1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
7 #ifndef __ARM_KVM_MMU_H__
8 #define __ARM_KVM_MMU_H__
10 #include <asm/memory.h>
14 * We directly use the kernel VA for the HYP, as we can directly share
15 * the mapping (HTTBR "covers" TTBR1).
17 #define kern_hyp_va(kva) (kva)
19 /* Contrary to arm64, there is no need to generate a PC-relative address */
20 #define hyp_symbol_addr(s) \
22 typeof(s) *addr = &(s); \
28 #include <linux/highmem.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_hyp.h>
33 #include <asm/pgalloc.h>
34 #include <asm/stage2_pgtable.h>
36 /* Ensure compatibility with arm64 */
39 #define kvm_phys_shift(kvm) KVM_PHYS_SHIFT
40 #define kvm_phys_size(kvm) (1ULL << kvm_phys_shift(kvm))
41 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - 1ULL)
42 #define kvm_vttbr_baddr_mask(kvm) VTTBR_BADDR_MASK
44 #define stage2_pgd_size(kvm) (PTRS_PER_S2_PGD * sizeof(pgd_t))
46 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
);
47 int create_hyp_io_mappings(phys_addr_t phys_addr
, size_t size
,
49 void __iomem
**haddr
);
50 int create_hyp_exec_mappings(phys_addr_t phys_addr
, size_t size
,
52 void free_hyp_pgds(void);
54 void stage2_unmap_vm(struct kvm
*kvm
);
55 int kvm_alloc_stage2_pgd(struct kvm
*kvm
);
56 void kvm_free_stage2_pgd(struct kvm
*kvm
);
57 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
58 phys_addr_t pa
, unsigned long size
, bool writable
);
60 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
);
62 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
);
64 phys_addr_t
kvm_mmu_get_httbr(void);
65 phys_addr_t
kvm_get_idmap_vector(void);
66 int kvm_mmu_init(void);
67 void kvm_clear_hyp_idmap(void);
69 #define kvm_mk_pmd(ptep) __pmd(__pa(ptep) | PMD_TYPE_TABLE)
70 #define kvm_mk_pud(pmdp) __pud(__pa(pmdp) | PMD_TYPE_TABLE)
71 #define kvm_mk_pgd(pudp) ({ BUILD_BUG(); 0; })
73 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
74 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
75 #define kvm_pfn_pud(pfn, prot) (__pud(0))
77 #define kvm_pud_pfn(pud) ({ WARN_ON(1); 0; })
80 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
81 /* No support for pud hugepages */
82 #define kvm_pud_mkhuge(pud) ( {WARN_ON(1); pud; })
85 * The following kvm_*pud*() functions are provided strictly to allow
86 * sharing code with arm64. They should never be called in practice.
88 static inline void kvm_set_s2pud_readonly(pud_t
*pud
)
93 static inline bool kvm_s2pud_readonly(pud_t
*pud
)
99 static inline void kvm_set_pud(pud_t
*pud
, pud_t new_pud
)
104 static inline pud_t
kvm_s2pud_mkwrite(pud_t pud
)
110 static inline pud_t
kvm_s2pud_mkexec(pud_t pud
)
116 static inline bool kvm_s2pud_exec(pud_t
*pud
)
122 static inline pud_t
kvm_s2pud_mkyoung(pud_t pud
)
128 static inline bool kvm_s2pud_young(pud_t pud
)
134 static inline pte_t
kvm_s2pte_mkwrite(pte_t pte
)
136 pte_val(pte
) |= L_PTE_S2_RDWR
;
140 static inline pmd_t
kvm_s2pmd_mkwrite(pmd_t pmd
)
142 pmd_val(pmd
) |= L_PMD_S2_RDWR
;
146 static inline pte_t
kvm_s2pte_mkexec(pte_t pte
)
148 pte_val(pte
) &= ~L_PTE_XN
;
152 static inline pmd_t
kvm_s2pmd_mkexec(pmd_t pmd
)
154 pmd_val(pmd
) &= ~PMD_SECT_XN
;
158 static inline void kvm_set_s2pte_readonly(pte_t
*pte
)
160 pte_val(*pte
) = (pte_val(*pte
) & ~L_PTE_S2_RDWR
) | L_PTE_S2_RDONLY
;
163 static inline bool kvm_s2pte_readonly(pte_t
*pte
)
165 return (pte_val(*pte
) & L_PTE_S2_RDWR
) == L_PTE_S2_RDONLY
;
168 static inline bool kvm_s2pte_exec(pte_t
*pte
)
170 return !(pte_val(*pte
) & L_PTE_XN
);
173 static inline void kvm_set_s2pmd_readonly(pmd_t
*pmd
)
175 pmd_val(*pmd
) = (pmd_val(*pmd
) & ~L_PMD_S2_RDWR
) | L_PMD_S2_RDONLY
;
178 static inline bool kvm_s2pmd_readonly(pmd_t
*pmd
)
180 return (pmd_val(*pmd
) & L_PMD_S2_RDWR
) == L_PMD_S2_RDONLY
;
183 static inline bool kvm_s2pmd_exec(pmd_t
*pmd
)
185 return !(pmd_val(*pmd
) & PMD_SECT_XN
);
188 static inline bool kvm_page_empty(void *ptr
)
190 struct page
*ptr_page
= virt_to_page(ptr
);
191 return page_count(ptr_page
) == 1;
194 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
195 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
196 #define kvm_pud_table_empty(kvm, pudp) false
198 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
199 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
200 #define hyp_pud_table_empty(pudp) false
204 #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
206 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu
*vcpu
)
208 return (vcpu_cp15(vcpu
, c1_SCTLR
) & 0b101) == 0b101;
211 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
214 * Clean the dcache to the Point of Coherency.
216 * We need to do this through a kernel mapping (using the
217 * user-space mapping has proved to be the wrong
218 * solution). For that, we need to kmap one page at a time,
219 * and iterate over the range.
222 VM_BUG_ON(size
& ~PAGE_MASK
);
225 void *va
= kmap_atomic_pfn(pfn
);
227 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
236 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn
,
242 * If we are going to insert an instruction page and the icache is
243 * either VIPT or PIPT, there is a potential problem where the host
244 * (or another VM) may have used the same page as this guest, and we
245 * read incorrect data from the icache. If we're using a PIPT cache,
246 * we can invalidate just that page, but if we are using a VIPT cache
247 * we need to invalidate the entire icache - damn shame - as written
248 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
250 * VIVT caches are tagged using both the ASID and the VMID and doesn't
251 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
254 VM_BUG_ON(size
& ~PAGE_MASK
);
256 if (icache_is_vivt_asid_tagged())
259 if (!icache_is_pipt()) {
260 /* any kind of VIPT cache */
261 __flush_icache_all();
266 * CTR IminLine contains Log2 of the number of words in the
267 * cache line, so we can get the number of words as
268 * 2 << (IminLine - 1). To get the number of bytes, we
269 * multiply by 4 (the number of bytes in a 32-bit word), and
270 * get 4 << (IminLine).
272 iclsz
= 4 << (read_cpuid(CPUID_CACHETYPE
) & 0xf);
275 void *va
= kmap_atomic_pfn(pfn
);
276 void *end
= va
+ PAGE_SIZE
;
280 write_sysreg(addr
, ICIMVAU
);
282 } while (addr
< end
);
293 /* Check if we need to invalidate the BTB */
294 if ((read_cpuid_ext(CPUID_EXT_MMFR1
) >> 28) != 4) {
295 write_sysreg(0, BPIALLIS
);
301 static inline void __kvm_flush_dcache_pte(pte_t pte
)
303 void *va
= kmap_atomic(pte_page(pte
));
305 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
310 static inline void __kvm_flush_dcache_pmd(pmd_t pmd
)
312 unsigned long size
= PMD_SIZE
;
313 kvm_pfn_t pfn
= pmd_pfn(pmd
);
316 void *va
= kmap_atomic_pfn(pfn
);
318 kvm_flush_dcache_to_poc(va
, PAGE_SIZE
);
327 static inline void __kvm_flush_dcache_pud(pud_t pud
)
331 #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
333 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
);
334 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
);
336 static inline bool __kvm_cpu_uses_extended_idmap(void)
341 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
346 static inline void __kvm_extend_hypmap(pgd_t
*boot_hyp_pgd
,
348 pgd_t
*merged_hyp_pgd
,
349 unsigned long hyp_idmap_start
) { }
351 static inline unsigned int kvm_get_vmid_bits(void)
357 * We are not in the kvm->srcu critical section most of the time, so we take
358 * the SRCU read lock here. Since we copy the data from the user page, we
359 * can immediately drop the lock again.
361 static inline int kvm_read_guest_lock(struct kvm
*kvm
,
362 gpa_t gpa
, void *data
, unsigned long len
)
364 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
365 int ret
= kvm_read_guest(kvm
, gpa
, data
, len
);
367 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
372 static inline int kvm_write_guest_lock(struct kvm
*kvm
, gpa_t gpa
,
373 const void *data
, unsigned long len
)
375 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
376 int ret
= kvm_write_guest(kvm
, gpa
, data
, len
);
378 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
383 static inline void *kvm_get_hyp_vector(void)
385 switch(read_cpuid_part()) {
386 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
387 case ARM_CPU_PART_CORTEX_A12
:
388 case ARM_CPU_PART_CORTEX_A17
:
390 extern char __kvm_hyp_vector_bp_inv
[];
391 return kvm_ksym_ref(__kvm_hyp_vector_bp_inv
);
394 case ARM_CPU_PART_BRAHMA_B15
:
395 case ARM_CPU_PART_CORTEX_A15
:
397 extern char __kvm_hyp_vector_ic_inv
[];
398 return kvm_ksym_ref(__kvm_hyp_vector_ic_inv
);
403 extern char __kvm_hyp_vector
[];
404 return kvm_ksym_ref(__kvm_hyp_vector
);
409 static inline int kvm_map_vectors(void)
414 static inline int hyp_map_aux_data(void)
419 #define kvm_phys_to_vttbr(addr) (addr)
421 static inline void kvm_set_ipa_limit(void) {}
423 static __always_inline u64
kvm_get_vttbr(struct kvm
*kvm
)
425 struct kvm_vmid
*vmid
= &kvm
->arch
.vmid
;
426 u64 vmid_field
, baddr
;
428 baddr
= kvm
->arch
.pgd_phys
;
429 vmid_field
= (u64
)vmid
->vmid
<< VTTBR_VMID_SHIFT
;
430 return kvm_phys_to_vttbr(baddr
) | vmid_field
;
433 #endif /* !__ASSEMBLY__ */
435 #endif /* __ARM_KVM_MMU_H__ */