treewide: remove redundant IS_ERR() before error code check
[linux/fpc-iii.git] / arch / arm64 / kvm / hyp / switch.c
blobdfe8dd1725128405a1661a946782d812695d2d15
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
7 #include <linux/arm-smccc.h>
8 #include <linux/kvm_host.h>
9 #include <linux/types.h>
10 #include <linux/jump_label.h>
11 #include <uapi/linux/psci.h>
13 #include <kvm/arm_psci.h>
15 #include <asm/barrier.h>
16 #include <asm/cpufeature.h>
17 #include <asm/kprobes.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_host.h>
21 #include <asm/kvm_hyp.h>
22 #include <asm/kvm_mmu.h>
23 #include <asm/fpsimd.h>
24 #include <asm/debug-monitors.h>
25 #include <asm/processor.h>
26 #include <asm/thread_info.h>
28 /* Check whether the FP regs were dirtied while in the host-side run loop: */
29 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
32 * When the system doesn't support FP/SIMD, we cannot rely on
33 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
34 * abort on the very first access to FP and thus we should never
35 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
36 * trap the accesses.
38 if (!system_supports_fpsimd() ||
39 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
40 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
41 KVM_ARM64_FP_HOST);
43 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
46 /* Save the 32-bit only FPSIMD system register state */
47 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 if (!vcpu_el1_is_32bit(vcpu))
50 return;
52 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
55 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
58 * We are about to set CPTR_EL2.TFP to trap all floating point
59 * register accesses to EL2, however, the ARM ARM clearly states that
60 * traps are only taken to EL2 if the operation would not otherwise
61 * trap to EL1. Therefore, always make sure that for 32-bit guests,
62 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64 * it will cause an exception.
66 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67 write_sysreg(1 << 30, fpexc32_el2);
68 isb();
72 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
74 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75 write_sysreg(1 << 15, hstr_el2);
78 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79 * PMSELR_EL0 to make sure it never contains the cycle
80 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81 * EL1 instead of being trapped to EL2.
83 write_sysreg(0, pmselr_el0);
84 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
85 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
88 static void __hyp_text __deactivate_traps_common(void)
90 write_sysreg(0, hstr_el2);
91 write_sysreg(0, pmuserenr_el0);
94 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
96 u64 val;
98 val = read_sysreg(cpacr_el1);
99 val |= CPACR_EL1_TTA;
100 val &= ~CPACR_EL1_ZEN;
101 if (update_fp_enabled(vcpu)) {
102 if (vcpu_has_sve(vcpu))
103 val |= CPACR_EL1_ZEN;
104 } else {
105 val &= ~CPACR_EL1_FPEN;
106 __activate_traps_fpsimd32(vcpu);
109 write_sysreg(val, cpacr_el1);
111 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
113 NOKPROBE_SYMBOL(activate_traps_vhe);
115 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
117 u64 val;
119 __activate_traps_common(vcpu);
121 val = CPTR_EL2_DEFAULT;
122 val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
123 if (!update_fp_enabled(vcpu)) {
124 val |= CPTR_EL2_TFP;
125 __activate_traps_fpsimd32(vcpu);
128 write_sysreg(val, cptr_el2);
130 if (cpus_have_const_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
131 struct kvm_cpu_context *ctxt = &vcpu->arch.ctxt;
133 isb();
135 * At this stage, and thanks to the above isb(), S2 is
136 * configured and enabled. We can now restore the guest's S1
137 * configuration: SCTLR, and only then TCR.
139 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
140 isb();
141 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
145 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
147 u64 hcr = vcpu->arch.hcr_el2;
149 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
150 hcr |= HCR_TVM;
152 write_sysreg(hcr, hcr_el2);
154 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
155 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
157 if (has_vhe())
158 activate_traps_vhe(vcpu);
159 else
160 __activate_traps_nvhe(vcpu);
163 static void deactivate_traps_vhe(void)
165 extern char vectors[]; /* kernel exception vectors */
166 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
169 * ARM errata 1165522 and 1530923 require the actual execution of the
170 * above before we can switch to the EL2/EL0 translation regime used by
171 * the host.
173 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT_VHE));
175 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
176 write_sysreg(vectors, vbar_el1);
178 NOKPROBE_SYMBOL(deactivate_traps_vhe);
180 static void __hyp_text __deactivate_traps_nvhe(void)
182 u64 mdcr_el2 = read_sysreg(mdcr_el2);
184 if (cpus_have_const_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
185 u64 val;
188 * Set the TCR and SCTLR registers in the exact opposite
189 * sequence as __activate_traps_nvhe (first prevent walks,
190 * then force the MMU on). A generous sprinkling of isb()
191 * ensure that things happen in this exact order.
193 val = read_sysreg_el1(SYS_TCR);
194 write_sysreg_el1(val | TCR_EPD1_MASK | TCR_EPD0_MASK, SYS_TCR);
195 isb();
196 val = read_sysreg_el1(SYS_SCTLR);
197 write_sysreg_el1(val | SCTLR_ELx_M, SYS_SCTLR);
198 isb();
201 __deactivate_traps_common();
203 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
204 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
206 write_sysreg(mdcr_el2, mdcr_el2);
207 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
208 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
211 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
214 * If we pended a virtual abort, preserve it until it gets
215 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
216 * the crucial bit is "On taking a vSError interrupt,
217 * HCR_EL2.VSE is cleared to 0."
219 if (vcpu->arch.hcr_el2 & HCR_VSE) {
220 vcpu->arch.hcr_el2 &= ~HCR_VSE;
221 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
224 if (has_vhe())
225 deactivate_traps_vhe();
226 else
227 __deactivate_traps_nvhe();
230 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
232 __activate_traps_common(vcpu);
235 void deactivate_traps_vhe_put(void)
237 u64 mdcr_el2 = read_sysreg(mdcr_el2);
239 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
240 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
241 MDCR_EL2_TPMS;
243 write_sysreg(mdcr_el2, mdcr_el2);
245 __deactivate_traps_common();
248 static void __hyp_text __activate_vm(struct kvm *kvm)
250 __load_guest_stage2(kvm);
253 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
255 write_sysreg(0, vttbr_el2);
258 /* Save VGICv3 state on non-VHE systems */
259 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
261 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
262 __vgic_v3_save_state(vcpu);
263 __vgic_v3_deactivate_traps(vcpu);
267 /* Restore VGICv3 state on non_VEH systems */
268 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
270 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
271 __vgic_v3_activate_traps(vcpu);
272 __vgic_v3_restore_state(vcpu);
276 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
278 u64 par, tmp;
281 * Resolve the IPA the hard way using the guest VA.
283 * Stage-1 translation already validated the memory access
284 * rights. As such, we can use the EL1 translation regime, and
285 * don't have to distinguish between EL0 and EL1 access.
287 * We do need to save/restore PAR_EL1 though, as we haven't
288 * saved the guest context yet, and we may return early...
290 par = read_sysreg(par_el1);
291 asm volatile("at s1e1r, %0" : : "r" (far));
292 isb();
294 tmp = read_sysreg(par_el1);
295 write_sysreg(par, par_el1);
297 if (unlikely(tmp & SYS_PAR_EL1_F))
298 return false; /* Translation failed, back to guest */
300 /* Convert PAR to HPFAR format */
301 *hpfar = PAR_TO_HPFAR(tmp);
302 return true;
305 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
307 u8 ec;
308 u64 esr;
309 u64 hpfar, far;
311 esr = vcpu->arch.fault.esr_el2;
312 ec = ESR_ELx_EC(esr);
314 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
315 return true;
317 far = read_sysreg_el2(SYS_FAR);
320 * The HPFAR can be invalid if the stage 2 fault did not
321 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
322 * bit is clear) and one of the two following cases are true:
323 * 1. The fault was due to a permission fault
324 * 2. The processor carries errata 834220
326 * Therefore, for all non S1PTW faults where we either have a
327 * permission fault or the errata workaround is enabled, we
328 * resolve the IPA using the AT instruction.
330 if (!(esr & ESR_ELx_S1PTW) &&
331 (cpus_have_const_cap(ARM64_WORKAROUND_834220) ||
332 (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
333 if (!__translate_far_to_hpfar(far, &hpfar))
334 return false;
335 } else {
336 hpfar = read_sysreg(hpfar_el2);
339 vcpu->arch.fault.far_el2 = far;
340 vcpu->arch.fault.hpfar_el2 = hpfar;
341 return true;
344 /* Check for an FPSIMD/SVE trap and handle as appropriate */
345 static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
347 bool vhe, sve_guest, sve_host;
348 u8 hsr_ec;
350 if (!system_supports_fpsimd())
351 return false;
353 if (system_supports_sve()) {
354 sve_guest = vcpu_has_sve(vcpu);
355 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
356 vhe = true;
357 } else {
358 sve_guest = false;
359 sve_host = false;
360 vhe = has_vhe();
363 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
364 if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
365 hsr_ec != ESR_ELx_EC_SVE)
366 return false;
368 /* Don't handle SVE traps for non-SVE vcpus here: */
369 if (!sve_guest)
370 if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
371 return false;
373 /* Valid trap. Switch the context: */
375 if (vhe) {
376 u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
378 if (sve_guest)
379 reg |= CPACR_EL1_ZEN;
381 write_sysreg(reg, cpacr_el1);
382 } else {
383 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
384 cptr_el2);
387 isb();
389 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
391 * In the SVE case, VHE is assumed: it is enforced by
392 * Kconfig and kvm_arch_init().
394 if (sve_host) {
395 struct thread_struct *thread = container_of(
396 vcpu->arch.host_fpsimd_state,
397 struct thread_struct, uw.fpsimd_state);
399 sve_save_state(sve_pffr(thread),
400 &vcpu->arch.host_fpsimd_state->fpsr);
401 } else {
402 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
405 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
408 if (sve_guest) {
409 sve_load_state(vcpu_sve_pffr(vcpu),
410 &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
411 sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
412 write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
413 } else {
414 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
417 /* Skip restoring fpexc32 for AArch64 guests */
418 if (!(read_sysreg(hcr_el2) & HCR_RW))
419 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
420 fpexc32_el2);
422 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
424 return true;
427 static bool __hyp_text handle_tx2_tvm(struct kvm_vcpu *vcpu)
429 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_hsr(vcpu));
430 int rt = kvm_vcpu_sys_get_rt(vcpu);
431 u64 val = vcpu_get_reg(vcpu, rt);
434 * The normal sysreg handling code expects to see the traps,
435 * let's not do anything here.
437 if (vcpu->arch.hcr_el2 & HCR_TVM)
438 return false;
440 switch (sysreg) {
441 case SYS_SCTLR_EL1:
442 write_sysreg_el1(val, SYS_SCTLR);
443 break;
444 case SYS_TTBR0_EL1:
445 write_sysreg_el1(val, SYS_TTBR0);
446 break;
447 case SYS_TTBR1_EL1:
448 write_sysreg_el1(val, SYS_TTBR1);
449 break;
450 case SYS_TCR_EL1:
451 write_sysreg_el1(val, SYS_TCR);
452 break;
453 case SYS_ESR_EL1:
454 write_sysreg_el1(val, SYS_ESR);
455 break;
456 case SYS_FAR_EL1:
457 write_sysreg_el1(val, SYS_FAR);
458 break;
459 case SYS_AFSR0_EL1:
460 write_sysreg_el1(val, SYS_AFSR0);
461 break;
462 case SYS_AFSR1_EL1:
463 write_sysreg_el1(val, SYS_AFSR1);
464 break;
465 case SYS_MAIR_EL1:
466 write_sysreg_el1(val, SYS_MAIR);
467 break;
468 case SYS_AMAIR_EL1:
469 write_sysreg_el1(val, SYS_AMAIR);
470 break;
471 case SYS_CONTEXTIDR_EL1:
472 write_sysreg_el1(val, SYS_CONTEXTIDR);
473 break;
474 default:
475 return false;
478 __kvm_skip_instr(vcpu);
479 return true;
483 * Return true when we were able to fixup the guest exit and should return to
484 * the guest, false when we should restore the host state and return to the
485 * main run loop.
487 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
489 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
490 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
493 * We're using the raw exception code in order to only process
494 * the trap if no SError is pending. We will come back to the
495 * same PC once the SError has been injected, and replay the
496 * trapping instruction.
498 if (*exit_code != ARM_EXCEPTION_TRAP)
499 goto exit;
501 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
502 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 &&
503 handle_tx2_tvm(vcpu))
504 return true;
507 * We trap the first access to the FP/SIMD to save the host context
508 * and restore the guest context lazily.
509 * If FP/SIMD is not implemented, handle the trap and inject an
510 * undefined instruction exception to the guest.
511 * Similarly for trapped SVE accesses.
513 if (__hyp_handle_fpsimd(vcpu))
514 return true;
516 if (!__populate_fault_info(vcpu))
517 return true;
519 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
520 bool valid;
522 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
523 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
524 kvm_vcpu_dabt_isvalid(vcpu) &&
525 !kvm_vcpu_dabt_isextabt(vcpu) &&
526 !kvm_vcpu_dabt_iss1tw(vcpu);
528 if (valid) {
529 int ret = __vgic_v2_perform_cpuif_access(vcpu);
531 if (ret == 1)
532 return true;
534 /* Promote an illegal access to an SError.*/
535 if (ret == -1)
536 *exit_code = ARM_EXCEPTION_EL1_SERROR;
538 goto exit;
542 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
543 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
544 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
545 int ret = __vgic_v3_perform_cpuif_access(vcpu);
547 if (ret == 1)
548 return true;
551 exit:
552 /* Return to the host kernel and handle the exit */
553 return false;
556 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
558 if (!cpus_have_const_cap(ARM64_SSBD))
559 return false;
561 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
564 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
566 #ifdef CONFIG_ARM64_SSBD
568 * The host runs with the workaround always present. If the
569 * guest wants it disabled, so be it...
571 if (__needs_ssbd_off(vcpu) &&
572 __hyp_this_cpu_read(arm64_ssbd_callback_required))
573 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
574 #endif
577 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
579 #ifdef CONFIG_ARM64_SSBD
581 * If the guest has disabled the workaround, bring it back on.
583 if (__needs_ssbd_off(vcpu) &&
584 __hyp_this_cpu_read(arm64_ssbd_callback_required))
585 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
586 #endif
590 * Disable host events, enable guest events
592 static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
594 struct kvm_host_data *host;
595 struct kvm_pmu_events *pmu;
597 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
598 pmu = &host->pmu_events;
600 if (pmu->events_host)
601 write_sysreg(pmu->events_host, pmcntenclr_el0);
603 if (pmu->events_guest)
604 write_sysreg(pmu->events_guest, pmcntenset_el0);
606 return (pmu->events_host || pmu->events_guest);
610 * Disable guest events, enable host events
612 static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
614 struct kvm_host_data *host;
615 struct kvm_pmu_events *pmu;
617 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
618 pmu = &host->pmu_events;
620 if (pmu->events_guest)
621 write_sysreg(pmu->events_guest, pmcntenclr_el0);
623 if (pmu->events_host)
624 write_sysreg(pmu->events_host, pmcntenset_el0);
627 /* Switch to the guest for VHE systems running in EL2 */
628 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
630 struct kvm_cpu_context *host_ctxt;
631 struct kvm_cpu_context *guest_ctxt;
632 u64 exit_code;
634 host_ctxt = vcpu->arch.host_cpu_context;
635 host_ctxt->__hyp_running_vcpu = vcpu;
636 guest_ctxt = &vcpu->arch.ctxt;
638 sysreg_save_host_state_vhe(host_ctxt);
641 * ARM erratum 1165522 requires us to configure both stage 1 and
642 * stage 2 translation for the guest context before we clear
643 * HCR_EL2.TGE.
645 * We have already configured the guest's stage 1 translation in
646 * kvm_vcpu_load_sysregs above. We must now call __activate_vm
647 * before __activate_traps, because __activate_vm configures
648 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
649 * (among other things).
651 __activate_vm(vcpu->kvm);
652 __activate_traps(vcpu);
654 sysreg_restore_guest_state_vhe(guest_ctxt);
655 __debug_switch_to_guest(vcpu);
657 __set_guest_arch_workaround_state(vcpu);
659 do {
660 /* Jump in the fire! */
661 exit_code = __guest_enter(vcpu, host_ctxt);
663 /* And we're baaack! */
664 } while (fixup_guest_exit(vcpu, &exit_code));
666 __set_host_arch_workaround_state(vcpu);
668 sysreg_save_guest_state_vhe(guest_ctxt);
670 __deactivate_traps(vcpu);
672 sysreg_restore_host_state_vhe(host_ctxt);
674 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
675 __fpsimd_save_fpexc32(vcpu);
677 __debug_switch_to_host(vcpu);
679 return exit_code;
681 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
683 /* Switch to the guest for legacy non-VHE systems */
684 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
686 struct kvm_cpu_context *host_ctxt;
687 struct kvm_cpu_context *guest_ctxt;
688 bool pmu_switch_needed;
689 u64 exit_code;
692 * Having IRQs masked via PMR when entering the guest means the GIC
693 * will not signal the CPU of interrupts of lower priority, and the
694 * only way to get out will be via guest exceptions.
695 * Naturally, we want to avoid this.
697 if (system_uses_irq_prio_masking()) {
698 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
699 pmr_sync();
702 vcpu = kern_hyp_va(vcpu);
704 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
705 host_ctxt->__hyp_running_vcpu = vcpu;
706 guest_ctxt = &vcpu->arch.ctxt;
708 pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
710 __sysreg_save_state_nvhe(host_ctxt);
713 * We must restore the 32-bit state before the sysregs, thanks
714 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
716 * Also, and in order to be able to deal with erratum #1319537 (A57)
717 * and #1319367 (A72), we must ensure that all VM-related sysreg are
718 * restored before we enable S2 translation.
720 __sysreg32_restore_state(vcpu);
721 __sysreg_restore_state_nvhe(guest_ctxt);
723 __activate_vm(kern_hyp_va(vcpu->kvm));
724 __activate_traps(vcpu);
726 __hyp_vgic_restore_state(vcpu);
727 __timer_enable_traps(vcpu);
729 __debug_switch_to_guest(vcpu);
731 __set_guest_arch_workaround_state(vcpu);
733 do {
734 /* Jump in the fire! */
735 exit_code = __guest_enter(vcpu, host_ctxt);
737 /* And we're baaack! */
738 } while (fixup_guest_exit(vcpu, &exit_code));
740 __set_host_arch_workaround_state(vcpu);
742 __sysreg_save_state_nvhe(guest_ctxt);
743 __sysreg32_save_state(vcpu);
744 __timer_disable_traps(vcpu);
745 __hyp_vgic_save_state(vcpu);
747 __deactivate_traps(vcpu);
748 __deactivate_vm(vcpu);
750 __sysreg_restore_state_nvhe(host_ctxt);
752 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
753 __fpsimd_save_fpexc32(vcpu);
756 * This must come after restoring the host sysregs, since a non-VHE
757 * system may enable SPE here and make use of the TTBRs.
759 __debug_switch_to_host(vcpu);
761 if (pmu_switch_needed)
762 __pmu_switch_to_host(host_ctxt);
764 /* Returning to host will clear PSR.I, remask PMR if needed */
765 if (system_uses_irq_prio_masking())
766 gic_write_pmr(GIC_PRIO_IRQOFF);
768 return exit_code;
771 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
773 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
774 struct kvm_cpu_context *__host_ctxt)
776 struct kvm_vcpu *vcpu;
777 unsigned long str_va;
779 vcpu = __host_ctxt->__hyp_running_vcpu;
781 if (read_sysreg(vttbr_el2)) {
782 __timer_disable_traps(vcpu);
783 __deactivate_traps(vcpu);
784 __deactivate_vm(vcpu);
785 __sysreg_restore_state_nvhe(__host_ctxt);
789 * Force the panic string to be loaded from the literal pool,
790 * making sure it is a kernel address and not a PC-relative
791 * reference.
793 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
795 __hyp_do_panic(str_va,
796 spsr, elr,
797 read_sysreg(esr_el2), read_sysreg_el2(SYS_FAR),
798 read_sysreg(hpfar_el2), par, vcpu);
801 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
802 struct kvm_cpu_context *host_ctxt)
804 struct kvm_vcpu *vcpu;
805 vcpu = host_ctxt->__hyp_running_vcpu;
807 __deactivate_traps(vcpu);
808 sysreg_restore_host_state_vhe(host_ctxt);
810 panic(__hyp_panic_string,
811 spsr, elr,
812 read_sysreg_el2(SYS_ESR), read_sysreg_el2(SYS_FAR),
813 read_sysreg(hpfar_el2), par, vcpu);
815 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
817 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
819 u64 spsr = read_sysreg_el2(SYS_SPSR);
820 u64 elr = read_sysreg_el2(SYS_ELR);
821 u64 par = read_sysreg(par_el1);
823 if (!has_vhe())
824 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
825 else
826 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
828 unreachable();