1 // SPDX-License-Identifier: GPL-2.0-only
3 * FP/SIMD context switching and fault handling
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
44 #define FPEXC_IOF (1 << 0)
45 #define FPEXC_DZF (1 << 1)
46 #define FPEXC_OFF (1 << 2)
47 #define FPEXC_UFF (1 << 3)
48 #define FPEXC_IXF (1 << 4)
49 #define FPEXC_IDF (1 << 7)
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
86 * run but prevent them to use FPSIMD.
88 * For a certain task, the sequence may look something like this:
89 * - the task gets scheduled in; if both the task's fpsimd_cpu field
90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
92 * cleared, otherwise it is set;
94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
95 * userland FPSIMD state is copied from memory to the registers, the task's
96 * fpsimd_cpu field is set to the id of the current CPU, the current
97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
98 * TIF_FOREIGN_FPSTATE flag is cleared;
100 * - the task executes an ordinary syscall; upon return to userland, the
101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
104 * - the task executes a syscall which executes some NEON instructions; this is
105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
106 * register contents to memory, clears the fpsimd_last_state per-cpu variable
107 * and sets the TIF_FOREIGN_FPSTATE flag;
109 * - the task gets preempted after kernel_neon_end() is called; as we have not
110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
111 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
113 struct fpsimd_last_state_struct
{
114 struct user_fpsimd_state
*st
;
119 static DEFINE_PER_CPU(struct fpsimd_last_state_struct
, fpsimd_last_state
);
121 /* Default VL for tasks that don't set it explicitly: */
122 static int sve_default_vl
= -1;
124 #ifdef CONFIG_ARM64_SVE
126 /* Maximum supported vector length across all CPUs (initially poisoned) */
127 int __ro_after_init sve_max_vl
= SVE_VL_MIN
;
128 int __ro_after_init sve_max_virtualisable_vl
= SVE_VL_MIN
;
131 * Set of available vector lengths,
132 * where length vq encoded as bit __vq_to_bit(vq):
134 __ro_after_init
DECLARE_BITMAP(sve_vq_map
, SVE_VQ_MAX
);
135 /* Set of vector lengths present on at least one cpu: */
136 static __ro_after_init
DECLARE_BITMAP(sve_vq_partial_map
, SVE_VQ_MAX
);
138 static void __percpu
*efi_sve_state
;
140 #else /* ! CONFIG_ARM64_SVE */
142 /* Dummy declaration for code that will be optimised out: */
143 extern __ro_after_init
DECLARE_BITMAP(sve_vq_map
, SVE_VQ_MAX
);
144 extern __ro_after_init
DECLARE_BITMAP(sve_vq_partial_map
, SVE_VQ_MAX
);
145 extern void __percpu
*efi_sve_state
;
147 #endif /* ! CONFIG_ARM64_SVE */
149 DEFINE_PER_CPU(bool, fpsimd_context_busy
);
150 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy
);
152 static void __get_cpu_fpsimd_context(void)
154 bool busy
= __this_cpu_xchg(fpsimd_context_busy
, true);
160 * Claim ownership of the CPU FPSIMD context for use by the calling context.
162 * The caller may freely manipulate the FPSIMD context metadata until
163 * put_cpu_fpsimd_context() is called.
165 * The double-underscore version must only be called if you know the task
166 * can't be preempted.
168 static void get_cpu_fpsimd_context(void)
171 __get_cpu_fpsimd_context();
174 static void __put_cpu_fpsimd_context(void)
176 bool busy
= __this_cpu_xchg(fpsimd_context_busy
, false);
178 WARN_ON(!busy
); /* No matching get_cpu_fpsimd_context()? */
182 * Release the CPU FPSIMD context.
184 * Must be called from a context in which get_cpu_fpsimd_context() was
185 * previously called, with no call to put_cpu_fpsimd_context() in the
188 static void put_cpu_fpsimd_context(void)
190 __put_cpu_fpsimd_context();
194 static bool have_cpu_fpsimd_context(void)
196 return !preemptible() && __this_cpu_read(fpsimd_context_busy
);
200 * Call __sve_free() directly only if you know task can't be scheduled
203 static void __sve_free(struct task_struct
*task
)
205 kfree(task
->thread
.sve_state
);
206 task
->thread
.sve_state
= NULL
;
209 static void sve_free(struct task_struct
*task
)
211 WARN_ON(test_tsk_thread_flag(task
, TIF_SVE
));
217 * TIF_SVE controls whether a task can use SVE without trapping while
218 * in userspace, and also the way a task's FPSIMD/SVE state is stored
221 * The kernel uses this flag to track whether a user task is actively
222 * using SVE, and therefore whether full SVE register state needs to
223 * be tracked. If not, the cheaper FPSIMD context handling code can
224 * be used instead of the more costly SVE equivalents.
228 * The task can execute SVE instructions while in userspace without
229 * trapping to the kernel.
231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
232 * corresponding Zn), P0-P15 and FFR are encoded in in
233 * task->thread.sve_state, formatted appropriately for vector
234 * length task->thread.sve_vl.
236 * task->thread.sve_state must point to a valid buffer at least
237 * sve_state_size(task) bytes in size.
239 * During any syscall, the kernel may optionally clear TIF_SVE and
240 * discard the vector state except for the FPSIMD subset.
244 * An attempt by the user task to execute an SVE instruction causes
245 * do_sve_acc() to be called, which does some preparation and then
248 * When stored, FPSIMD registers V0-V31 are encoded in
249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
250 * logically zero but not stored anywhere; P0-P15 and FFR are not
251 * stored and have unspecified values from userspace's point of
252 * view. For hygiene purposes, the kernel zeroes them on next use,
253 * but userspace is discouraged from relying on this.
255 * task->thread.sve_state does not need to be non-NULL, valid or any
256 * particular size: it must not be dereferenced.
258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
259 * irrespective of whether TIF_SVE is clear or set, since these are
260 * not vector length dependent.
264 * Update current's FPSIMD/SVE registers from thread_struct.
266 * This function should be called only when the FPSIMD/SVE state in
267 * thread_struct is known to be up to date, when preparing to enter
270 static void task_fpsimd_load(void)
272 WARN_ON(!system_supports_fpsimd());
273 WARN_ON(!have_cpu_fpsimd_context());
275 if (system_supports_sve() && test_thread_flag(TIF_SVE
))
276 sve_load_state(sve_pffr(¤t
->thread
),
277 ¤t
->thread
.uw
.fpsimd_state
.fpsr
,
278 sve_vq_from_vl(current
->thread
.sve_vl
) - 1);
280 fpsimd_load_state(¤t
->thread
.uw
.fpsimd_state
);
284 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
285 * date with respect to the CPU registers.
287 static void fpsimd_save(void)
289 struct fpsimd_last_state_struct
const *last
=
290 this_cpu_ptr(&fpsimd_last_state
);
291 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
293 WARN_ON(!system_supports_fpsimd());
294 WARN_ON(!have_cpu_fpsimd_context());
296 if (!test_thread_flag(TIF_FOREIGN_FPSTATE
)) {
297 if (system_supports_sve() && test_thread_flag(TIF_SVE
)) {
298 if (WARN_ON(sve_get_vl() != last
->sve_vl
)) {
300 * Can't save the user regs, so current would
301 * re-enter user with corrupt state.
302 * There's no way to recover, so kill it:
304 force_signal_inject(SIGKILL
, SI_KERNEL
, 0);
308 sve_save_state((char *)last
->sve_state
+
309 sve_ffr_offset(last
->sve_vl
),
312 fpsimd_save_state(last
->st
);
317 * All vector length selection from userspace comes through here.
318 * We're on a slow path, so some sanity-checks are included.
319 * If things go wrong there's a bug somewhere, but try to fall back to a
322 static unsigned int find_supported_vector_length(unsigned int vl
)
325 int max_vl
= sve_max_vl
;
327 if (WARN_ON(!sve_vl_valid(vl
)))
330 if (WARN_ON(!sve_vl_valid(max_vl
)))
336 bit
= find_next_bit(sve_vq_map
, SVE_VQ_MAX
,
337 __vq_to_bit(sve_vq_from_vl(vl
)));
338 return sve_vl_from_vq(__bit_to_vq(bit
));
343 static int sve_proc_do_default_vl(struct ctl_table
*table
, int write
,
344 void __user
*buffer
, size_t *lenp
,
348 int vl
= sve_default_vl
;
349 struct ctl_table tmp_table
= {
351 .maxlen
= sizeof(vl
),
354 ret
= proc_dointvec(&tmp_table
, write
, buffer
, lenp
, ppos
);
358 /* Writing -1 has the special meaning "set to max": */
362 if (!sve_vl_valid(vl
))
365 sve_default_vl
= find_supported_vector_length(vl
);
369 static struct ctl_table sve_default_vl_table
[] = {
371 .procname
= "sve_default_vector_length",
373 .proc_handler
= sve_proc_do_default_vl
,
378 static int __init
sve_sysctl_init(void)
380 if (system_supports_sve())
381 if (!register_sysctl("abi", sve_default_vl_table
))
387 #else /* ! CONFIG_SYSCTL */
388 static int __init
sve_sysctl_init(void) { return 0; }
389 #endif /* ! CONFIG_SYSCTL */
391 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
392 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
394 #ifdef CONFIG_CPU_BIG_ENDIAN
395 static __uint128_t
arm64_cpu_to_le128(__uint128_t x
)
398 u64 b
= swab64(x
>> 64);
400 return ((__uint128_t
)a
<< 64) | b
;
403 static __uint128_t
arm64_cpu_to_le128(__uint128_t x
)
409 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
411 static void __fpsimd_to_sve(void *sst
, struct user_fpsimd_state
const *fst
,
417 for (i
= 0; i
< SVE_NUM_ZREGS
; ++i
) {
418 p
= (__uint128_t
*)ZREG(sst
, vq
, i
);
419 *p
= arm64_cpu_to_le128(fst
->vregs
[i
]);
424 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
425 * task->thread.sve_state.
427 * Task can be a non-runnable task, or current. In the latter case,
428 * the caller must have ownership of the cpu FPSIMD context before calling
430 * task->thread.sve_state must point to at least sve_state_size(task)
431 * bytes of allocated kernel memory.
432 * task->thread.uw.fpsimd_state must be up to date before calling this
435 static void fpsimd_to_sve(struct task_struct
*task
)
438 void *sst
= task
->thread
.sve_state
;
439 struct user_fpsimd_state
const *fst
= &task
->thread
.uw
.fpsimd_state
;
441 if (!system_supports_sve())
444 vq
= sve_vq_from_vl(task
->thread
.sve_vl
);
445 __fpsimd_to_sve(sst
, fst
, vq
);
449 * Transfer the SVE state in task->thread.sve_state to
450 * task->thread.uw.fpsimd_state.
452 * Task can be a non-runnable task, or current. In the latter case,
453 * the caller must have ownership of the cpu FPSIMD context before calling
455 * task->thread.sve_state must point to at least sve_state_size(task)
456 * bytes of allocated kernel memory.
457 * task->thread.sve_state must be up to date before calling this function.
459 static void sve_to_fpsimd(struct task_struct
*task
)
462 void const *sst
= task
->thread
.sve_state
;
463 struct user_fpsimd_state
*fst
= &task
->thread
.uw
.fpsimd_state
;
465 __uint128_t
const *p
;
467 if (!system_supports_sve())
470 vq
= sve_vq_from_vl(task
->thread
.sve_vl
);
471 for (i
= 0; i
< SVE_NUM_ZREGS
; ++i
) {
472 p
= (__uint128_t
const *)ZREG(sst
, vq
, i
);
473 fst
->vregs
[i
] = arm64_le128_to_cpu(*p
);
477 #ifdef CONFIG_ARM64_SVE
480 * Return how many bytes of memory are required to store the full SVE
481 * state for task, given task's currently configured vector length.
483 size_t sve_state_size(struct task_struct
const *task
)
485 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task
->thread
.sve_vl
));
489 * Ensure that task->thread.sve_state is allocated and sufficiently large.
491 * This function should be used only in preparation for replacing
492 * task->thread.sve_state with new data. The memory is always zeroed
493 * here to prevent stale data from showing through: this is done in
494 * the interest of testability and predictability: except in the
495 * do_sve_acc() case, there is no ABI requirement to hide stale data
496 * written previously be task.
498 void sve_alloc(struct task_struct
*task
)
500 if (task
->thread
.sve_state
) {
501 memset(task
->thread
.sve_state
, 0, sve_state_size(current
));
505 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
506 task
->thread
.sve_state
=
507 kzalloc(sve_state_size(task
), GFP_KERNEL
);
510 * If future SVE revisions can have larger vectors though,
511 * this may cease to be true:
513 BUG_ON(!task
->thread
.sve_state
);
518 * Ensure that task->thread.sve_state is up to date with respect to
519 * the user task, irrespective of when SVE is in use or not.
521 * This should only be called by ptrace. task must be non-runnable.
522 * task->thread.sve_state must point to at least sve_state_size(task)
523 * bytes of allocated kernel memory.
525 void fpsimd_sync_to_sve(struct task_struct
*task
)
527 if (!test_tsk_thread_flag(task
, TIF_SVE
))
532 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
533 * the user task, irrespective of whether SVE is in use or not.
535 * This should only be called by ptrace. task must be non-runnable.
536 * task->thread.sve_state must point to at least sve_state_size(task)
537 * bytes of allocated kernel memory.
539 void sve_sync_to_fpsimd(struct task_struct
*task
)
541 if (test_tsk_thread_flag(task
, TIF_SVE
))
546 * Ensure that task->thread.sve_state is up to date with respect to
547 * the task->thread.uw.fpsimd_state.
549 * This should only be called by ptrace to merge new FPSIMD register
550 * values into a task for which SVE is currently active.
551 * task must be non-runnable.
552 * task->thread.sve_state must point to at least sve_state_size(task)
553 * bytes of allocated kernel memory.
554 * task->thread.uw.fpsimd_state must already have been initialised with
555 * the new FPSIMD register values to be merged in.
557 void sve_sync_from_fpsimd_zeropad(struct task_struct
*task
)
560 void *sst
= task
->thread
.sve_state
;
561 struct user_fpsimd_state
const *fst
= &task
->thread
.uw
.fpsimd_state
;
563 if (!test_tsk_thread_flag(task
, TIF_SVE
))
566 vq
= sve_vq_from_vl(task
->thread
.sve_vl
);
568 memset(sst
, 0, SVE_SIG_REGS_SIZE(vq
));
569 __fpsimd_to_sve(sst
, fst
, vq
);
572 int sve_set_vector_length(struct task_struct
*task
,
573 unsigned long vl
, unsigned long flags
)
575 if (flags
& ~(unsigned long)(PR_SVE_VL_INHERIT
|
576 PR_SVE_SET_VL_ONEXEC
))
579 if (!sve_vl_valid(vl
))
583 * Clamp to the maximum vector length that VL-agnostic SVE code can
584 * work with. A flag may be assigned in the future to allow setting
585 * of larger vector lengths without confusing older software.
587 if (vl
> SVE_VL_ARCH_MAX
)
588 vl
= SVE_VL_ARCH_MAX
;
590 vl
= find_supported_vector_length(vl
);
592 if (flags
& (PR_SVE_VL_INHERIT
|
593 PR_SVE_SET_VL_ONEXEC
))
594 task
->thread
.sve_vl_onexec
= vl
;
596 /* Reset VL to system default on next exec: */
597 task
->thread
.sve_vl_onexec
= 0;
599 /* Only actually set the VL if not deferred: */
600 if (flags
& PR_SVE_SET_VL_ONEXEC
)
603 if (vl
== task
->thread
.sve_vl
)
607 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
608 * write any live register state back to task_struct, and convert to a
611 if (task
== current
) {
612 get_cpu_fpsimd_context();
617 fpsimd_flush_task_state(task
);
618 if (test_and_clear_tsk_thread_flag(task
, TIF_SVE
))
622 put_cpu_fpsimd_context();
625 * Force reallocation of task SVE state to the correct size
630 task
->thread
.sve_vl
= vl
;
633 update_tsk_thread_flag(task
, TIF_SVE_VL_INHERIT
,
634 flags
& PR_SVE_VL_INHERIT
);
640 * Encode the current vector length and flags for return.
641 * This is only required for prctl(): ptrace has separate fields
643 * flags are as for sve_set_vector_length().
645 static int sve_prctl_status(unsigned long flags
)
649 if (flags
& PR_SVE_SET_VL_ONEXEC
)
650 ret
= current
->thread
.sve_vl_onexec
;
652 ret
= current
->thread
.sve_vl
;
654 if (test_thread_flag(TIF_SVE_VL_INHERIT
))
655 ret
|= PR_SVE_VL_INHERIT
;
661 int sve_set_current_vl(unsigned long arg
)
663 unsigned long vl
, flags
;
666 vl
= arg
& PR_SVE_VL_LEN_MASK
;
669 if (!system_supports_sve())
672 ret
= sve_set_vector_length(current
, vl
, flags
);
676 return sve_prctl_status(flags
);
680 int sve_get_current_vl(void)
682 if (!system_supports_sve())
685 return sve_prctl_status(0);
688 static void sve_probe_vqs(DECLARE_BITMAP(map
, SVE_VQ_MAX
))
693 bitmap_zero(map
, SVE_VQ_MAX
);
695 zcr
= ZCR_ELx_LEN_MASK
;
696 zcr
= read_sysreg_s(SYS_ZCR_EL1
) & ~zcr
;
698 for (vq
= SVE_VQ_MAX
; vq
>= SVE_VQ_MIN
; --vq
) {
699 write_sysreg_s(zcr
| (vq
- 1), SYS_ZCR_EL1
); /* self-syncing */
701 vq
= sve_vq_from_vl(vl
); /* skip intervening lengths */
702 set_bit(__vq_to_bit(vq
), map
);
707 * Initialise the set of known supported VQs for the boot CPU.
708 * This is called during kernel boot, before secondary CPUs are brought up.
710 void __init
sve_init_vq_map(void)
712 sve_probe_vqs(sve_vq_map
);
713 bitmap_copy(sve_vq_partial_map
, sve_vq_map
, SVE_VQ_MAX
);
717 * If we haven't committed to the set of supported VQs yet, filter out
718 * those not supported by the current CPU.
719 * This function is called during the bring-up of early secondary CPUs only.
721 void sve_update_vq_map(void)
723 DECLARE_BITMAP(tmp_map
, SVE_VQ_MAX
);
725 sve_probe_vqs(tmp_map
);
726 bitmap_and(sve_vq_map
, sve_vq_map
, tmp_map
, SVE_VQ_MAX
);
727 bitmap_or(sve_vq_partial_map
, sve_vq_partial_map
, tmp_map
, SVE_VQ_MAX
);
731 * Check whether the current CPU supports all VQs in the committed set.
732 * This function is called during the bring-up of late secondary CPUs only.
734 int sve_verify_vq_map(void)
736 DECLARE_BITMAP(tmp_map
, SVE_VQ_MAX
);
739 sve_probe_vqs(tmp_map
);
741 bitmap_complement(tmp_map
, tmp_map
, SVE_VQ_MAX
);
742 if (bitmap_intersects(tmp_map
, sve_vq_map
, SVE_VQ_MAX
)) {
743 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
748 if (!IS_ENABLED(CONFIG_KVM
) || !is_hyp_mode_available())
752 * For KVM, it is necessary to ensure that this CPU doesn't
753 * support any vector length that guests may have probed as
757 /* Recover the set of supported VQs: */
758 bitmap_complement(tmp_map
, tmp_map
, SVE_VQ_MAX
);
759 /* Find VQs supported that are not globally supported: */
760 bitmap_andnot(tmp_map
, tmp_map
, sve_vq_map
, SVE_VQ_MAX
);
762 /* Find the lowest such VQ, if any: */
763 b
= find_last_bit(tmp_map
, SVE_VQ_MAX
);
765 return 0; /* no mismatches */
768 * Mismatches above sve_max_virtualisable_vl are fine, since
769 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
771 if (sve_vl_from_vq(__bit_to_vq(b
)) <= sve_max_virtualisable_vl
) {
772 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
780 static void __init
sve_efi_setup(void)
782 if (!IS_ENABLED(CONFIG_EFI
))
786 * alloc_percpu() warns and prints a backtrace if this goes wrong.
787 * This is evidence of a crippled system and we are returning void,
788 * so no attempt is made to handle this situation here.
790 if (!sve_vl_valid(sve_max_vl
))
793 efi_sve_state
= __alloc_percpu(
794 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl
)), SVE_VQ_BYTES
);
801 panic("Cannot allocate percpu memory for EFI SVE save/restore");
805 * Enable SVE for EL1.
806 * Intended for use by the cpufeatures code during CPU boot.
808 void sve_kernel_enable(const struct arm64_cpu_capabilities
*__always_unused p
)
810 write_sysreg(read_sysreg(CPACR_EL1
) | CPACR_EL1_ZEN_EL1EN
, CPACR_EL1
);
815 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
818 * Use only if SVE is present.
819 * This function clobbers the SVE vector length.
821 u64
read_zcr_features(void)
827 * Set the maximum possible VL, and write zeroes to all other
828 * bits to see if they stick.
830 sve_kernel_enable(NULL
);
831 write_sysreg_s(ZCR_ELx_LEN_MASK
, SYS_ZCR_EL1
);
833 zcr
= read_sysreg_s(SYS_ZCR_EL1
);
834 zcr
&= ~(u64
)ZCR_ELx_LEN_MASK
; /* find sticky 1s outside LEN field */
835 vq_max
= sve_vq_from_vl(sve_get_vl());
836 zcr
|= vq_max
- 1; /* set LEN field to maximum effective value */
841 void __init
sve_setup(void)
844 DECLARE_BITMAP(tmp_map
, SVE_VQ_MAX
);
847 if (!system_supports_sve())
851 * The SVE architecture mandates support for 128-bit vectors,
852 * so sve_vq_map must have at least SVE_VQ_MIN set.
853 * If something went wrong, at least try to patch it up:
855 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN
), sve_vq_map
)))
856 set_bit(__vq_to_bit(SVE_VQ_MIN
), sve_vq_map
);
858 zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
859 sve_max_vl
= sve_vl_from_vq((zcr
& ZCR_ELx_LEN_MASK
) + 1);
862 * Sanity-check that the max VL we determined through CPU features
863 * corresponds properly to sve_vq_map. If not, do our best:
865 if (WARN_ON(sve_max_vl
!= find_supported_vector_length(sve_max_vl
)))
866 sve_max_vl
= find_supported_vector_length(sve_max_vl
);
869 * For the default VL, pick the maximum supported value <= 64.
870 * VL == 64 is guaranteed not to grow the signal frame.
872 sve_default_vl
= find_supported_vector_length(64);
874 bitmap_andnot(tmp_map
, sve_vq_partial_map
, sve_vq_map
,
877 b
= find_last_bit(tmp_map
, SVE_VQ_MAX
);
879 /* No non-virtualisable VLs found */
880 sve_max_virtualisable_vl
= SVE_VQ_MAX
;
881 else if (WARN_ON(b
== SVE_VQ_MAX
- 1))
882 /* No virtualisable VLs? This is architecturally forbidden. */
883 sve_max_virtualisable_vl
= SVE_VQ_MIN
;
884 else /* b + 1 < SVE_VQ_MAX */
885 sve_max_virtualisable_vl
= sve_vl_from_vq(__bit_to_vq(b
+ 1));
887 if (sve_max_virtualisable_vl
> sve_max_vl
)
888 sve_max_virtualisable_vl
= sve_max_vl
;
890 pr_info("SVE: maximum available vector length %u bytes per vector\n",
892 pr_info("SVE: default vector length %u bytes per vector\n",
895 /* KVM decides whether to support mismatched systems. Just warn here: */
896 if (sve_max_virtualisable_vl
< sve_max_vl
)
897 pr_warn("SVE: unvirtualisable vector lengths present\n");
903 * Called from the put_task_struct() path, which cannot get here
904 * unless dead_task is really dead and not schedulable.
906 void fpsimd_release_task(struct task_struct
*dead_task
)
908 __sve_free(dead_task
);
911 #endif /* CONFIG_ARM64_SVE */
916 * Storage is allocated for the full SVE state, the current FPSIMD
917 * register contents are migrated across, and TIF_SVE is set so that
918 * the SVE access trap will be disabled the next time this task
919 * reaches ret_to_user.
921 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
922 * would have disabled the SVE access trap for userspace during
923 * ret_to_user, making an SVE access trap impossible in that case.
925 void do_sve_acc(unsigned int esr
, struct pt_regs
*regs
)
927 /* Even if we chose not to use SVE, the hardware could still trap: */
928 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
929 force_signal_inject(SIGILL
, ILL_ILLOPC
, regs
->pc
);
935 get_cpu_fpsimd_context();
939 /* Force ret_to_user to reload the registers: */
940 fpsimd_flush_task_state(current
);
942 fpsimd_to_sve(current
);
943 if (test_and_set_thread_flag(TIF_SVE
))
944 WARN_ON(1); /* SVE access shouldn't have trapped */
946 put_cpu_fpsimd_context();
950 * Trapped FP/ASIMD access.
952 void do_fpsimd_acc(unsigned int esr
, struct pt_regs
*regs
)
954 /* TODO: implement lazy context saving/restoring */
959 * Raise a SIGFPE for the current process.
961 void do_fpsimd_exc(unsigned int esr
, struct pt_regs
*regs
)
963 unsigned int si_code
= FPE_FLTUNK
;
965 if (esr
& ESR_ELx_FP_EXC_TFV
) {
967 si_code
= FPE_FLTINV
;
968 else if (esr
& FPEXC_DZF
)
969 si_code
= FPE_FLTDIV
;
970 else if (esr
& FPEXC_OFF
)
971 si_code
= FPE_FLTOVF
;
972 else if (esr
& FPEXC_UFF
)
973 si_code
= FPE_FLTUND
;
974 else if (esr
& FPEXC_IXF
)
975 si_code
= FPE_FLTRES
;
978 send_sig_fault(SIGFPE
, si_code
,
979 (void __user
*)instruction_pointer(regs
),
983 void fpsimd_thread_switch(struct task_struct
*next
)
985 bool wrong_task
, wrong_cpu
;
987 if (!system_supports_fpsimd())
990 __get_cpu_fpsimd_context();
992 /* Save unsaved fpsimd state, if any: */
996 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
997 * state. For kernel threads, FPSIMD registers are never loaded
998 * and wrong_task and wrong_cpu will always be true.
1000 wrong_task
= __this_cpu_read(fpsimd_last_state
.st
) !=
1001 &next
->thread
.uw
.fpsimd_state
;
1002 wrong_cpu
= next
->thread
.fpsimd_cpu
!= smp_processor_id();
1004 update_tsk_thread_flag(next
, TIF_FOREIGN_FPSTATE
,
1005 wrong_task
|| wrong_cpu
);
1007 __put_cpu_fpsimd_context();
1010 void fpsimd_flush_thread(void)
1012 int vl
, supported_vl
;
1014 if (!system_supports_fpsimd())
1017 get_cpu_fpsimd_context();
1019 fpsimd_flush_task_state(current
);
1020 memset(¤t
->thread
.uw
.fpsimd_state
, 0,
1021 sizeof(current
->thread
.uw
.fpsimd_state
));
1023 if (system_supports_sve()) {
1024 clear_thread_flag(TIF_SVE
);
1028 * Reset the task vector length as required.
1029 * This is where we ensure that all user tasks have a valid
1030 * vector length configured: no kernel task can become a user
1031 * task without an exec and hence a call to this function.
1032 * By the time the first call to this function is made, all
1033 * early hardware probing is complete, so sve_default_vl
1035 * If a bug causes this to go wrong, we make some noise and
1036 * try to fudge thread.sve_vl to a safe value here.
1038 vl
= current
->thread
.sve_vl_onexec
?
1039 current
->thread
.sve_vl_onexec
: sve_default_vl
;
1041 if (WARN_ON(!sve_vl_valid(vl
)))
1044 supported_vl
= find_supported_vector_length(vl
);
1045 if (WARN_ON(supported_vl
!= vl
))
1048 current
->thread
.sve_vl
= vl
;
1051 * If the task is not set to inherit, ensure that the vector
1052 * length will be reset by a subsequent exec:
1054 if (!test_thread_flag(TIF_SVE_VL_INHERIT
))
1055 current
->thread
.sve_vl_onexec
= 0;
1058 put_cpu_fpsimd_context();
1062 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1063 * currently held in the registers does in fact belong to 'current'
1065 void fpsimd_preserve_current_state(void)
1067 if (!system_supports_fpsimd())
1070 get_cpu_fpsimd_context();
1072 put_cpu_fpsimd_context();
1076 * Like fpsimd_preserve_current_state(), but ensure that
1077 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1080 void fpsimd_signal_preserve_current_state(void)
1082 fpsimd_preserve_current_state();
1083 if (system_supports_sve() && test_thread_flag(TIF_SVE
))
1084 sve_to_fpsimd(current
);
1088 * Associate current's FPSIMD context with this cpu
1089 * The caller must have ownership of the cpu FPSIMD context before calling
1092 void fpsimd_bind_task_to_cpu(void)
1094 struct fpsimd_last_state_struct
*last
=
1095 this_cpu_ptr(&fpsimd_last_state
);
1097 WARN_ON(!system_supports_fpsimd());
1098 last
->st
= ¤t
->thread
.uw
.fpsimd_state
;
1099 last
->sve_state
= current
->thread
.sve_state
;
1100 last
->sve_vl
= current
->thread
.sve_vl
;
1101 current
->thread
.fpsimd_cpu
= smp_processor_id();
1103 if (system_supports_sve()) {
1104 /* Toggle SVE trapping for userspace if needed */
1105 if (test_thread_flag(TIF_SVE
))
1110 /* Serialised by exception return to user */
1114 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state
*st
, void *sve_state
,
1115 unsigned int sve_vl
)
1117 struct fpsimd_last_state_struct
*last
=
1118 this_cpu_ptr(&fpsimd_last_state
);
1120 WARN_ON(!system_supports_fpsimd());
1121 WARN_ON(!in_softirq() && !irqs_disabled());
1124 last
->sve_state
= sve_state
;
1125 last
->sve_vl
= sve_vl
;
1129 * Load the userland FPSIMD state of 'current' from memory, but only if the
1130 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1131 * state of 'current'
1133 void fpsimd_restore_current_state(void)
1136 * For the tasks that were created before we detected the absence of
1137 * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
1138 * e.g, init. This could be then inherited by the children processes.
1139 * If we later detect that the system doesn't support FP/SIMD,
1140 * we must clear the flag for all the tasks to indicate that the
1141 * FPSTATE is clean (as we can't have one) to avoid looping for ever in
1142 * do_notify_resume().
1144 if (!system_supports_fpsimd()) {
1145 clear_thread_flag(TIF_FOREIGN_FPSTATE
);
1149 get_cpu_fpsimd_context();
1151 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE
)) {
1153 fpsimd_bind_task_to_cpu();
1156 put_cpu_fpsimd_context();
1160 * Load an updated userland FPSIMD state for 'current' from memory and set the
1161 * flag that indicates that the FPSIMD register contents are the most recent
1162 * FPSIMD state of 'current'
1164 void fpsimd_update_current_state(struct user_fpsimd_state
const *state
)
1166 if (WARN_ON(!system_supports_fpsimd()))
1169 get_cpu_fpsimd_context();
1171 current
->thread
.uw
.fpsimd_state
= *state
;
1172 if (system_supports_sve() && test_thread_flag(TIF_SVE
))
1173 fpsimd_to_sve(current
);
1176 fpsimd_bind_task_to_cpu();
1178 clear_thread_flag(TIF_FOREIGN_FPSTATE
);
1180 put_cpu_fpsimd_context();
1184 * Invalidate live CPU copies of task t's FPSIMD state
1186 * This function may be called with preemption enabled. The barrier()
1187 * ensures that the assignment to fpsimd_cpu is visible to any
1188 * preemption/softirq that could race with set_tsk_thread_flag(), so
1189 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1191 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1194 void fpsimd_flush_task_state(struct task_struct
*t
)
1196 t
->thread
.fpsimd_cpu
= NR_CPUS
;
1198 * If we don't support fpsimd, bail out after we have
1199 * reset the fpsimd_cpu for this task and clear the
1202 if (!system_supports_fpsimd())
1205 set_tsk_thread_flag(t
, TIF_FOREIGN_FPSTATE
);
1211 * Invalidate any task's FPSIMD state that is present on this cpu.
1212 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1213 * before calling this function.
1215 static void fpsimd_flush_cpu_state(void)
1217 WARN_ON(!system_supports_fpsimd());
1218 __this_cpu_write(fpsimd_last_state
.st
, NULL
);
1219 set_thread_flag(TIF_FOREIGN_FPSTATE
);
1223 * Save the FPSIMD state to memory and invalidate cpu view.
1224 * This function must be called with preemption disabled.
1226 void fpsimd_save_and_flush_cpu_state(void)
1228 if (!system_supports_fpsimd())
1230 WARN_ON(preemptible());
1231 __get_cpu_fpsimd_context();
1233 fpsimd_flush_cpu_state();
1234 __put_cpu_fpsimd_context();
1237 #ifdef CONFIG_KERNEL_MODE_NEON
1240 * Kernel-side NEON support functions
1244 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1247 * Must not be called unless may_use_simd() returns true.
1248 * Task context in the FPSIMD registers is saved back to memory as necessary.
1250 * A matching call to kernel_neon_end() must be made before returning from the
1253 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1256 void kernel_neon_begin(void)
1258 if (WARN_ON(!system_supports_fpsimd()))
1261 BUG_ON(!may_use_simd());
1263 get_cpu_fpsimd_context();
1265 /* Save unsaved fpsimd state, if any: */
1268 /* Invalidate any task state remaining in the fpsimd regs: */
1269 fpsimd_flush_cpu_state();
1271 EXPORT_SYMBOL(kernel_neon_begin
);
1274 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1276 * Must be called from a context in which kernel_neon_begin() was previously
1277 * called, with no call to kernel_neon_end() in the meantime.
1279 * The caller must not use the FPSIMD registers after this function is called,
1280 * unless kernel_neon_begin() is called again in the meantime.
1282 void kernel_neon_end(void)
1284 if (!system_supports_fpsimd())
1287 put_cpu_fpsimd_context();
1289 EXPORT_SYMBOL(kernel_neon_end
);
1293 static DEFINE_PER_CPU(struct user_fpsimd_state
, efi_fpsimd_state
);
1294 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used
);
1295 static DEFINE_PER_CPU(bool, efi_sve_state_used
);
1298 * EFI runtime services support functions
1300 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1301 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1302 * is always used rather than being an optional accelerator.
1304 * These functions provide the necessary support for ensuring FPSIMD
1305 * save/restore in the contexts from which EFI is used.
1307 * Do not use them for any other purpose -- if tempted to do so, you are
1308 * either doing something wrong or you need to propose some refactoring.
1312 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1314 void __efi_fpsimd_begin(void)
1316 if (!system_supports_fpsimd())
1319 WARN_ON(preemptible());
1321 if (may_use_simd()) {
1322 kernel_neon_begin();
1325 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1328 if (system_supports_sve() && likely(efi_sve_state
)) {
1329 char *sve_state
= this_cpu_ptr(efi_sve_state
);
1331 __this_cpu_write(efi_sve_state_used
, true);
1333 sve_save_state(sve_state
+ sve_ffr_offset(sve_max_vl
),
1334 &this_cpu_ptr(&efi_fpsimd_state
)->fpsr
);
1336 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state
));
1339 __this_cpu_write(efi_fpsimd_state_used
, true);
1344 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1346 void __efi_fpsimd_end(void)
1348 if (!system_supports_fpsimd())
1351 if (!__this_cpu_xchg(efi_fpsimd_state_used
, false)) {
1354 if (system_supports_sve() &&
1355 likely(__this_cpu_read(efi_sve_state_used
))) {
1356 char const *sve_state
= this_cpu_ptr(efi_sve_state
);
1358 sve_load_state(sve_state
+ sve_ffr_offset(sve_max_vl
),
1359 &this_cpu_ptr(&efi_fpsimd_state
)->fpsr
,
1360 sve_vq_from_vl(sve_get_vl()) - 1);
1362 __this_cpu_write(efi_sve_state_used
, false);
1364 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state
));
1369 #endif /* CONFIG_EFI */
1371 #endif /* CONFIG_KERNEL_MODE_NEON */
1373 #ifdef CONFIG_CPU_PM
1374 static int fpsimd_cpu_pm_notifier(struct notifier_block
*self
,
1375 unsigned long cmd
, void *v
)
1379 fpsimd_save_and_flush_cpu_state();
1383 case CPU_PM_ENTER_FAILED
:
1390 static struct notifier_block fpsimd_cpu_pm_notifier_block
= {
1391 .notifier_call
= fpsimd_cpu_pm_notifier
,
1394 static void __init
fpsimd_pm_init(void)
1396 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block
);
1400 static inline void fpsimd_pm_init(void) { }
1401 #endif /* CONFIG_CPU_PM */
1403 #ifdef CONFIG_HOTPLUG_CPU
1404 static int fpsimd_cpu_dead(unsigned int cpu
)
1406 per_cpu(fpsimd_last_state
.st
, cpu
) = NULL
;
1410 static inline void fpsimd_hotplug_init(void)
1412 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD
, "arm64/fpsimd:dead",
1413 NULL
, fpsimd_cpu_dead
);
1417 static inline void fpsimd_hotplug_init(void) { }
1421 * FP/SIMD support code initialisation.
1423 static int __init
fpsimd_init(void)
1425 if (cpu_have_named_feature(FP
)) {
1427 fpsimd_hotplug_init();
1429 pr_notice("Floating-point is not implemented\n");
1432 if (!cpu_have_named_feature(ASIMD
))
1433 pr_notice("Advanced SIMD is not implemented\n");
1435 return sve_sysctl_init();
1437 core_initcall(fpsimd_init
);