1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/dma-mapping.c
5 * Copyright (C) 2000-2004 Russell King
7 * DMA uncached mapping support.
9 #include <linux/module.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/dma-noncoherent.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28 #include <linux/cma.h>
30 #include <asm/memory.h>
31 #include <asm/highmem.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mach/arch.h>
35 #include <asm/dma-iommu.h>
36 #include <asm/mach/map.h>
37 #include <asm/system_info.h>
38 #include <asm/dma-contiguous.h>
39 #include <xen/swiotlb-xen.h>
44 struct arm_dma_alloc_args
{
54 struct arm_dma_free_args
{
65 struct arm_dma_allocator
{
66 void *(*alloc
)(struct arm_dma_alloc_args
*args
,
67 struct page
**ret_page
);
68 void (*free
)(struct arm_dma_free_args
*args
);
71 struct arm_dma_buffer
{
72 struct list_head list
;
74 struct arm_dma_allocator
*allocator
;
77 static LIST_HEAD(arm_dma_bufs
);
78 static DEFINE_SPINLOCK(arm_dma_bufs_lock
);
80 static struct arm_dma_buffer
*arm_dma_buffer_find(void *virt
)
82 struct arm_dma_buffer
*buf
, *found
= NULL
;
85 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
86 list_for_each_entry(buf
, &arm_dma_bufs
, list
) {
87 if (buf
->virt
== virt
) {
93 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
109 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
110 size_t, enum dma_data_direction
);
111 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
112 size_t, enum dma_data_direction
);
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
122 * Ensure that any data held in the cache is appropriately discarded
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
128 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
129 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
132 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
133 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
134 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
137 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
138 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
141 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
158 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
159 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
161 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
163 handle
& ~PAGE_MASK
, size
, dir
);
166 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
167 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
169 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
170 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
171 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
174 static void arm_dma_sync_single_for_device(struct device
*dev
,
175 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
177 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
178 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
179 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
182 const struct dma_map_ops arm_dma_ops
= {
183 .alloc
= arm_dma_alloc
,
184 .free
= arm_dma_free
,
185 .mmap
= arm_dma_mmap
,
186 .get_sgtable
= arm_dma_get_sgtable
,
187 .map_page
= arm_dma_map_page
,
188 .unmap_page
= arm_dma_unmap_page
,
189 .map_sg
= arm_dma_map_sg
,
190 .unmap_sg
= arm_dma_unmap_sg
,
191 .map_resource
= dma_direct_map_resource
,
192 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
193 .sync_single_for_device
= arm_dma_sync_single_for_device
,
194 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
195 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
196 .dma_supported
= arm_dma_supported
,
197 .get_required_mask
= dma_direct_get_required_mask
,
199 EXPORT_SYMBOL(arm_dma_ops
);
201 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
202 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
);
203 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
204 dma_addr_t handle
, unsigned long attrs
);
205 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
206 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
207 unsigned long attrs
);
209 const struct dma_map_ops arm_coherent_dma_ops
= {
210 .alloc
= arm_coherent_dma_alloc
,
211 .free
= arm_coherent_dma_free
,
212 .mmap
= arm_coherent_dma_mmap
,
213 .get_sgtable
= arm_dma_get_sgtable
,
214 .map_page
= arm_coherent_dma_map_page
,
215 .map_sg
= arm_dma_map_sg
,
216 .map_resource
= dma_direct_map_resource
,
217 .dma_supported
= arm_dma_supported
,
218 .get_required_mask
= dma_direct_get_required_mask
,
220 EXPORT_SYMBOL(arm_coherent_dma_ops
);
222 static int __dma_supported(struct device
*dev
, u64 mask
, bool warn
)
224 unsigned long max_dma_pfn
= min(max_pfn
, arm_dma_pfn_limit
);
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
230 if (dma_to_pfn(dev
, mask
) < max_dma_pfn
) {
232 dev_warn(dev
, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
234 dma_to_pfn(dev
, 0), dma_to_pfn(dev
, mask
) + 1,
242 static u64
get_coherent_dma_mask(struct device
*dev
)
244 u64 mask
= (u64
)DMA_BIT_MASK(32);
247 mask
= dev
->coherent_dma_mask
;
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
254 dev_warn(dev
, "coherent DMA mask is unset\n");
258 if (!__dma_supported(dev
, mask
, true))
265 static void __dma_clear_buffer(struct page
*page
, size_t size
, int coherent_flag
)
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
271 if (PageHighMem(page
)) {
272 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
273 phys_addr_t end
= base
+ size
;
275 void *ptr
= kmap_atomic(page
);
276 memset(ptr
, 0, PAGE_SIZE
);
277 if (coherent_flag
!= COHERENT
)
278 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
283 if (coherent_flag
!= COHERENT
)
284 outer_flush_range(base
, end
);
286 void *ptr
= page_address(page
);
287 memset(ptr
, 0, size
);
288 if (coherent_flag
!= COHERENT
) {
289 dmac_flush_range(ptr
, ptr
+ size
);
290 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
299 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
,
300 gfp_t gfp
, int coherent_flag
)
302 unsigned long order
= get_order(size
);
303 struct page
*page
, *p
, *e
;
305 page
= alloc_pages(gfp
, order
);
310 * Now split the huge page and free the excess pages
312 split_page(page
, order
);
313 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
316 __dma_clear_buffer(page
, size
, coherent_flag
);
322 * Free a DMA buffer. 'size' must be page aligned.
324 static void __dma_free_buffer(struct page
*page
, size_t size
)
326 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
334 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
335 pgprot_t prot
, struct page
**ret_page
,
336 const void *caller
, bool want_vaddr
,
337 int coherent_flag
, gfp_t gfp
);
339 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
340 pgprot_t prot
, struct page
**ret_page
,
341 const void *caller
, bool want_vaddr
);
343 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
344 static struct gen_pool
*atomic_pool __ro_after_init
;
346 static size_t atomic_pool_size __initdata
= DEFAULT_DMA_COHERENT_POOL_SIZE
;
348 static int __init
early_coherent_pool(char *p
)
350 atomic_pool_size
= memparse(p
, &p
);
353 early_param("coherent_pool", early_coherent_pool
);
356 * Initialise the coherent pool for atomic allocations.
358 static int __init
atomic_pool_init(void)
360 pgprot_t prot
= pgprot_dmacoherent(PAGE_KERNEL
);
361 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
365 atomic_pool
= gen_pool_create(PAGE_SHIFT
, -1);
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
372 if (dev_get_cma_area(NULL
))
373 ptr
= __alloc_from_contiguous(NULL
, atomic_pool_size
, prot
,
374 &page
, atomic_pool_init
, true, NORMAL
,
377 ptr
= __alloc_remap_buffer(NULL
, atomic_pool_size
, gfp
, prot
,
378 &page
, atomic_pool_init
, true);
382 ret
= gen_pool_add_virt(atomic_pool
, (unsigned long)ptr
,
384 atomic_pool_size
, -1);
386 goto destroy_genpool
;
388 gen_pool_set_algo(atomic_pool
,
389 gen_pool_first_fit_order_align
,
391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 atomic_pool_size
/ 1024);
397 gen_pool_destroy(atomic_pool
);
400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 atomic_pool_size
/ 1024);
405 * CMA is activated by core_initcall, so we must be called after it.
407 postcore_initcall(atomic_pool_init
);
409 struct dma_contig_early_reserve
{
414 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
416 static int dma_mmu_remap_num __initdata
;
418 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
420 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
421 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
425 void __init
dma_contiguous_remap(void)
428 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
429 phys_addr_t start
= dma_mmu_remap
[i
].base
;
430 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
434 if (end
> arm_lowmem_limit
)
435 end
= arm_lowmem_limit
;
439 map
.pfn
= __phys_to_pfn(start
);
440 map
.virtual = __phys_to_virt(start
);
441 map
.length
= end
- start
;
442 map
.type
= MT_MEMORY_DMA_READY
;
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
453 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
455 pmd_clear(pmd_off_k(addr
));
457 flush_tlb_kernel_range(__phys_to_virt(start
),
458 __phys_to_virt(end
));
460 iotable_init(&map
, 1);
464 static int __dma_update_pte(pte_t
*pte
, unsigned long addr
, void *data
)
466 struct page
*page
= virt_to_page(addr
);
467 pgprot_t prot
= *(pgprot_t
*)data
;
469 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
473 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
475 unsigned long start
= (unsigned long) page_address(page
);
476 unsigned end
= start
+ size
;
478 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
479 flush_tlb_kernel_range(start
, end
);
482 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
483 pgprot_t prot
, struct page
**ret_page
,
484 const void *caller
, bool want_vaddr
)
489 * __alloc_remap_buffer is only called when the device is
492 page
= __dma_alloc_buffer(dev
, size
, gfp
, NORMAL
);
498 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
500 __dma_free_buffer(page
, size
);
509 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
515 WARN(1, "coherent pool not initialised!\n");
519 val
= gen_pool_alloc(atomic_pool
, size
);
521 phys_addr_t phys
= gen_pool_virt_to_phys(atomic_pool
, val
);
523 *ret_page
= phys_to_page(phys
);
530 static bool __in_atomic_pool(void *start
, size_t size
)
532 return gen_pool_has_addr(atomic_pool
, (unsigned long)start
, size
);
535 static int __free_from_pool(void *start
, size_t size
)
537 if (!__in_atomic_pool(start
, size
))
540 gen_pool_free(atomic_pool
, (unsigned long)start
, size
);
545 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
546 pgprot_t prot
, struct page
**ret_page
,
547 const void *caller
, bool want_vaddr
,
548 int coherent_flag
, gfp_t gfp
)
550 unsigned long order
= get_order(size
);
551 size_t count
= size
>> PAGE_SHIFT
;
555 page
= dma_alloc_from_contiguous(dev
, count
, order
, gfp
& __GFP_NOWARN
);
559 __dma_clear_buffer(page
, size
, coherent_flag
);
564 if (PageHighMem(page
)) {
565 ptr
= dma_common_contiguous_remap(page
, size
, prot
, caller
);
567 dma_release_from_contiguous(dev
, page
, count
);
571 __dma_remap(page
, size
, prot
);
572 ptr
= page_address(page
);
580 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
581 void *cpu_addr
, size_t size
, bool want_vaddr
)
584 if (PageHighMem(page
))
585 dma_common_free_remap(cpu_addr
, size
);
587 __dma_remap(page
, size
, PAGE_KERNEL
);
589 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
592 static inline pgprot_t
__get_dma_pgprot(unsigned long attrs
, pgprot_t prot
)
594 prot
= (attrs
& DMA_ATTR_WRITE_COMBINE
) ?
595 pgprot_writecombine(prot
) :
596 pgprot_dmacoherent(prot
);
600 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
601 struct page
**ret_page
)
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page
= __dma_alloc_buffer(dev
, size
, gfp
, COHERENT
);
610 return page_address(page
);
613 static void *simple_allocator_alloc(struct arm_dma_alloc_args
*args
,
614 struct page
**ret_page
)
616 return __alloc_simple_buffer(args
->dev
, args
->size
, args
->gfp
,
620 static void simple_allocator_free(struct arm_dma_free_args
*args
)
622 __dma_free_buffer(args
->page
, args
->size
);
625 static struct arm_dma_allocator simple_allocator
= {
626 .alloc
= simple_allocator_alloc
,
627 .free
= simple_allocator_free
,
630 static void *cma_allocator_alloc(struct arm_dma_alloc_args
*args
,
631 struct page
**ret_page
)
633 return __alloc_from_contiguous(args
->dev
, args
->size
, args
->prot
,
634 ret_page
, args
->caller
,
635 args
->want_vaddr
, args
->coherent_flag
,
639 static void cma_allocator_free(struct arm_dma_free_args
*args
)
641 __free_from_contiguous(args
->dev
, args
->page
, args
->cpu_addr
,
642 args
->size
, args
->want_vaddr
);
645 static struct arm_dma_allocator cma_allocator
= {
646 .alloc
= cma_allocator_alloc
,
647 .free
= cma_allocator_free
,
650 static void *pool_allocator_alloc(struct arm_dma_alloc_args
*args
,
651 struct page
**ret_page
)
653 return __alloc_from_pool(args
->size
, ret_page
);
656 static void pool_allocator_free(struct arm_dma_free_args
*args
)
658 __free_from_pool(args
->cpu_addr
, args
->size
);
661 static struct arm_dma_allocator pool_allocator
= {
662 .alloc
= pool_allocator_alloc
,
663 .free
= pool_allocator_free
,
666 static void *remap_allocator_alloc(struct arm_dma_alloc_args
*args
,
667 struct page
**ret_page
)
669 return __alloc_remap_buffer(args
->dev
, args
->size
, args
->gfp
,
670 args
->prot
, ret_page
, args
->caller
,
674 static void remap_allocator_free(struct arm_dma_free_args
*args
)
676 if (args
->want_vaddr
)
677 dma_common_free_remap(args
->cpu_addr
, args
->size
);
679 __dma_free_buffer(args
->page
, args
->size
);
682 static struct arm_dma_allocator remap_allocator
= {
683 .alloc
= remap_allocator_alloc
,
684 .free
= remap_allocator_free
,
687 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
688 gfp_t gfp
, pgprot_t prot
, bool is_coherent
,
689 unsigned long attrs
, const void *caller
)
691 u64 mask
= get_coherent_dma_mask(dev
);
692 struct page
*page
= NULL
;
694 bool allowblock
, cma
;
695 struct arm_dma_buffer
*buf
;
696 struct arm_dma_alloc_args args
= {
698 .size
= PAGE_ALIGN(size
),
702 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
703 .coherent_flag
= is_coherent
? COHERENT
: NORMAL
,
706 #ifdef CONFIG_DMA_API_DEBUG
707 u64 limit
= (mask
+ 1) & ~mask
;
708 if (limit
&& size
>= limit
) {
709 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
718 buf
= kzalloc(sizeof(*buf
),
719 gfp
& ~(__GFP_DMA
| __GFP_DMA32
| __GFP_HIGHMEM
));
723 if (mask
< 0xffffffffULL
)
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
733 gfp
&= ~(__GFP_COMP
);
736 *handle
= DMA_MAPPING_ERROR
;
737 allowblock
= gfpflags_allow_blocking(gfp
);
738 cma
= allowblock
? dev_get_cma_area(dev
) : false;
741 buf
->allocator
= &cma_allocator
;
742 else if (is_coherent
)
743 buf
->allocator
= &simple_allocator
;
745 buf
->allocator
= &remap_allocator
;
747 buf
->allocator
= &pool_allocator
;
749 addr
= buf
->allocator
->alloc(&args
, &page
);
754 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
755 buf
->virt
= args
.want_vaddr
? addr
: page
;
757 spin_lock_irqsave(&arm_dma_bufs_lock
, flags
);
758 list_add(&buf
->list
, &arm_dma_bufs
);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock
, flags
);
764 return args
.want_vaddr
? addr
: page
;
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
771 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
772 gfp_t gfp
, unsigned long attrs
)
774 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
776 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
777 attrs
, __builtin_return_address(0));
780 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
781 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
783 return __dma_alloc(dev
, size
, handle
, gfp
, PAGE_KERNEL
, true,
784 attrs
, __builtin_return_address(0));
787 static int __arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
788 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
792 unsigned long nr_vma_pages
= vma_pages(vma
);
793 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
794 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
795 unsigned long off
= vma
->vm_pgoff
;
797 if (dma_mmap_from_dev_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
800 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
801 ret
= remap_pfn_range(vma
, vma
->vm_start
,
803 vma
->vm_end
- vma
->vm_start
,
811 * Create userspace mapping for the DMA-coherent memory.
813 static int arm_coherent_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
814 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
817 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
820 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
821 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
824 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
825 return __arm_dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
829 * Free a buffer as defined by the above mapping.
831 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
832 dma_addr_t handle
, unsigned long attrs
,
835 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
836 struct arm_dma_buffer
*buf
;
837 struct arm_dma_free_args args
= {
839 .size
= PAGE_ALIGN(size
),
840 .cpu_addr
= cpu_addr
,
842 .want_vaddr
= ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0),
845 buf
= arm_dma_buffer_find(cpu_addr
);
846 if (WARN(!buf
, "Freeing invalid buffer %p\n", cpu_addr
))
849 buf
->allocator
->free(&args
);
853 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
854 dma_addr_t handle
, unsigned long attrs
)
856 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
859 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
860 dma_addr_t handle
, unsigned long attrs
)
862 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
865 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
866 void *cpu_addr
, dma_addr_t handle
, size_t size
,
869 unsigned long pfn
= dma_to_pfn(dev
, handle
);
873 /* If the PFN is not valid, we do not have a struct page */
877 page
= pfn_to_page(pfn
);
879 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
883 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
887 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
888 size_t size
, enum dma_data_direction dir
,
889 void (*op
)(const void *, size_t, int))
894 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
907 page
= pfn_to_page(pfn
);
909 if (PageHighMem(page
)) {
910 if (len
+ offset
> PAGE_SIZE
)
911 len
= PAGE_SIZE
- offset
;
913 if (cache_is_vipt_nonaliasing()) {
914 vaddr
= kmap_atomic(page
);
915 op(vaddr
+ offset
, len
, dir
);
916 kunmap_atomic(vaddr
);
918 vaddr
= kmap_high_get(page
);
920 op(vaddr
+ offset
, len
, dir
);
925 vaddr
= page_address(page
) + offset
;
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
940 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
941 size_t size
, enum dma_data_direction dir
)
945 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
947 paddr
= page_to_phys(page
) + off
;
948 if (dir
== DMA_FROM_DEVICE
) {
949 outer_inv_range(paddr
, paddr
+ size
);
951 outer_clean_range(paddr
, paddr
+ size
);
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
956 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
957 size_t size
, enum dma_data_direction dir
)
959 phys_addr_t paddr
= page_to_phys(page
) + off
;
961 /* FIXME: non-speculating: not required */
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir
!= DMA_TO_DEVICE
) {
964 outer_inv_range(paddr
, paddr
+ size
);
966 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
970 * Mark the D-cache clean for these pages to avoid extra flushing.
972 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
976 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
980 left
-= PAGE_SIZE
- off
;
982 while (left
>= PAGE_SIZE
) {
983 page
= pfn_to_page(pfn
++);
984 set_bit(PG_dcache_clean
, &page
->flags
);
991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1003 * Device ownership issues as mentioned for dma_map_single are the same
1006 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1007 enum dma_data_direction dir
, unsigned long attrs
)
1009 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1010 struct scatterlist
*s
;
1013 for_each_sg(sg
, s
, nents
, i
) {
1014 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s
->dma_length
= s
->length
;
1017 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
1018 s
->length
, dir
, attrs
);
1019 if (dma_mapping_error(dev
, s
->dma_address
))
1025 for_each_sg(sg
, s
, i
, j
)
1026 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1040 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1041 enum dma_data_direction dir
, unsigned long attrs
)
1043 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1044 struct scatterlist
*s
;
1048 for_each_sg(sg
, s
, nents
, i
)
1049 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1059 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1060 int nents
, enum dma_data_direction dir
)
1062 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1063 struct scatterlist
*s
;
1066 for_each_sg(sg
, s
, nents
, i
)
1067 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1078 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1079 int nents
, enum dma_data_direction dir
)
1081 const struct dma_map_ops
*ops
= get_dma_ops(dev
);
1082 struct scatterlist
*s
;
1085 for_each_sg(sg
, s
, nents
, i
)
1086 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1096 int arm_dma_supported(struct device
*dev
, u64 mask
)
1098 return __dma_supported(dev
, mask
, false);
1101 static const struct dma_map_ops
*arm_get_dma_map_ops(bool coherent
)
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
1110 if (IS_ENABLED(CONFIG_ARM_LPAE
))
1112 return coherent
? &arm_coherent_dma_ops
: &arm_dma_ops
;
1115 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1117 static int __dma_info_to_prot(enum dma_data_direction dir
, unsigned long attrs
)
1121 if (attrs
& DMA_ATTR_PRIVILEGED
)
1125 case DMA_BIDIRECTIONAL
:
1126 return prot
| IOMMU_READ
| IOMMU_WRITE
;
1128 return prot
| IOMMU_READ
;
1129 case DMA_FROM_DEVICE
:
1130 return prot
| IOMMU_WRITE
;
1138 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
);
1140 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1143 unsigned int order
= get_order(size
);
1144 unsigned int align
= 0;
1145 unsigned int count
, start
;
1146 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1147 unsigned long flags
;
1151 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1152 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1154 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1155 align
= (1 << order
) - 1;
1157 spin_lock_irqsave(&mapping
->lock
, flags
);
1158 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++) {
1159 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1160 mapping
->bits
, 0, count
, align
);
1162 if (start
> mapping
->bits
)
1165 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1174 if (i
== mapping
->nr_bitmaps
) {
1175 if (extend_iommu_mapping(mapping
)) {
1176 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1177 return DMA_MAPPING_ERROR
;
1180 start
= bitmap_find_next_zero_area(mapping
->bitmaps
[i
],
1181 mapping
->bits
, 0, count
, align
);
1183 if (start
> mapping
->bits
) {
1184 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1185 return DMA_MAPPING_ERROR
;
1188 bitmap_set(mapping
->bitmaps
[i
], start
, count
);
1190 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1192 iova
= mapping
->base
+ (mapping_size
* i
);
1193 iova
+= start
<< PAGE_SHIFT
;
1198 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1199 dma_addr_t addr
, size_t size
)
1201 unsigned int start
, count
;
1202 size_t mapping_size
= mapping
->bits
<< PAGE_SHIFT
;
1203 unsigned long flags
;
1204 dma_addr_t bitmap_base
;
1210 bitmap_index
= (u32
) (addr
- mapping
->base
) / (u32
) mapping_size
;
1211 BUG_ON(addr
< mapping
->base
|| bitmap_index
> mapping
->extensions
);
1213 bitmap_base
= mapping
->base
+ mapping_size
* bitmap_index
;
1215 start
= (addr
- bitmap_base
) >> PAGE_SHIFT
;
1217 if (addr
+ size
> bitmap_base
+ mapping_size
) {
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1226 count
= size
>> PAGE_SHIFT
;
1228 spin_lock_irqsave(&mapping
->lock
, flags
);
1229 bitmap_clear(mapping
->bitmaps
[bitmap_index
], start
, count
);
1230 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1233 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234 static const int iommu_order_array
[] = { 9, 8, 4, 0 };
1236 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1237 gfp_t gfp
, unsigned long attrs
,
1240 struct page
**pages
;
1241 int count
= size
>> PAGE_SHIFT
;
1242 int array_size
= count
* sizeof(struct page
*);
1246 if (array_size
<= PAGE_SIZE
)
1247 pages
= kzalloc(array_size
, GFP_KERNEL
);
1249 pages
= vzalloc(array_size
);
1253 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
)
1255 unsigned long order
= get_order(size
);
1258 page
= dma_alloc_from_contiguous(dev
, count
, order
,
1259 gfp
& __GFP_NOWARN
);
1263 __dma_clear_buffer(page
, size
, coherent_flag
);
1265 for (i
= 0; i
< count
; i
++)
1266 pages
[i
] = page
+ i
;
1271 /* Go straight to 4K chunks if caller says it's OK. */
1272 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
1273 order_idx
= ARRAY_SIZE(iommu_order_array
) - 1;
1276 * IOMMU can map any pages, so himem can also be used here
1278 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1283 order
= iommu_order_array
[order_idx
];
1285 /* Drop down when we get small */
1286 if (__fls(count
) < order
) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages
[i
] = alloc_pages(gfp
| __GFP_NORETRY
, order
);
1295 /* Go down a notch at first sign of pressure */
1301 pages
[i
] = alloc_pages(gfp
, 0);
1307 split_page(pages
[i
], order
);
1310 pages
[i
+ j
] = pages
[i
] + j
;
1313 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
, coherent_flag
);
1315 count
-= 1 << order
;
1322 __free_pages(pages
[i
], 0);
1327 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1328 size_t size
, unsigned long attrs
)
1330 int count
= size
>> PAGE_SHIFT
;
1333 if (attrs
& DMA_ATTR_FORCE_CONTIGUOUS
) {
1334 dma_release_from_contiguous(dev
, pages
[0], count
);
1336 for (i
= 0; i
< count
; i
++)
1338 __free_pages(pages
[i
], 0);
1346 * Create a mapping in device IO address space for specified pages
1349 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
,
1350 unsigned long attrs
)
1352 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1353 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1354 dma_addr_t dma_addr
, iova
;
1357 dma_addr
= __alloc_iova(mapping
, size
);
1358 if (dma_addr
== DMA_MAPPING_ERROR
)
1362 for (i
= 0; i
< count
; ) {
1365 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1366 phys_addr_t phys
= page_to_phys(pages
[i
]);
1367 unsigned int len
, j
;
1369 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1370 if (page_to_pfn(pages
[j
]) != next_pfn
)
1373 len
= (j
- i
) << PAGE_SHIFT
;
1374 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1375 __dma_info_to_prot(DMA_BIDIRECTIONAL
, attrs
));
1383 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1384 __free_iova(mapping
, dma_addr
, size
);
1385 return DMA_MAPPING_ERROR
;
1388 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1390 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1396 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1399 iommu_unmap(mapping
->domain
, iova
, size
);
1400 __free_iova(mapping
, iova
, size
);
1404 static struct page
**__atomic_get_pages(void *addr
)
1409 phys
= gen_pool_virt_to_phys(atomic_pool
, (unsigned long)addr
);
1410 page
= phys_to_page(phys
);
1412 return (struct page
**)page
;
1415 static struct page
**__iommu_get_pages(void *cpu_addr
, unsigned long attrs
)
1417 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1418 return __atomic_get_pages(cpu_addr
);
1420 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1423 return dma_common_find_pages(cpu_addr
);
1426 static void *__iommu_alloc_simple(struct device
*dev
, size_t size
, gfp_t gfp
,
1427 dma_addr_t
*handle
, int coherent_flag
,
1428 unsigned long attrs
)
1433 if (coherent_flag
== COHERENT
)
1434 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
1436 addr
= __alloc_from_pool(size
, &page
);
1440 *handle
= __iommu_create_mapping(dev
, &page
, size
, attrs
);
1441 if (*handle
== DMA_MAPPING_ERROR
)
1447 __free_from_pool(addr
, size
);
1451 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1452 dma_addr_t handle
, size_t size
, int coherent_flag
)
1454 __iommu_remove_mapping(dev
, handle
, size
);
1455 if (coherent_flag
== COHERENT
)
1456 __dma_free_buffer(virt_to_page(cpu_addr
), size
);
1458 __free_from_pool(cpu_addr
, size
);
1461 static void *__arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1462 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
,
1465 pgprot_t prot
= __get_dma_pgprot(attrs
, PAGE_KERNEL
);
1466 struct page
**pages
;
1469 *handle
= DMA_MAPPING_ERROR
;
1470 size
= PAGE_ALIGN(size
);
1472 if (coherent_flag
== COHERENT
|| !gfpflags_allow_blocking(gfp
))
1473 return __iommu_alloc_simple(dev
, size
, gfp
, handle
,
1474 coherent_flag
, attrs
);
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1483 gfp
&= ~(__GFP_COMP
);
1485 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
, coherent_flag
);
1489 *handle
= __iommu_create_mapping(dev
, pages
, size
, attrs
);
1490 if (*handle
== DMA_MAPPING_ERROR
)
1493 if (attrs
& DMA_ATTR_NO_KERNEL_MAPPING
)
1496 addr
= dma_common_pages_remap(pages
, size
, prot
,
1497 __builtin_return_address(0));
1504 __iommu_remove_mapping(dev
, *handle
, size
);
1506 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1510 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1511 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1513 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, NORMAL
);
1516 static void *arm_coherent_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1517 dma_addr_t
*handle
, gfp_t gfp
, unsigned long attrs
)
1519 return __arm_iommu_alloc_attrs(dev
, size
, handle
, gfp
, attrs
, COHERENT
);
1522 static int __arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1523 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1524 unsigned long attrs
)
1526 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1527 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1533 if (vma
->vm_pgoff
>= nr_pages
)
1536 err
= vm_map_pages(vma
, pages
, nr_pages
);
1538 pr_err("Remapping memory failed: %d\n", err
);
1542 static int arm_iommu_mmap_attrs(struct device
*dev
,
1543 struct vm_area_struct
*vma
, void *cpu_addr
,
1544 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1546 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1548 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1551 static int arm_coherent_iommu_mmap_attrs(struct device
*dev
,
1552 struct vm_area_struct
*vma
, void *cpu_addr
,
1553 dma_addr_t dma_addr
, size_t size
, unsigned long attrs
)
1555 return __arm_iommu_mmap_attrs(dev
, vma
, cpu_addr
, dma_addr
, size
, attrs
);
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1562 static void __arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1563 dma_addr_t handle
, unsigned long attrs
, int coherent_flag
)
1565 struct page
**pages
;
1566 size
= PAGE_ALIGN(size
);
1568 if (coherent_flag
== COHERENT
|| __in_atomic_pool(cpu_addr
, size
)) {
1569 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
, coherent_flag
);
1573 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1579 if ((attrs
& DMA_ATTR_NO_KERNEL_MAPPING
) == 0)
1580 dma_common_free_remap(cpu_addr
, size
);
1582 __iommu_remove_mapping(dev
, handle
, size
);
1583 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1586 static void arm_iommu_free_attrs(struct device
*dev
, size_t size
,
1587 void *cpu_addr
, dma_addr_t handle
,
1588 unsigned long attrs
)
1590 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, NORMAL
);
1593 static void arm_coherent_iommu_free_attrs(struct device
*dev
, size_t size
,
1594 void *cpu_addr
, dma_addr_t handle
, unsigned long attrs
)
1596 __arm_iommu_free_attrs(dev
, size
, cpu_addr
, handle
, attrs
, COHERENT
);
1599 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1600 void *cpu_addr
, dma_addr_t dma_addr
,
1601 size_t size
, unsigned long attrs
)
1603 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1604 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1609 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1614 * Map a part of the scatter-gather list into contiguous io address space
1616 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1617 size_t size
, dma_addr_t
*handle
,
1618 enum dma_data_direction dir
, unsigned long attrs
,
1621 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1622 dma_addr_t iova
, iova_base
;
1625 struct scatterlist
*s
;
1628 size
= PAGE_ALIGN(size
);
1629 *handle
= DMA_MAPPING_ERROR
;
1631 iova_base
= iova
= __alloc_iova(mapping
, size
);
1632 if (iova
== DMA_MAPPING_ERROR
)
1635 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1636 phys_addr_t phys
= page_to_phys(sg_page(s
));
1637 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1639 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1640 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1642 prot
= __dma_info_to_prot(dir
, attrs
);
1644 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1647 count
+= len
>> PAGE_SHIFT
;
1650 *handle
= iova_base
;
1654 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1655 __free_iova(mapping
, iova_base
, size
);
1659 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1660 enum dma_data_direction dir
, unsigned long attrs
,
1663 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1665 unsigned int offset
= s
->offset
;
1666 unsigned int size
= s
->offset
+ s
->length
;
1667 unsigned int max
= dma_get_max_seg_size(dev
);
1669 for (i
= 1; i
< nents
; i
++) {
1672 s
->dma_address
= DMA_MAPPING_ERROR
;
1675 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1676 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1677 dir
, attrs
, is_coherent
) < 0)
1680 dma
->dma_address
+= offset
;
1681 dma
->dma_length
= size
- offset
;
1683 size
= offset
= s
->offset
;
1690 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1694 dma
->dma_address
+= offset
;
1695 dma
->dma_length
= size
- offset
;
1700 for_each_sg(sg
, s
, count
, i
)
1701 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1706 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1707 * @dev: valid struct device pointer
1708 * @sg: list of buffers
1709 * @nents: number of buffers to map
1710 * @dir: DMA transfer direction
1712 * Map a set of i/o coherent buffers described by scatterlist in streaming
1713 * mode for DMA. The scatter gather list elements are merged together (if
1714 * possible) and tagged with the appropriate dma address and length. They are
1715 * obtained via sg_dma_{address,length}.
1717 static int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1718 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1720 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1724 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1725 * @dev: valid struct device pointer
1726 * @sg: list of buffers
1727 * @nents: number of buffers to map
1728 * @dir: DMA transfer direction
1730 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1731 * The scatter gather list elements are merged together (if possible) and
1732 * tagged with the appropriate dma address and length. They are obtained via
1733 * sg_dma_{address,length}.
1735 static int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1736 int nents
, enum dma_data_direction dir
, unsigned long attrs
)
1738 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1741 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1742 int nents
, enum dma_data_direction dir
,
1743 unsigned long attrs
, bool is_coherent
)
1745 struct scatterlist
*s
;
1748 for_each_sg(sg
, s
, nents
, i
) {
1750 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1752 if (!is_coherent
&& (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1753 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1759 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1760 * @dev: valid struct device pointer
1761 * @sg: list of buffers
1762 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1763 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1765 * Unmap a set of streaming mode DMA translations. Again, CPU access
1766 * rules concerning calls here are the same as for dma_unmap_single().
1768 static void arm_coherent_iommu_unmap_sg(struct device
*dev
,
1769 struct scatterlist
*sg
, int nents
, enum dma_data_direction dir
,
1770 unsigned long attrs
)
1772 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1776 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1777 * @dev: valid struct device pointer
1778 * @sg: list of buffers
1779 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1780 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1782 * Unmap a set of streaming mode DMA translations. Again, CPU access
1783 * rules concerning calls here are the same as for dma_unmap_single().
1785 static void arm_iommu_unmap_sg(struct device
*dev
,
1786 struct scatterlist
*sg
, int nents
,
1787 enum dma_data_direction dir
,
1788 unsigned long attrs
)
1790 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1794 * arm_iommu_sync_sg_for_cpu
1795 * @dev: valid struct device pointer
1796 * @sg: list of buffers
1797 * @nents: number of buffers to map (returned from dma_map_sg)
1798 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1800 static void arm_iommu_sync_sg_for_cpu(struct device
*dev
,
1801 struct scatterlist
*sg
,
1802 int nents
, enum dma_data_direction dir
)
1804 struct scatterlist
*s
;
1807 for_each_sg(sg
, s
, nents
, i
)
1808 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1813 * arm_iommu_sync_sg_for_device
1814 * @dev: valid struct device pointer
1815 * @sg: list of buffers
1816 * @nents: number of buffers to map (returned from dma_map_sg)
1817 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1819 static void arm_iommu_sync_sg_for_device(struct device
*dev
,
1820 struct scatterlist
*sg
,
1821 int nents
, enum dma_data_direction dir
)
1823 struct scatterlist
*s
;
1826 for_each_sg(sg
, s
, nents
, i
)
1827 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1832 * arm_coherent_iommu_map_page
1833 * @dev: valid struct device pointer
1834 * @page: page that buffer resides in
1835 * @offset: offset into page for start of buffer
1836 * @size: size of buffer to map
1837 * @dir: DMA transfer direction
1839 * Coherent IOMMU aware version of arm_dma_map_page()
1841 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1842 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1843 unsigned long attrs
)
1845 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1846 dma_addr_t dma_addr
;
1847 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1849 dma_addr
= __alloc_iova(mapping
, len
);
1850 if (dma_addr
== DMA_MAPPING_ERROR
)
1853 prot
= __dma_info_to_prot(dir
, attrs
);
1855 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1859 return dma_addr
+ offset
;
1861 __free_iova(mapping
, dma_addr
, len
);
1862 return DMA_MAPPING_ERROR
;
1866 * arm_iommu_map_page
1867 * @dev: valid struct device pointer
1868 * @page: page that buffer resides in
1869 * @offset: offset into page for start of buffer
1870 * @size: size of buffer to map
1871 * @dir: DMA transfer direction
1873 * IOMMU aware version of arm_dma_map_page()
1875 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1876 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1877 unsigned long attrs
)
1879 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1880 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1882 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1886 * arm_coherent_iommu_unmap_page
1887 * @dev: valid struct device pointer
1888 * @handle: DMA address of buffer
1889 * @size: size of buffer (same as passed to dma_map_page)
1890 * @dir: DMA transfer direction (same as passed to dma_map_page)
1892 * Coherent IOMMU aware version of arm_dma_unmap_page()
1894 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1895 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1897 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1898 dma_addr_t iova
= handle
& PAGE_MASK
;
1899 int offset
= handle
& ~PAGE_MASK
;
1900 int len
= PAGE_ALIGN(size
+ offset
);
1905 iommu_unmap(mapping
->domain
, iova
, len
);
1906 __free_iova(mapping
, iova
, len
);
1910 * arm_iommu_unmap_page
1911 * @dev: valid struct device pointer
1912 * @handle: DMA address of buffer
1913 * @size: size of buffer (same as passed to dma_map_page)
1914 * @dir: DMA transfer direction (same as passed to dma_map_page)
1916 * IOMMU aware version of arm_dma_unmap_page()
1918 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1919 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
1921 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1922 dma_addr_t iova
= handle
& PAGE_MASK
;
1923 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1924 int offset
= handle
& ~PAGE_MASK
;
1925 int len
= PAGE_ALIGN(size
+ offset
);
1930 if ((attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
1931 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1933 iommu_unmap(mapping
->domain
, iova
, len
);
1934 __free_iova(mapping
, iova
, len
);
1938 * arm_iommu_map_resource - map a device resource for DMA
1939 * @dev: valid struct device pointer
1940 * @phys_addr: physical address of resource
1941 * @size: size of resource to map
1942 * @dir: DMA transfer direction
1944 static dma_addr_t
arm_iommu_map_resource(struct device
*dev
,
1945 phys_addr_t phys_addr
, size_t size
,
1946 enum dma_data_direction dir
, unsigned long attrs
)
1948 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1949 dma_addr_t dma_addr
;
1951 phys_addr_t addr
= phys_addr
& PAGE_MASK
;
1952 unsigned int offset
= phys_addr
& ~PAGE_MASK
;
1953 size_t len
= PAGE_ALIGN(size
+ offset
);
1955 dma_addr
= __alloc_iova(mapping
, len
);
1956 if (dma_addr
== DMA_MAPPING_ERROR
)
1959 prot
= __dma_info_to_prot(dir
, attrs
) | IOMMU_MMIO
;
1961 ret
= iommu_map(mapping
->domain
, dma_addr
, addr
, len
, prot
);
1965 return dma_addr
+ offset
;
1967 __free_iova(mapping
, dma_addr
, len
);
1968 return DMA_MAPPING_ERROR
;
1972 * arm_iommu_unmap_resource - unmap a device DMA resource
1973 * @dev: valid struct device pointer
1974 * @dma_handle: DMA address to resource
1975 * @size: size of resource to map
1976 * @dir: DMA transfer direction
1978 static void arm_iommu_unmap_resource(struct device
*dev
, dma_addr_t dma_handle
,
1979 size_t size
, enum dma_data_direction dir
,
1980 unsigned long attrs
)
1982 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1983 dma_addr_t iova
= dma_handle
& PAGE_MASK
;
1984 unsigned int offset
= dma_handle
& ~PAGE_MASK
;
1985 size_t len
= PAGE_ALIGN(size
+ offset
);
1990 iommu_unmap(mapping
->domain
, iova
, len
);
1991 __free_iova(mapping
, iova
, len
);
1994 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1995 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1997 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
1998 dma_addr_t iova
= handle
& PAGE_MASK
;
1999 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2000 unsigned int offset
= handle
& ~PAGE_MASK
;
2005 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
2008 static void arm_iommu_sync_single_for_device(struct device
*dev
,
2009 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
2011 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2012 dma_addr_t iova
= handle
& PAGE_MASK
;
2013 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
2014 unsigned int offset
= handle
& ~PAGE_MASK
;
2019 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
2022 static const struct dma_map_ops iommu_ops
= {
2023 .alloc
= arm_iommu_alloc_attrs
,
2024 .free
= arm_iommu_free_attrs
,
2025 .mmap
= arm_iommu_mmap_attrs
,
2026 .get_sgtable
= arm_iommu_get_sgtable
,
2028 .map_page
= arm_iommu_map_page
,
2029 .unmap_page
= arm_iommu_unmap_page
,
2030 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
2031 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
2033 .map_sg
= arm_iommu_map_sg
,
2034 .unmap_sg
= arm_iommu_unmap_sg
,
2035 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
2036 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
2038 .map_resource
= arm_iommu_map_resource
,
2039 .unmap_resource
= arm_iommu_unmap_resource
,
2041 .dma_supported
= arm_dma_supported
,
2044 static const struct dma_map_ops iommu_coherent_ops
= {
2045 .alloc
= arm_coherent_iommu_alloc_attrs
,
2046 .free
= arm_coherent_iommu_free_attrs
,
2047 .mmap
= arm_coherent_iommu_mmap_attrs
,
2048 .get_sgtable
= arm_iommu_get_sgtable
,
2050 .map_page
= arm_coherent_iommu_map_page
,
2051 .unmap_page
= arm_coherent_iommu_unmap_page
,
2053 .map_sg
= arm_coherent_iommu_map_sg
,
2054 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
2056 .map_resource
= arm_iommu_map_resource
,
2057 .unmap_resource
= arm_iommu_unmap_resource
,
2059 .dma_supported
= arm_dma_supported
,
2063 * arm_iommu_create_mapping
2064 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2065 * @base: start address of the valid IO address space
2066 * @size: maximum size of the valid IO address space
2068 * Creates a mapping structure which holds information about used/unused
2069 * IO address ranges, which is required to perform memory allocation and
2070 * mapping with IOMMU aware functions.
2072 * The client device need to be attached to the mapping with
2073 * arm_iommu_attach_device function.
2075 struct dma_iommu_mapping
*
2076 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, u64 size
)
2078 unsigned int bits
= size
>> PAGE_SHIFT
;
2079 unsigned int bitmap_size
= BITS_TO_LONGS(bits
) * sizeof(long);
2080 struct dma_iommu_mapping
*mapping
;
2084 /* currently only 32-bit DMA address space is supported */
2085 if (size
> DMA_BIT_MASK(32) + 1)
2086 return ERR_PTR(-ERANGE
);
2089 return ERR_PTR(-EINVAL
);
2091 if (bitmap_size
> PAGE_SIZE
) {
2092 extensions
= bitmap_size
/ PAGE_SIZE
;
2093 bitmap_size
= PAGE_SIZE
;
2096 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
2100 mapping
->bitmap_size
= bitmap_size
;
2101 mapping
->bitmaps
= kcalloc(extensions
, sizeof(unsigned long *),
2103 if (!mapping
->bitmaps
)
2106 mapping
->bitmaps
[0] = kzalloc(bitmap_size
, GFP_KERNEL
);
2107 if (!mapping
->bitmaps
[0])
2110 mapping
->nr_bitmaps
= 1;
2111 mapping
->extensions
= extensions
;
2112 mapping
->base
= base
;
2113 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
2115 spin_lock_init(&mapping
->lock
);
2117 mapping
->domain
= iommu_domain_alloc(bus
);
2118 if (!mapping
->domain
)
2121 kref_init(&mapping
->kref
);
2124 kfree(mapping
->bitmaps
[0]);
2126 kfree(mapping
->bitmaps
);
2130 return ERR_PTR(err
);
2132 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
2134 static void release_iommu_mapping(struct kref
*kref
)
2137 struct dma_iommu_mapping
*mapping
=
2138 container_of(kref
, struct dma_iommu_mapping
, kref
);
2140 iommu_domain_free(mapping
->domain
);
2141 for (i
= 0; i
< mapping
->nr_bitmaps
; i
++)
2142 kfree(mapping
->bitmaps
[i
]);
2143 kfree(mapping
->bitmaps
);
2147 static int extend_iommu_mapping(struct dma_iommu_mapping
*mapping
)
2151 if (mapping
->nr_bitmaps
>= mapping
->extensions
)
2154 next_bitmap
= mapping
->nr_bitmaps
;
2155 mapping
->bitmaps
[next_bitmap
] = kzalloc(mapping
->bitmap_size
,
2157 if (!mapping
->bitmaps
[next_bitmap
])
2160 mapping
->nr_bitmaps
++;
2165 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
2168 kref_put(&mapping
->kref
, release_iommu_mapping
);
2170 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
2172 static int __arm_iommu_attach_device(struct device
*dev
,
2173 struct dma_iommu_mapping
*mapping
)
2177 err
= iommu_attach_device(mapping
->domain
, dev
);
2181 kref_get(&mapping
->kref
);
2182 to_dma_iommu_mapping(dev
) = mapping
;
2184 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
2189 * arm_iommu_attach_device
2190 * @dev: valid struct device pointer
2191 * @mapping: io address space mapping structure (returned from
2192 * arm_iommu_create_mapping)
2194 * Attaches specified io address space mapping to the provided device.
2195 * This replaces the dma operations (dma_map_ops pointer) with the
2196 * IOMMU aware version.
2198 * More than one client might be attached to the same io address space
2201 int arm_iommu_attach_device(struct device
*dev
,
2202 struct dma_iommu_mapping
*mapping
)
2206 err
= __arm_iommu_attach_device(dev
, mapping
);
2210 set_dma_ops(dev
, &iommu_ops
);
2213 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
2216 * arm_iommu_detach_device
2217 * @dev: valid struct device pointer
2219 * Detaches the provided device from a previously attached map.
2220 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2222 void arm_iommu_detach_device(struct device
*dev
)
2224 struct dma_iommu_mapping
*mapping
;
2226 mapping
= to_dma_iommu_mapping(dev
);
2228 dev_warn(dev
, "Not attached\n");
2232 iommu_detach_device(mapping
->domain
, dev
);
2233 kref_put(&mapping
->kref
, release_iommu_mapping
);
2234 to_dma_iommu_mapping(dev
) = NULL
;
2235 set_dma_ops(dev
, arm_get_dma_map_ops(dev
->archdata
.dma_coherent
));
2237 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
2239 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);
2241 static const struct dma_map_ops
*arm_get_iommu_dma_map_ops(bool coherent
)
2243 return coherent
? &iommu_coherent_ops
: &iommu_ops
;
2246 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2247 const struct iommu_ops
*iommu
)
2249 struct dma_iommu_mapping
*mapping
;
2254 mapping
= arm_iommu_create_mapping(dev
->bus
, dma_base
, size
);
2255 if (IS_ERR(mapping
)) {
2256 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2257 size
, dev_name(dev
));
2261 if (__arm_iommu_attach_device(dev
, mapping
)) {
2262 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2264 arm_iommu_release_mapping(mapping
);
2271 static void arm_teardown_iommu_dma_ops(struct device
*dev
)
2273 struct dma_iommu_mapping
*mapping
= to_dma_iommu_mapping(dev
);
2278 arm_iommu_detach_device(dev
);
2279 arm_iommu_release_mapping(mapping
);
2284 static bool arm_setup_iommu_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2285 const struct iommu_ops
*iommu
)
2290 static void arm_teardown_iommu_dma_ops(struct device
*dev
) { }
2292 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2294 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2296 void arch_setup_dma_ops(struct device
*dev
, u64 dma_base
, u64 size
,
2297 const struct iommu_ops
*iommu
, bool coherent
)
2299 const struct dma_map_ops
*dma_ops
;
2301 dev
->archdata
.dma_coherent
= coherent
;
2302 #ifdef CONFIG_SWIOTLB
2303 dev
->dma_coherent
= coherent
;
2307 * Don't override the dma_ops if they have already been set. Ideally
2308 * this should be the only location where dma_ops are set, remove this
2309 * check when all other callers of set_dma_ops will have disappeared.
2314 if (arm_setup_iommu_dma_ops(dev
, dma_base
, size
, iommu
))
2315 dma_ops
= arm_get_iommu_dma_map_ops(coherent
);
2317 dma_ops
= arm_get_dma_map_ops(coherent
);
2319 set_dma_ops(dev
, dma_ops
);
2322 if (xen_initial_domain())
2323 dev
->dma_ops
= &xen_swiotlb_dma_ops
;
2325 dev
->archdata
.dma_ops_setup
= true;
2328 void arch_teardown_dma_ops(struct device
*dev
)
2330 if (!dev
->archdata
.dma_ops_setup
)
2333 arm_teardown_iommu_dma_ops(dev
);
2334 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2335 set_dma_ops(dev
, NULL
);
2338 #ifdef CONFIG_SWIOTLB
2339 void arch_sync_dma_for_device(phys_addr_t paddr
, size_t size
,
2340 enum dma_data_direction dir
)
2342 __dma_page_cpu_to_dev(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2346 void arch_sync_dma_for_cpu(phys_addr_t paddr
, size_t size
,
2347 enum dma_data_direction dir
)
2349 __dma_page_dev_to_cpu(phys_to_page(paddr
), paddr
& (PAGE_SIZE
- 1),
2353 void *arch_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*dma_handle
,
2354 gfp_t gfp
, unsigned long attrs
)
2356 return __dma_alloc(dev
, size
, dma_handle
, gfp
,
2357 __get_dma_pgprot(attrs
, PAGE_KERNEL
), false,
2358 attrs
, __builtin_return_address(0));
2361 void arch_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
2362 dma_addr_t dma_handle
, unsigned long attrs
)
2364 __arm_dma_free(dev
, size
, cpu_addr
, dma_handle
, attrs
, false);
2366 #endif /* CONFIG_SWIOTLB */