1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
9 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/cache.h>
13 #include <linux/mmu_context.h>
14 #include <linux/syscalls.h>
15 #include <linux/uaccess.h>
16 #include <linux/pagemap.h>
17 #include <asm/cacheflush.h>
18 #include <asm/cachectl.h>
19 #include <asm/setup.h>
21 #ifdef CONFIG_ISA_ARCV2
22 #define USE_RGN_FLSH 1
25 static int l2_line_sz
;
26 static int ioc_exists
;
27 int slc_enable
= 1, ioc_enable
= 1;
28 unsigned long perip_base
= ARC_UNCACHED_ADDR_SPACE
; /* legacy value for boot */
29 unsigned long perip_end
= 0xFFFFFFFF; /* legacy value */
31 void (*_cache_line_loop_ic_fn
)(phys_addr_t paddr
, unsigned long vaddr
,
32 unsigned long sz
, const int op
, const int full_page
);
34 void (*__dma_cache_wback_inv
)(phys_addr_t start
, unsigned long sz
);
35 void (*__dma_cache_inv
)(phys_addr_t start
, unsigned long sz
);
36 void (*__dma_cache_wback
)(phys_addr_t start
, unsigned long sz
);
38 char *arc_cache_mumbojumbo(int c
, char *buf
, int len
)
41 struct cpuinfo_arc_cache
*p
;
43 #define PR_CACHE(p, cfg, str) \
45 n += scnprintf(buf + n, len - n, str"\t\t: N/A\n"); \
47 n += scnprintf(buf + n, len - n, \
48 str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n", \
49 (p)->sz_k, (p)->assoc, (p)->line_len, \
50 (p)->vipt ? "VIPT" : "PIPT", \
51 (p)->alias ? " aliasing" : "", \
54 PR_CACHE(&cpuinfo_arc700
[c
].icache
, CONFIG_ARC_HAS_ICACHE
, "I-Cache");
55 PR_CACHE(&cpuinfo_arc700
[c
].dcache
, CONFIG_ARC_HAS_DCACHE
, "D-Cache");
57 p
= &cpuinfo_arc700
[c
].slc
;
59 n
+= scnprintf(buf
+ n
, len
- n
,
60 "SLC\t\t: %uK, %uB Line%s\n",
61 p
->sz_k
, p
->line_len
, IS_USED_RUN(slc_enable
));
63 n
+= scnprintf(buf
+ n
, len
- n
, "Peripherals\t: %#lx%s%s\n",
65 IS_AVAIL3(ioc_exists
, ioc_enable
, ", IO-Coherency (per-device) "));
71 * Read the Cache Build Confuration Registers, Decode them and save into
72 * the cpuinfo structure for later use.
73 * No Validation done here, simply read/convert the BCRs
75 static void read_decode_cache_bcr_arcv2(int cpu
)
77 struct cpuinfo_arc_cache
*p_slc
= &cpuinfo_arc700
[cpu
].slc
;
78 struct bcr_generic sbcr
;
81 #ifdef CONFIG_CPU_BIG_ENDIAN
82 unsigned int pad
:24, way
:2, lsz
:2, sz
:4;
84 unsigned int sz
:4, lsz
:2, way
:2, pad
:24;
88 struct bcr_clust_cfg
{
89 #ifdef CONFIG_CPU_BIG_ENDIAN
90 unsigned int pad
:7, c
:1, num_entries
:8, num_cores
:8, ver
:8;
92 unsigned int ver
:8, num_cores
:8, num_entries
:8, c
:1, pad
:7;
97 #ifdef CONFIG_CPU_BIG_ENDIAN
98 unsigned int start
:4, limit
:4, pad
:22, order
:1, disable
:1;
100 unsigned int disable
:1, order
:1, pad
:22, limit
:4, start
:4;
105 READ_BCR(ARC_REG_SLC_BCR
, sbcr
);
107 READ_BCR(ARC_REG_SLC_CFG
, slc_cfg
);
108 p_slc
->sz_k
= 128 << slc_cfg
.sz
;
109 l2_line_sz
= p_slc
->line_len
= (slc_cfg
.lsz
== 0) ? 128 : 64;
112 READ_BCR(ARC_REG_CLUSTER_BCR
, cbcr
);
117 * As for today we don't support both IOC and ZONE_HIGHMEM enabled
118 * simultaneously. This happens because as of today IOC aperture covers
119 * only ZONE_NORMAL (low mem) and any dma transactions outside this
120 * region won't be HW coherent.
121 * If we want to use both IOC and ZONE_HIGHMEM we can use
122 * bounce_buffer to handle dma transactions to HIGHMEM.
123 * Also it is possible to modify dma_direct cache ops or increase IOC
124 * aperture size if we are planning to use HIGHMEM without PAE.
126 if (IS_ENABLED(CONFIG_HIGHMEM
) || is_pae40_enabled())
132 /* HS 2.0 didn't have AUX_VOL */
133 if (cpuinfo_arc700
[cpu
].core
.family
> 0x51) {
134 READ_BCR(AUX_VOL
, vol
);
135 perip_base
= vol
.start
<< 28;
136 /* HS 3.0 has limit and strict-ordering fields */
137 if (cpuinfo_arc700
[cpu
].core
.family
> 0x52)
138 perip_end
= (vol
.limit
<< 28) - 1;
142 void read_decode_cache_bcr(void)
144 struct cpuinfo_arc_cache
*p_ic
, *p_dc
;
145 unsigned int cpu
= smp_processor_id();
147 #ifdef CONFIG_CPU_BIG_ENDIAN
148 unsigned int pad
:12, line_len
:4, sz
:4, config
:4, ver
:8;
150 unsigned int ver
:8, config
:4, sz
:4, line_len
:4, pad
:12;
154 p_ic
= &cpuinfo_arc700
[cpu
].icache
;
155 READ_BCR(ARC_REG_IC_BCR
, ibcr
);
161 BUG_ON(ibcr
.config
!= 3);
162 p_ic
->assoc
= 2; /* Fixed to 2w set assoc */
163 } else if (ibcr
.ver
>= 4) {
164 p_ic
->assoc
= 1 << ibcr
.config
; /* 1,2,4,8 */
167 p_ic
->line_len
= 8 << ibcr
.line_len
;
168 p_ic
->sz_k
= 1 << (ibcr
.sz
- 1);
170 p_ic
->alias
= p_ic
->sz_k
/p_ic
->assoc
/TO_KB(PAGE_SIZE
) > 1;
173 p_dc
= &cpuinfo_arc700
[cpu
].dcache
;
174 READ_BCR(ARC_REG_DC_BCR
, dbcr
);
180 BUG_ON(dbcr
.config
!= 2);
181 p_dc
->assoc
= 4; /* Fixed to 4w set assoc */
183 p_dc
->alias
= p_dc
->sz_k
/p_dc
->assoc
/TO_KB(PAGE_SIZE
) > 1;
184 } else if (dbcr
.ver
>= 4) {
185 p_dc
->assoc
= 1 << dbcr
.config
; /* 1,2,4,8 */
187 p_dc
->alias
= 0; /* PIPT so can't VIPT alias */
190 p_dc
->line_len
= 16 << dbcr
.line_len
;
191 p_dc
->sz_k
= 1 << (dbcr
.sz
- 1);
195 read_decode_cache_bcr_arcv2(cpu
);
199 * Line Operation on {I,D}-Cache
204 #define OP_FLUSH_N_INV 0x3
205 #define OP_INV_IC 0x4
208 * I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
210 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
211 * The orig Cache Management Module "CDU" only required paddr to invalidate a
212 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
213 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
214 * the exact same line.
216 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
217 * paddr alone could not be used to correctly index the cache.
220 * MMU v1/v2 (Fixed Page Size 8k)
222 * The solution was to provide CDU with these additonal vaddr bits. These
223 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
224 * standard page size of 8k.
225 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
226 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
227 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
228 * represent the offset within cache-line. The adv of using this "clumsy"
229 * interface for additional info was no new reg was needed in CDU programming
232 * 17:13 represented the max num of bits passable, actual bits needed were
233 * fewer, based on the num-of-aliases possible.
234 * -for 2 alias possibility, only bit 13 needed (32K cache)
235 * -for 4 alias possibility, bits 14:13 needed (64K cache)
240 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
241 * only support 8k (default), 16k and 4k.
242 * However from hardware perspective, smaller page sizes aggravate aliasing
243 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
244 * the existing scheme of piggybacking won't work for certain configurations.
245 * Two new registers IC_PTAG and DC_PTAG inttoduced.
246 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
250 void __cache_line_loop_v2(phys_addr_t paddr
, unsigned long vaddr
,
251 unsigned long sz
, const int op
, const int full_page
)
253 unsigned int aux_cmd
;
256 if (op
== OP_INV_IC
) {
257 aux_cmd
= ARC_REG_IC_IVIL
;
259 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
260 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
263 /* Ensure we properly floor/ceil the non-line aligned/sized requests
264 * and have @paddr - aligned to cache line and integral @num_lines.
265 * This however can be avoided for page sized since:
266 * -@paddr will be cache-line aligned already (being page aligned)
267 * -@sz will be integral multiple of line size (being page sized).
270 sz
+= paddr
& ~CACHE_LINE_MASK
;
271 paddr
&= CACHE_LINE_MASK
;
272 vaddr
&= CACHE_LINE_MASK
;
275 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
277 /* MMUv2 and before: paddr contains stuffed vaddrs bits */
278 paddr
|= (vaddr
>> PAGE_SHIFT
) & 0x1F;
280 while (num_lines
-- > 0) {
281 write_aux_reg(aux_cmd
, paddr
);
282 paddr
+= L1_CACHE_BYTES
;
287 * For ARC700 MMUv3 I-cache and D-cache flushes
288 * - ARC700 programming model requires paddr and vaddr be passed in seperate
289 * AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
290 * caches actually alias or not.
291 * - For HS38, only the aliasing I-cache configuration uses the PTAG reg
292 * (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
295 void __cache_line_loop_v3(phys_addr_t paddr
, unsigned long vaddr
,
296 unsigned long sz
, const int op
, const int full_page
)
298 unsigned int aux_cmd
, aux_tag
;
301 if (op
== OP_INV_IC
) {
302 aux_cmd
= ARC_REG_IC_IVIL
;
303 aux_tag
= ARC_REG_IC_PTAG
;
305 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
306 aux_tag
= ARC_REG_DC_PTAG
;
309 /* Ensure we properly floor/ceil the non-line aligned/sized requests
310 * and have @paddr - aligned to cache line and integral @num_lines.
311 * This however can be avoided for page sized since:
312 * -@paddr will be cache-line aligned already (being page aligned)
313 * -@sz will be integral multiple of line size (being page sized).
316 sz
+= paddr
& ~CACHE_LINE_MASK
;
317 paddr
&= CACHE_LINE_MASK
;
318 vaddr
&= CACHE_LINE_MASK
;
320 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
323 * MMUv3, cache ops require paddr in PTAG reg
324 * if V-P const for loop, PTAG can be written once outside loop
327 write_aux_reg(aux_tag
, paddr
);
330 * This is technically for MMU v4, using the MMU v3 programming model
331 * Special work for HS38 aliasing I-cache configuration with PAE40
332 * - upper 8 bits of paddr need to be written into PTAG_HI
333 * - (and needs to be written before the lower 32 bits)
334 * Note that PTAG_HI is hoisted outside the line loop
336 if (is_pae40_enabled() && op
== OP_INV_IC
)
337 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
339 while (num_lines
-- > 0) {
341 write_aux_reg(aux_tag
, paddr
);
342 paddr
+= L1_CACHE_BYTES
;
345 write_aux_reg(aux_cmd
, vaddr
);
346 vaddr
+= L1_CACHE_BYTES
;
353 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
354 * Here's how cache ops are implemented
356 * - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
357 * - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
358 * - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
359 * respectively, similar to MMU v3 programming model, hence
360 * __cache_line_loop_v3() is used)
362 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
363 * needs to be written into PTAG_HI
366 void __cache_line_loop_v4(phys_addr_t paddr
, unsigned long vaddr
,
367 unsigned long sz
, const int op
, const int full_page
)
369 unsigned int aux_cmd
;
372 if (op
== OP_INV_IC
) {
373 aux_cmd
= ARC_REG_IC_IVIL
;
375 /* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
376 aux_cmd
= op
& OP_INV
? ARC_REG_DC_IVDL
: ARC_REG_DC_FLDL
;
379 /* Ensure we properly floor/ceil the non-line aligned/sized requests
380 * and have @paddr - aligned to cache line and integral @num_lines.
381 * This however can be avoided for page sized since:
382 * -@paddr will be cache-line aligned already (being page aligned)
383 * -@sz will be integral multiple of line size (being page sized).
386 sz
+= paddr
& ~CACHE_LINE_MASK
;
387 paddr
&= CACHE_LINE_MASK
;
390 num_lines
= DIV_ROUND_UP(sz
, L1_CACHE_BYTES
);
393 * For HS38 PAE40 configuration
394 * - upper 8 bits of paddr need to be written into PTAG_HI
395 * - (and needs to be written before the lower 32 bits)
397 if (is_pae40_enabled()) {
400 * Non aliasing I-cache in HS38,
401 * aliasing I-cache handled in __cache_line_loop_v3()
403 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
405 write_aux_reg(ARC_REG_DC_PTAG_HI
, (u64
)paddr
>> 32);
408 while (num_lines
-- > 0) {
409 write_aux_reg(aux_cmd
, paddr
);
410 paddr
+= L1_CACHE_BYTES
;
417 * optimized flush operation which takes a region as opposed to iterating per line
420 void __cache_line_loop_v4(phys_addr_t paddr
, unsigned long vaddr
,
421 unsigned long sz
, const int op
, const int full_page
)
425 /* Only for Non aliasing I-cache in HS38 */
426 if (op
== OP_INV_IC
) {
430 s
= ARC_REG_DC_STARTR
;
435 /* for any leading gap between @paddr and start of cache line */
436 sz
+= paddr
& ~CACHE_LINE_MASK
;
437 paddr
&= CACHE_LINE_MASK
;
440 * account for any trailing gap to end of cache line
441 * this is equivalent to DIV_ROUND_UP() in line ops above
443 sz
+= L1_CACHE_BYTES
- 1;
446 if (is_pae40_enabled()) {
447 /* TBD: check if crossing 4TB boundary */
449 write_aux_reg(ARC_REG_IC_PTAG_HI
, (u64
)paddr
>> 32);
451 write_aux_reg(ARC_REG_DC_PTAG_HI
, (u64
)paddr
>> 32);
454 /* ENDR needs to be set ahead of START */
455 write_aux_reg(e
, paddr
+ sz
); /* ENDR is exclusive */
456 write_aux_reg(s
, paddr
);
458 /* caller waits on DC_CTRL.FS */
463 #if (CONFIG_ARC_MMU_VER < 3)
464 #define __cache_line_loop __cache_line_loop_v2
465 #elif (CONFIG_ARC_MMU_VER == 3)
466 #define __cache_line_loop __cache_line_loop_v3
467 #elif (CONFIG_ARC_MMU_VER > 3)
468 #define __cache_line_loop __cache_line_loop_v4
471 #ifdef CONFIG_ARC_HAS_DCACHE
473 /***************************************************************
474 * Machine specific helpers for Entire D-Cache or Per Line ops
479 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
480 * in the non region flush regime (such as for ARCompact)
482 static inline void __before_dc_op(const int op
)
484 if (op
== OP_FLUSH_N_INV
) {
485 /* Dcache provides 2 cmd: FLUSH or INV
486 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
487 * flush-n-inv is achieved by INV cmd but with IM=1
488 * So toggle INV sub-mode depending on op request and default
490 const unsigned int ctl
= ARC_REG_DC_CTRL
;
491 write_aux_reg(ctl
, read_aux_reg(ctl
) | DC_CTRL_INV_MODE_FLUSH
);
497 static inline void __before_dc_op(const int op
)
499 const unsigned int ctl
= ARC_REG_DC_CTRL
;
500 unsigned int val
= read_aux_reg(ctl
);
502 if (op
== OP_FLUSH_N_INV
) {
503 val
|= DC_CTRL_INV_MODE_FLUSH
;
506 if (op
!= OP_INV_IC
) {
508 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
509 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
511 val
&= ~DC_CTRL_RGN_OP_MSK
;
513 val
|= DC_CTRL_RGN_OP_INV
;
515 write_aux_reg(ctl
, val
);
521 static inline void __after_dc_op(const int op
)
524 const unsigned int ctl
= ARC_REG_DC_CTRL
;
527 /* flush / flush-n-inv both wait */
528 while ((reg
= read_aux_reg(ctl
)) & DC_CTRL_FLUSH_STATUS
)
531 /* Switch back to default Invalidate mode */
532 if (op
== OP_FLUSH_N_INV
)
533 write_aux_reg(ctl
, reg
& ~DC_CTRL_INV_MODE_FLUSH
);
538 * Operation on Entire D-Cache
539 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
540 * Note that constant propagation ensures all the checks are gone
543 static inline void __dc_entire_op(const int op
)
549 if (op
& OP_INV
) /* Inv or flush-n-inv use same cmd reg */
550 aux
= ARC_REG_DC_IVDC
;
552 aux
= ARC_REG_DC_FLSH
;
554 write_aux_reg(aux
, 0x1);
559 static inline void __dc_disable(void)
561 const int r
= ARC_REG_DC_CTRL
;
563 __dc_entire_op(OP_FLUSH_N_INV
);
564 write_aux_reg(r
, read_aux_reg(r
) | DC_CTRL_DIS
);
567 static void __dc_enable(void)
569 const int r
= ARC_REG_DC_CTRL
;
571 write_aux_reg(r
, read_aux_reg(r
) & ~DC_CTRL_DIS
);
574 /* For kernel mappings cache operation: index is same as paddr */
575 #define __dc_line_op_k(p, sz, op) __dc_line_op(p, p, sz, op)
578 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
580 static inline void __dc_line_op(phys_addr_t paddr
, unsigned long vaddr
,
581 unsigned long sz
, const int op
)
583 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
586 local_irq_save(flags
);
590 __cache_line_loop(paddr
, vaddr
, sz
, op
, full_page
);
594 local_irq_restore(flags
);
599 #define __dc_entire_op(op)
600 #define __dc_disable()
601 #define __dc_enable()
602 #define __dc_line_op(paddr, vaddr, sz, op)
603 #define __dc_line_op_k(paddr, sz, op)
605 #endif /* CONFIG_ARC_HAS_DCACHE */
607 #ifdef CONFIG_ARC_HAS_ICACHE
609 static inline void __ic_entire_inv(void)
611 write_aux_reg(ARC_REG_IC_IVIC
, 1);
612 read_aux_reg(ARC_REG_IC_CTRL
); /* blocks */
616 __ic_line_inv_vaddr_local(phys_addr_t paddr
, unsigned long vaddr
,
619 const int full_page
= __builtin_constant_p(sz
) && sz
== PAGE_SIZE
;
622 local_irq_save(flags
);
623 (*_cache_line_loop_ic_fn
)(paddr
, vaddr
, sz
, OP_INV_IC
, full_page
);
624 local_irq_restore(flags
);
629 #define __ic_line_inv_vaddr(p, v, s) __ic_line_inv_vaddr_local(p, v, s)
634 phys_addr_t paddr
, vaddr
;
638 static void __ic_line_inv_vaddr_helper(void *info
)
640 struct ic_inv_args
*ic_inv
= info
;
642 __ic_line_inv_vaddr_local(ic_inv
->paddr
, ic_inv
->vaddr
, ic_inv
->sz
);
645 static void __ic_line_inv_vaddr(phys_addr_t paddr
, unsigned long vaddr
,
648 struct ic_inv_args ic_inv
= {
654 on_each_cpu(__ic_line_inv_vaddr_helper
, &ic_inv
, 1);
657 #endif /* CONFIG_SMP */
659 #else /* !CONFIG_ARC_HAS_ICACHE */
661 #define __ic_entire_inv()
662 #define __ic_line_inv_vaddr(pstart, vstart, sz)
664 #endif /* CONFIG_ARC_HAS_ICACHE */
666 noinline
void slc_op_rgn(phys_addr_t paddr
, unsigned long sz
, const int op
)
668 #ifdef CONFIG_ISA_ARCV2
670 * SLC is shared between all cores and concurrent aux operations from
671 * multiple cores need to be serialized using a spinlock
672 * A concurrent operation can be silently ignored and/or the old/new
673 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
676 static DEFINE_SPINLOCK(lock
);
681 spin_lock_irqsave(&lock
, flags
);
684 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
685 * - b'000 (default) is Flush,
686 * - b'001 is Invalidate if CTRL.IM == 0
687 * - b'001 is Flush-n-Invalidate if CTRL.IM == 1
689 ctrl
= read_aux_reg(ARC_REG_SLC_CTRL
);
691 /* Don't rely on default value of IM bit */
692 if (!(op
& OP_FLUSH
)) /* i.e. OP_INV */
693 ctrl
&= ~SLC_CTRL_IM
; /* clear IM: Disable flush before Inv */
698 ctrl
|= SLC_CTRL_RGN_OP_INV
; /* Inv or flush-n-inv */
700 ctrl
&= ~SLC_CTRL_RGN_OP_INV
;
702 write_aux_reg(ARC_REG_SLC_CTRL
, ctrl
);
705 * Lower bits are ignored, no need to clip
706 * END needs to be setup before START (latter triggers the operation)
707 * END can't be same as START, so add (l2_line_sz - 1) to sz
709 end
= paddr
+ sz
+ l2_line_sz
- 1;
710 if (is_pae40_enabled())
711 write_aux_reg(ARC_REG_SLC_RGN_END1
, upper_32_bits(end
));
713 write_aux_reg(ARC_REG_SLC_RGN_END
, lower_32_bits(end
));
715 if (is_pae40_enabled())
716 write_aux_reg(ARC_REG_SLC_RGN_START1
, upper_32_bits(paddr
));
718 write_aux_reg(ARC_REG_SLC_RGN_START
, lower_32_bits(paddr
));
720 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
721 read_aux_reg(ARC_REG_SLC_CTRL
);
723 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
725 spin_unlock_irqrestore(&lock
, flags
);
729 noinline
void slc_op_line(phys_addr_t paddr
, unsigned long sz
, const int op
)
731 #ifdef CONFIG_ISA_ARCV2
733 * SLC is shared between all cores and concurrent aux operations from
734 * multiple cores need to be serialized using a spinlock
735 * A concurrent operation can be silently ignored and/or the old/new
736 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
739 static DEFINE_SPINLOCK(lock
);
741 const unsigned long SLC_LINE_MASK
= ~(l2_line_sz
- 1);
742 unsigned int ctrl
, cmd
;
746 spin_lock_irqsave(&lock
, flags
);
748 ctrl
= read_aux_reg(ARC_REG_SLC_CTRL
);
750 /* Don't rely on default value of IM bit */
751 if (!(op
& OP_FLUSH
)) /* i.e. OP_INV */
752 ctrl
&= ~SLC_CTRL_IM
; /* clear IM: Disable flush before Inv */
756 write_aux_reg(ARC_REG_SLC_CTRL
, ctrl
);
758 cmd
= op
& OP_INV
? ARC_AUX_SLC_IVDL
: ARC_AUX_SLC_FLDL
;
760 sz
+= paddr
& ~SLC_LINE_MASK
;
761 paddr
&= SLC_LINE_MASK
;
763 num_lines
= DIV_ROUND_UP(sz
, l2_line_sz
);
765 while (num_lines
-- > 0) {
766 write_aux_reg(cmd
, paddr
);
770 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
771 read_aux_reg(ARC_REG_SLC_CTRL
);
773 while (read_aux_reg(ARC_REG_SLC_CTRL
) & SLC_CTRL_BUSY
);
775 spin_unlock_irqrestore(&lock
, flags
);
779 #define slc_op(paddr, sz, op) slc_op_rgn(paddr, sz, op)
781 noinline
static void slc_entire_op(const int op
)
783 unsigned int ctrl
, r
= ARC_REG_SLC_CTRL
;
785 ctrl
= read_aux_reg(r
);
787 if (!(op
& OP_FLUSH
)) /* i.e. OP_INV */
788 ctrl
&= ~SLC_CTRL_IM
; /* clear IM: Disable flush before Inv */
792 write_aux_reg(r
, ctrl
);
794 if (op
& OP_INV
) /* Inv or flush-n-inv use same cmd reg */
795 write_aux_reg(ARC_REG_SLC_INVALIDATE
, 0x1);
797 write_aux_reg(ARC_REG_SLC_FLUSH
, 0x1);
799 /* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
802 /* Important to wait for flush to complete */
803 while (read_aux_reg(r
) & SLC_CTRL_BUSY
);
806 static inline void arc_slc_disable(void)
808 const int r
= ARC_REG_SLC_CTRL
;
810 slc_entire_op(OP_FLUSH_N_INV
);
811 write_aux_reg(r
, read_aux_reg(r
) | SLC_CTRL_DIS
);
814 static inline void arc_slc_enable(void)
816 const int r
= ARC_REG_SLC_CTRL
;
818 write_aux_reg(r
, read_aux_reg(r
) & ~SLC_CTRL_DIS
);
821 /***********************************************************
826 * Handle cache congruency of kernel and userspace mappings of page when kernel
827 * writes-to/reads-from
829 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
830 * -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
831 * -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
832 * -In SMP, if hardware caches are coherent
834 * There's a corollary case, where kernel READs from a userspace mapped page.
835 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
837 void flush_dcache_page(struct page
*page
)
839 struct address_space
*mapping
;
841 if (!cache_is_vipt_aliasing()) {
842 clear_bit(PG_dc_clean
, &page
->flags
);
846 /* don't handle anon pages here */
847 mapping
= page_mapping_file(page
);
852 * pagecache page, file not yet mapped to userspace
853 * Make a note that K-mapping is dirty
855 if (!mapping_mapped(mapping
)) {
856 clear_bit(PG_dc_clean
, &page
->flags
);
857 } else if (page_mapcount(page
)) {
859 /* kernel reading from page with U-mapping */
860 phys_addr_t paddr
= (unsigned long)page_address(page
);
861 unsigned long vaddr
= page
->index
<< PAGE_SHIFT
;
863 if (addr_not_cache_congruent(paddr
, vaddr
))
864 __flush_dcache_page(paddr
, vaddr
);
867 EXPORT_SYMBOL(flush_dcache_page
);
870 * DMA ops for systems with L1 cache only
871 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
873 static void __dma_cache_wback_inv_l1(phys_addr_t start
, unsigned long sz
)
875 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
878 static void __dma_cache_inv_l1(phys_addr_t start
, unsigned long sz
)
880 __dc_line_op_k(start
, sz
, OP_INV
);
883 static void __dma_cache_wback_l1(phys_addr_t start
, unsigned long sz
)
885 __dc_line_op_k(start
, sz
, OP_FLUSH
);
889 * DMA ops for systems with both L1 and L2 caches, but without IOC
890 * Both L1 and L2 lines need to be explicitly flushed/invalidated
892 static void __dma_cache_wback_inv_slc(phys_addr_t start
, unsigned long sz
)
894 __dc_line_op_k(start
, sz
, OP_FLUSH_N_INV
);
895 slc_op(start
, sz
, OP_FLUSH_N_INV
);
898 static void __dma_cache_inv_slc(phys_addr_t start
, unsigned long sz
)
900 __dc_line_op_k(start
, sz
, OP_INV
);
901 slc_op(start
, sz
, OP_INV
);
904 static void __dma_cache_wback_slc(phys_addr_t start
, unsigned long sz
)
906 __dc_line_op_k(start
, sz
, OP_FLUSH
);
907 slc_op(start
, sz
, OP_FLUSH
);
913 void dma_cache_wback_inv(phys_addr_t start
, unsigned long sz
)
915 __dma_cache_wback_inv(start
, sz
);
917 EXPORT_SYMBOL(dma_cache_wback_inv
);
919 void dma_cache_inv(phys_addr_t start
, unsigned long sz
)
921 __dma_cache_inv(start
, sz
);
923 EXPORT_SYMBOL(dma_cache_inv
);
925 void dma_cache_wback(phys_addr_t start
, unsigned long sz
)
927 __dma_cache_wback(start
, sz
);
929 EXPORT_SYMBOL(dma_cache_wback
);
932 * This is API for making I/D Caches consistent when modifying
933 * kernel code (loadable modules, kprobes, kgdb...)
934 * This is called on insmod, with kernel virtual address for CODE of
935 * the module. ARC cache maintenance ops require PHY address thus we
936 * need to convert vmalloc addr to PHY addr
938 void flush_icache_range(unsigned long kstart
, unsigned long kend
)
942 WARN(kstart
< TASK_SIZE
, "%s() can't handle user vaddr", __func__
);
944 /* Shortcut for bigger flush ranges.
945 * Here we don't care if this was kernel virtual or phy addr
947 tot_sz
= kend
- kstart
;
948 if (tot_sz
> PAGE_SIZE
) {
953 /* Case: Kernel Phy addr (0x8000_0000 onwards) */
954 if (likely(kstart
> PAGE_OFFSET
)) {
956 * The 2nd arg despite being paddr will be used to index icache
957 * This is OK since no alternate virtual mappings will exist
958 * given the callers for this case: kprobe/kgdb in built-in
961 __sync_icache_dcache(kstart
, kstart
, kend
- kstart
);
966 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
967 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
968 * handling of kernel vaddr.
970 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
971 * it still needs to handle a 2 page scenario, where the range
972 * straddles across 2 virtual pages and hence need for loop
975 unsigned int off
, sz
;
976 unsigned long phy
, pfn
;
978 off
= kstart
% PAGE_SIZE
;
979 pfn
= vmalloc_to_pfn((void *)kstart
);
980 phy
= (pfn
<< PAGE_SHIFT
) + off
;
981 sz
= min_t(unsigned int, tot_sz
, PAGE_SIZE
- off
);
982 __sync_icache_dcache(phy
, kstart
, sz
);
987 EXPORT_SYMBOL(flush_icache_range
);
990 * General purpose helper to make I and D cache lines consistent.
991 * @paddr is phy addr of region
992 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
993 * However in one instance, when called by kprobe (for a breakpt in
994 * builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
995 * use a paddr to index the cache (despite VIPT). This is fine since since a
996 * builtin kernel page will not have any virtual mappings.
997 * kprobe on loadable module will be kernel vaddr.
999 void __sync_icache_dcache(phys_addr_t paddr
, unsigned long vaddr
, int len
)
1001 __dc_line_op(paddr
, vaddr
, len
, OP_FLUSH_N_INV
);
1002 __ic_line_inv_vaddr(paddr
, vaddr
, len
);
1005 /* wrapper to compile time eliminate alignment checks in flush loop */
1006 void __inv_icache_page(phys_addr_t paddr
, unsigned long vaddr
)
1008 __ic_line_inv_vaddr(paddr
, vaddr
, PAGE_SIZE
);
1012 * wrapper to clearout kernel or userspace mappings of a page
1013 * For kernel mappings @vaddr == @paddr
1015 void __flush_dcache_page(phys_addr_t paddr
, unsigned long vaddr
)
1017 __dc_line_op(paddr
, vaddr
& PAGE_MASK
, PAGE_SIZE
, OP_FLUSH_N_INV
);
1020 noinline
void flush_cache_all(void)
1022 unsigned long flags
;
1024 local_irq_save(flags
);
1027 __dc_entire_op(OP_FLUSH_N_INV
);
1029 local_irq_restore(flags
);
1033 #ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1035 void flush_cache_mm(struct mm_struct
*mm
)
1040 void flush_cache_page(struct vm_area_struct
*vma
, unsigned long u_vaddr
,
1043 phys_addr_t paddr
= pfn
<< PAGE_SHIFT
;
1045 u_vaddr
&= PAGE_MASK
;
1047 __flush_dcache_page(paddr
, u_vaddr
);
1049 if (vma
->vm_flags
& VM_EXEC
)
1050 __inv_icache_page(paddr
, u_vaddr
);
1053 void flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
,
1059 void flush_anon_page(struct vm_area_struct
*vma
, struct page
*page
,
1060 unsigned long u_vaddr
)
1062 /* TBD: do we really need to clear the kernel mapping */
1063 __flush_dcache_page((phys_addr_t
)page_address(page
), u_vaddr
);
1064 __flush_dcache_page((phys_addr_t
)page_address(page
),
1065 (phys_addr_t
)page_address(page
));
1071 void copy_user_highpage(struct page
*to
, struct page
*from
,
1072 unsigned long u_vaddr
, struct vm_area_struct
*vma
)
1074 void *kfrom
= kmap_atomic(from
);
1075 void *kto
= kmap_atomic(to
);
1076 int clean_src_k_mappings
= 0;
1079 * If SRC page was already mapped in userspace AND it's U-mapping is
1080 * not congruent with K-mapping, sync former to physical page so that
1081 * K-mapping in memcpy below, sees the right data
1083 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1084 * equally valid for SRC page as well
1086 * For !VIPT cache, all of this gets compiled out as
1087 * addr_not_cache_congruent() is 0
1089 if (page_mapcount(from
) && addr_not_cache_congruent(kfrom
, u_vaddr
)) {
1090 __flush_dcache_page((unsigned long)kfrom
, u_vaddr
);
1091 clean_src_k_mappings
= 1;
1094 copy_page(kto
, kfrom
);
1097 * Mark DST page K-mapping as dirty for a later finalization by
1098 * update_mmu_cache(). Although the finalization could have been done
1099 * here as well (given that both vaddr/paddr are available).
1100 * But update_mmu_cache() already has code to do that for other
1101 * non copied user pages (e.g. read faults which wire in pagecache page
1104 clear_bit(PG_dc_clean
, &to
->flags
);
1107 * if SRC was already usermapped and non-congruent to kernel mapping
1108 * sync the kernel mapping back to physical page
1110 if (clean_src_k_mappings
) {
1111 __flush_dcache_page((unsigned long)kfrom
, (unsigned long)kfrom
);
1112 set_bit(PG_dc_clean
, &from
->flags
);
1114 clear_bit(PG_dc_clean
, &from
->flags
);
1118 kunmap_atomic(kfrom
);
1121 void clear_user_page(void *to
, unsigned long u_vaddr
, struct page
*page
)
1124 clear_bit(PG_dc_clean
, &page
->flags
);
1128 /**********************************************************************
1129 * Explicit Cache flush request from user space via syscall
1130 * Needed for JITs which generate code on the fly
1132 SYSCALL_DEFINE3(cacheflush
, uint32_t, start
, uint32_t, sz
, uint32_t, flags
)
1134 /* TBD: optimize this */
1140 * IO-Coherency (IOC) setup rules:
1142 * 1. Needs to be at system level, so only once by Master core
1143 * Non-Masters need not be accessing caches at that time
1144 * - They are either HALT_ON_RESET and kick started much later or
1145 * - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1146 * doesn't perturb caches or coherency unit
1148 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1149 * otherwise any straggler data might behave strangely post IOC enabling
1151 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1152 * Coherency transactions
1154 noinline
void __init
arc_ioc_setup(void)
1156 unsigned int ioc_base
, mem_sz
;
1159 * If IOC was already enabled (due to bootloader) it technically needs to
1160 * be reconfigured with aperture base,size corresponding to Linux memory map
1161 * which will certainly be different than uboot's. But disabling and
1162 * reenabling IOC when DMA might be potentially active is tricky business.
1163 * To avoid random memory issues later, just panic here and ask user to
1164 * upgrade bootloader to one which doesn't enable IOC
1166 if (read_aux_reg(ARC_REG_IO_COH_ENABLE
) & ARC_IO_COH_ENABLE_BIT
)
1167 panic("IOC already enabled, please upgrade bootloader!\n");
1172 /* Flush + invalidate + disable L1 dcache */
1175 /* Flush + invalidate SLC */
1176 if (read_aux_reg(ARC_REG_SLC_BCR
))
1177 slc_entire_op(OP_FLUSH_N_INV
);
1180 * currently IOC Aperture covers entire DDR
1181 * TBD: fix for PGU + 1GB of low mem
1184 mem_sz
= arc_get_mem_sz();
1186 if (!is_power_of_2(mem_sz
) || mem_sz
< 4096)
1187 panic("IOC Aperture size must be power of 2 larger than 4KB");
1190 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1191 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1193 write_aux_reg(ARC_REG_IO_COH_AP0_SIZE
, order_base_2(mem_sz
>> 10) - 2);
1195 /* for now assume kernel base is start of IOC aperture */
1196 ioc_base
= CONFIG_LINUX_RAM_BASE
;
1198 if (ioc_base
% mem_sz
!= 0)
1199 panic("IOC Aperture start must be aligned to the size of the aperture");
1201 write_aux_reg(ARC_REG_IO_COH_AP0_BASE
, ioc_base
>> 12);
1202 write_aux_reg(ARC_REG_IO_COH_PARTIAL
, ARC_IO_COH_PARTIAL_BIT
);
1203 write_aux_reg(ARC_REG_IO_COH_ENABLE
, ARC_IO_COH_ENABLE_BIT
);
1205 /* Re-enable L1 dcache */
1210 * Cache related boot time checks/setups only needed on master CPU:
1211 * - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1212 * Assume SMP only, so all cores will have same cache config. A check on
1213 * one core suffices for all
1214 * - IOC setup / dma callbacks only need to be done once
1216 void __init
arc_cache_init_master(void)
1218 unsigned int __maybe_unused cpu
= smp_processor_id();
1220 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE
)) {
1221 struct cpuinfo_arc_cache
*ic
= &cpuinfo_arc700
[cpu
].icache
;
1224 panic("cache support enabled but non-existent cache\n");
1226 if (ic
->line_len
!= L1_CACHE_BYTES
)
1227 panic("ICache line [%d] != kernel Config [%d]",
1228 ic
->line_len
, L1_CACHE_BYTES
);
1231 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1232 * pair to provide vaddr/paddr respectively, just as in MMU v3
1234 if (is_isa_arcv2() && ic
->alias
)
1235 _cache_line_loop_ic_fn
= __cache_line_loop_v3
;
1237 _cache_line_loop_ic_fn
= __cache_line_loop
;
1240 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE
)) {
1241 struct cpuinfo_arc_cache
*dc
= &cpuinfo_arc700
[cpu
].dcache
;
1244 panic("cache support enabled but non-existent cache\n");
1246 if (dc
->line_len
!= L1_CACHE_BYTES
)
1247 panic("DCache line [%d] != kernel Config [%d]",
1248 dc
->line_len
, L1_CACHE_BYTES
);
1250 /* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1251 if (is_isa_arcompact()) {
1252 int handled
= IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING
);
1253 int num_colors
= dc
->sz_k
/dc
->assoc
/TO_KB(PAGE_SIZE
);
1257 panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1258 if (CACHE_COLORS_NUM
!= num_colors
)
1259 panic("CACHE_COLORS_NUM not optimized for config\n");
1260 } else if (!dc
->alias
&& handled
) {
1261 panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1267 * Check that SMP_CACHE_BYTES (and hence ARCH_DMA_MINALIGN) is larger
1268 * or equal to any cache line length.
1270 BUILD_BUG_ON_MSG(L1_CACHE_BYTES
> SMP_CACHE_BYTES
,
1271 "SMP_CACHE_BYTES must be >= any cache line length");
1272 if (is_isa_arcv2() && (l2_line_sz
> SMP_CACHE_BYTES
))
1273 panic("L2 Cache line [%d] > kernel Config [%d]\n",
1274 l2_line_sz
, SMP_CACHE_BYTES
);
1276 /* Note that SLC disable not formally supported till HS 3.0 */
1277 if (is_isa_arcv2() && l2_line_sz
&& !slc_enable
)
1280 if (is_isa_arcv2() && ioc_exists
)
1283 if (is_isa_arcv2() && l2_line_sz
&& slc_enable
) {
1284 __dma_cache_wback_inv
= __dma_cache_wback_inv_slc
;
1285 __dma_cache_inv
= __dma_cache_inv_slc
;
1286 __dma_cache_wback
= __dma_cache_wback_slc
;
1288 __dma_cache_wback_inv
= __dma_cache_wback_inv_l1
;
1289 __dma_cache_inv
= __dma_cache_inv_l1
;
1290 __dma_cache_wback
= __dma_cache_wback_l1
;
1293 * In case of IOC (say IOC+SLC case), pointers above could still be set
1294 * but end up not being relevant as the first function in chain is not
1295 * called at all for devices using coherent DMA.
1296 * arch_sync_dma_for_cpu() -> dma_cache_*() -> __dma_cache_*()
1300 void __ref
arc_cache_init(void)
1302 unsigned int __maybe_unused cpu
= smp_processor_id();
1305 pr_info("%s", arc_cache_mumbojumbo(0, str
, sizeof(str
)));
1308 arc_cache_init_master();
1311 * In PAE regime, TLB and cache maintenance ops take wider addresses
1312 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1313 * to be zeroed to keep the ops sane.
1314 * As an optimization for more common !PAE enabled case, zero them out
1315 * once at init, rather than checking/setting to 0 for every runtime op
1317 if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1319 if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE
))
1320 write_aux_reg(ARC_REG_IC_PTAG_HI
, 0);
1322 if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE
))
1323 write_aux_reg(ARC_REG_DC_PTAG_HI
, 0);
1326 write_aux_reg(ARC_REG_SLC_RGN_END1
, 0);
1327 write_aux_reg(ARC_REG_SLC_RGN_START1
, 0);