treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / arm64 / include / asm / kvm_mmu.h
blob53d846f1bfe70497b81d2457c9a6eefe543fc61f
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
10 #include <asm/page.h>
11 #include <asm/memory.h>
12 #include <asm/cpufeature.h>
15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
16 * "negative" addresses. This makes it impossible to directly share
17 * mappings with the kernel.
19 * Instead, give the HYP mode its own VA region at a fixed offset from
20 * the kernel by just masking the top bits (which are all ones for a
21 * kernel address). We need to find out how many bits to mask.
23 * We want to build a set of page tables that cover both parts of the
24 * idmap (the trampoline page used to initialize EL2), and our normal
25 * runtime VA space, at the same time.
27 * Given that the kernel uses VA_BITS for its entire address space,
28 * and that half of that space (VA_BITS - 1) is used for the linear
29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 * The main question is "Within the VA_BITS space, does EL2 use the
32 * top or the bottom half of that space to shadow the kernel's linear
33 * mapping?". As we need to idmap the trampoline page, this is
34 * determined by the range in which this page lives.
36 * If the page is in the bottom half, we have to use the top half. If
37 * the page is in the top half, we have to use the bottom half:
39 * T = __pa_symbol(__hyp_idmap_text_start)
40 * if (T & BIT(VA_BITS - 1))
41 * HYP_VA_MIN = 0 //idmap in upper half
42 * else
43 * HYP_VA_MIN = 1 << (VA_BITS - 1)
44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 * This of course assumes that the trampoline page exists within the
47 * VA_BITS range. If it doesn't, then it means we're in the odd case
48 * where the kernel idmap (as well as HYP) uses more levels than the
49 * kernel runtime page tables (as seen when the kernel is configured
50 * for 4k pages, 39bits VA, and yet memory lives just above that
51 * limit, forcing the idmap to use 4 levels of page tables while the
52 * kernel itself only uses 3). In this particular case, it doesn't
53 * matter which side of VA_BITS we use, as we're guaranteed not to
54 * conflict with anything.
56 * When using VHE, there are no separate hyp mappings and all KVM
57 * functionality is already mapped as part of the main kernel
58 * mappings, and none of this applies in that case.
61 #ifdef __ASSEMBLY__
63 #include <asm/alternative.h>
66 * Convert a kernel VA into a HYP VA.
67 * reg: VA to be converted.
69 * The actual code generation takes place in kvm_update_va_mask, and
70 * the instructions below are only there to reserve the space and
71 * perform the register allocation (kvm_update_va_mask uses the
72 * specific registers encoded in the instructions).
74 .macro kern_hyp_va reg
75 alternative_cb kvm_update_va_mask
76 and \reg, \reg, #1 /* mask with va_mask */
77 ror \reg, \reg, #1 /* rotate to the first tag bit */
78 add \reg, \reg, #0 /* insert the low 12 bits of the tag */
79 add \reg, \reg, #0, lsl 12 /* insert the top 12 bits of the tag */
80 ror \reg, \reg, #63 /* rotate back */
81 alternative_cb_end
82 .endm
84 #else
86 #include <asm/pgalloc.h>
87 #include <asm/cache.h>
88 #include <asm/cacheflush.h>
89 #include <asm/mmu_context.h>
90 #include <asm/pgtable.h>
92 void kvm_update_va_mask(struct alt_instr *alt,
93 __le32 *origptr, __le32 *updptr, int nr_inst);
94 void kvm_compute_layout(void);
96 static inline unsigned long __kern_hyp_va(unsigned long v)
98 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
99 "ror %0, %0, #1\n"
100 "add %0, %0, #0\n"
101 "add %0, %0, #0, lsl 12\n"
102 "ror %0, %0, #63\n",
103 kvm_update_va_mask)
104 : "+r" (v));
105 return v;
108 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
111 * Obtain the PC-relative address of a kernel symbol
112 * s: symbol
114 * The goal of this macro is to return a symbol's address based on a
115 * PC-relative computation, as opposed to a loading the VA from a
116 * constant pool or something similar. This works well for HYP, as an
117 * absolute VA is guaranteed to be wrong. Only use this if trying to
118 * obtain the address of a symbol (i.e. not something you obtained by
119 * following a pointer).
121 #define hyp_symbol_addr(s) \
122 ({ \
123 typeof(s) *addr; \
124 asm("adrp %0, %1\n" \
125 "add %0, %0, :lo12:%1\n" \
126 : "=r" (addr) : "S" (&s)); \
127 addr; \
131 * We currently support using a VM-specified IPA size. For backward
132 * compatibility, the default IPA size is fixed to 40bits.
134 #define KVM_PHYS_SHIFT (40)
136 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
137 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
138 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
140 static inline bool kvm_page_empty(void *ptr)
142 struct page *ptr_page = virt_to_page(ptr);
143 return page_count(ptr_page) == 1;
146 #include <asm/stage2_pgtable.h>
148 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
149 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
150 void __iomem **kaddr,
151 void __iomem **haddr);
152 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
153 void **haddr);
154 void free_hyp_pgds(void);
156 void stage2_unmap_vm(struct kvm *kvm);
157 int kvm_alloc_stage2_pgd(struct kvm *kvm);
158 void kvm_free_stage2_pgd(struct kvm *kvm);
159 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
160 phys_addr_t pa, unsigned long size, bool writable);
162 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
164 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
166 phys_addr_t kvm_mmu_get_httbr(void);
167 phys_addr_t kvm_get_idmap_vector(void);
168 int kvm_mmu_init(void);
169 void kvm_clear_hyp_idmap(void);
171 #define kvm_mk_pmd(ptep) \
172 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
173 #define kvm_mk_pud(pmdp) \
174 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
175 #define kvm_mk_pgd(pudp) \
176 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
178 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
180 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
181 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
182 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
184 #define kvm_pud_pfn(pud) pud_pfn(pud)
186 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
187 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
189 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
191 pte_val(pte) |= PTE_S2_RDWR;
192 return pte;
195 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
197 pmd_val(pmd) |= PMD_S2_RDWR;
198 return pmd;
201 static inline pud_t kvm_s2pud_mkwrite(pud_t pud)
203 pud_val(pud) |= PUD_S2_RDWR;
204 return pud;
207 static inline pte_t kvm_s2pte_mkexec(pte_t pte)
209 pte_val(pte) &= ~PTE_S2_XN;
210 return pte;
213 static inline pmd_t kvm_s2pmd_mkexec(pmd_t pmd)
215 pmd_val(pmd) &= ~PMD_S2_XN;
216 return pmd;
219 static inline pud_t kvm_s2pud_mkexec(pud_t pud)
221 pud_val(pud) &= ~PUD_S2_XN;
222 return pud;
225 static inline void kvm_set_s2pte_readonly(pte_t *ptep)
227 pteval_t old_pteval, pteval;
229 pteval = READ_ONCE(pte_val(*ptep));
230 do {
231 old_pteval = pteval;
232 pteval &= ~PTE_S2_RDWR;
233 pteval |= PTE_S2_RDONLY;
234 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
235 } while (pteval != old_pteval);
238 static inline bool kvm_s2pte_readonly(pte_t *ptep)
240 return (READ_ONCE(pte_val(*ptep)) & PTE_S2_RDWR) == PTE_S2_RDONLY;
243 static inline bool kvm_s2pte_exec(pte_t *ptep)
245 return !(READ_ONCE(pte_val(*ptep)) & PTE_S2_XN);
248 static inline void kvm_set_s2pmd_readonly(pmd_t *pmdp)
250 kvm_set_s2pte_readonly((pte_t *)pmdp);
253 static inline bool kvm_s2pmd_readonly(pmd_t *pmdp)
255 return kvm_s2pte_readonly((pte_t *)pmdp);
258 static inline bool kvm_s2pmd_exec(pmd_t *pmdp)
260 return !(READ_ONCE(pmd_val(*pmdp)) & PMD_S2_XN);
263 static inline void kvm_set_s2pud_readonly(pud_t *pudp)
265 kvm_set_s2pte_readonly((pte_t *)pudp);
268 static inline bool kvm_s2pud_readonly(pud_t *pudp)
270 return kvm_s2pte_readonly((pte_t *)pudp);
273 static inline bool kvm_s2pud_exec(pud_t *pudp)
275 return !(READ_ONCE(pud_val(*pudp)) & PUD_S2_XN);
278 static inline pud_t kvm_s2pud_mkyoung(pud_t pud)
280 return pud_mkyoung(pud);
283 static inline bool kvm_s2pud_young(pud_t pud)
285 return pud_young(pud);
288 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
290 #ifdef __PAGETABLE_PMD_FOLDED
291 #define hyp_pmd_table_empty(pmdp) (0)
292 #else
293 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
294 #endif
296 #ifdef __PAGETABLE_PUD_FOLDED
297 #define hyp_pud_table_empty(pudp) (0)
298 #else
299 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
300 #endif
302 struct kvm;
304 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
306 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
308 return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
311 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
313 void *va = page_address(pfn_to_page(pfn));
316 * With FWB, we ensure that the guest always accesses memory using
317 * cacheable attributes, and we don't have to clean to PoC when
318 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
319 * PoU is not required either in this case.
321 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
322 return;
324 kvm_flush_dcache_to_poc(va, size);
327 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn,
328 unsigned long size)
330 if (icache_is_aliasing()) {
331 /* any kind of VIPT cache */
332 __flush_icache_all();
333 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
334 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
335 void *va = page_address(pfn_to_page(pfn));
337 invalidate_icache_range((unsigned long)va,
338 (unsigned long)va + size);
342 static inline void __kvm_flush_dcache_pte(pte_t pte)
344 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
345 struct page *page = pte_page(pte);
346 kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
350 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
352 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
353 struct page *page = pmd_page(pmd);
354 kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
358 static inline void __kvm_flush_dcache_pud(pud_t pud)
360 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) {
361 struct page *page = pud_page(pud);
362 kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
366 #define kvm_virt_to_phys(x) __pa_symbol(x)
368 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
369 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
371 static inline bool __kvm_cpu_uses_extended_idmap(void)
373 return __cpu_uses_extended_idmap_level();
376 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
378 return idmap_ptrs_per_pgd;
382 * Can't use pgd_populate here, because the extended idmap adds an extra level
383 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
384 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
386 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
387 pgd_t *hyp_pgd,
388 pgd_t *merged_hyp_pgd,
389 unsigned long hyp_idmap_start)
391 int idmap_idx;
392 u64 pgd_addr;
395 * Use the first entry to access the HYP mappings. It is
396 * guaranteed to be free, otherwise we wouldn't use an
397 * extended idmap.
399 VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
400 pgd_addr = __phys_to_pgd_val(__pa(hyp_pgd));
401 merged_hyp_pgd[0] = __pgd(pgd_addr | PMD_TYPE_TABLE);
404 * Create another extended level entry that points to the boot HYP map,
405 * which contains an ID mapping of the HYP init code. We essentially
406 * merge the boot and runtime HYP maps by doing so, but they don't
407 * overlap anyway, so this is fine.
409 idmap_idx = hyp_idmap_start >> VA_BITS;
410 VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
411 pgd_addr = __phys_to_pgd_val(__pa(boot_hyp_pgd));
412 merged_hyp_pgd[idmap_idx] = __pgd(pgd_addr | PMD_TYPE_TABLE);
415 static inline unsigned int kvm_get_vmid_bits(void)
417 int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
419 return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
423 * We are not in the kvm->srcu critical section most of the time, so we take
424 * the SRCU read lock here. Since we copy the data from the user page, we
425 * can immediately drop the lock again.
427 static inline int kvm_read_guest_lock(struct kvm *kvm,
428 gpa_t gpa, void *data, unsigned long len)
430 int srcu_idx = srcu_read_lock(&kvm->srcu);
431 int ret = kvm_read_guest(kvm, gpa, data, len);
433 srcu_read_unlock(&kvm->srcu, srcu_idx);
435 return ret;
438 static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
439 const void *data, unsigned long len)
441 int srcu_idx = srcu_read_lock(&kvm->srcu);
442 int ret = kvm_write_guest(kvm, gpa, data, len);
444 srcu_read_unlock(&kvm->srcu, srcu_idx);
446 return ret;
449 #ifdef CONFIG_KVM_INDIRECT_VECTORS
451 * EL2 vectors can be mapped and rerouted in a number of ways,
452 * depending on the kernel configuration and CPU present:
454 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
455 * hardening sequence is placed in one of the vector slots, which is
456 * executed before jumping to the real vectors.
458 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
459 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
460 * hardening sequence is mapped next to the idmap page, and executed
461 * before jumping to the real vectors.
463 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
464 * empty slot is selected, mapped next to the idmap page, and
465 * executed before jumping to the real vectors.
467 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
468 * VHE, as we don't have hypervisor-specific mappings. If the system
469 * is VHE and yet selects this capability, it will be ignored.
471 #include <asm/mmu.h>
473 extern void *__kvm_bp_vect_base;
474 extern int __kvm_harden_el2_vector_slot;
476 static inline void *kvm_get_hyp_vector(void)
478 struct bp_hardening_data *data = arm64_get_bp_hardening_data();
479 void *vect = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
480 int slot = -1;
482 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR) && data->fn) {
483 vect = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start));
484 slot = data->hyp_vectors_slot;
487 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS) && !has_vhe()) {
488 vect = __kvm_bp_vect_base;
489 if (slot == -1)
490 slot = __kvm_harden_el2_vector_slot;
493 if (slot != -1)
494 vect += slot * SZ_2K;
496 return vect;
499 /* This is only called on a !VHE system */
500 static inline int kvm_map_vectors(void)
503 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
504 * HEL2 = ARM64_HARDEN_EL2_VECTORS
506 * !HBP + !HEL2 -> use direct vectors
507 * HBP + !HEL2 -> use hardened vectors in place
508 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
509 * HBP + HEL2 -> use hardened vertors and use exec mapping
511 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR)) {
512 __kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs_start);
513 __kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
516 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
517 phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs_start);
518 unsigned long size = (__bp_harden_hyp_vecs_end -
519 __bp_harden_hyp_vecs_start);
522 * Always allocate a spare vector slot, as we don't
523 * know yet which CPUs have a BP hardening slot that
524 * we can reuse.
526 __kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
527 BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
528 return create_hyp_exec_mappings(vect_pa, size,
529 &__kvm_bp_vect_base);
532 return 0;
534 #else
535 static inline void *kvm_get_hyp_vector(void)
537 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
540 static inline int kvm_map_vectors(void)
542 return 0;
544 #endif
546 #ifdef CONFIG_ARM64_SSBD
547 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
549 static inline int hyp_map_aux_data(void)
551 int cpu, err;
553 for_each_possible_cpu(cpu) {
554 u64 *ptr;
556 ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
557 err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
558 if (err)
559 return err;
561 return 0;
563 #else
564 static inline int hyp_map_aux_data(void)
566 return 0;
568 #endif
570 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
573 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
574 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
575 * 52bit IPS.
577 static inline int arm64_vttbr_x(u32 ipa_shift, u32 levels)
579 int x = ARM64_VTTBR_X(ipa_shift, levels);
581 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52) && x < 6) ? 6 : x;
584 static inline u64 vttbr_baddr_mask(u32 ipa_shift, u32 levels)
586 unsigned int x = arm64_vttbr_x(ipa_shift, levels);
588 return GENMASK_ULL(PHYS_MASK_SHIFT - 1, x);
591 static inline u64 kvm_vttbr_baddr_mask(struct kvm *kvm)
593 return vttbr_baddr_mask(kvm_phys_shift(kvm), kvm_stage2_levels(kvm));
596 static __always_inline u64 kvm_get_vttbr(struct kvm *kvm)
598 struct kvm_vmid *vmid = &kvm->arch.vmid;
599 u64 vmid_field, baddr;
600 u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
602 baddr = kvm->arch.pgd_phys;
603 vmid_field = (u64)vmid->vmid << VTTBR_VMID_SHIFT;
604 return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
607 #endif /* __ASSEMBLY__ */
608 #endif /* __ARM64_KVM_MMU_H__ */