kfree(info->ring_pages);
114 info->ring_pages = NULL;
115 info->nr = 0;
118 static int aio_setup_ring(struct kioctx *ctx)
120 struct aio_ring *ring;
121 struct aio_ring_info *info = &ctx->ring_info;
122 unsigned nr_events = ctx->max_reqs;
123 unsigned long size;
124 int nr_pages;
126 /* Compensate for the ring buffer's head/tail overlap entry */
127 nr_events += 2; /* 1 is required, 2 for good luck */
129 size = sizeof(struct aio_ring);
130 size += sizeof(struct io_event) * nr_events;
131 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
133 if (nr_pages < 0)
134 return -EINVAL;
136 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
138 info->nr = 0;
139 info->ring_pages = info->internal_pages;
140 if (nr_pages > AIO_RING_PAGES) {
141 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142 if (!info->ring_pages)
143 return -ENOMEM;
146 info->mmap_size = nr_pages * PAGE_SIZE;
147 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148 down_write(&ctx->mm->mmap_sem);
149 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
152 if (IS_ERR((void *)info->mmap_base)) {
153 up_write(&ctx->mm->mmap_sem);
154 info->mmap_size = 0;
155 aio_free_ring(ctx);
156 return -EAGAIN;
159 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160 info->nr_pages = get_user_pages(current, ctx->mm,
161 info->mmap_base, nr_pages,
162 1, 0, info->ring_pages, NULL);
163 up_write(&ctx->mm->mmap_sem);
165 if (unlikely(info->nr_pages != nr_pages)) {
166 aio_free_ring(ctx);
167 return -EAGAIN;
170 ctx->user_id = info->mmap_base;
172 info->nr = nr_events; /* trusted copy */
174 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175 ring->nr = nr_events; /* user copy */
176 ring->id = ctx->user_id;
177 ring->head = ring->tail = 0;
178 ring->magic = AIO_RING_MAGIC;
179 ring->compat_features = AIO_RING_COMPAT_FEATURES;
180 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181 ring->header_length = sizeof(struct aio_ring);
182 kunmap_atomic(ring, KM_USER0);
184 return 0;
188 /* aio_ring_event: returns a pointer to the event at the given index from
189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
195 #define aio_ring_event(info, nr, km) ({ \
196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
197 struct io_event *__event; \
198 __event = kmap_atomic( \
199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 __event += pos % AIO_EVENTS_PER_PAGE; \
201 __event; \
204 #define put_aio_ring_event(event, km) do { \
205 struct io_event *__event = (event); \
206 (void)__event; \
207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208 } while(0)
210 static void ctx_rcu_free(struct rcu_head *head)
212 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213 unsigned nr_events = ctx->max_reqs;
215 kmem_cache_free(kioctx_cachep, ctx);
217 if (nr_events) {
218 spin_lock(&aio_nr_lock);
219 BUG_ON(aio_nr - nr_events > aio_nr);
220 aio_nr -= nr_events;
221 spin_unlock(&aio_nr_lock);
225 /* __put_ioctx
226 * Called when the last user of an aio context has gone away,
227 * and the struct needs to be freed.
229 static void __put_ioctx(struct kioctx *ctx)
231 BUG_ON(ctx->reqs_active);
233 cancel_delayed_work(&ctx->wq);
234 cancel_work_sync(&ctx->wq.work);
235 aio_free_ring(ctx);
236 mmdrop(ctx->mm);
237 ctx->mm = NULL;
238 pr_debug("__put_ioctx: freeing %p\n", ctx);
239 call_rcu(&ctx->rcu_head, ctx_rcu_free);
242 #define get_ioctx(kioctx) do { \
243 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
244 atomic_inc(&(kioctx)->users); \
245 } while (0)
246 #define put_ioctx(kioctx) do { \
247 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
248 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
249 __put_ioctx(kioctx); \
250 } while (0)
252 /* ioctx_alloc
253 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
255 static struct kioctx *ioctx_alloc(unsigned nr_events)
257 struct mm_struct *mm;
258 struct kioctx *ctx;
259 int did_sync = 0;
261 /* Prevent overflows */
262 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
263 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
264 pr_debug("ENOMEM: nr_events too high\n");
265 return ERR_PTR(-EINVAL);
268 if ((unsigned long)nr_events > aio_max_nr)
269 return ERR_PTR(-EAGAIN);
271 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
272 if (!ctx)
273 return ERR_PTR(-ENOMEM);
275 ctx->max_reqs = nr_events;
276 mm = ctx->mm = current->mm;
277 atomic_inc(&mm->mm_count);
279 atomic_set(&ctx->users, 1);
280 spin_lock_init(&ctx->ctx_lock);
281 spin_lock_init(&ctx->ring_info.ring_lock);
282 init_waitqueue_head(&ctx->wait);
284 INIT_LIST_HEAD(&ctx->active_reqs);
285 INIT_LIST_HEAD(&ctx->run_list);
286 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
288 if (aio_setup_ring(ctx) < 0)
289 goto out_freectx;
291 /* limit the number of system wide aios */
292 do {
293 spin_lock_bh(&aio_nr_lock);
294 if (aio_nr + nr_events > aio_max_nr ||
295 aio_nr + nr_events < aio_nr)
296 ctx->max_reqs = 0;
297 else
298 aio_nr += ctx->max_reqs;
299 spin_unlock_bh(&aio_nr_lock);
300 if (ctx->max_reqs || did_sync)
301 break;
303 /* wait for rcu callbacks to have completed before giving up */
304 synchronize_rcu();
305 did_sync = 1;
306 ctx->max_reqs = nr_events;
307 } while (1);
309 if (ctx->max_reqs == 0)
310 goto out_cleanup;
312 /* now link into global list. */
313 spin_lock(&mm->ioctx_lock);
314 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
315 spin_unlock(&mm->ioctx_lock);
317 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
319 return ctx;
321 out_cleanup:
322 __put_ioctx(ctx);
323 return ERR_PTR(-EAGAIN);
325 out_freectx:
326 mmdrop(mm);
327 kmem_cache_free(kioctx_cachep, ctx);
328 ctx = ERR_PTR(-ENOMEM);
330 dprintk("aio: error allocating ioctx %p\n", ctx);
331 return ctx;
334 /* aio_cancel_all
335 * Cancels all outstanding aio requests on an aio context. Used
336 * when the processes owning a context have all exited to encourage
337 * the rapid destruction of the kioctx.
339 static void aio_cancel_all(struct kioctx *ctx)
341 int (*cancel)(struct kiocb *, struct io_event *);
342 struct io_event res;
343 spin_lock_irq(&ctx->ctx_lock);
344 ctx->dead = 1;
345 while (!list_empty(&ctx->active_reqs)) {
346 struct list_head *pos = ctx->active_reqs.next;
347 struct kiocb *iocb = list_kiocb(pos);
348 list_del_init(&iocb->ki_list);
349 cancel = iocb->ki_cancel;
350 kiocbSetCancelled(iocb);
351 if (cancel) {
352 iocb->ki_users++;
353 spin_unlock_irq(&ctx->ctx_lock);
354 cancel(iocb, &res);
355 spin_lock_irq(&ctx->ctx_lock);
358 spin_unlock_irq(&ctx->ctx_lock);
361 static void wait_for_all_aios(struct kioctx *ctx)
363 struct task_struct *tsk = current;
364 DECLARE_WAITQUEUE(wait, tsk);
366 spin_lock_irq(&ctx->ctx_lock);
367 if (!ctx->reqs_active)
368 goto out;
370 add_wait_queue(&ctx->wait, &wait);
371 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
372 while (ctx->reqs_active) {
373 spin_unlock_irq(&ctx->ctx_lock);
374 io_schedule();
375 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
376 spin_lock_irq(&ctx->ctx_lock);
378 __set_task_state(tsk, TASK_RUNNING);
379 remove_wait_queue(&ctx->wait, &wait);
381 out:
382 spin_unlock_irq(&ctx->ctx_lock);
385 /* wait_on_sync_kiocb:
386 * Waits on the given sync kiocb to complete.
388 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
390 while (iocb->ki_users) {
391 set_current_state(TASK_UNINTERRUPTIBLE);
392 if (!iocb->ki_users)
393 break;
394 io_schedule();
396 __set_current_state(TASK_RUNNING);
397 return iocb->ki_user_data;
399 EXPORT_SYMBOL(wait_on_sync_kiocb);
401 /* exit_aio: called when the last user of mm goes away. At this point,
402 * there is no way for any new requests to be submited or any of the
403 * io_* syscalls to be called on the context. However, there may be
404 * outstanding requests which hold references to the context; as they
405 * go away, they will call put_ioctx and release any pinned memory
406 * associated with the request (held via struct page * references).
408 void exit_aio(struct mm_struct *mm)
410 struct kioctx *ctx;
412 while (!hlist_empty(&mm->ioctx_list)) {
413 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
414 hlist_del_rcu(&ctx->list);
416 aio_cancel_all(ctx);
418 wait_for_all_aios(ctx);
420 * Ensure we don't leave the ctx on the aio_wq
422 cancel_work_sync(&ctx->wq.work);
424 if (1 != atomic_read(&ctx->users))
425 printk(KERN_DEBUG
426 "exit_aio:ioctx still alive: %d %d %d\n",
427 atomic_read(&ctx->users), ctx->dead,
428 ctx->reqs_active);
429 put_ioctx(ctx);
433 /* aio_get_req
434 * Allocate a slot for an aio request. Increments the users count
435 * of the kioctx so that the kioctx stays around until all requests are
436 * complete. Returns NULL if no requests are free.
438 * Returns with kiocb->users set to 2. The io submit code path holds
439 * an extra reference while submitting the i/o.
440 * This prevents races between the aio code path referencing the
441 * req (after submitting it) and aio_complete() freeing the req.
443 static struct kiocb *__aio_get_req(struct kioctx *ctx)
445 struct kiocb *req = NULL;
446 struct aio_ring *ring;
447 int okay = 0;
449 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
450 if (unlikely(!req))
451 return NULL;
453 req->ki_flags = 0;
454 req->ki_users = 2;
455 req->ki_key = 0;
456 req->ki_ctx = ctx;
457 req->ki_cancel = NULL;
458 req->ki_retry = NULL;
459 req->ki_dtor = NULL;
460 req->private = NULL;
461 req->ki_iovec = NULL;
462 INIT_LIST_HEAD(&req->ki_run_list);
463 req->ki_eventfd = NULL;
465 /* Check if the completion queue has enough free space to
466 * accept an event from this io.
468 spin_lock_irq(&ctx->ctx_lock);
469 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
470 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
471 list_add(&req->ki_list, &ctx->active_reqs);
472 ctx->reqs_active++;
473 okay = 1;
475 kunmap_atomic(ring, KM_USER0);
476 spin_unlock_irq(&ctx->ctx_lock);
478 if (!okay) {
479 kmem_cache_free(kiocb_cachep, req);
480 req = NULL;
483 return req;
486 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
488 struct kiocb *req;
489 /* Handle a potential starvation case -- should be exceedingly rare as
490 * requests will be stuck on fput_head only if the aio_fput_routine is
491 * delayed and the requests were the last user of the struct file.
493 req = __aio_get_req(ctx);
494 if (unlikely(NULL == req)) {
495 aio_fput_routine(NULL);
496 req = __aio_get_req(ctx);
498 return req;
501 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
503 assert_spin_locked(&ctx->ctx_lock);
505 if (req->ki_eventfd != NULL)
506 eventfd_ctx_put(req->ki_eventfd);
507 if (req->ki_dtor)
508 req->ki_dtor(req);
509 if (req->ki_iovec != &req->ki_inline_vec)
510 kfree(req->ki_iovec);
511 kmem_cache_free(kiocb_cachep, req);
512 ctx->reqs_active--;
514 if (unlikely(!ctx->reqs_active && ctx->dead))
515 wake_up(&ctx->wait);
518 static void aio_fput_routine(struct work_struct *data)
520 spin_lock_irq(&fput_lock);
521 while (likely(!list_empty(&fput_head))) {
522 struct kiocb *req = list_kiocb(fput_head.next);
523 struct kioctx *ctx = req->ki_ctx;
525 list_del(&req->ki_list);
526 spin_unlock_irq(&fput_lock);
528 /* Complete the fput(s) */
529 if (req->ki_filp != NULL)
530 fput(req->ki_filp);
532 /* Link the iocb into the context's free list */
533 spin_lock_irq(&ctx->ctx_lock);
534 really_put_req(ctx, req);
535 spin_unlock_irq(&ctx->ctx_lock);
537 put_ioctx(ctx);
538 spin_lock_irq(&fput_lock);
540 spin_unlock_irq(&fput_lock);
543 /* __aio_put_req
544 * Returns true if this put was the last user of the request.
546 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
548 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
549 req, atomic_long_read(&req->ki_filp->f_count));
551 assert_spin_locked(&ctx->ctx_lock);
553 req->ki_users--;
554 BUG_ON(req->ki_users < 0);
555 if (likely(req->ki_users))
556 return 0;
557 list_del(&req->ki_list); /* remove from active_reqs */
558 req->ki_cancel = NULL;
559 req->ki_retry = NULL;
562 * Try to optimize the aio and eventfd file* puts, by avoiding to
563 * schedule work in case it is not final fput() time. In normal cases,
564 * we would not be holding the last reference to the file*, so
565 * this function will be executed w/out any aio kthread wakeup.
567 if (unlikely(!fput_atomic(req->ki_filp))) {
568 get_ioctx(ctx);
569 spin_lock(&fput_lock);
570 list_add(&req->ki_list, &fput_head);
571 spin_unlock(&fput_lock);
572 queue_work(aio_wq, &fput_work);
573 } else {
574 req->ki_filp = NULL;
575 really_put_req(ctx, req);
577 return 1;
580 /* aio_put_req
581 * Returns true if this put was the last user of the kiocb,
582 * false if the request is still in use.
584 int aio_put_req(struct kiocb *req)
586 struct kioctx *ctx = req->ki_ctx;
587 int ret;
588 spin_lock_irq(&ctx->ctx_lock);
589 ret = __aio_put_req(ctx, req);
590 spin_unlock_irq(&ctx->ctx_lock);
591 return ret;
593 EXPORT_SYMBOL(aio_put_req);
595 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
597 struct mm_struct *mm = current->mm;
598 struct kioctx *ctx, *ret = NULL;
599 struct hlist_node *n;
601 rcu_read_lock();
603 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
604 if (ctx->user_id == ctx_id && !ctx->dead) {
605 get_ioctx(ctx);
606 ret = ctx;
607 break;
611 rcu_read_unlock();
612 return ret;
616 * Queue up a kiocb to be retried. Assumes that the kiocb
617 * has already been marked as kicked, and places it on
618 * the retry run list for the corresponding ioctx, if it
619 * isn't already queued. Returns 1 if it actually queued
620 * the kiocb (to tell the caller to activate the work
621 * queue to process it), or 0, if it found that it was
622 * already queued.
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 struct kioctx *ctx = iocb->ki_ctx;
628 assert_spin_locked(&ctx->ctx_lock);
630 if (list_empty(&iocb->ki_run_list)) {
631 list_add_tail(&iocb->ki_run_list,
632 &ctx->run_list);
633 return 1;
635 return 0;
638 /* aio_run_iocb
639 * This is the core aio execution routine. It is
640 * invoked both for initial i/o submission and
641 * subsequent retries via the aio_kick_handler.
642 * Expects to be invoked with iocb->ki_ctx->lock
643 * already held. The lock is released and reacquired
644 * as needed during processing.
646 * Calls the iocb retry method (already setup for the
647 * iocb on initial submission) for operation specific
648 * handling, but takes care of most of common retry
649 * execution details for a given iocb. The retry method
650 * needs to be non-blocking as far as possible, to avoid
651 * holding up other iocbs waiting to be serviced by the
652 * retry kernel thread.
654 * The trickier parts in this code have to do with
655 * ensuring that only one retry instance is in progress
656 * for a given iocb at any time. Providing that guarantee
657 * simplifies the coding of individual aio operations as
658 * it avoids various potential races.
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 struct kioctx *ctx = iocb->ki_ctx;
663 ssize_t (*retry)(struct kiocb *);
664 ssize_t ret;
666 if (!(retry = iocb->ki_retry)) {
667 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 return 0;
672 * We don't want the next retry iteration for this
673 * operation to start until this one has returned and
674 * updated the iocb state. However, wait_queue functions
675 * can trigger a kick_iocb from interrupt context in the
676 * meantime, indicating that data is available for the next
677 * iteration. We want to remember that and enable the
678 * next retry iteration _after_ we are through with
679 * this one.
681 * So, in order to be able to register a "kick", but
682 * prevent it from being queued now, we clear the kick
683 * flag, but make the kick code *think* that the iocb is
684 * still on the run list until we are actually done.
685 * When we are done with this iteration, we check if
686 * the iocb was kicked in the meantime and if so, queue
687 * it up afresh.
690 kiocbClearKicked(iocb);
693 * This is so that aio_complete knows it doesn't need to
694 * pull the iocb off the run list (We can't just call
695 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 * queue this on the run list yet)
698 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 spin_unlock_irq(&ctx->ctx_lock);
701 /* Quit retrying if the i/o has been cancelled */
702 if (kiocbIsCancelled(iocb)) {
703 ret = -EINTR;
704 aio_complete(iocb, ret, 0);
705 /* must not access the iocb after this */
706 goto out;
710 * Now we are all set to call the retry method in async
711 * context.
713 ret = retry(iocb);
715 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717 * There's no easy way to restart the syscall since other AIO's
718 * may be already running. Just fail this IO with EINTR.
720 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
721 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
722 ret = -EINTR;
723 aio_complete(iocb, ret, 0);
725 out:
726 spin_lock_irq(&ctx->ctx_lock);
728 if (-EIOCBRETRY == ret) {
730 * OK, now that we are done with this iteration
731 * and know that there is more left to go,
732 * this is where we let go so that a subsequent
733 * "kick" can start the next iteration
736 /* will make __queue_kicked_iocb succeed from here on */
737 INIT_LIST_HEAD(&iocb->ki_run_list);
738 /* we must queue the next iteration ourselves, if it
739 * has already been kicked */
740 if (kiocbIsKicked(iocb)) {
741 __queue_kicked_iocb(iocb);
744 * __queue_kicked_iocb will always return 1 here, because
745 * iocb->ki_run_list is empty at this point so it should
746 * be safe to unconditionally queue the context into the
747 * work queue.
749 aio_queue_work(ctx);
752 return ret;
756 * __aio_run_iocbs:
757 * Process all pending retries queued on the ioctx
758 * run list.
759 * Assumes it is operating within the aio issuer's mm
760 * context.
762 static int __aio_run_iocbs(struct kioctx *ctx)
764 struct kiocb *iocb;
765 struct list_head run_list;
767 assert_spin_locked(&ctx->ctx_lock);
769 list_replace_init(&ctx->run_list, &run_list);
770 while (!list_empty(&run_list)) {
771 iocb = list_entry(run_list.next, struct kiocb,
772 ki_run_list);
773 list_del(&iocb->ki_run_list);
775 * Hold an extra reference while retrying i/o.
777 iocb->ki_users++; /* grab extra reference */
778 aio_run_iocb(iocb);
779 __aio_put_req(ctx, iocb);
781 if (!list_empty(&ctx->run_list))
782 return 1;
783 return 0;
786 static void aio_queue_work(struct kioctx * ctx)
788 unsigned long timeout;
790 * if someone is waiting, get the work started right
791 * away, otherwise, use a longer delay
793 smp_mb();
794 if (waitqueue_active(&ctx->wait))
795 timeout = 1;
796 else
797 timeout = HZ/10;
798 queue_delayed_work(aio_wq, &ctx->wq, timeout);
803 * aio_run_iocbs:
804 * Process all pending retries queued on the ioctx
805 * run list.
806 * Assumes it is operating within the aio issuer's mm
807 * context.
809 static inline void aio_run_iocbs(struct kioctx *ctx)
811 int requeue;
813 spin_lock_irq(&ctx->ctx_lock);
815 requeue = __aio_run_iocbs(ctx);
816 spin_unlock_irq(&ctx->ctx_lock);
817 if (requeue)
818 aio_queue_work(ctx);
822 * just like aio_run_iocbs, but keeps running them until
823 * the list stays empty
825 static inline void aio_run_all_iocbs(struct kioctx *ctx)
827 spin_lock_irq(&ctx->ctx_lock);
828 while (__aio_run_iocbs(ctx))
830 spin_unlock_irq(&ctx->ctx_lock);
834 * aio_kick_handler:
835 * Work queue handler triggered to process pending
836 * retries on an ioctx. Takes on the aio issuer's
837 * mm context before running the iocbs, so that
838 * copy_xxx_user operates on the issuer's address
839 * space.
840 * Run on aiod's context.
842 static void aio_kick_handler(struct work_struct *work)
844 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
845 mm_segment_t oldfs = get_fs();
846 struct mm_struct *mm;
847 int requeue;
849 set_fs(USER_DS);
850 use_mm(ctx->mm);
851 spin_lock_irq(&ctx->ctx_lock);
852 requeue =__aio_run_iocbs(ctx);
853 mm = ctx->mm;
854 spin_unlock_irq(&ctx->ctx_lock);
855 unuse_mm(mm);
856 set_fs(oldfs);
858 * we're in a worker thread already, don't use queue_delayed_work,
860 if (requeue)
861 queue_delayed_work(aio_wq, &ctx->wq, 0);
866 * Called by kick_iocb to queue the kiocb for retry
867 * and if required activate the aio work queue to process
868 * it
870 static void try_queue_kicked_iocb(struct kiocb *iocb)
872 struct kioctx *ctx = iocb->ki_ctx;
873 unsigned long flags;
874 int run = 0;
876 spin_lock_irqsave(&ctx->ctx_lock, flags);
877 /* set this inside the lock so that we can't race with aio_run_iocb()
878 * testing it and putting the iocb on the run list under the lock */
879 if (!kiocbTryKick(iocb))
880 run = __queue_kicked_iocb(iocb);
881 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
882 if (run)
883 aio_queue_work(ctx);
887 * kick_iocb:
888 * Called typically from a wait queue callback context
889 * to trigger a retry of the iocb.
890 * The retry is usually executed by aio workqueue
891 * threads (See aio_kick_handler).
893 void kick_iocb(struct kiocb *iocb)
895 /* sync iocbs are easy: they can only ever be executing from a
896 * single context. */
897 if (is_sync_kiocb(iocb)) {
898 kiocbSetKicked(iocb);
899 wake_up_process(iocb->ki_obj.tsk);
900 return;
903 try_queue_kicked_iocb(iocb);
905 EXPORT_SYMBOL(kick_iocb);
907 /* aio_complete
908 * Called when the io request on the given iocb is complete.
909 * Returns true if this is the last user of the request. The
910 * only other user of the request can be the cancellation code.
912 int aio_complete(struct kiocb *iocb, long res, long res2)
914 struct kioctx *ctx = iocb->ki_ctx;
915 struct aio_ring_info *info;
916 struct aio_ring *ring;
917 struct io_event *event;
918 unsigned long flags;
919 unsigned long tail;
920 int ret;
923 * Special case handling for sync iocbs:
924 * - events go directly into the iocb for fast handling
925 * - the sync task with the iocb in its stack holds the single iocb
926 * ref, no other paths have a way to get another ref
927 * - the sync task helpfully left a reference to itself in the iocb
929 if (is_sync_kiocb(iocb)) {
930 BUG_ON(iocb->ki_users != 1);
931 iocb->ki_user_data = res;
932 iocb->ki_users = 0;
933 wake_up_process(iocb->ki_obj.tsk);
934 return 1;
937 info = &ctx->ring_info;
939 /* add a completion event to the ring buffer.
940 * must be done holding ctx->ctx_lock to prevent
941 * other code from messing with the tail
942 * pointer since we might be called from irq
943 * context.
945 spin_lock_irqsave(&ctx->ctx_lock, flags);
947 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
948 list_del_init(&iocb->ki_run_list);
951 * cancelled requests don't get events, userland was given one
952 * when the event got cancelled.
954 if (kiocbIsCancelled(iocb))
955 goto put_rq;
957 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
959 tail = info->tail;
960 event = aio_ring_event(info, tail, KM_IRQ0);
961 if (++tail >= info->nr)
962 tail = 0;
964 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
965 event->data = iocb->ki_user_data;
966 event->res = res;
967 event->res2 = res2;
969 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
970 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
971 res, res2);
973 /* after flagging the request as done, we
974 * must never even look at it again
976 smp_wmb(); /* make event visible before updating tail */
978 info->tail = tail;
979 ring->tail = tail;
981 put_aio_ring_event(event, KM_IRQ0);
982 kunmap_atomic(ring, KM_IRQ1);
984 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
987 * Check if the user asked us to deliver the result through an
988 * eventfd. The eventfd_signal() function is safe to be called
989 * from IRQ context.
991 if (iocb->ki_eventfd != NULL)
992 eventfd_signal(iocb->ki_eventfd, 1);
994 put_rq:
995 /* everything turned out well, dispose of the aiocb. */
996 ret = __aio_put_req(ctx, iocb);
999 * We have to order our ring_info tail store above and test
1000 * of the wait list below outside the wait lock. This is
1001 * like in wake_up_bit() where clearing a bit has to be
1002 * ordered with the unlocked test.
1004 smp_mb();
1006 if (waitqueue_active(&ctx->wait))
1007 wake_up(&ctx->wait);
1009 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1010 return ret;
1012 EXPORT_SYMBOL(aio_complete);
1014 /* aio_read_evt
1015 * Pull an event off of the ioctx's event ring. Returns the number of
1016 * events fetched (0 or 1 ;-)
1017 * FIXME: make this use cmpxchg.
1018 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1020 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1022 struct aio_ring_info *info = &ioctx->ring_info;
1023 struct aio_ring *ring;
1024 unsigned long head;
1025 int ret = 0;
1027 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1028 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1029 (unsigned long)ring->head, (unsigned long)ring->tail,
1030 (unsigned long)ring->nr);
1032 if (ring->head == ring->tail)
1033 goto out;
1035 spin_lock(&info->ring_lock);
1037 head = ring->head % info->nr;
1038 if (head != ring->tail) {
1039 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1040 *ent = *evp;
1041 head = (head + 1) % info->nr;
1042 smp_mb(); /* finish reading the event before updatng the head */
1043 ring->head = head;
1044 ret = 1;
1045 put_aio_ring_event(evp, KM_USER1);
1047 spin_unlock(&info->ring_lock);
1049 out:
1050 kunmap_atomic(ring, KM_USER0);
1051 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1052 (unsigned long)ring->head, (unsigned long)ring->tail);
1053 return ret;
1056 struct aio_timeout {
1057 struct timer_list timer;
1058 int timed_out;
1059 struct task_struct *p;
1062 static void timeout_func(unsigned long data)
1064 struct aio_timeout *to = (struct aio_timeout *)data;
1066 to->timed_out = 1;
1067 wake_up_process(to->p);
1070 static inline void init_timeout(struct aio_timeout *to)
1072 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1073 to->timed_out = 0;
1074 to->p = current;
1077 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1078 const struct timespec *ts)
1080 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1081 if (time_after(to->timer.expires, jiffies))
1082 add_timer(&to->timer);
1083 else
1084 to->timed_out = 1;
1087 static inline void clear_timeout(struct aio_timeout *to)
1089 del_singleshot_timer_sync(&to->timer);
1092 static int read_events(struct kioctx *ctx,
1093 long min_nr, long nr,
1094 struct io_event __user *event,
1095 struct timespec __user *timeout)
1097 long start_jiffies = jiffies;
1098 struct task_struct *tsk = current;
1099 DECLARE_WAITQUEUE(wait, tsk);
1100 int ret;
1101 int i = 0;
1102 struct io_event ent;
1103 struct aio_timeout to;
1104 int retry = 0;
1106 /* needed to zero any padding within an entry (there shouldn't be
1107 * any, but C is fun!
1109 memset(&ent, 0, sizeof(ent));
1110 retry:
1111 ret = 0;
1112 while (likely(i < nr)) {
1113 ret = aio_read_evt(ctx, &ent);
1114 if (unlikely(ret <= 0))
1115 break;
1117 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1118 ent.data, ent.obj, ent.res, ent.res2);
1120 /* Could we split the check in two? */
1121 ret = -EFAULT;
1122 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1123 dprintk("aio: lost an event due to EFAULT.\n");
1124 break;
1126 ret = 0;
1128 /* Good, event copied to userland, update counts. */
1129 event ++;
1130 i ++;
1133 if (min_nr <= i)
1134 return i;
1135 if (ret)
1136 return ret;
1138 /* End fast path */
1140 /* racey check, but it gets redone */
1141 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1142 retry = 1;
1143 aio_run_all_iocbs(ctx);
1144 goto retry;
1147 init_timeout(&to);
1148 if (timeout) {
1149 struct timespec ts;
1150 ret = -EFAULT;
1151 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1152 goto out;
1154 set_timeout(start_jiffies, &to, &ts);
1157 while (likely(i < nr)) {
1158 add_wait_queue_exclusive(&ctx->wait, &wait);
1159 do {
1160 set_task_state(tsk, TASK_INTERRUPTIBLE);
1161 ret = aio_read_evt(ctx, &ent);
1162 if (ret)
1163 break;
1164 if (min_nr <= i)
1165 break;
1166 if (unlikely(ctx->dead)) {
1167 ret = -EINVAL;
1168 break;
1170 if (to.timed_out) /* Only check after read evt */
1171 break;
1172 /* Try to only show up in io wait if there are ops
1173 * in flight */
1174 if (ctx->reqs_active)
1175 io_schedule();
1176 else
1177 schedule();
1178 if (signal_pending(tsk)) {
1179 ret = -EINTR;
1180 break;
1182 /*ret = aio_read_evt(ctx, &ent);*/
1183 } while (1) ;
1185 set_task_state(tsk, TASK_RUNNING);
1186 remove_wait_queue(&ctx->wait, &wait);
1188 if (unlikely(ret <= 0))
1189 break;
1191 ret = -EFAULT;
1192 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1193 dprintk("aio: lost an event due to EFAULT.\n");
1194 break;
1197 /* Good, event copied to userland, update counts. */
1198 event ++;
1199 i ++;
1202 if (timeout)
1203 clear_timeout(&to);
1204 out:
1205 destroy_timer_on_stack(&to.timer);
1206 return i ? i : ret;
1209 /* Take an ioctx and remove it from the list of ioctx's. Protects
1210 * against races with itself via ->dead.
1212 static void io_destroy(struct kioctx *ioctx)
1214 struct mm_struct *mm = current->mm;
1215 int was_dead;
1217 /* delete the entry from the list is someone else hasn't already */
1218 spin_lock(&mm->ioctx_lock);
1219 was_dead = ioctx->dead;
1220 ioctx->dead = 1;
1221 hlist_del_rcu(&ioctx->list);
1222 spin_unlock(&mm->ioctx_lock);
1224 dprintk("aio_release(%p)\n", ioctx);
1225 if (likely(!was_dead))
1226 put_ioctx(ioctx); /* twice for the list */
1228 aio_cancel_all(ioctx);
1229 wait_for_all_aios(ioctx);
1232 * Wake up any waiters. The setting of ctx->dead must be seen
1233 * by other CPUs at this point. Right now, we rely on the
1234 * locking done by the above calls to ensure this consistency.
1236 wake_up(&ioctx->wait);
1237 put_ioctx(ioctx); /* once for the lookup */
1240 /* sys_io_setup:
1241 * Create an aio_context capable of receiving at least nr_events.
1242 * ctxp must not point to an aio_context that already exists, and
1243 * must be initialized to 0 prior to the call. On successful
1244 * creation of the aio_context, *ctxp is filled in with the resulting
1245 * handle. May fail with -EINVAL if *ctxp is not initialized,
1246 * if the specified nr_events exceeds internal limits. May fail
1247 * with -EAGAIN if the specified nr_events exceeds the user's limit
1248 * of available events. May fail with -ENOMEM if insufficient kernel
1249 * resources are available. May fail with -EFAULT if an invalid
1250 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1251 * implemented.
1253 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1255 struct kioctx *ioctx = NULL;
1256 unsigned long ctx;
1257 long ret;
1259 ret = get_user(ctx, ctxp);
1260 if (unlikely(ret))
1261 goto out;
1263 ret = -EINVAL;
1264 if (unlikely(ctx || nr_events == 0)) {
1265 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1266 ctx, nr_events);
1267 goto out;
1270 ioctx = ioctx_alloc(nr_events);
1271 ret = PTR_ERR(ioctx);
1272 if (!IS_ERR(ioctx)) {
1273 ret = put_user(ioctx->user_id, ctxp);
1274 if (!ret)
1275 return 0;
1277 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1278 io_destroy(ioctx);
1281 out:
1282 return ret;
1285 /* sys_io_destroy:
1286 * Destroy the aio_context specified. May cancel any outstanding
1287 * AIOs and block on completion. Will fail with -ENOSYS if not
1288 * implemented. May fail with -EINVAL if the context pointed to
1289 * is invalid.
1291 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1293 struct kioctx *ioctx = lookup_ioctx(ctx);
1294 if (likely(NULL != ioctx)) {
1295 io_destroy(ioctx);
1296 return 0;
1298 pr_debug("EINVAL: io_destroy: invalid context id\n");
1299 return -EINVAL;
1302 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1304 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1306 BUG_ON(ret <= 0);
1308 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1309 ssize_t this = min((ssize_t)iov->iov_len, ret);
1310 iov->iov_base += this;
1311 iov->iov_len -= this;
1312 iocb->ki_left -= this;
1313 ret -= this;
1314 if (iov->iov_len == 0) {
1315 iocb->ki_cur_seg++;
1316 iov++;
1320 /* the caller should not have done more io than what fit in
1321 * the remaining iovecs */
1322 BUG_ON(ret > 0 && iocb->ki_left == 0);
1325 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1327 struct file *file = iocb->ki_filp;
1328 struct address_space *mapping = file->f_mapping;
1329 struct inode *inode = mapping->host;
1330 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1331 unsigned long, loff_t);
1332 ssize_t ret = 0;
1333 unsigned short opcode;
1335 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1336 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1337 rw_op = file->f_op->aio_read;
1338 opcode = IOCB_CMD_PREADV;
1339 } else {
1340 rw_op = file->f_op->aio_write;
1341 opcode = IOCB_CMD_PWRITEV;
1344 /* This matches the pread()/pwrite() logic */
1345 if (iocb->ki_pos < 0)
1346 return -EINVAL;
1348 do {
1349 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1350 iocb->ki_nr_segs - iocb->ki_cur_seg,
1351 iocb->ki_pos);
1352 if (ret > 0)
1353 aio_advance_iovec(iocb, ret);
1355 /* retry all partial writes. retry partial reads as long as its a
1356 * regular file. */
1357 } while (ret > 0 && iocb->ki_left > 0 &&
1358 (opcode == IOCB_CMD_PWRITEV ||
1359 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1361 /* This means we must have transferred all that we could */
1362 /* No need to retry anymore */
1363 if ((ret == 0) || (iocb->ki_left == 0))
1364 ret = iocb->ki_nbytes - iocb->ki_left;
1366 /* If we managed to write some out we return that, rather than
1367 * the eventual error. */
1368 if (opcode == IOCB_CMD_PWRITEV
1369 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1370 && iocb->ki_nbytes - iocb->ki_left)
1371 ret = iocb->ki_nbytes - iocb->ki_left;
1373 return ret;
1376 static ssize_t aio_fdsync(struct kiocb *iocb)
1378 struct file *file = iocb->ki_filp;
1379 ssize_t ret = -EINVAL;
1381 if (file->f_op->aio_fsync)
1382 ret = file->f_op->aio_fsync(iocb, 1);
1383 return ret;
1386 static ssize_t aio_fsync(struct kiocb *iocb)
1388 struct file *file = iocb->ki_filp;
1389 ssize_t ret = -EINVAL;
1391 if (file->f_op->aio_fsync)
1392 ret = file->f_op->aio_fsync(iocb, 0);
1393 return ret;
1396 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1398 ssize_t ret;
1400 #ifdef CONFIG_COMPAT
1401 if (compat)
1402 ret = compat_rw_copy_check_uvector(type,
1403 (struct compat_iovec __user *)kiocb->ki_buf,
1404 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1405 &kiocb->ki_iovec);
1406 else
1407 #endif
1408 ret = rw_copy_check_uvector(type,
1409 (struct iovec __user *)kiocb->ki_buf,
1410 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1411 &kiocb->ki_iovec);
1412 if (ret < 0)
1413 goto out;
1415 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1416 kiocb->ki_cur_seg = 0;
1417 /* ki_nbytes/left now reflect bytes instead of segs */
1418 kiocb->ki_nbytes = ret;
1419 kiocb->ki_left = ret;
1421 ret = 0;
1422 out:
1423 return ret;
1426 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1428 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1429 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1430 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1431 kiocb->ki_nr_segs = 1;
1432 kiocb->ki_cur_seg = 0;
1433 return 0;
1437 * aio_setup_iocb:
1438 * Performs the initial checks and aio retry method
1439 * setup for the kiocb at the time of io submission.
1441 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1443 struct file *file = kiocb->ki_filp;
1444 ssize_t ret = 0;
1446 switch (kiocb->ki_opcode) {
1447 case IOCB_CMD_PREAD:
1448 ret = -EBADF;
1449 if (unlikely(!(file->f_mode & FMODE_READ)))
1450 break;
1451 ret = -EFAULT;
1452 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1453 kiocb->ki_left)))
1454 break;
1455 ret = security_file_permission(file, MAY_READ);
1456 if (unlikely(ret))
1457 break;
1458 ret = aio_setup_single_vector(kiocb);
1459 if (ret)
1460 break;
1461 ret = -EINVAL;
1462 if (file->f_op->aio_read)
1463 kiocb->ki_retry = aio_rw_vect_retry;
1464 break;
1465 case IOCB_CMD_PWRITE:
1466 ret = -EBADF;
1467 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1468 break;
1469 ret = -EFAULT;
1470 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1471 kiocb->ki_left)))
1472 break;
1473 ret = security_file_permission(file, MAY_WRITE);
1474 if (unlikely(ret))
1475 break;
1476 ret = aio_setup_single_vector(kiocb);
1477 if (ret)
1478 break;
1479 ret = -EINVAL;
1480 if (file->f_op->aio_write)
1481 kiocb->ki_retry = aio_rw_vect_retry;
1482 break;
1483 case IOCB_CMD_PREADV:
1484 ret = -EBADF;
1485 if (unlikely(!(file->f_mode & FMODE_READ)))
1486 break;
1487 ret = security_file_permission(file, MAY_READ);
1488 if (unlikely(ret))
1489 break;
1490 ret = aio_setup_vectored_rw(READ, kiocb, compat);
1491 if (ret)
1492 break;
1493 ret = -EINVAL;
1494 if (file->f_op->aio_read)
1495 kiocb->ki_retry = aio_rw_vect_retry;
1496 break;
1497 case IOCB_CMD_PWRITEV:
1498 ret = -EBADF;
1499 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1500 break;
1501 ret = security_file_permission(file, MAY_WRITE);
1502 if (unlikely(ret))
1503 break;
1504 ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1505 if (ret)
1506 break;
1507 ret = -EINVAL;
1508 if (file->f_op->aio_write)
1509 kiocb->ki_retry = aio_rw_vect_retry;
1510 break;
1511 case IOCB_CMD_FDSYNC:
1512 ret = -EINVAL;
1513 if (file->f_op->aio_fsync)
1514 kiocb->ki_retry = aio_fdsync;
1515 break;
1516 case IOCB_CMD_FSYNC:
1517 ret = -EINVAL;
1518 if (file->f_op->aio_fsync)
1519 kiocb->ki_retry = aio_fsync;
1520 break;
1521 default:
1522 dprintk("EINVAL: io_submit: no operation provided\n");
1523 ret = -EINVAL;
1526 if (!kiocb->ki_retry)
1527 return ret;
1529 return 0;
1532 static void aio_batch_add(struct address_space *mapping,
1533 struct hlist_head *batch_hash)
1535 struct aio_batch_entry *abe;
1536 struct hlist_node *pos;
1537 unsigned bucket;
1539 bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1540 hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1541 if (abe->mapping == mapping)
1542 return;
1545 abe = mempool_alloc(abe_pool, GFP_KERNEL);
1546 BUG_ON(!igrab(mapping->host));
1547 abe->mapping = mapping;
1548 hlist_add_head(&abe->list, &batch_hash[bucket]);
1549 return;
1552 static void aio_batch_free(struct hlist_head *batch_hash)
1554 struct aio_batch_entry *abe;
1555 struct hlist_node *pos, *n;
1556 int i;
1558 for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1559 hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1560 blk_run_address_space(abe->mapping);
1561 iput(abe->mapping->host);
1562 hlist_del(&abe->list);
1563 mempool_free(abe, abe_pool);
1568 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1569 struct iocb *iocb, struct hlist_head *batch_hash,
1570 bool compat)
1572 struct kiocb *req;
1573 struct file *file;
1574 ssize_t ret;
1576 /* enforce forwards compatibility on users */
1577 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1578 pr_debug("EINVAL: io_submit: reserve field set\n");
1579 return -EINVAL;
1582 /* prevent overflows */
1583 if (unlikely(
1584 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1585 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1586 ((ssize_t)iocb->aio_nbytes < 0)
1587 )) {
1588 pr_debug("EINVAL: io_submit: overflow check\n");
1589 return -EINVAL;
1592 file = fget(iocb->aio_fildes);
1593 if (unlikely(!file))
1594 return -EBADF;
1596 req = aio_get_req(ctx); /* returns with 2 references to req */
1597 if (unlikely(!req)) {
1598 fput(file);
1599 return -EAGAIN;
1601 req->ki_filp = file;
1602 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1604 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1605 * instance of the file* now. The file descriptor must be
1606 * an eventfd() fd, and will be signaled for each completed
1607 * event using the eventfd_signal() function.
1609 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1610 if (IS_ERR(req->ki_eventfd)) {
1611 ret = PTR_ERR(req->ki_eventfd);
1612 req->ki_eventfd = NULL;
1613 goto out_put_req;
1617 ret = put_user(req->ki_key, &user_iocb->aio_key);
1618 if (unlikely(ret)) {
1619 dprintk("EFAULT: aio_key\n");
1620 goto out_put_req;
1623 req->ki_obj.user = user_iocb;
1624 req->ki_user_data = iocb->aio_data;
1625 req->ki_pos = iocb->aio_offset;
1627 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1628 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1629 req->ki_opcode = iocb->aio_lio_opcode;
1631 ret = aio_setup_iocb(req, compat);
1633 if (ret)
1634 goto out_put_req;
1636 spin_lock_irq(&ctx->ctx_lock);
1637 aio_run_iocb(req);
1638 if (!list_empty(&ctx->run_list)) {
1639 /* drain the run list */
1640 while (__aio_run_iocbs(ctx))
1643 spin_unlock_irq(&ctx->ctx_lock);
1644 if (req->ki_opcode == IOCB_CMD_PREAD ||
1645 req->ki_opcode == IOCB_CMD_PREADV ||
1646 req->ki_opcode == IOCB_CMD_PWRITE ||
1647 req->ki_opcode == IOCB_CMD_PWRITEV)
1648 aio_batch_add(file->f_mapping, batch_hash);
1650 aio_put_req(req); /* drop extra ref to req */
1651 return 0;
1653 out_put_req:
1654 aio_put_req(req); /* drop extra ref to req */
1655 aio_put_req(req); /* drop i/o ref to req */
1656 return ret;
1659 long do_io_submit(aio_context_t ctx_id, long nr,
1660 struct iocb __user *__user *iocbpp, bool compat)
1662 struct kioctx *ctx;
1663 long ret = 0;
1664 int i;
1665 struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1667 if (unlikely(nr < 0))
1668 return -EINVAL;
1670 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1671 nr = LONG_MAX/sizeof(*iocbpp);
1673 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1674 return -EFAULT;
1676 ctx = lookup_ioctx(ctx_id);
1677 if (unlikely(!ctx)) {
1678 pr_debug("EINVAL: io_submit: invalid context id\n");
1679 return -EINVAL;
1683 * AKPM: should this return a partial result if some of the IOs were
1684 * successfully submitted?
1686 for (i=0; i<nr; i++) {
1687 struct iocb __user *user_iocb;
1688 struct iocb tmp;
1690 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1691 ret = -EFAULT;
1692 break;
1695 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1696 ret = -EFAULT;
1697 break;
1700 ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1701 if (ret)
1702 break;
1704 aio_batch_free(batch_hash);
1706 put_ioctx(ctx);
1707 return i ? i : ret;
1710 /* sys_io_submit:
1711 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1712 * the number of iocbs queued. May return -EINVAL if the aio_context
1713 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1714 * *iocbpp[0] is not properly initialized, if the operation specified
1715 * is invalid for the file descriptor in the iocb. May fail with
1716 * -EFAULT if any of the data structures point to invalid data. May
1717 * fail with -EBADF if the file descriptor specified in the first
1718 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1719 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1720 * fail with -ENOSYS if not implemented.
1722 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1723 struct iocb __user * __user *, iocbpp)
1725 return do_io_submit(ctx_id, nr, iocbpp, 0);
1728 /* lookup_kiocb
1729 * Finds a given iocb for cancellation.
1731 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1732 u32 key)
1734 struct list_head *pos;
1736 assert_spin_locked(&ctx->ctx_lock);
1738 /* TODO: use a hash or array, this sucks. */
1739 list_for_each(pos, &ctx->active_reqs) {
1740 struct kiocb *kiocb = list_kiocb(pos);
1741 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1742 return kiocb;
1744 return NULL;
1747 /* sys_io_cancel:
1748 * Attempts to cancel an iocb previously passed to io_submit. If
1749 * the operation is successfully cancelled, the resulting event is
1750 * copied into the memory pointed to by result without being placed
1751 * into the completion queue and 0 is returned. May fail with
1752 * -EFAULT if any of the data structures pointed to are invalid.
1753 * May fail with -EINVAL if aio_context specified by ctx_id is
1754 * invalid. May fail with -EAGAIN if the iocb specified was not
1755 * cancelled. Will fail with -ENOSYS if not implemented.
1757 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1758 struct io_event __user *, result)
1760 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1761 struct kioctx *ctx;
1762 struct kiocb *kiocb;
1763 u32 key;
1764 int ret;
1766 ret = get_user(key, &iocb->aio_key);
1767 if (unlikely(ret))
1768 return -EFAULT;
1770 ctx = lookup_ioctx(ctx_id);
1771 if (unlikely(!ctx))
1772 return -EINVAL;
1774 spin_lock_irq(&ctx->ctx_lock);
1775 ret = -EAGAIN;
1776 kiocb = lookup_kiocb(ctx, iocb, key);
1777 if (kiocb && kiocb->ki_cancel) {
1778 cancel = kiocb->ki_cancel;
1779 kiocb->ki_users ++;
1780 kiocbSetCancelled(kiocb);
1781 } else
1782 cancel = NULL;
1783 spin_unlock_irq(&ctx->ctx_lock);
1785 if (NULL != cancel) {
1786 struct io_event tmp;
1787 pr_debug("calling cancel\n");
1788 memset(&tmp, 0, sizeof(tmp));
1789 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1790 tmp.data = kiocb->ki_user_data;
1791 ret = cancel(kiocb, &tmp);
1792 if (!ret) {
1793 /* Cancellation succeeded -- copy the result
1794 * into the user's buffer.
1796 if (copy_to_user(result, &tmp, sizeof(tmp)))
1797 ret = -EFAULT;
1799 } else
1800 ret = -EINVAL;
1802 put_ioctx(ctx);
1804 return ret;
1807 /* io_getevents:
1808 * Attempts to read at least min_nr events and up to nr events from
1809 * the completion queue for the aio_context specified by ctx_id. If
1810 * it succeeds, the number of read events is returned. May fail with
1811 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1812 * out of range, if timeout is out of range. May fail with -EFAULT
1813 * if any of the memory specified is invalid. May return 0 or
1814 * < min_nr if the timeout specified by timeout has elapsed
1815 * before sufficient events are available, where timeout == NULL
1816 * specifies an infinite timeout. Note that the timeout pointed to by
1817 * timeout is relative and will be updated if not NULL and the
1818 * operation blocks. Will fail with -ENOSYS if not implemented.
1820 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1821 long, min_nr,
1822 long, nr,
1823 struct io_event __user *, events,
1824 struct timespec __user *, timeout)
1826 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1827 long ret = -EINVAL;
1829 if (likely(ioctx)) {
1830 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1831 ret = read_events(ioctx, min_nr, nr, events, timeout);
1832 put_ioctx(ioctx);
1835 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1836 return ret;